diff options
Diffstat (limited to 'Modules/mathmodule.c')
-rw-r--r-- | Modules/mathmodule.c | 440 |
1 files changed, 344 insertions, 96 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c index 63a2cca044..56b52fd7b0 100644 --- a/Modules/mathmodule.c +++ b/Modules/mathmodule.c @@ -1,17 +1,60 @@ /* Math module -- standard C math library functions, pi and e */ +/* Here are some comments from Tim Peters, extracted from the + discussion attached to http://bugs.python.org/issue1640. They + describe the general aims of the math module with respect to + special values, IEEE-754 floating-point exceptions, and Python + exceptions. + +These are the "spirit of 754" rules: + +1. If the mathematical result is a real number, but of magnitude too +large to approximate by a machine float, overflow is signaled and the +result is an infinity (with the appropriate sign). + +2. If the mathematical result is a real number, but of magnitude too +small to approximate by a machine float, underflow is signaled and the +result is a zero (with the appropriate sign). + +3. At a singularity (a value x such that the limit of f(y) as y +approaches x exists and is an infinity), "divide by zero" is signaled +and the result is an infinity (with the appropriate sign). This is +complicated a little by that the left-side and right-side limits may +not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 +from the positive or negative directions. In that specific case, the +sign of the zero determines the result of 1/0. + +4. At a point where a function has no defined result in the extended +reals (i.e., the reals plus an infinity or two), invalid operation is +signaled and a NaN is returned. + +And these are what Python has historically /tried/ to do (but not +always successfully, as platform libm behavior varies a lot): + +For #1, raise OverflowError. + +For #2, return a zero (with the appropriate sign if that happens by +accident ;-)). + +For #3 and #4, raise ValueError. It may have made sense to raise +Python's ZeroDivisionError in #3, but historically that's only been +raised for division by zero and mod by zero. + +*/ + +/* + In general, on an IEEE-754 platform the aim is to follow the C99 + standard, including Annex 'F', whenever possible. Where the + standard recommends raising the 'divide-by-zero' or 'invalid' + floating-point exceptions, Python should raise a ValueError. Where + the standard recommends raising 'overflow', Python should raise an + OverflowError. In all other circumstances a value should be + returned. + */ + #include "Python.h" #include "longintrepr.h" /* just for SHIFT */ -#ifndef _MSC_VER -#ifndef __STDC__ -extern double fmod (double, double); -extern double frexp (double, int *); -extern double ldexp (double, int); -extern double modf (double, double *); -#endif /* __STDC__ */ -#endif /* _MSC_VER */ - #ifdef _OSF_SOURCE /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */ extern double copysign(double, double); @@ -52,28 +95,97 @@ is_error(double x) return result; } +/* + math_1 is used to wrap a libm function f that takes a double + arguments and returns a double. + + The error reporting follows these rules, which are designed to do + the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 + platforms. + + - a NaN result from non-NaN inputs causes ValueError to be raised + - an infinite result from finite inputs causes OverflowError to be + raised if can_overflow is 1, or raises ValueError if can_overflow + is 0. + - if the result is finite and errno == EDOM then ValueError is + raised + - if the result is finite and nonzero and errno == ERANGE then + OverflowError is raised + + The last rule is used to catch overflow on platforms which follow + C89 but for which HUGE_VAL is not an infinity. + + For the majority of one-argument functions these rules are enough + to ensure that Python's functions behave as specified in 'Annex F' + of the C99 standard, with the 'invalid' and 'divide-by-zero' + floating-point exceptions mapping to Python's ValueError and the + 'overflow' floating-point exception mapping to OverflowError. + math_1 only works for functions that don't have singularities *and* + the possibility of overflow; fortunately, that covers everything we + care about right now. +*/ + static PyObject * -math_1(PyObject *arg, double (*func) (double)) +math_1(PyObject *arg, double (*func) (double), int can_overflow) { - double x = PyFloat_AsDouble(arg); + double x, r; + x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; errno = 0; - PyFPE_START_PROTECT("in math_1", return 0) - x = (*func)(x); - PyFPE_END_PROTECT(x) - Py_SET_ERRNO_ON_MATH_ERROR(x); - if (errno && is_error(x)) + PyFPE_START_PROTECT("in math_1", return 0); + r = (*func)(x); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x)) + errno = EDOM; + else + errno = 0; + } + else if (Py_IS_INFINITY(r)) { + if (Py_IS_FINITE(x)) + errno = can_overflow ? ERANGE : EDOM; + else + errno = 0; + } + if (errno && is_error(r)) return NULL; else - return PyFloat_FromDouble(x); + return PyFloat_FromDouble(r); } +/* + math_2 is used to wrap a libm function f that takes two double + arguments and returns a double. + + The error reporting follows these rules, which are designed to do + the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 + platforms. + + - a NaN result from non-NaN inputs causes ValueError to be raised + - an infinite result from finite inputs causes OverflowError to be + raised. + - if the result is finite and errno == EDOM then ValueError is + raised + - if the result is finite and nonzero and errno == ERANGE then + OverflowError is raised + + The last rule is used to catch overflow on platforms which follow + C89 but for which HUGE_VAL is not an infinity. + + For most two-argument functions (copysign, fmod, hypot, atan2) + these rules are enough to ensure that Python's functions behave as + specified in 'Annex F' of the C99 standard, with the 'invalid' and + 'divide-by-zero' floating-point exceptions mapping to Python's + ValueError and the 'overflow' floating-point exception mapping to + OverflowError. +*/ + static PyObject * math_2(PyObject *args, double (*func) (double, double), char *funcname) { PyObject *ox, *oy; - double x, y; + double x, y, r; if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy)) return NULL; x = PyFloat_AsDouble(ox); @@ -81,19 +193,30 @@ math_2(PyObject *args, double (*func) (double, double), char *funcname) if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) return NULL; errno = 0; - PyFPE_START_PROTECT("in math_2", return 0) - x = (*func)(x, y); - PyFPE_END_PROTECT(x) - Py_SET_ERRNO_ON_MATH_ERROR(x); - if (errno && is_error(x)) + PyFPE_START_PROTECT("in math_2", return 0); + r = (*func)(x, y); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) + errno = EDOM; + else + errno = 0; + } + else if (Py_IS_INFINITY(r)) { + if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) + errno = ERANGE; + else + errno = 0; + } + if (errno && is_error(r)) return NULL; else - return PyFloat_FromDouble(x); + return PyFloat_FromDouble(r); } -#define FUNC1(funcname, func, docstring) \ +#define FUNC1(funcname, func, can_overflow, docstring) \ static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ - return math_1(args, func); \ + return math_1(args, func, can_overflow); \ }\ PyDoc_STRVAR(math_##funcname##_doc, docstring); @@ -103,55 +226,49 @@ math_2(PyObject *args, double (*func) (double, double), char *funcname) }\ PyDoc_STRVAR(math_##funcname##_doc, docstring); -FUNC1(acos, acos, +FUNC1(acos, acos, 0, "acos(x)\n\nReturn the arc cosine (measured in radians) of x.") -FUNC1(asin, asin, +FUNC1(acosh, acosh, 0, + "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.") +FUNC1(asin, asin, 0, "asin(x)\n\nReturn the arc sine (measured in radians) of x.") -FUNC1(atan, atan, +FUNC1(asinh, asinh, 0, + "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.") +FUNC1(atan, atan, 0, "atan(x)\n\nReturn the arc tangent (measured in radians) of x.") FUNC2(atan2, atan2, "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n" "Unlike atan(y/x), the signs of both x and y are considered.") -FUNC1(ceil, ceil, +FUNC1(atanh, atanh, 0, + "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.") +FUNC1(ceil, ceil, 0, "ceil(x)\n\nReturn the ceiling of x as a float.\n" "This is the smallest integral value >= x.") -FUNC1(cos, cos, +FUNC2(copysign, copysign, + "copysign(x,y)\n\nReturn x with the sign of y.") +FUNC1(cos, cos, 0, "cos(x)\n\nReturn the cosine of x (measured in radians).") -FUNC1(cosh, cosh, +FUNC1(cosh, cosh, 1, "cosh(x)\n\nReturn the hyperbolic cosine of x.") - -#ifdef MS_WINDOWS -# define copysign _copysign -# define HAVE_COPYSIGN 1 -#endif -#ifdef HAVE_COPYSIGN -FUNC2(copysign, copysign, - "copysign(x,y)\n\nReturn x with the sign of y."); -#endif - -FUNC1(exp, exp, +FUNC1(exp, exp, 1, "exp(x)\n\nReturn e raised to the power of x.") -FUNC1(fabs, fabs, +FUNC1(fabs, fabs, 0, "fabs(x)\n\nReturn the absolute value of the float x.") -FUNC1(floor, floor, +FUNC1(floor, floor, 0, "floor(x)\n\nReturn the floor of x as a float.\n" "This is the largest integral value <= x.") -FUNC2(fmod, fmod, - "fmod(x,y)\n\nReturn fmod(x, y), according to platform C." - " x % y may differ.") -FUNC2(hypot, hypot, - "hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).") -FUNC2(pow, pow, - "pow(x,y)\n\nReturn x**y (x to the power of y).") -FUNC1(sin, sin, +FUNC1(log1p, log1p, 1, + "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n\ + The result is computed in a way which is accurate for x near zero.") +FUNC1(sin, sin, 0, "sin(x)\n\nReturn the sine of x (measured in radians).") -FUNC1(sinh, sinh, +FUNC1(sinh, sinh, 1, "sinh(x)\n\nReturn the hyperbolic sine of x.") -FUNC1(sqrt, sqrt, +FUNC1(sqrt, sqrt, 0, "sqrt(x)\n\nReturn the square root of x.") -FUNC1(tan, tan, +FUNC1(tan, tan, 0, "tan(x)\n\nReturn the tangent of x (measured in radians).") -FUNC1(tanh, tanh, +FUNC1(tanh, tanh, 0, "tanh(x)\n\nReturn the hyperbolic tangent of x.") static PyObject * @@ -172,13 +289,17 @@ math_frexp(PyObject *self, PyObject *arg) double x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; - errno = 0; - x = frexp(x, &i); - Py_SET_ERRNO_ON_MATH_ERROR(x); - if (errno && is_error(x)) - return NULL; - else - return Py_BuildValue("(di)", x, i); + /* deal with special cases directly, to sidestep platform + differences */ + if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { + i = 0; + } + else { + PyFPE_START_PROTECT("in math_frexp", return 0); + x = frexp(x, &i); + PyFPE_END_PROTECT(x); + } + return Py_BuildValue("(di)", x, i); } PyDoc_STRVAR(math_frexp_doc, @@ -191,19 +312,24 @@ PyDoc_STRVAR(math_frexp_doc, static PyObject * math_ldexp(PyObject *self, PyObject *args) { - double x; + double x, r; int exp; if (! PyArg_ParseTuple(args, "di:ldexp", &x, &exp)) return NULL; errno = 0; - PyFPE_START_PROTECT("ldexp", return 0) - x = ldexp(x, exp); - PyFPE_END_PROTECT(x) - Py_SET_ERRNO_ON_MATH_ERROR(x); - if (errno && is_error(x)) + PyFPE_START_PROTECT("in math_ldexp", return 0) + r = ldexp(x, exp); + PyFPE_END_PROTECT(r) + if (Py_IS_FINITE(x) && Py_IS_INFINITY(r)) + errno = ERANGE; + /* Windows MSVC8 sets errno = EDOM on ldexp(NaN, i); + we unset it to avoid raising a ValueError here. */ + if (errno == EDOM) + errno = 0; + if (errno && is_error(r)) return NULL; else - return PyFloat_FromDouble(x); + return PyFloat_FromDouble(r); } PyDoc_STRVAR(math_ldexp_doc, @@ -216,12 +342,10 @@ math_modf(PyObject *self, PyObject *arg) if (x == -1.0 && PyErr_Occurred()) return NULL; errno = 0; + PyFPE_START_PROTECT("in math_modf", return 0); x = modf(x, &y); - Py_SET_ERRNO_ON_MATH_ERROR(x); - if (errno && is_error(x)) - return NULL; - else - return Py_BuildValue("(dd)", x, y); + PyFPE_END_PROTECT(x); + return Py_BuildValue("(dd)", x, y); } PyDoc_STRVAR(math_modf_doc, @@ -260,7 +384,7 @@ loghelper(PyObject* arg, double (*func)(double), char *funcname) } /* Else let libm handle it by itself. */ - return math_1(arg, func); + return math_1(arg, func, 0); } static PyObject * @@ -303,6 +427,141 @@ math_log10(PyObject *self, PyObject *arg) PyDoc_STRVAR(math_log10_doc, "log10(x) -> the base 10 logarithm of x."); +static PyObject * +math_fmod(PyObject *self, PyObject *args) +{ + PyObject *ox, *oy; + double r, x, y; + if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy)) + return NULL; + x = PyFloat_AsDouble(ox); + y = PyFloat_AsDouble(oy); + if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) + return NULL; + /* fmod(x, +/-Inf) returns x for finite x. */ + if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) + return PyFloat_FromDouble(x); + errno = 0; + PyFPE_START_PROTECT("in math_fmod", return 0); + r = fmod(x, y); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) + errno = EDOM; + else + errno = 0; + } + if (errno && is_error(r)) + return NULL; + else + return PyFloat_FromDouble(r); +} + +PyDoc_STRVAR(math_fmod_doc, +"fmod(x,y)\n\nReturn fmod(x, y), according to platform C." +" x % y may differ."); + +static PyObject * +math_hypot(PyObject *self, PyObject *args) +{ + PyObject *ox, *oy; + double r, x, y; + if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy)) + return NULL; + x = PyFloat_AsDouble(ox); + y = PyFloat_AsDouble(oy); + if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) + return NULL; + /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */ + if (Py_IS_INFINITY(x)) + return PyFloat_FromDouble(fabs(x)); + if (Py_IS_INFINITY(y)) + return PyFloat_FromDouble(fabs(y)); + errno = 0; + PyFPE_START_PROTECT("in math_hypot", return 0); + r = hypot(x, y); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) + errno = EDOM; + else + errno = 0; + } + else if (Py_IS_INFINITY(r)) { + if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) + errno = ERANGE; + else + errno = 0; + } + if (errno && is_error(r)) + return NULL; + else + return PyFloat_FromDouble(r); +} + +PyDoc_STRVAR(math_hypot_doc, +"hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y)."); + +/* pow can't use math_2, but needs its own wrapper: the problem is + that an infinite result can arise either as a result of overflow + (in which case OverflowError should be raised) or as a result of + e.g. 0.**-5. (for which ValueError needs to be raised.) +*/ + +static PyObject * +math_pow(PyObject *self, PyObject *args) +{ + PyObject *ox, *oy; + double r, x, y; + + if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy)) + return NULL; + x = PyFloat_AsDouble(ox); + y = PyFloat_AsDouble(oy); + if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) + return NULL; + /* 1**x and x**0 return 1., even if x is a NaN or infinity. */ + if (x == 1.0 || y == 0.0) + return PyFloat_FromDouble(1.); + errno = 0; + PyFPE_START_PROTECT("in math_pow", return 0); + r = pow(x, y); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) + errno = EDOM; + else + errno = 0; + } + /* an infinite result arises either from: + + (A) (+/-0.)**negative, + (B) overflow of x**y with both x and y finite (and x nonzero) + (C) (+/-inf)**positive, or + (D) x**inf with |x| > 1, or x**-inf with |x| < 1. + + In case (A) we want ValueError to be raised. In case (B) + OverflowError should be raised. In cases (C) and (D) the infinite + result should be returned. + */ + else if (Py_IS_INFINITY(r)) { + if (x == 0.) + errno = EDOM; + else if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) + errno = ERANGE; + else + errno = 0; + } + + if (errno && is_error(r)) + return NULL; + else + return PyFloat_FromDouble(r); +} + +PyDoc_STRVAR(math_pow_doc, +"pow(x,y)\n\nReturn x**y (x to the power of y)."); + static const double degToRad = Py_MATH_PI / 180.0; static const double radToDeg = 180.0 / Py_MATH_PI; @@ -356,16 +615,16 @@ PyDoc_STRVAR(math_isinf_doc, "isinf(x) -> bool\n\ Checks if float x is infinite (positive or negative)"); - static PyMethodDef math_methods[] = { {"acos", math_acos, METH_O, math_acos_doc}, + {"acosh", math_acosh, METH_O, math_acosh_doc}, {"asin", math_asin, METH_O, math_asin_doc}, + {"asinh", math_asinh, METH_O, math_asinh_doc}, {"atan", math_atan, METH_O, math_atan_doc}, {"atan2", math_atan2, METH_VARARGS, math_atan2_doc}, + {"atanh", math_atanh, METH_O, math_atanh_doc}, {"ceil", math_ceil, METH_O, math_ceil_doc}, -#ifdef HAVE_COPYSIGN {"copysign", math_copysign, METH_VARARGS, math_copysign_doc}, -#endif {"cos", math_cos, METH_O, math_cos_doc}, {"cosh", math_cosh, METH_O, math_cosh_doc}, {"degrees", math_degrees, METH_O, math_degrees_doc}, @@ -379,6 +638,7 @@ static PyMethodDef math_methods[] = { {"isnan", math_isnan, METH_O, math_isnan_doc}, {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc}, {"log", math_log, METH_VARARGS, math_log_doc}, + {"log1p", math_log1p, METH_O, math_log1p_doc}, {"log10", math_log10, METH_O, math_log10_doc}, {"modf", math_modf, METH_O, math_modf_doc}, {"pow", math_pow, METH_VARARGS, math_pow_doc}, @@ -400,27 +660,15 @@ PyDoc_STRVAR(module_doc, PyMODINIT_FUNC initmath(void) { - PyObject *m, *d, *v; + PyObject *m; m = Py_InitModule3("math", math_methods, module_doc); if (m == NULL) goto finally; - d = PyModule_GetDict(m); - if (d == NULL) - goto finally; - - if (!(v = PyFloat_FromDouble(Py_MATH_PI))) - goto finally; - if (PyDict_SetItemString(d, "pi", v) < 0) - goto finally; - Py_DECREF(v); - if (!(v = PyFloat_FromDouble(Py_MATH_E))) - goto finally; - if (PyDict_SetItemString(d, "e", v) < 0) - goto finally; - Py_DECREF(v); + PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); + PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); - finally: + finally: return; } |