summaryrefslogtreecommitdiff
path: root/Lib/heapq.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/heapq.py')
-rw-r--r--Lib/heapq.py17
1 files changed, 9 insertions, 8 deletions
diff --git a/Lib/heapq.py b/Lib/heapq.py
index cc61294cc8..dec15aec9c 100644
--- a/Lib/heapq.py
+++ b/Lib/heapq.py
@@ -1,5 +1,3 @@
-# -*- coding: latin-1 -*-
-
"""Heap queue algorithm (a.k.a. priority queue).
Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
@@ -34,7 +32,7 @@ maintains the heap invariant!
__about__ = """Heap queues
-[explanation by François Pinard]
+[explanation by François Pinard]
Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
all k, counting elements from 0. For the sake of comparison,
@@ -187,6 +185,8 @@ def nlargest(n, iterable):
Equivalent to: sorted(iterable, reverse=True)[:n]
"""
+ if n < 0:
+ return []
it = iter(iterable)
result = list(islice(it, n))
if not result:
@@ -203,6 +203,8 @@ def nsmallest(n, iterable):
Equivalent to: sorted(iterable)[:n]
"""
+ if n < 0:
+ return []
if hasattr(iterable, '__len__') and n * 10 <= len(iterable):
# For smaller values of n, the bisect method is faster than a minheap.
# It is also memory efficient, consuming only n elements of space.
@@ -214,11 +216,10 @@ def nsmallest(n, iterable):
pop = result.pop
los = result[-1] # los --> Largest of the nsmallest
for elem in it:
- if los <= elem:
- continue
- insort(result, elem)
- pop()
- los = result[-1]
+ if elem < los:
+ insort(result, elem)
+ pop()
+ los = result[-1]
return result
# An alternative approach manifests the whole iterable in memory but
# saves comparisons by heapifying all at once. Also, saves time