summaryrefslogtreecommitdiff
path: root/Lib/fractions.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/fractions.py')
-rw-r--r--Lib/fractions.py102
1 files changed, 78 insertions, 24 deletions
diff --git a/Lib/fractions.py b/Lib/fractions.py
index 27b27f40ff..8be52d2db8 100644
--- a/Lib/fractions.py
+++ b/Lib/fractions.py
@@ -3,10 +3,12 @@
"""Fraction, infinite-precision, real numbers."""
+from decimal import Decimal
import math
import numbers
import operator
import re
+import sys
__all__ = ['Fraction', 'gcd']
@@ -22,6 +24,12 @@ def gcd(a, b):
a, b = b, a%b
return a
+# Constants related to the hash implementation; hash(x) is based
+# on the reduction of x modulo the prime _PyHASH_MODULUS.
+_PyHASH_MODULUS = sys.hash_info.modulus
+# Value to be used for rationals that reduce to infinity modulo
+# _PyHASH_MODULUS.
+_PyHASH_INF = sys.hash_info.inf
_RATIONAL_FORMAT = re.compile(r"""
\A\s* # optional whitespace at the start, then
@@ -41,13 +49,21 @@ _RATIONAL_FORMAT = re.compile(r"""
class Fraction(numbers.Rational):
"""This class implements rational numbers.
- Fraction(8, 6) will produce a rational number equivalent to
- 4/3. Both arguments must be Integral. The numerator defaults to 0
- and the denominator defaults to 1 so that Fraction(3) == 3 and
- Fraction() == 0.
+ In the two-argument form of the constructor, Fraction(8, 6) will
+ produce a rational number equivalent to 4/3. Both arguments must
+ be Rational. The numerator defaults to 0 and the denominator
+ defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
- Fraction can also be constructed from strings of the form
- '[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
+ Fractions can also be constructed from:
+
+ - numeric strings similar to those accepted by the
+ float constructor (for example, '-2.3' or '1e10')
+
+ - strings of the form '123/456'
+
+ - float and Decimal instances
+
+ - other Rational instances (including integers)
"""
@@ -57,8 +73,32 @@ class Fraction(numbers.Rational):
def __new__(cls, numerator=0, denominator=None):
"""Constructs a Rational.
- Takes a string like '3/2' or '1.5', another Rational, or a
- numerator/denominator pair.
+ Takes a string like '3/2' or '1.5', another Rational instance, a
+ numerator/denominator pair, or a float.
+
+ Examples
+ --------
+
+ >>> Fraction(10, -8)
+ Fraction(-5, 4)
+ >>> Fraction(Fraction(1, 7), 5)
+ Fraction(1, 35)
+ >>> Fraction(Fraction(1, 7), Fraction(2, 3))
+ Fraction(3, 14)
+ >>> Fraction('314')
+ Fraction(314, 1)
+ >>> Fraction('-35/4')
+ Fraction(-35, 4)
+ >>> Fraction('3.1415') # conversion from numeric string
+ Fraction(6283, 2000)
+ >>> Fraction('-47e-2') # string may include a decimal exponent
+ Fraction(-47, 100)
+ >>> Fraction(1.47) # direct construction from float (exact conversion)
+ Fraction(6620291452234629, 4503599627370496)
+ >>> Fraction(2.25)
+ Fraction(9, 4)
+ >>> Fraction(Decimal('1.47'))
+ Fraction(147, 100)
"""
self = super(Fraction, cls).__new__(cls)
@@ -69,6 +109,19 @@ class Fraction(numbers.Rational):
self._denominator = numerator.denominator
return self
+ elif isinstance(numerator, float):
+ # Exact conversion from float
+ value = Fraction.from_float(numerator)
+ self._numerator = value._numerator
+ self._denominator = value._denominator
+ return self
+
+ elif isinstance(numerator, Decimal):
+ value = Fraction.from_decimal(numerator)
+ self._numerator = value._numerator
+ self._denominator = value._denominator
+ return self
+
elif isinstance(numerator, str):
# Handle construction from strings.
m = _RATIONAL_FORMAT.match(numerator)
@@ -475,23 +528,26 @@ class Fraction(numbers.Rational):
return Fraction(round(self / shift) * shift)
def __hash__(self):
- """hash(self)
-
- Tricky because values that are exactly representable as a
- float must have the same hash as that float.
+ """hash(self)"""
- """
# XXX since this method is expensive, consider caching the result
- if self._denominator == 1:
- # Get integers right.
- return hash(self._numerator)
- # Expensive check, but definitely correct.
- if self == float(self):
- return hash(float(self))
+
+ # In order to make sure that the hash of a Fraction agrees
+ # with the hash of a numerically equal integer, float or
+ # Decimal instance, we follow the rules for numeric hashes
+ # outlined in the documentation. (See library docs, 'Built-in
+ # Types').
+
+ # dinv is the inverse of self._denominator modulo the prime
+ # _PyHASH_MODULUS, or 0 if self._denominator is divisible by
+ # _PyHASH_MODULUS.
+ dinv = pow(self._denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
+ if not dinv:
+ hash_ = _PyHASH_INF
else:
- # Use tuple's hash to avoid a high collision rate on
- # simple fractions.
- return hash((self._numerator, self._denominator))
+ hash_ = abs(self._numerator) * dinv % _PyHASH_MODULUS
+ result = hash_ if self >= 0 else -hash_
+ return -2 if result == -1 else result
def __eq__(a, b):
"""a == b"""
@@ -526,8 +582,6 @@ class Fraction(numbers.Rational):
if isinstance(other, numbers.Rational):
return op(self._numerator * other.denominator,
self._denominator * other.numerator)
- if isinstance(other, numbers.Complex) and other.imag == 0:
- other = other.real
if isinstance(other, float):
if math.isnan(other) or math.isinf(other):
return op(0.0, other)