diff options
author | Neal Norwitz <nnorwitz@gmail.com> | 2006-03-16 06:50:13 +0000 |
---|---|---|
committer | Neal Norwitz <nnorwitz@gmail.com> | 2006-03-16 06:50:13 +0000 |
commit | 10be10cbe72cc0cc0d05b2901f6857fdbb343894 (patch) | |
tree | 187aa5d7ae3a798239453331f1af23a14c6fce29 /Lib/lib-old/poly.py | |
parent | efbeaef1c1732ddb8d7d6d71847631094958bc89 (diff) | |
download | cpython-git-10be10cbe72cc0cc0d05b2901f6857fdbb343894.tar.gz |
Remove regsub, reconvert, regex, regex_syntax and everything under lib-old.
Diffstat (limited to 'Lib/lib-old/poly.py')
-rw-r--r-- | Lib/lib-old/poly.py | 52 |
1 files changed, 0 insertions, 52 deletions
diff --git a/Lib/lib-old/poly.py b/Lib/lib-old/poly.py deleted file mode 100644 index fe6a1dcc26..0000000000 --- a/Lib/lib-old/poly.py +++ /dev/null @@ -1,52 +0,0 @@ -# module 'poly' -- Polynomials - -# A polynomial is represented by a list of coefficients, e.g., -# [1, 10, 5] represents 1*x**0 + 10*x**1 + 5*x**2 (or 1 + 10x + 5x**2). -# There is no way to suppress internal zeros; trailing zeros are -# taken out by normalize(). - -def normalize(p): # Strip unnecessary zero coefficients - n = len(p) - while n: - if p[n-1]: return p[:n] - n = n-1 - return [] - -def plus(a, b): - if len(a) < len(b): a, b = b, a # make sure a is the longest - res = a[:] # make a copy - for i in range(len(b)): - res[i] = res[i] + b[i] - return normalize(res) - -def minus(a, b): - neg_b = map(lambda x: -x, b[:]) - return plus(a, neg_b) - -def one(power, coeff): # Representation of coeff * x**power - res = [] - for i in range(power): res.append(0) - return res + [coeff] - -def times(a, b): - res = [] - for i in range(len(a)): - for j in range(len(b)): - res = plus(res, one(i+j, a[i]*b[j])) - return res - -def power(a, n): # Raise polynomial a to the positive integral power n - if n == 0: return [1] - if n == 1: return a - if n/2*2 == n: - b = power(a, n/2) - return times(b, b) - return times(power(a, n-1), a) - -def der(a): # First derivative - res = a[1:] - for i in range(len(res)): - res[i] = res[i] * (i+1) - return res - -# Computing a primitive function would require rational arithmetic... |