summaryrefslogtreecommitdiff
path: root/Lib/test/test_statistics.py
diff options
context:
space:
mode:
authorRaymond Hettinger <rhettinger@users.noreply.github.com>2019-02-21 15:06:29 -0800
committerGitHub <noreply@github.com>2019-02-21 15:06:29 -0800
commit47d9987247bcc45983a6d51fd1ae46d5d356d0f8 (patch)
tree16b7e88590f9a28ff47e8a0e041510c4a2d86756 /Lib/test/test_statistics.py
parentf36f89257b30e0bf88e8aaff6da14a9a96f57b9e (diff)
downloadcpython-git-47d9987247bcc45983a6d51fd1ae46d5d356d0f8.tar.gz
bpo-35904: Add statistics.fmean() (GH-11892)
Diffstat (limited to 'Lib/test/test_statistics.py')
-rw-r--r--Lib/test/test_statistics.py45
1 files changed, 45 insertions, 0 deletions
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py
index b577433e3f..e35144677a 100644
--- a/Lib/test/test_statistics.py
+++ b/Lib/test/test_statistics.py
@@ -1810,6 +1810,51 @@ class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
# counts, this should raise.
self.assertRaises(statistics.StatisticsError, self.func, data)
+class TestFMean(unittest.TestCase):
+
+ def test_basics(self):
+ fmean = statistics.fmean
+ D = Decimal
+ F = Fraction
+ for data, expected_mean, kind in [
+ ([3.5, 4.0, 5.25], 4.25, 'floats'),
+ ([D('3.5'), D('4.0'), D('5.25')], 4.25, 'decimals'),
+ ([F(7, 2), F(4, 1), F(21, 4)], 4.25, 'fractions'),
+ ([True, False, True, True, False], 0.60, 'booleans'),
+ ([3.5, 4, F(21, 4)], 4.25, 'mixed types'),
+ ((3.5, 4.0, 5.25), 4.25, 'tuple'),
+ (iter([3.5, 4.0, 5.25]), 4.25, 'iterator'),
+ ]:
+ actual_mean = fmean(data)
+ self.assertIs(type(actual_mean), float, kind)
+ self.assertEqual(actual_mean, expected_mean, kind)
+
+ def test_error_cases(self):
+ fmean = statistics.fmean
+ StatisticsError = statistics.StatisticsError
+ with self.assertRaises(StatisticsError):
+ fmean([]) # empty input
+ with self.assertRaises(StatisticsError):
+ fmean(iter([])) # empty iterator
+ with self.assertRaises(TypeError):
+ fmean(None) # non-iterable input
+ with self.assertRaises(TypeError):
+ fmean([10, None, 20]) # non-numeric input
+ with self.assertRaises(TypeError):
+ fmean() # missing data argument
+ with self.assertRaises(TypeError):
+ fmean([10, 20, 60], 70) # too many arguments
+
+ def test_special_values(self):
+ # Rules for special values are inherited from math.fsum()
+ fmean = statistics.fmean
+ NaN = float('Nan')
+ Inf = float('Inf')
+ self.assertTrue(math.isnan(fmean([10, NaN])), 'nan')
+ self.assertTrue(math.isnan(fmean([NaN, Inf])), 'nan and infinity')
+ self.assertTrue(math.isinf(fmean([10, Inf])), 'infinity')
+ with self.assertRaises(ValueError):
+ fmean([Inf, -Inf])
# === Tests for variances and standard deviations ===