summaryrefslogtreecommitdiff
path: root/Objects/floatobject.c
diff options
context:
space:
mode:
Diffstat (limited to 'Objects/floatobject.c')
-rw-r--r--Objects/floatobject.c616
1 files changed, 383 insertions, 233 deletions
diff --git a/Objects/floatobject.c b/Objects/floatobject.c
index 0bb6961c86..63b7c17b6b 100644
--- a/Objects/floatobject.c
+++ b/Objects/floatobject.c
@@ -15,10 +15,6 @@
#define MAX(x, y) ((x) < (y) ? (y) : (x))
#define MIN(x, y) ((x) < (y) ? (x) : (y))
-#ifdef HAVE_IEEEFP_H
-#include <ieeefp.h>
-#endif
-
#ifdef _OSF_SOURCE
/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
extern int finite(double);
@@ -72,7 +68,7 @@ PyFloat_GetMin(void)
static PyTypeObject FloatInfoType = {0, 0, 0, 0, 0, 0};
PyDoc_STRVAR(floatinfo__doc__,
-"sys.floatinfo\n\
+"sys.float_info\n\
\n\
A structseq holding information about the float type. It contains low level\n\
information about the precision and internal representation. Please study\n\
@@ -99,7 +95,7 @@ static PyStructSequence_Field floatinfo_fields[] = {
};
static PyStructSequence_Desc floatinfo_desc = {
- "sys.floatinfo", /* name */
+ "sys.float_info", /* name */
floatinfo__doc__, /* doc */
floatinfo_fields, /* fields */
11
@@ -177,13 +173,14 @@ still supported but now *officially* useless: if pend is not NULL,
PyObject *
PyFloat_FromString(PyObject *v, char **pend)
{
- const char *s, *last, *end, *sp;
+ const char *s, *last, *end;
double x;
char buffer[256]; /* for errors */
#ifdef Py_USING_UNICODE
- char s_buffer[256]; /* for objects convertible to a char buffer */
+ char *s_buffer = NULL;
#endif
Py_ssize_t len;
+ PyObject *result = NULL;
if (pend)
*pend = NULL;
@@ -193,101 +190,50 @@ PyFloat_FromString(PyObject *v, char **pend)
}
#ifdef Py_USING_UNICODE
else if (PyUnicode_Check(v)) {
- if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) {
- PyErr_SetString(PyExc_ValueError,
- "Unicode float() literal too long to convert");
- return NULL;
- }
+ s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
+ if (s_buffer == NULL)
+ return PyErr_NoMemory();
if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
PyUnicode_GET_SIZE(v),
s_buffer,
NULL))
- return NULL;
+ goto error;
s = s_buffer;
len = strlen(s);
}
#endif
else if (PyObject_AsCharBuffer(v, &s, &len)) {
PyErr_SetString(PyExc_TypeError,
- "float() argument must be a string or a number");
+ "float() argument must be a string or a number");
return NULL;
}
-
last = s + len;
- while (*s && isspace(Py_CHARMASK(*s)))
+
+ while (Py_ISSPACE(*s))
s++;
- if (*s == '\0') {
- PyErr_SetString(PyExc_ValueError, "empty string for float()");
- return NULL;
- }
- sp = s;
- /* We don't care about overflow or underflow. If the platform supports
- * them, infinities and signed zeroes (on underflow) are fine.
- * However, strtod can return 0 for denormalized numbers, where atof
- * does not. So (alas!) we special-case a zero result. Note that
- * whether strtod sets errno on underflow is not defined, so we can't
- * key off errno.
- */
- PyFPE_START_PROTECT("strtod", return NULL)
- x = PyOS_ascii_strtod(s, (char **)&end);
- PyFPE_END_PROTECT(x)
- errno = 0;
- /* Believe it or not, Solaris 2.6 can move end *beyond* the null
- byte at the end of the string, when the input is inf(inity). */
- if (end > last)
- end = last;
- /* Check for inf and nan. This is done late because it rarely happens. */
- if (end == s) {
- char *p = (char*)sp;
- int sign = 1;
-
- if (*p == '-') {
- sign = -1;
- p++;
- }
- if (*p == '+') {
- p++;
- }
- if (PyOS_strnicmp(p, "inf", 4) == 0) {
- Py_RETURN_INF(sign);
- }
- if (PyOS_strnicmp(p, "infinity", 9) == 0) {
- Py_RETURN_INF(sign);
- }
-#ifdef Py_NAN
- if(PyOS_strnicmp(p, "nan", 4) == 0) {
- Py_RETURN_NAN;
- }
-#endif
- PyOS_snprintf(buffer, sizeof(buffer),
- "invalid literal for float(): %.200s", s);
- PyErr_SetString(PyExc_ValueError, buffer);
- return NULL;
- }
- /* Since end != s, the platform made *some* kind of sense out
- of the input. Trust it. */
- while (*end && isspace(Py_CHARMASK(*end)))
+ /* We don't care about overflow or underflow. If the platform
+ * supports them, infinities and signed zeroes (on underflow) are
+ * fine. */
+ x = PyOS_string_to_double(s, (char **)&end, NULL);
+ if (x == -1.0 && PyErr_Occurred())
+ goto error;
+ while (Py_ISSPACE(*end))
end++;
- if (*end != '\0') {
+ if (end == last)
+ result = PyFloat_FromDouble(x);
+ else {
PyOS_snprintf(buffer, sizeof(buffer),
"invalid literal for float(): %.200s", s);
PyErr_SetString(PyExc_ValueError, buffer);
- return NULL;
+ result = NULL;
}
- else if (end != last) {
- PyErr_SetString(PyExc_ValueError,
- "null byte in argument for float()");
- return NULL;
- }
- if (x == 0.0) {
- /* See above -- may have been strtod being anal
- about denorms. */
- PyFPE_START_PROTECT("atof", return NULL)
- x = PyOS_ascii_atof(s);
- PyFPE_END_PROTECT(x)
- errno = 0; /* whether atof ever set errno is undefined */
- }
- return PyFloat_FromDouble(x);
+
+ error:
+#ifdef Py_USING_UNICODE
+ if (s_buffer)
+ PyMem_FREE(s_buffer);
+#endif
+ return result;
}
static void
@@ -338,74 +284,6 @@ PyFloat_AsDouble(PyObject *op)
/* Methods */
-static void
-format_float(char *buf, size_t buflen, PyFloatObject *v, int precision)
-{
- register char *cp;
- char format[32];
- int i;
-
- /* Subroutine for float_repr and float_print.
- We want float numbers to be recognizable as such,
- i.e., they should contain a decimal point or an exponent.
- However, %g may print the number as an integer;
- in such cases, we append ".0" to the string. */
-
- assert(PyFloat_Check(v));
- PyOS_snprintf(format, 32, "%%.%ig", precision);
- PyOS_ascii_formatd(buf, buflen, format, v->ob_fval);
- cp = buf;
- if (*cp == '-')
- cp++;
- for (; *cp != '\0'; cp++) {
- /* Any non-digit means it's not an integer;
- this takes care of NAN and INF as well. */
- if (!isdigit(Py_CHARMASK(*cp)))
- break;
- }
- if (*cp == '\0') {
- *cp++ = '.';
- *cp++ = '0';
- *cp++ = '\0';
- return;
- }
- /* Checking the next three chars should be more than enough to
- * detect inf or nan, even on Windows. We check for inf or nan
- * at last because they are rare cases.
- */
- for (i=0; *cp != '\0' && i<3; cp++, i++) {
- if (isdigit(Py_CHARMASK(*cp)) || *cp == '.')
- continue;
- /* found something that is neither a digit nor point
- * it might be a NaN or INF
- */
-#ifdef Py_NAN
- if (Py_IS_NAN(v->ob_fval)) {
- strcpy(buf, "nan");
- }
- else
-#endif
- if (Py_IS_INFINITY(v->ob_fval)) {
- cp = buf;
- if (*cp == '-')
- cp++;
- strcpy(cp, "inf");
- }
- break;
- }
-
-}
-
-/* XXX PyFloat_AsStringEx should not be a public API function (for one
- XXX thing, its signature passes a buffer without a length; for another,
- XXX it isn't useful outside this file).
-*/
-void
-PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision)
-{
- format_float(buf, 100, v, precision);
-}
-
/* Macro and helper that convert PyObject obj to a C double and store
the value in dbl; this replaces the functionality of the coercion
slot function. If conversion to double raises an exception, obj is
@@ -442,66 +320,72 @@ convert_to_double(PyObject **v, double *dbl)
return 0;
}
-/* Precisions used by repr() and str(), respectively.
-
- The repr() precision (17 significant decimal digits) is the minimal number
- that is guaranteed to have enough precision so that if the number is read
- back in the exact same binary value is recreated. This is true for IEEE
- floating point by design, and also happens to work for all other modern
- hardware.
-
- The str() precision is chosen so that in most cases, the rounding noise
- created by various operations is suppressed, while giving plenty of
- precision for practical use.
-
-*/
-
-#define PREC_REPR 17
-#define PREC_STR 12
-
-/* XXX PyFloat_AsString and PyFloat_AsReprString should be deprecated:
+/* XXX PyFloat_AsString and PyFloat_AsReprString are deprecated:
XXX they pass a char buffer without passing a length.
*/
void
PyFloat_AsString(char *buf, PyFloatObject *v)
{
- format_float(buf, 100, v, PREC_STR);
+ char *tmp = PyOS_double_to_string(v->ob_fval, 'g',
+ PyFloat_STR_PRECISION,
+ Py_DTSF_ADD_DOT_0, NULL);
+ strcpy(buf, tmp);
+ PyMem_Free(tmp);
}
void
PyFloat_AsReprString(char *buf, PyFloatObject *v)
{
- format_float(buf, 100, v, PREC_REPR);
+ char * tmp = PyOS_double_to_string(v->ob_fval, 'r', 0,
+ Py_DTSF_ADD_DOT_0, NULL);
+ strcpy(buf, tmp);
+ PyMem_Free(tmp);
}
/* ARGSUSED */
static int
float_print(PyFloatObject *v, FILE *fp, int flags)
{
- char buf[100];
- format_float(buf, sizeof(buf), v,
- (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
+ char *buf;
+ if (flags & Py_PRINT_RAW)
+ buf = PyOS_double_to_string(v->ob_fval,
+ 'g', PyFloat_STR_PRECISION,
+ Py_DTSF_ADD_DOT_0, NULL);
+ else
+ buf = PyOS_double_to_string(v->ob_fval,
+ 'r', 0, Py_DTSF_ADD_DOT_0, NULL);
Py_BEGIN_ALLOW_THREADS
fputs(buf, fp);
Py_END_ALLOW_THREADS
+ PyMem_Free(buf);
return 0;
}
static PyObject *
-float_repr(PyFloatObject *v)
+float_str_or_repr(PyFloatObject *v, int precision, char format_code)
{
- char buf[100];
- format_float(buf, sizeof(buf), v, PREC_REPR);
+ PyObject *result;
+ char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
+ format_code, precision,
+ Py_DTSF_ADD_DOT_0,
+ NULL);
+ if (!buf)
+ return PyErr_NoMemory();
+ result = PyString_FromString(buf);
+ PyMem_Free(buf);
+ return result;
+}
- return PyString_FromString(buf);
+static PyObject *
+float_repr(PyFloatObject *v)
+{
+ return float_str_or_repr(v, 0, 'r');
}
static PyObject *
float_str(PyFloatObject *v)
{
- char buf[100];
- format_float(buf, sizeof(buf), v, PREC_STR);
- return PyString_FromString(buf);
+ return float_str_or_repr(v, PyFloat_STR_PRECISION, 'g');
}
/* Comparison is pretty much a nightmare. When comparing float to float,
@@ -784,7 +668,7 @@ float_div(PyObject *v, PyObject *w)
#ifdef Py_NAN
if (b == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError,
- "float division");
+ "float division by zero");
return NULL;
}
#endif
@@ -806,7 +690,7 @@ float_classic_div(PyObject *v, PyObject *w)
#ifdef Py_NAN
if (b == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError,
- "float division");
+ "float division by zero");
return NULL;
}
#endif
@@ -832,10 +716,20 @@ float_rem(PyObject *v, PyObject *w)
#endif
PyFPE_START_PROTECT("modulo", return 0)
mod = fmod(vx, wx);
- /* note: checking mod*wx < 0 is incorrect -- underflows to
- 0 if wx < sqrt(smallest nonzero double) */
- if (mod && ((wx < 0) != (mod < 0))) {
- mod += wx;
+ if (mod) {
+ /* ensure the remainder has the same sign as the denominator */
+ if ((wx < 0) != (mod < 0)) {
+ mod += wx;
+ }
+ }
+ else {
+ /* the remainder is zero, and in the presence of signed zeroes
+ fmod returns different results across platforms; ensure
+ it has the same sign as the denominator; we'd like to do
+ "mod = wx * 0.0", but that may get optimized away */
+ mod *= mod; /* hide "mod = +0" from optimizer */
+ if (wx < 0.0)
+ mod = -mod;
}
PyFPE_END_PROTECT(mod)
return PyFloat_FromDouble(mod);
@@ -907,10 +801,15 @@ float_floor_div(PyObject *v, PyObject *w)
return r;
}
+/* determine whether x is an odd integer or not; assumes that
+ x is not an infinity or nan. */
+#define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
+
static PyObject *
float_pow(PyObject *v, PyObject *w, PyObject *z)
{
double iv, iw, ix;
+ int negate_result = 0;
if ((PyObject *)z != Py_None) {
PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
@@ -925,17 +824,53 @@ float_pow(PyObject *v, PyObject *w, PyObject *z)
if (iw == 0) { /* v**0 is 1, even 0**0 */
return PyFloat_FromDouble(1.0);
}
- if (iv == 0.0) { /* 0**w is error if w<0, else 1 */
+ if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
+ return PyFloat_FromDouble(iv);
+ }
+ if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
+ return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
+ }
+ if (Py_IS_INFINITY(iw)) {
+ /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
+ * abs(v) > 1 (including case where v infinite)
+ *
+ * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
+ * abs(v) > 1 (including case where v infinite)
+ */
+ iv = fabs(iv);
+ if (iv == 1.0)
+ return PyFloat_FromDouble(1.0);
+ else if ((iw > 0.0) == (iv > 1.0))
+ return PyFloat_FromDouble(fabs(iw)); /* return inf */
+ else
+ return PyFloat_FromDouble(0.0);
+ }
+ if (Py_IS_INFINITY(iv)) {
+ /* (+-inf)**w is: inf for w positive, 0 for w negative; in
+ * both cases, we need to add the appropriate sign if w is
+ * an odd integer.
+ */
+ int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
+ if (iw > 0.0)
+ return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
+ else
+ return PyFloat_FromDouble(iw_is_odd ?
+ copysign(0.0, iv) : 0.0);
+ }
+ if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
+ (already dealt with above), and an error
+ if w is negative. */
+ int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
if (iw < 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError,
- "0.0 cannot be raised to a negative power");
+ "0.0 cannot be raised to a "
+ "negative power");
return NULL;
}
- return PyFloat_FromDouble(0.0);
- }
- if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
- return PyFloat_FromDouble(1.0);
+ /* use correct sign if iw is odd */
+ return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
}
+
if (iv < 0.0) {
/* Whether this is an error is a mess, and bumps into libm
* bugs so we have to figure it out ourselves.
@@ -945,33 +880,41 @@ float_pow(PyObject *v, PyObject *w, PyObject *z)
"cannot be raised to a fractional power");
return NULL;
}
- /* iw is an exact integer, albeit perhaps a very large one.
+ /* iw is an exact integer, albeit perhaps a very large
+ * one. Replace iv by its absolute value and remember
+ * to negate the pow result if iw is odd.
+ */
+ iv = -iv;
+ negate_result = DOUBLE_IS_ODD_INTEGER(iw);
+ }
+
+ if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
+ /* (-1) ** large_integer also ends up here. Here's an
+ * extract from the comments for the previous
+ * implementation explaining why this special case is
+ * necessary:
+ *
* -1 raised to an exact integer should never be exceptional.
* Alas, some libms (chiefly glibc as of early 2003) return
* NaN and set EDOM on pow(-1, large_int) if the int doesn't
* happen to be representable in a *C* integer. That's a
- * bug; we let that slide in math.pow() (which currently
- * reflects all platform accidents), but not for Python's **.
- */
- if (iv == -1.0 && Py_IS_FINITE(iw)) {
- /* Return 1 if iw is even, -1 if iw is odd; there's
- * no guarantee that any C integral type is big
- * enough to hold iw, so we have to check this
- * indirectly.
- */
- ix = floor(iw * 0.5) * 2.0;
- return PyFloat_FromDouble(ix == iw ? 1.0 : -1.0);
- }
- /* Else iv != -1.0, and overflow or underflow are possible.
- * Unless we're to write pow() ourselves, we have to trust
- * the platform to do this correctly.
+ * bug.
*/
+ return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
}
+
+ /* Now iv and iw are finite, iw is nonzero, and iv is
+ * positive and not equal to 1.0. We finally allow
+ * the platform pow to step in and do the rest.
+ */
errno = 0;
PyFPE_START_PROTECT("pow", return NULL)
ix = pow(iv, iw);
PyFPE_END_PROTECT(ix)
Py_ADJUST_ERANGE1(ix);
+ if (negate_result)
+ ix = -ix;
+
if (errno != 0) {
/* We don't expect any errno value other than ERANGE, but
* the range of libm bugs appears unbounded.
@@ -983,6 +926,8 @@ float_pow(PyObject *v, PyObject *w, PyObject *z)
return PyFloat_FromDouble(ix);
}
+#undef DOUBLE_IS_ODD_INTEGER
+
static PyObject *
float_neg(PyFloatObject *v)
{
@@ -1090,14 +1035,17 @@ float_trunc(PyObject *v)
* happens if the double is too big to fit in a long. Some rare
* systems raise an exception then (RISCOS was mentioned as one,
* and someone using a non-default option on Sun also bumped into
- * that). Note that checking for >= and <= LONG_{MIN,MAX} would
- * still be vulnerable: if a long has more bits of precision than
- * a double, casting MIN/MAX to double may yield an approximation,
- * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
- * yield true from the C expression wholepart<=LONG_MAX, despite
- * that wholepart is actually greater than LONG_MAX.
+ * that). Note that checking for <= LONG_MAX is unsafe: if a long
+ * has more bits of precision than a double, casting LONG_MAX to
+ * double may yield an approximation, and if that's rounded up,
+ * then, e.g., wholepart=LONG_MAX+1 would yield true from the C
+ * expression wholepart<=LONG_MAX, despite that wholepart is
+ * actually greater than LONG_MAX. However, assuming a two's complement
+ * machine with no trap representation, LONG_MIN will be a power of 2 (and
+ * hence exactly representable as a double), and LONG_MAX = -1-LONG_MIN, so
+ * the comparisons with (double)LONG_MIN below should be safe.
*/
- if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
+ if ((double)LONG_MIN <= wholepart && wholepart < -(double)LONG_MIN) {
const long aslong = (long)wholepart;
return PyInt_FromLong(aslong);
}
@@ -1111,6 +1059,202 @@ float_long(PyObject *v)
return PyLong_FromDouble(x);
}
+/* _Py_double_round: rounds a finite nonzero double to the closest multiple of
+ 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
+ ndigits <= 323). Returns a Python float, or sets a Python error and
+ returns NULL on failure (OverflowError and memory errors are possible). */
+
+#ifndef PY_NO_SHORT_FLOAT_REPR
+/* version of _Py_double_round that uses the correctly-rounded string<->double
+ conversions from Python/dtoa.c */
+
+/* FIVE_POW_LIMIT is the largest k such that 5**k is exactly representable as
+ a double. Since we're using the code in Python/dtoa.c, it should be safe
+ to assume that C doubles are IEEE 754 binary64 format. To be on the safe
+ side, we check this. */
+#if DBL_MANT_DIG == 53
+#define FIVE_POW_LIMIT 22
+#else
+#error "C doubles do not appear to be IEEE 754 binary64 format"
+#endif
+
+PyObject *
+_Py_double_round(double x, int ndigits) {
+
+ double rounded, m;
+ Py_ssize_t buflen, mybuflen=100;
+ char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
+ int decpt, sign, val, halfway_case;
+ PyObject *result = NULL;
+
+ /* The basic idea is very simple: convert and round the double to a
+ decimal string using _Py_dg_dtoa, then convert that decimal string
+ back to a double with _Py_dg_strtod. There's one minor difficulty:
+ Python 2.x expects round to do round-half-away-from-zero, while
+ _Py_dg_dtoa does round-half-to-even. So we need some way to detect
+ and correct the halfway cases.
+
+ Detection: a halfway value has the form k * 0.5 * 10**-ndigits for
+ some odd integer k. Or in other words, a rational number x is
+ exactly halfway between two multiples of 10**-ndigits if its
+ 2-valuation is exactly -ndigits-1 and its 5-valuation is at least
+ -ndigits. For ndigits >= 0 the latter condition is automatically
+ satisfied for a binary float x, since any such float has
+ nonnegative 5-valuation. For 0 > ndigits >= -22, x needs to be an
+ integral multiple of 5**-ndigits; we can check this using fmod.
+ For -22 > ndigits, there are no halfway cases: 5**23 takes 54 bits
+ to represent exactly, so any odd multiple of 0.5 * 10**n for n >=
+ 23 takes at least 54 bits of precision to represent exactly.
+
+ Correction: a simple strategy for dealing with halfway cases is to
+ (for the halfway cases only) call _Py_dg_dtoa with an argument of
+ ndigits+1 instead of ndigits (thus doing an exact conversion to
+ decimal), round the resulting string manually, and then convert
+ back using _Py_dg_strtod.
+ */
+
+ /* nans, infinities and zeros should have already been dealt
+ with by the caller (in this case, builtin_round) */
+ assert(Py_IS_FINITE(x) && x != 0.0);
+
+ /* find 2-valuation val of x */
+ m = frexp(x, &val);
+ while (m != floor(m)) {
+ m *= 2.0;
+ val--;
+ }
+
+ /* determine whether this is a halfway case */
+ if (val == -ndigits-1) {
+ if (ndigits >= 0)
+ halfway_case = 1;
+ else if (ndigits >= -FIVE_POW_LIMIT) {
+ double five_pow = 1.0;
+ int i;
+ for (i=0; i < -ndigits; i++)
+ five_pow *= 5.0;
+ halfway_case = fmod(x, five_pow) == 0.0;
+ }
+ else
+ halfway_case = 0;
+ }
+ else
+ halfway_case = 0;
+
+ /* round to a decimal string; use an extra place for halfway case */
+ buf = _Py_dg_dtoa(x, 3, ndigits+halfway_case, &decpt, &sign, &buf_end);
+ if (buf == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+ buflen = buf_end - buf;
+
+ /* in halfway case, do the round-half-away-from-zero manually */
+ if (halfway_case) {
+ int i, carry;
+ /* sanity check: _Py_dg_dtoa should not have stripped
+ any zeros from the result: there should be exactly
+ ndigits+1 places following the decimal point, and
+ the last digit in the buffer should be a '5'.*/
+ assert(buflen - decpt == ndigits+1);
+ assert(buf[buflen-1] == '5');
+
+ /* increment and shift right at the same time. */
+ decpt += 1;
+ carry = 1;
+ for (i=buflen-1; i-- > 0;) {
+ carry += buf[i] - '0';
+ buf[i+1] = carry % 10 + '0';
+ carry /= 10;
+ }
+ buf[0] = carry + '0';
+ }
+
+ /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
+ buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
+ if (buflen + 8 > mybuflen) {
+ mybuflen = buflen+8;
+ mybuf = (char *)PyMem_Malloc(mybuflen);
+ if (mybuf == NULL) {
+ PyErr_NoMemory();
+ goto exit;
+ }
+ }
+ /* copy buf to mybuf, adding exponent, sign and leading 0 */
+ PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
+ buf, decpt - (int)buflen);
+
+ /* and convert the resulting string back to a double */
+ errno = 0;
+ rounded = _Py_dg_strtod(mybuf, NULL);
+ if (errno == ERANGE && fabs(rounded) >= 1.)
+ PyErr_SetString(PyExc_OverflowError,
+ "rounded value too large to represent");
+ else
+ result = PyFloat_FromDouble(rounded);
+
+ /* done computing value; now clean up */
+ if (mybuf != shortbuf)
+ PyMem_Free(mybuf);
+ exit:
+ _Py_dg_freedtoa(buf);
+ return result;
+}
+
+#undef FIVE_POW_LIMIT
+
+#else /* PY_NO_SHORT_FLOAT_REPR */
+
+/* fallback version, to be used when correctly rounded binary<->decimal
+ conversions aren't available */
+
+PyObject *
+_Py_double_round(double x, int ndigits) {
+ double pow1, pow2, y, z;
+ if (ndigits >= 0) {
+ if (ndigits > 22) {
+ /* pow1 and pow2 are each safe from overflow, but
+ pow1*pow2 ~= pow(10.0, ndigits) might overflow */
+ pow1 = pow(10.0, (double)(ndigits-22));
+ pow2 = 1e22;
+ }
+ else {
+ pow1 = pow(10.0, (double)ndigits);
+ pow2 = 1.0;
+ }
+ y = (x*pow1)*pow2;
+ /* if y overflows, then rounded value is exactly x */
+ if (!Py_IS_FINITE(y))
+ return PyFloat_FromDouble(x);
+ }
+ else {
+ pow1 = pow(10.0, (double)-ndigits);
+ pow2 = 1.0; /* unused; silences a gcc compiler warning */
+ y = x / pow1;
+ }
+
+ z = round(y);
+ if (fabs(y-z) == 0.5)
+ /* halfway between two integers; use round-away-from-zero */
+ z = y + copysign(0.5, y);
+
+ if (ndigits >= 0)
+ z = (z / pow2) / pow1;
+ else
+ z *= pow1;
+
+ /* if computation resulted in overflow, raise OverflowError */
+ if (!Py_IS_FINITE(z)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "overflow occurred during round");
+ return NULL;
+ }
+
+ return PyFloat_FromDouble(z);
+}
+
+#endif /* PY_NO_SHORT_FLOAT_REPR */
+
static PyObject *
float_float(PyObject *v)
{
@@ -1263,14 +1407,14 @@ Return a hexadecimal representation of a floating-point number.\n\
>>> 3.14159.hex()\n\
'0x1.921f9f01b866ep+1'");
-/* Case-insensitive string match used for nan and inf detection. t should be
- lower-case and null-terminated. Return a nonzero result if the first
- strlen(t) characters of s match t and 0 otherwise. */
+/* Case-insensitive locale-independent string match used for nan and inf
+ detection. t should be lower-case and null-terminated. Return a nonzero
+ result if the first strlen(t) characters of s match t and 0 otherwise. */
static int
case_insensitive_match(const char *s, const char *t)
{
- while(*t && tolower(*s) == *t) {
+ while(*t && Py_TOLOWER(*s) == *t) {
s++;
t++;
}
@@ -1343,7 +1487,7 @@ float_fromhex(PyObject *cls, PyObject *arg)
********************/
/* leading whitespace and optional sign */
- while (*s && isspace(Py_CHARMASK(*s)))
+ while (Py_ISSPACE(*s))
s++;
if (*s == '-') {
s++;
@@ -1374,7 +1518,7 @@ float_fromhex(PyObject *cls, PyObject *arg)
s_store = s;
if (*s == '0') {
s++;
- if (tolower(*s) == (int)'x')
+ if (*s == 'x' || *s == 'X')
s++;
else
s = s_store;
@@ -1404,7 +1548,7 @@ float_fromhex(PyObject *cls, PyObject *arg)
goto insane_length_error;
/* [p <exponent>] */
- if (tolower(*s) == (int)'p') {
+ if (*s == 'p' || *s == 'P') {
s++;
exp_start = s;
if (*s == '-' || *s == '+')
@@ -1501,7 +1645,7 @@ float_fromhex(PyObject *cls, PyObject *arg)
finished:
/* optional trailing whitespace leading to the end of the string */
- while (*s && isspace(Py_CHARMASK(*s)))
+ while (Py_ISSPACE(*s))
s++;
if (s != s_end)
goto parse_error;
@@ -2116,15 +2260,21 @@ PyFloat_Fini(void)
i++, p++) {
if (PyFloat_CheckExact(p) &&
Py_REFCNT(p) != 0) {
- char buf[100];
- PyFloat_AsString(buf, p);
- /* XXX(twouters) cast refcount to
- long until %zd is universally
- available
- */
- fprintf(stderr,
+ char *buf = PyOS_double_to_string(
+ PyFloat_AS_DOUBLE(p), 'r',
+ 0, 0, NULL);
+ if (buf) {
+ /* XXX(twouters) cast
+ refcount to long
+ until %zd is
+ universally
+ available
+ */
+ fprintf(stderr,
"# <float at %p, refcnt=%ld, val=%s>\n",
p, (long)Py_REFCNT(p), buf);
+ PyMem_Free(buf);
+ }
}
}
list = list->next;
@@ -2341,7 +2491,7 @@ _PyFloat_Pack8(double x, unsigned char *p, int le)
/* Eighth byte */
*p = flo & 0xFF;
- p += incr;
+ /* p += incr; Unneeded (for now) */
/* Done */
return 0;