diff options
Diffstat (limited to 'Modules/mathmodule.c')
-rw-r--r-- | Modules/mathmodule.c | 173 |
1 files changed, 160 insertions, 13 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c index 243e2a333b..7ebf8e84c2 100644 --- a/Modules/mathmodule.c +++ b/Modules/mathmodule.c @@ -223,6 +223,35 @@ lanczos_sum(double x) return num/den; } +/* Constant for +infinity, generated in the same way as float('inf'). */ + +static double +m_inf(void) +{ +#ifndef PY_NO_SHORT_FLOAT_REPR + return _Py_dg_infinity(0); +#else + return Py_HUGE_VAL; +#endif +} + +/* Constant nan value, generated in the same way as float('nan'). */ +/* We don't currently assume that Py_NAN is defined everywhere. */ + +#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) + +static double +m_nan(void) +{ +#ifndef PY_NO_SHORT_FLOAT_REPR + return _Py_dg_stdnan(0); +#else + return Py_NAN; +#endif +} + +#endif + static double m_tgamma(double x) { @@ -371,9 +400,8 @@ m_lgamma(double x) Implementations of the error function erf(x) and the complementary error function erfc(x). - Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed., - Cambridge University Press), we use a series approximation for erf for - small x, and a continued fraction approximation for erfc(x) for larger x; + Method: we use a series approximation for erf for small x, and a continued + fraction approximation for erfc(x) for larger x; combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x), this gives us erf(x) and erfc(x) for all x. @@ -656,6 +684,33 @@ m_log10(double x) } +static PyObject * +math_gcd(PyObject *self, PyObject *args) +{ + PyObject *a, *b, *g; + + if (!PyArg_ParseTuple(args, "OO:gcd", &a, &b)) + return NULL; + + a = PyNumber_Index(a); + if (a == NULL) + return NULL; + b = PyNumber_Index(b); + if (b == NULL) { + Py_DECREF(a); + return NULL; + } + g = _PyLong_GCD(a, b); + Py_DECREF(a); + Py_DECREF(b); + return g; +} + +PyDoc_STRVAR(math_gcd_doc, +"gcd(x, y) -> int\n\ +greatest common divisor of x and y"); + + /* Call is_error when errno != 0, and where x is the result libm * returned. is_error will usually set up an exception and return * true (1), but may return false (0) without setting up an exception. @@ -902,8 +957,8 @@ static PyObject * math_ceil(PyObject *self, PyObject *number) { } PyDoc_STRVAR(math_ceil_doc, - "ceil(x)\n\nReturn the ceiling of x as an int.\n" - "This is the smallest integral value >= x."); + "ceil(x)\n\nReturn the ceiling of x as an Integral.\n" + "This is the smallest integer >= x."); FUNC2(copysign, copysign, "copysign(x, y)\n\nReturn a float with the magnitude (absolute value) " @@ -942,8 +997,8 @@ static PyObject * math_floor(PyObject *self, PyObject *number) { } PyDoc_STRVAR(math_floor_doc, - "floor(x)\n\nReturn the floor of x as an int.\n" - "This is the largest integral value <= x."); + "floor(x)\n\nReturn the floor of x as an Integral.\n" + "This is the largest integer <= x."); FUNC1A(gamma, m_tgamma, "gamma(x)\n\nGamma function at x.") @@ -1010,7 +1065,7 @@ _fsum_realloc(double **p_ptr, Py_ssize_t n, Py_ssize_t m = *m_ptr; m += m; /* double */ - if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) { + if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) { double *p = *p_ptr; if (p == ps) { v = PyMem_Malloc(sizeof(double) * m); @@ -1408,6 +1463,7 @@ static PyObject * math_factorial(PyObject *self, PyObject *arg) { long x; + int overflow; PyObject *result, *odd_part, *two_valuation; if (PyFloat_Check(arg)) { @@ -1421,15 +1477,22 @@ math_factorial(PyObject *self, PyObject *arg) lx = PyLong_FromDouble(dx); if (lx == NULL) return NULL; - x = PyLong_AsLong(lx); + x = PyLong_AsLongAndOverflow(lx, &overflow); Py_DECREF(lx); } else - x = PyLong_AsLong(arg); + x = PyLong_AsLongAndOverflow(arg, &overflow); - if (x == -1 && PyErr_Occurred()) + if (x == -1 && PyErr_Occurred()) { return NULL; - if (x < 0) { + } + else if (overflow == 1) { + PyErr_Format(PyExc_OverflowError, + "factorial() argument should not exceed %ld", + LONG_MAX); + return NULL; + } + else if (overflow == -1 || x < 0) { PyErr_SetString(PyExc_ValueError, "factorial() not defined for negative values"); return NULL; @@ -1926,6 +1989,83 @@ PyDoc_STRVAR(math_isinf_doc, "isinf(x) -> bool\n\n\ Return True if x is a positive or negative infinity, and False otherwise."); +static PyObject * +math_isclose(PyObject *self, PyObject *args, PyObject *kwargs) +{ + double a, b; + double rel_tol = 1e-9; + double abs_tol = 0.0; + double diff = 0.0; + long result = 0; + + static char *keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL}; + + + if (!PyArg_ParseTupleAndKeywords(args, kwargs, "dd|$dd:isclose", + keywords, + &a, &b, &rel_tol, &abs_tol + )) + return NULL; + + /* sanity check on the inputs */ + if (rel_tol < 0.0 || abs_tol < 0.0 ) { + PyErr_SetString(PyExc_ValueError, + "tolerances must be non-negative"); + return NULL; + } + + if ( a == b ) { + /* short circuit exact equality -- needed to catch two infinities of + the same sign. And perhaps speeds things up a bit sometimes. + */ + Py_RETURN_TRUE; + } + + /* This catches the case of two infinities of opposite sign, or + one infinity and one finite number. Two infinities of opposite + sign would otherwise have an infinite relative tolerance. + Two infinities of the same sign are caught by the equality check + above. + */ + + if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) { + Py_RETURN_FALSE; + } + + /* now do the regular computation + this is essentially the "weak" test from the Boost library + */ + + diff = fabs(b - a); + + result = (((diff <= fabs(rel_tol * b)) || + (diff <= fabs(rel_tol * a))) || + (diff <= abs_tol)); + + return PyBool_FromLong(result); +} + +PyDoc_STRVAR(math_isclose_doc, +"isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool\n" +"\n" +"Determine whether two floating point numbers are close in value.\n" +"\n" +" rel_tol\n" +" maximum difference for being considered \"close\", relative to the\n" +" magnitude of the input values\n" +" abs_tol\n" +" maximum difference for being considered \"close\", regardless of the\n" +" magnitude of the input values\n" +"\n" +"Return True if a is close in value to b, and False otherwise.\n" +"\n" +"For the values to be considered close, the difference between them\n" +"must be smaller than at least one of the tolerances.\n" +"\n" +"-inf, inf and NaN behave similarly to the IEEE 754 Standard. That\n" +"is, NaN is not close to anything, even itself. inf and -inf are\n" +"only close to themselves."); + static PyMethodDef math_methods[] = { {"acos", math_acos, METH_O, math_acos_doc}, {"acosh", math_acosh, METH_O, math_acosh_doc}, @@ -1950,7 +2090,10 @@ static PyMethodDef math_methods[] = { {"frexp", math_frexp, METH_O, math_frexp_doc}, {"fsum", math_fsum, METH_O, math_fsum_doc}, {"gamma", math_gamma, METH_O, math_gamma_doc}, + {"gcd", math_gcd, METH_VARARGS, math_gcd_doc}, {"hypot", math_hypot, METH_VARARGS, math_hypot_doc}, + {"isclose", (PyCFunction) math_isclose, METH_VARARGS | METH_KEYWORDS, + math_isclose_doc}, {"isfinite", math_isfinite, METH_O, math_isfinite_doc}, {"isinf", math_isinf, METH_O, math_isinf_doc}, {"isnan", math_isnan, METH_O, math_isnan_doc}, @@ -2001,7 +2144,11 @@ PyInit_math(void) PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); + PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf())); +#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) + PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan())); +#endif - finally: + finally: return m; } |