summaryrefslogtreecommitdiff
path: root/Modules/mathmodule.c
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/mathmodule.c')
-rw-r--r--Modules/mathmodule.c986
1 files changed, 862 insertions, 124 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c
index 05bad5de6e..29c32a30d8 100644
--- a/Modules/mathmodule.c
+++ b/Modules/mathmodule.c
@@ -53,54 +53,471 @@ raised for division by zero and mod by zero.
*/
#include "Python.h"
-#include "longintrepr.h" /* just for SHIFT */
+#include "_math.h"
#ifdef _OSF_SOURCE
/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
extern double copysign(double, double);
#endif
-/* Call is_error when errno != 0, and where x is the result libm
- * returned. is_error will usually set up an exception and return
- * true (1), but may return false (0) without setting up an exception.
- */
-static int
-is_error(double x)
+/*
+ sin(pi*x), giving accurate results for all finite x (especially x
+ integral or close to an integer). This is here for use in the
+ reflection formula for the gamma function. It conforms to IEEE
+ 754-2008 for finite arguments, but not for infinities or nans.
+*/
+
+static const double pi = 3.141592653589793238462643383279502884197;
+static const double sqrtpi = 1.772453850905516027298167483341145182798;
+static const double logpi = 1.144729885849400174143427351353058711647;
+
+static double
+sinpi(double x)
{
- int result = 1; /* presumption of guilt */
- assert(errno); /* non-zero errno is a precondition for calling */
- if (errno == EDOM)
- PyErr_SetString(PyExc_ValueError, "math domain error");
+ double y, r;
+ int n;
+ /* this function should only ever be called for finite arguments */
+ assert(Py_IS_FINITE(x));
+ y = fmod(fabs(x), 2.0);
+ n = (int)round(2.0*y);
+ assert(0 <= n && n <= 4);
+ switch (n) {
+ case 0:
+ r = sin(pi*y);
+ break;
+ case 1:
+ r = cos(pi*(y-0.5));
+ break;
+ case 2:
+ /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
+ -0.0 instead of 0.0 when y == 1.0. */
+ r = sin(pi*(1.0-y));
+ break;
+ case 3:
+ r = -cos(pi*(y-1.5));
+ break;
+ case 4:
+ r = sin(pi*(y-2.0));
+ break;
+ default:
+ assert(0); /* should never get here */
+ r = -1.23e200; /* silence gcc warning */
+ }
+ return copysign(1.0, x)*r;
+}
- else if (errno == ERANGE) {
- /* ANSI C generally requires libm functions to set ERANGE
- * on overflow, but also generally *allows* them to set
- * ERANGE on underflow too. There's no consistency about
- * the latter across platforms.
- * Alas, C99 never requires that errno be set.
- * Here we suppress the underflow errors (libm functions
- * should return a zero on underflow, and +- HUGE_VAL on
- * overflow, so testing the result for zero suffices to
- * distinguish the cases).
- *
- * On some platforms (Ubuntu/ia64) it seems that errno can be
- * set to ERANGE for subnormal results that do *not* underflow
- * to zero. So to be safe, we'll ignore ERANGE whenever the
- * function result is less than one in absolute value.
- */
- if (fabs(x) < 1.0)
- result = 0;
+/* Implementation of the real gamma function. In extensive but non-exhaustive
+ random tests, this function proved accurate to within <= 10 ulps across the
+ entire float domain. Note that accuracy may depend on the quality of the
+ system math functions, the pow function in particular. Special cases
+ follow C99 annex F. The parameters and method are tailored to platforms
+ whose double format is the IEEE 754 binary64 format.
+
+ Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
+ and g=6.024680040776729583740234375; these parameters are amongst those
+ used by the Boost library. Following Boost (again), we re-express the
+ Lanczos sum as a rational function, and compute it that way. The
+ coefficients below were computed independently using MPFR, and have been
+ double-checked against the coefficients in the Boost source code.
+
+ For x < 0.0 we use the reflection formula.
+
+ There's one minor tweak that deserves explanation: Lanczos' formula for
+ Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
+ values, x+g-0.5 can be represented exactly. However, in cases where it
+ can't be represented exactly the small error in x+g-0.5 can be magnified
+ significantly by the pow and exp calls, especially for large x. A cheap
+ correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
+ involved in the computation of x+g-0.5 (that is, e = computed value of
+ x+g-0.5 - exact value of x+g-0.5). Here's the proof:
+
+ Correction factor
+ -----------------
+ Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
+ double, and e is tiny. Then:
+
+ pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
+ = pow(y, x-0.5)/exp(y) * C,
+
+ where the correction_factor C is given by
+
+ C = pow(1-e/y, x-0.5) * exp(e)
+
+ Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
+
+ C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
+
+ But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
+
+ pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
+
+ Note that for accuracy, when computing r*C it's better to do
+
+ r + e*g/y*r;
+
+ than
+
+ r * (1 + e*g/y);
+
+ since the addition in the latter throws away most of the bits of
+ information in e*g/y.
+*/
+
+#define LANCZOS_N 13
+static const double lanczos_g = 6.024680040776729583740234375;
+static const double lanczos_g_minus_half = 5.524680040776729583740234375;
+static const double lanczos_num_coeffs[LANCZOS_N] = {
+ 23531376880.410759688572007674451636754734846804940,
+ 42919803642.649098768957899047001988850926355848959,
+ 35711959237.355668049440185451547166705960488635843,
+ 17921034426.037209699919755754458931112671403265390,
+ 6039542586.3520280050642916443072979210699388420708,
+ 1439720407.3117216736632230727949123939715485786772,
+ 248874557.86205415651146038641322942321632125127801,
+ 31426415.585400194380614231628318205362874684987640,
+ 2876370.6289353724412254090516208496135991145378768,
+ 186056.26539522349504029498971604569928220784236328,
+ 8071.6720023658162106380029022722506138218516325024,
+ 210.82427775157934587250973392071336271166969580291,
+ 2.5066282746310002701649081771338373386264310793408
+};
+
+/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
+static const double lanczos_den_coeffs[LANCZOS_N] = {
+ 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
+ 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
+
+/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
+#define NGAMMA_INTEGRAL 23
+static const double gamma_integral[NGAMMA_INTEGRAL] = {
+ 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
+ 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
+ 1307674368000.0, 20922789888000.0, 355687428096000.0,
+ 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
+ 51090942171709440000.0, 1124000727777607680000.0,
+};
+
+/* Lanczos' sum L_g(x), for positive x */
+
+static double
+lanczos_sum(double x)
+{
+ double num = 0.0, den = 0.0;
+ int i;
+ assert(x > 0.0);
+ /* evaluate the rational function lanczos_sum(x). For large
+ x, the obvious algorithm risks overflow, so we instead
+ rescale the denominator and numerator of the rational
+ function by x**(1-LANCZOS_N) and treat this as a
+ rational function in 1/x. This also reduces the error for
+ larger x values. The choice of cutoff point (5.0 below) is
+ somewhat arbitrary; in tests, smaller cutoff values than
+ this resulted in lower accuracy. */
+ if (x < 5.0) {
+ for (i = LANCZOS_N; --i >= 0; ) {
+ num = num * x + lanczos_num_coeffs[i];
+ den = den * x + lanczos_den_coeffs[i];
+ }
+ }
+ else {
+ for (i = 0; i < LANCZOS_N; i++) {
+ num = num / x + lanczos_num_coeffs[i];
+ den = den / x + lanczos_den_coeffs[i];
+ }
+ }
+ return num/den;
+}
+
+static double
+m_tgamma(double x)
+{
+ double absx, r, y, z, sqrtpow;
+
+ /* special cases */
+ if (!Py_IS_FINITE(x)) {
+ if (Py_IS_NAN(x) || x > 0.0)
+ return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
+ else {
+ errno = EDOM;
+ return Py_NAN; /* tgamma(-inf) = nan, invalid */
+ }
+ }
+ if (x == 0.0) {
+ errno = EDOM;
+ return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */
+ }
+
+ /* integer arguments */
+ if (x == floor(x)) {
+ if (x < 0.0) {
+ errno = EDOM; /* tgamma(n) = nan, invalid for */
+ return Py_NAN; /* negative integers n */
+ }
+ if (x <= NGAMMA_INTEGRAL)
+ return gamma_integral[(int)x - 1];
+ }
+ absx = fabs(x);
+
+ /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
+ if (absx < 1e-20) {
+ r = 1.0/x;
+ if (Py_IS_INFINITY(r))
+ errno = ERANGE;
+ return r;
+ }
+
+ /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
+ x > 200, and underflows to +-0.0 for x < -200, not a negative
+ integer. */
+ if (absx > 200.0) {
+ if (x < 0.0) {
+ return 0.0/sinpi(x);
+ }
+ else {
+ errno = ERANGE;
+ return Py_HUGE_VAL;
+ }
+ }
+
+ y = absx + lanczos_g_minus_half;
+ /* compute error in sum */
+ if (absx > lanczos_g_minus_half) {
+ /* note: the correction can be foiled by an optimizing
+ compiler that (incorrectly) thinks that an expression like
+ a + b - a - b can be optimized to 0.0. This shouldn't
+ happen in a standards-conforming compiler. */
+ double q = y - absx;
+ z = q - lanczos_g_minus_half;
+ }
+ else {
+ double q = y - lanczos_g_minus_half;
+ z = q - absx;
+ }
+ z = z * lanczos_g / y;
+ if (x < 0.0) {
+ r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
+ r -= z * r;
+ if (absx < 140.0) {
+ r /= pow(y, absx - 0.5);
+ }
+ else {
+ sqrtpow = pow(y, absx / 2.0 - 0.25);
+ r /= sqrtpow;
+ r /= sqrtpow;
+ }
+ }
+ else {
+ r = lanczos_sum(absx) / exp(y);
+ r += z * r;
+ if (absx < 140.0) {
+ r *= pow(y, absx - 0.5);
+ }
+ else {
+ sqrtpow = pow(y, absx / 2.0 - 0.25);
+ r *= sqrtpow;
+ r *= sqrtpow;
+ }
+ }
+ if (Py_IS_INFINITY(r))
+ errno = ERANGE;
+ return r;
+}
+
+/*
+ lgamma: natural log of the absolute value of the Gamma function.
+ For large arguments, Lanczos' formula works extremely well here.
+*/
+
+static double
+m_lgamma(double x)
+{
+ double r, absx;
+
+ /* special cases */
+ if (!Py_IS_FINITE(x)) {
+ if (Py_IS_NAN(x))
+ return x; /* lgamma(nan) = nan */
else
- PyErr_SetString(PyExc_OverflowError,
- "math range error");
+ return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
}
- else
- /* Unexpected math error */
- PyErr_SetFromErrno(PyExc_ValueError);
+
+ /* integer arguments */
+ if (x == floor(x) && x <= 2.0) {
+ if (x <= 0.0) {
+ errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
+ return Py_HUGE_VAL; /* integers n <= 0 */
+ }
+ else {
+ return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
+ }
+ }
+
+ absx = fabs(x);
+ /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
+ if (absx < 1e-20)
+ return -log(absx);
+
+ /* Lanczos' formula. We could save a fraction of a ulp in accuracy by
+ having a second set of numerator coefficients for lanczos_sum that
+ absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
+ subtraction below; it's probably not worth it. */
+ r = log(lanczos_sum(absx)) - lanczos_g;
+ r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
+ if (x < 0.0)
+ /* Use reflection formula to get value for negative x. */
+ r = logpi - log(fabs(sinpi(absx))) - log(absx) - r;
+ if (Py_IS_INFINITY(r))
+ errno = ERANGE;
+ return r;
+}
+
+/*
+ Implementations of the error function erf(x) and the complementary error
+ function erfc(x).
+
+ Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
+ Cambridge University Press), we use a series approximation for erf for
+ small x, and a continued fraction approximation for erfc(x) for larger x;
+ combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
+ this gives us erf(x) and erfc(x) for all x.
+
+ The series expansion used is:
+
+ erf(x) = x*exp(-x*x)/sqrt(pi) * [
+ 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
+
+ The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
+ This series converges well for smallish x, but slowly for larger x.
+
+ The continued fraction expansion used is:
+
+ erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
+ 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
+
+ after the first term, the general term has the form:
+
+ k*(k-0.5)/(2*k+0.5 + x**2 - ...).
+
+ This expansion converges fast for larger x, but convergence becomes
+ infinitely slow as x approaches 0.0. The (somewhat naive) continued
+ fraction evaluation algorithm used below also risks overflow for large x;
+ but for large x, erfc(x) == 0.0 to within machine precision. (For
+ example, erfc(30.0) is approximately 2.56e-393).
+
+ Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
+ continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
+ ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
+ numbers of terms to use for the relevant expansions. */
+
+#define ERF_SERIES_CUTOFF 1.5
+#define ERF_SERIES_TERMS 25
+#define ERFC_CONTFRAC_CUTOFF 30.0
+#define ERFC_CONTFRAC_TERMS 50
+
+/*
+ Error function, via power series.
+
+ Given a finite float x, return an approximation to erf(x).
+ Converges reasonably fast for small x.
+*/
+
+static double
+m_erf_series(double x)
+{
+ double x2, acc, fk, result;
+ int i, saved_errno;
+
+ x2 = x * x;
+ acc = 0.0;
+ fk = (double)ERF_SERIES_TERMS + 0.5;
+ for (i = 0; i < ERF_SERIES_TERMS; i++) {
+ acc = 2.0 + x2 * acc / fk;
+ fk -= 1.0;
+ }
+ /* Make sure the exp call doesn't affect errno;
+ see m_erfc_contfrac for more. */
+ saved_errno = errno;
+ result = acc * x * exp(-x2) / sqrtpi;
+ errno = saved_errno;
return result;
}
/*
+ Complementary error function, via continued fraction expansion.
+
+ Given a positive float x, return an approximation to erfc(x). Converges
+ reasonably fast for x large (say, x > 2.0), and should be safe from
+ overflow if x and nterms are not too large. On an IEEE 754 machine, with x
+ <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
+ than the smallest representable nonzero float. */
+
+static double
+m_erfc_contfrac(double x)
+{
+ double x2, a, da, p, p_last, q, q_last, b, result;
+ int i, saved_errno;
+
+ if (x >= ERFC_CONTFRAC_CUTOFF)
+ return 0.0;
+
+ x2 = x*x;
+ a = 0.0;
+ da = 0.5;
+ p = 1.0; p_last = 0.0;
+ q = da + x2; q_last = 1.0;
+ for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
+ double temp;
+ a += da;
+ da += 2.0;
+ b = da + x2;
+ temp = p; p = b*p - a*p_last; p_last = temp;
+ temp = q; q = b*q - a*q_last; q_last = temp;
+ }
+ /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
+ save the current errno value so that we can restore it later. */
+ saved_errno = errno;
+ result = p / q * x * exp(-x2) / sqrtpi;
+ errno = saved_errno;
+ return result;
+}
+
+/* Error function erf(x), for general x */
+
+static double
+m_erf(double x)
+{
+ double absx, cf;
+
+ if (Py_IS_NAN(x))
+ return x;
+ absx = fabs(x);
+ if (absx < ERF_SERIES_CUTOFF)
+ return m_erf_series(x);
+ else {
+ cf = m_erfc_contfrac(absx);
+ return x > 0.0 ? 1.0 - cf : cf - 1.0;
+ }
+}
+
+/* Complementary error function erfc(x), for general x. */
+
+static double
+m_erfc(double x)
+{
+ double absx, cf;
+
+ if (Py_IS_NAN(x))
+ return x;
+ absx = fabs(x);
+ if (absx < ERF_SERIES_CUTOFF)
+ return 1.0 - m_erf_series(x);
+ else {
+ cf = m_erfc_contfrac(absx);
+ return x > 0.0 ? cf : 2.0 - cf;
+ }
+}
+
+/*
wrapper for atan2 that deals directly with special cases before
delegating to the platform libm for the remaining cases. This
is necessary to get consistent behaviour across platforms.
@@ -188,6 +605,46 @@ m_log10(double x)
}
+/* Call is_error when errno != 0, and where x is the result libm
+ * returned. is_error will usually set up an exception and return
+ * true (1), but may return false (0) without setting up an exception.
+ */
+static int
+is_error(double x)
+{
+ int result = 1; /* presumption of guilt */
+ assert(errno); /* non-zero errno is a precondition for calling */
+ if (errno == EDOM)
+ PyErr_SetString(PyExc_ValueError, "math domain error");
+
+ else if (errno == ERANGE) {
+ /* ANSI C generally requires libm functions to set ERANGE
+ * on overflow, but also generally *allows* them to set
+ * ERANGE on underflow too. There's no consistency about
+ * the latter across platforms.
+ * Alas, C99 never requires that errno be set.
+ * Here we suppress the underflow errors (libm functions
+ * should return a zero on underflow, and +- HUGE_VAL on
+ * overflow, so testing the result for zero suffices to
+ * distinguish the cases).
+ *
+ * On some platforms (Ubuntu/ia64) it seems that errno can be
+ * set to ERANGE for subnormal results that do *not* underflow
+ * to zero. So to be safe, we'll ignore ERANGE whenever the
+ * function result is less than one in absolute value.
+ */
+ if (fabs(x) < 1.0)
+ result = 0;
+ else
+ PyErr_SetString(PyExc_OverflowError,
+ "math range error");
+ }
+ else
+ /* Unexpected math error */
+ PyErr_SetFromErrno(PyExc_ValueError);
+ return result;
+}
+
/*
math_1 is used to wrap a libm function f that takes a double
arguments and returns a double.
@@ -252,6 +709,26 @@ math_1_to_whatever(PyObject *arg, double (*func) (double),
return (*from_double_func)(r);
}
+/* variant of math_1, to be used when the function being wrapped is known to
+ set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
+ errno = ERANGE for overflow). */
+
+static PyObject *
+math_1a(PyObject *arg, double (*func) (double))
+{
+ double x, r;
+ x = PyFloat_AsDouble(arg);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ errno = 0;
+ PyFPE_START_PROTECT("in math_1a", return 0);
+ r = (*func)(x);
+ PyFPE_END_PROTECT(r);
+ if (errno && is_error(r))
+ return NULL;
+ return PyFloat_FromDouble(r);
+}
+
/*
math_2 is used to wrap a libm function f that takes two double
arguments and returns a double.
@@ -330,6 +807,12 @@ math_2(PyObject *args, double (*func) (double, double), char *funcname)
}\
PyDoc_STRVAR(math_##funcname##_doc, docstring);
+#define FUNC1A(funcname, func, docstring) \
+ static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
+ return math_1a(args, func); \
+ }\
+ PyDoc_STRVAR(math_##funcname##_doc, docstring);
+
#define FUNC2(funcname, func, docstring) \
static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
return math_2(args, func, #funcname); \
@@ -338,35 +821,33 @@ math_2(PyObject *args, double (*func) (double, double), char *funcname)
FUNC1(acos, acos, 0,
"acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
-FUNC1(acosh, acosh, 0,
+FUNC1(acosh, m_acosh, 0,
"acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
FUNC1(asin, asin, 0,
"asin(x)\n\nReturn the arc sine (measured in radians) of x.")
-FUNC1(asinh, asinh, 0,
+FUNC1(asinh, m_asinh, 0,
"asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
FUNC1(atan, atan, 0,
"atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
FUNC2(atan2, m_atan2,
"atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
"Unlike atan(y/x), the signs of both x and y are considered.")
-FUNC1(atanh, atanh, 0,
+FUNC1(atanh, m_atanh, 0,
"atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
static PyObject * math_ceil(PyObject *self, PyObject *number) {
static PyObject *ceil_str = NULL;
- PyObject *method;
+ PyObject *method, *result;
- if (ceil_str == NULL) {
- ceil_str = PyUnicode_InternFromString("__ceil__");
- if (ceil_str == NULL)
+ method = _PyObject_LookupSpecial(number, "__ceil__", &ceil_str);
+ if (method == NULL) {
+ if (PyErr_Occurred())
return NULL;
- }
-
- method = _PyType_Lookup(Py_TYPE(number), ceil_str);
- if (method == NULL)
return math_1_to_int(number, ceil, 0);
- else
- return PyObject_CallFunction(method, "O", number);
+ }
+ result = PyObject_CallFunctionObjArgs(method, NULL);
+ Py_DECREF(method);
+ return result;
}
PyDoc_STRVAR(math_ceil_doc,
@@ -379,33 +860,43 @@ FUNC1(cos, cos, 0,
"cos(x)\n\nReturn the cosine of x (measured in radians).")
FUNC1(cosh, cosh, 1,
"cosh(x)\n\nReturn the hyperbolic cosine of x.")
+FUNC1A(erf, m_erf,
+ "erf(x)\n\nError function at x.")
+FUNC1A(erfc, m_erfc,
+ "erfc(x)\n\nComplementary error function at x.")
FUNC1(exp, exp, 1,
"exp(x)\n\nReturn e raised to the power of x.")
+FUNC1(expm1, m_expm1, 1,
+ "expm1(x)\n\nReturn exp(x)-1.\n"
+ "This function avoids the loss of precision involved in the direct "
+ "evaluation of exp(x)-1 for small x.")
FUNC1(fabs, fabs, 0,
"fabs(x)\n\nReturn the absolute value of the float x.")
static PyObject * math_floor(PyObject *self, PyObject *number) {
static PyObject *floor_str = NULL;
- PyObject *method;
+ PyObject *method, *result;
- if (floor_str == NULL) {
- floor_str = PyUnicode_InternFromString("__floor__");
- if (floor_str == NULL)
+ method = _PyObject_LookupSpecial(number, "__floor__", &floor_str);
+ if (method == NULL) {
+ if (PyErr_Occurred())
return NULL;
- }
-
- method = _PyType_Lookup(Py_TYPE(number), floor_str);
- if (method == NULL)
return math_1_to_int(number, floor, 0);
- else
- return PyObject_CallFunction(method, "O", number);
+ }
+ result = PyObject_CallFunctionObjArgs(method, NULL);
+ Py_DECREF(method);
+ return result;
}
PyDoc_STRVAR(math_floor_doc,
"floor(x)\n\nReturn the floor of x as an int.\n"
"This is the largest integral value <= x.");
-FUNC1(log1p, log1p, 1,
+FUNC1A(gamma, m_tgamma,
+ "gamma(x)\n\nGamma function at x.")
+FUNC1A(lgamma, m_lgamma,
+ "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
+FUNC1(log1p, m_log1p, 0,
"log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
"The result is computed in a way which is accurate for x near zero.")
FUNC1(sin, sin, 0,
@@ -640,49 +1131,276 @@ PyDoc_STRVAR(math_fsum_doc,
Return an accurate floating point sum of values in the iterable.\n\
Assumes IEEE-754 floating point arithmetic.");
+/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
+ * Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
+ * count_leading_zero_bits(x)
+ */
+
+/* XXX: This routine does more or less the same thing as
+ * bits_in_digit() in Objects/longobject.c. Someday it would be nice to
+ * consolidate them. On BSD, there's a library function called fls()
+ * that we could use, and GCC provides __builtin_clz().
+ */
+
+static unsigned long
+bit_length(unsigned long n)
+{
+ unsigned long len = 0;
+ while (n != 0) {
+ ++len;
+ n >>= 1;
+ }
+ return len;
+}
+
+static unsigned long
+count_set_bits(unsigned long n)
+{
+ unsigned long count = 0;
+ while (n != 0) {
+ ++count;
+ n &= n - 1; /* clear least significant bit */
+ }
+ return count;
+}
+
+/* Divide-and-conquer factorial algorithm
+ *
+ * Based on the formula and psuedo-code provided at:
+ * http://www.luschny.de/math/factorial/binarysplitfact.html
+ *
+ * Faster algorithms exist, but they're more complicated and depend on
+ * a fast prime factorization algorithm.
+ *
+ * Notes on the algorithm
+ * ----------------------
+ *
+ * factorial(n) is written in the form 2**k * m, with m odd. k and m are
+ * computed separately, and then combined using a left shift.
+ *
+ * The function factorial_odd_part computes the odd part m (i.e., the greatest
+ * odd divisor) of factorial(n), using the formula:
+ *
+ * factorial_odd_part(n) =
+ *
+ * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
+ *
+ * Example: factorial_odd_part(20) =
+ *
+ * (1) *
+ * (1) *
+ * (1 * 3 * 5) *
+ * (1 * 3 * 5 * 7 * 9)
+ * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
+ *
+ * Here i goes from large to small: the first term corresponds to i=4 (any
+ * larger i gives an empty product), and the last term corresponds to i=0.
+ * Each term can be computed from the last by multiplying by the extra odd
+ * numbers required: e.g., to get from the penultimate term to the last one,
+ * we multiply by (11 * 13 * 15 * 17 * 19).
+ *
+ * To see a hint of why this formula works, here are the same numbers as above
+ * but with the even parts (i.e., the appropriate powers of 2) included. For
+ * each subterm in the product for i, we multiply that subterm by 2**i:
+ *
+ * factorial(20) =
+ *
+ * (16) *
+ * (8) *
+ * (4 * 12 * 20) *
+ * (2 * 6 * 10 * 14 * 18) *
+ * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
+ *
+ * The factorial_partial_product function computes the product of all odd j in
+ * range(start, stop) for given start and stop. It's used to compute the
+ * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
+ * operates recursively, repeatedly splitting the range into two roughly equal
+ * pieces until the subranges are small enough to be computed using only C
+ * integer arithmetic.
+ *
+ * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
+ * the factorial) is computed independently in the main math_factorial
+ * function. By standard results, its value is:
+ *
+ * two_valuation = n//2 + n//4 + n//8 + ....
+ *
+ * It can be shown (e.g., by complete induction on n) that two_valuation is
+ * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
+ * '1'-bits in the binary expansion of n.
+ */
+
+/* factorial_partial_product: Compute product(range(start, stop, 2)) using
+ * divide and conquer. Assumes start and stop are odd and stop > start.
+ * max_bits must be >= bit_length(stop - 2). */
+
+static PyObject *
+factorial_partial_product(unsigned long start, unsigned long stop,
+ unsigned long max_bits)
+{
+ unsigned long midpoint, num_operands;
+ PyObject *left = NULL, *right = NULL, *result = NULL;
+
+ /* If the return value will fit an unsigned long, then we can
+ * multiply in a tight, fast loop where each multiply is O(1).
+ * Compute an upper bound on the number of bits required to store
+ * the answer.
+ *
+ * Storing some integer z requires floor(lg(z))+1 bits, which is
+ * conveniently the value returned by bit_length(z). The
+ * product x*y will require at most
+ * bit_length(x) + bit_length(y) bits to store, based
+ * on the idea that lg product = lg x + lg y.
+ *
+ * We know that stop - 2 is the largest number to be multiplied. From
+ * there, we have: bit_length(answer) <= num_operands *
+ * bit_length(stop - 2)
+ */
+
+ num_operands = (stop - start) / 2;
+ /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
+ * unlikely case of an overflow in num_operands * max_bits. */
+ if (num_operands <= 8 * SIZEOF_LONG &&
+ num_operands * max_bits <= 8 * SIZEOF_LONG) {
+ unsigned long j, total;
+ for (total = start, j = start + 2; j < stop; j += 2)
+ total *= j;
+ return PyLong_FromUnsignedLong(total);
+ }
+
+ /* find midpoint of range(start, stop), rounded up to next odd number. */
+ midpoint = (start + num_operands) | 1;
+ left = factorial_partial_product(start, midpoint,
+ bit_length(midpoint - 2));
+ if (left == NULL)
+ goto error;
+ right = factorial_partial_product(midpoint, stop, max_bits);
+ if (right == NULL)
+ goto error;
+ result = PyNumber_Multiply(left, right);
+
+ error:
+ Py_XDECREF(left);
+ Py_XDECREF(right);
+ return result;
+}
+
+/* factorial_odd_part: compute the odd part of factorial(n). */
+
+static PyObject *
+factorial_odd_part(unsigned long n)
+{
+ long i;
+ unsigned long v, lower, upper;
+ PyObject *partial, *tmp, *inner, *outer;
+
+ inner = PyLong_FromLong(1);
+ if (inner == NULL)
+ return NULL;
+ outer = inner;
+ Py_INCREF(outer);
+
+ upper = 3;
+ for (i = bit_length(n) - 2; i >= 0; i--) {
+ v = n >> i;
+ if (v <= 2)
+ continue;
+ lower = upper;
+ /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
+ upper = (v + 1) | 1;
+ /* Here inner is the product of all odd integers j in the range (0,
+ n/2**(i+1)]. The factorial_partial_product call below gives the
+ product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
+ partial = factorial_partial_product(lower, upper, bit_length(upper-2));
+ /* inner *= partial */
+ if (partial == NULL)
+ goto error;
+ tmp = PyNumber_Multiply(inner, partial);
+ Py_DECREF(partial);
+ if (tmp == NULL)
+ goto error;
+ Py_DECREF(inner);
+ inner = tmp;
+ /* Now inner is the product of all odd integers j in the range (0,
+ n/2**i], giving the inner product in the formula above. */
+
+ /* outer *= inner; */
+ tmp = PyNumber_Multiply(outer, inner);
+ if (tmp == NULL)
+ goto error;
+ Py_DECREF(outer);
+ outer = tmp;
+ }
+
+ goto done;
+
+ error:
+ Py_DECREF(outer);
+ done:
+ Py_DECREF(inner);
+ return outer;
+}
+
+/* Lookup table for small factorial values */
+
+static const unsigned long SmallFactorials[] = {
+ 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
+ 362880, 3628800, 39916800, 479001600,
+#if SIZEOF_LONG >= 8
+ 6227020800, 87178291200, 1307674368000,
+ 20922789888000, 355687428096000, 6402373705728000,
+ 121645100408832000, 2432902008176640000
+#endif
+};
+
static PyObject *
math_factorial(PyObject *self, PyObject *arg)
{
- long i, x;
- PyObject *result, *iobj, *newresult;
+ long x;
+ PyObject *result, *odd_part, *two_valuation;
if (PyFloat_Check(arg)) {
+ PyObject *lx;
double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
- if (dx != floor(dx)) {
+ if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
PyErr_SetString(PyExc_ValueError,
- "factorial() only accepts integral values");
+ "factorial() only accepts integral values");
return NULL;
}
+ lx = PyLong_FromDouble(dx);
+ if (lx == NULL)
+ return NULL;
+ x = PyLong_AsLong(lx);
+ Py_DECREF(lx);
}
+ else
+ x = PyLong_AsLong(arg);
- x = PyLong_AsLong(arg);
if (x == -1 && PyErr_Occurred())
return NULL;
if (x < 0) {
PyErr_SetString(PyExc_ValueError,
- "factorial() not defined for negative values");
+ "factorial() not defined for negative values");
return NULL;
}
- result = (PyObject *)PyLong_FromLong(1);
- if (result == NULL)
+ /* use lookup table if x is small */
+ if (x < (long)(sizeof(SmallFactorials)/sizeof(SmallFactorials[0])))
+ return PyLong_FromUnsignedLong(SmallFactorials[x]);
+
+ /* else express in the form odd_part * 2**two_valuation, and compute as
+ odd_part << two_valuation. */
+ odd_part = factorial_odd_part(x);
+ if (odd_part == NULL)
+ return NULL;
+ two_valuation = PyLong_FromLong(x - count_set_bits(x));
+ if (two_valuation == NULL) {
+ Py_DECREF(odd_part);
return NULL;
- for (i=1 ; i<=x ; i++) {
- iobj = (PyObject *)PyLong_FromLong(i);
- if (iobj == NULL)
- goto error;
- newresult = PyNumber_Multiply(result, iobj);
- Py_DECREF(iobj);
- if (newresult == NULL)
- goto error;
- Py_DECREF(result);
- result = newresult;
}
+ result = PyNumber_Lshift(odd_part, two_valuation);
+ Py_DECREF(two_valuation);
+ Py_DECREF(odd_part);
return result;
-
-error:
- Py_DECREF(result);
- return NULL;
}
PyDoc_STRVAR(math_factorial_doc,
@@ -694,27 +1412,24 @@ static PyObject *
math_trunc(PyObject *self, PyObject *number)
{
static PyObject *trunc_str = NULL;
- PyObject *trunc;
+ PyObject *trunc, *result;
if (Py_TYPE(number)->tp_dict == NULL) {
if (PyType_Ready(Py_TYPE(number)) < 0)
return NULL;
}
- if (trunc_str == NULL) {
- trunc_str = PyUnicode_InternFromString("__trunc__");
- if (trunc_str == NULL)
- return NULL;
- }
-
- trunc = _PyType_Lookup(Py_TYPE(number), trunc_str);
+ trunc = _PyObject_LookupSpecial(number, "__trunc__", &trunc_str);
if (trunc == NULL) {
- PyErr_Format(PyExc_TypeError,
- "type %.100s doesn't define __trunc__ method",
- Py_TYPE(number)->tp_name);
+ if (!PyErr_Occurred())
+ PyErr_Format(PyExc_TypeError,
+ "type %.100s doesn't define __trunc__ method",
+ Py_TYPE(number)->tp_name);
return NULL;
}
- return PyObject_CallFunctionObjArgs(trunc, number, NULL);
+ result = PyObject_CallFunctionObjArgs(trunc, NULL);
+ Py_DECREF(trunc);
+ return result;
}
PyDoc_STRVAR(math_trunc_doc,
@@ -755,28 +1470,18 @@ math_ldexp(PyObject *self, PyObject *args)
double x, r;
PyObject *oexp;
long exp;
+ int overflow;
if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
return NULL;
if (PyLong_Check(oexp)) {
/* on overflow, replace exponent with either LONG_MAX
or LONG_MIN, depending on the sign. */
- exp = PyLong_AsLong(oexp);
- if (exp == -1 && PyErr_Occurred()) {
- if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
- if (Py_SIZE(oexp) < 0) {
- exp = LONG_MIN;
- }
- else {
- exp = LONG_MAX;
- }
- PyErr_Clear();
- }
- else {
- /* propagate any unexpected exception */
- return NULL;
- }
- }
+ exp = PyLong_AsLongAndOverflow(oexp, &overflow);
+ if (exp == -1 && PyErr_Occurred())
+ return NULL;
+ if (overflow)
+ exp = overflow < 0 ? LONG_MIN : LONG_MAX;
}
else {
PyErr_SetString(PyExc_TypeError,
@@ -845,31 +1550,45 @@ PyDoc_STRVAR(math_modf_doc,
/* A decent logarithm is easy to compute even for huge longs, but libm can't
do that by itself -- loghelper can. func is log or log10, and name is
- "log" or "log10". Note that overflow isn't possible: a long can contain
- no more than INT_MAX * SHIFT bits, so has value certainly less than
- 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
+ "log" or "log10". Note that overflow of the result isn't possible: a long
+ can contain no more than INT_MAX * SHIFT bits, so has value certainly less
+ than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
small enough to fit in an IEEE single. log and log10 are even smaller.
-*/
+ However, intermediate overflow is possible for a long if the number of bits
+ in that long is larger than PY_SSIZE_T_MAX. */
static PyObject*
loghelper(PyObject* arg, double (*func)(double), char *funcname)
{
/* If it is long, do it ourselves. */
if (PyLong_Check(arg)) {
- double x;
- int e;
- x = _PyLong_AsScaledDouble(arg, &e);
- if (x <= 0.0) {
+ double x, result;
+ Py_ssize_t e;
+
+ /* Negative or zero inputs give a ValueError. */
+ if (Py_SIZE(arg) <= 0) {
PyErr_SetString(PyExc_ValueError,
"math domain error");
return NULL;
}
- /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
- log(x) + log(2) * e * PyLong_SHIFT.
- CAUTION: e*PyLong_SHIFT may overflow using int arithmetic,
- so force use of double. */
- x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
- return PyFloat_FromDouble(x);
+
+ x = PyLong_AsDouble(arg);
+ if (x == -1.0 && PyErr_Occurred()) {
+ if (!PyErr_ExceptionMatches(PyExc_OverflowError))
+ return NULL;
+ /* Here the conversion to double overflowed, but it's possible
+ to compute the log anyway. Clear the exception and continue. */
+ PyErr_Clear();
+ x = _PyLong_Frexp((PyLongObject *)arg, &e);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
+ result = func(x) + func(2.0) * e;
+ }
+ else
+ /* Successfully converted x to a double. */
+ result = func(x);
+ return PyFloat_FromDouble(result);
}
/* Else let libm handle it by itself. */
@@ -1109,6 +1828,19 @@ PyDoc_STRVAR(math_radians_doc,
Convert angle x from degrees to radians.");
static PyObject *
+math_isfinite(PyObject *self, PyObject *arg)
+{
+ double x = PyFloat_AsDouble(arg);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ return PyBool_FromLong((long)Py_IS_FINITE(x));
+}
+
+PyDoc_STRVAR(math_isfinite_doc,
+"isfinite(x) -> bool\n\n\
+Return True if x is neither an infinity nor a NaN, and False otherwise.");
+
+static PyObject *
math_isnan(PyObject *self, PyObject *arg)
{
double x = PyFloat_AsDouble(arg);
@@ -1119,7 +1851,7 @@ math_isnan(PyObject *self, PyObject *arg)
PyDoc_STRVAR(math_isnan_doc,
"isnan(x) -> bool\n\n\
-Check if float x is not a number (NaN).");
+Return True if x is a NaN (not a number), and False otherwise.");
static PyObject *
math_isinf(PyObject *self, PyObject *arg)
@@ -1132,7 +1864,7 @@ math_isinf(PyObject *self, PyObject *arg)
PyDoc_STRVAR(math_isinf_doc,
"isinf(x) -> bool\n\n\
-Check if float x is infinite (positive or negative).");
+Return True if x is a positive or negative infinity, and False otherwise.");
static PyMethodDef math_methods[] = {
{"acos", math_acos, METH_O, math_acos_doc},
@@ -1147,17 +1879,23 @@ static PyMethodDef math_methods[] = {
{"cos", math_cos, METH_O, math_cos_doc},
{"cosh", math_cosh, METH_O, math_cosh_doc},
{"degrees", math_degrees, METH_O, math_degrees_doc},
+ {"erf", math_erf, METH_O, math_erf_doc},
+ {"erfc", math_erfc, METH_O, math_erfc_doc},
{"exp", math_exp, METH_O, math_exp_doc},
+ {"expm1", math_expm1, METH_O, math_expm1_doc},
{"fabs", math_fabs, METH_O, math_fabs_doc},
{"factorial", math_factorial, METH_O, math_factorial_doc},
{"floor", math_floor, METH_O, math_floor_doc},
{"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
{"frexp", math_frexp, METH_O, math_frexp_doc},
{"fsum", math_fsum, METH_O, math_fsum_doc},
+ {"gamma", math_gamma, METH_O, math_gamma_doc},
{"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
+ {"isfinite", math_isfinite, METH_O, math_isfinite_doc},
{"isinf", math_isinf, METH_O, math_isinf_doc},
{"isnan", math_isnan, METH_O, math_isnan_doc},
{"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
+ {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
{"log", math_log, METH_VARARGS, math_log_doc},
{"log1p", math_log1p, METH_O, math_log1p_doc},
{"log10", math_log10, METH_O, math_log10_doc},