| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
| |
Repair float constructor to return a true float when passed a subclass
instance. New PyFloat_CheckExact macro.
|
|
|
|
|
|
|
|
|
|
|
| |
Given an immutable type M, and an instance I of a subclass of M, the
constructor call M(I) was just returning I as-is; but it should return a
new instance of M. This fixes it for M in {int, long}. Strings, floats
and tuples remain to be done.
Added new macros PyInt_CheckExact and PyLong_CheckExact, to more easily
distinguish between "is" and "is a" (i.e., only an int passes
PyInt_CheckExact, while any sublass of int passes PyInt_Check).
Added private API function _PyLong_Copy.
|
|
|
|
|
|
|
|
|
|
| |
iterable object. I'm not sure how that got overlooked before!
Got rid of the internal _PySequence_IterContains, introduced a new
internal _PySequence_IterSearch, and rewrote all the iteration-based
"count of", "index of", and "is the object in it or not?" routines to
just call the new function. I suppose it's slower this way, but the
code duplication was getting depressing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
corresponding "getitem" operation (sq_item or mp_subscript) is
implemented. I realize that "sequence-ness" and "mapping-ness" are
poorly defined (and the tests may still be wrong for user-defined
instances, which always have both slots filled), but I believe that a
sequence that doesn't support its getitem operation should not be
considered a sequence. All other operations are optional though.
For example, the ZODB BTree tests crashed because PySequence_Check()
returned true for a dictionary! (In 2.2, the dictionary type has a
tp_as_sequence pointer, but the only field filled is sq_contains, so
you can write "if key in dict".) With this fix, all standalone ZODB
tests succeed.
|
|
|
|
|
|
|
|
| |
- Do not compile unicodeobject, unicodectype, and unicodedata if Unicode is disabled
- check for Py_USING_UNICODE in all places that use Unicode functions
- disables unicode literals, and the builtin functions
- add the types.StringTypes list
- remove Unicode literals from most tests.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces:
- A new operator // that means floor division (the kind of division
where 1/2 is 0).
- The "future division" statement ("from __future__ import division)
which changes the meaning of the / operator to implement "true
division" (where 1/2 is 0.5).
- New overloadable operators __truediv__ and __floordiv__.
- New slots in the PyNumberMethods struct for true and floor division,
new abstract APIs for them, new opcodes, and so on.
I emphasize that without the future division statement, the semantics
of / will remain unchanged until Python 3.0.
Not yet implemented are warnings (default off) when / is used with int
or long arguments.
This has been on display since 7/31 as SF patch #443474.
Flames to /dev/null.
|
| |
|
|
|
|
| |
_PyTuple_Resize().
|
|
|
|
|
|
|
|
|
| |
safely together and don't duplicate logic (the common logic was factored
out into new private API function _PySequence_IterContains()).
Visible change:
some_complex_number in some_instance
no longer blows up if some_instance has __getitem__ but neither
__contains__ nor __iter__. test_iter changed to ensure that remains true.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NEEDS DOC CHANGES
A few more AttributeErrors turned into TypeErrors, but in test_contains
this time.
The full story for instance objects is pretty much unexplainable, because
instance_contains() tries its own flavor of iteration-based containment
testing first, and PySequence_Contains doesn't get a chance at it unless
instance_contains() blows up. A consequence is that
some_complex_number in some_instance
dies with a TypeError unless some_instance.__class__ defines __iter__ but
does not define __getitem__.
|
|
|
|
| |
several of these turned up and got fixed during the iteration crusade.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NEEDS DOC CHANGES.
This one surprised me! While I expected tuple() to be a no-brainer, turns
out it's actually dripping with consequences:
1. It will *allow* the popular PySequence_Fast() to work with any iterable
object (code for that not yet checked in, but should be trivial).
2. It caused two std tests to fail. This because some places used
PyTuple_Sequence() (the C spelling of tuple()) as an indirect way to test
whether something *is* a sequence. But tuple() code only looked for the
existence of sq->item to determine that, and e.g. an instance passed
that test whether or not it supported the other operations tuple()
needed (e.g., __len__). So some things the tests *expected* to fail
with an AttributeError now fail with a TypeError instead. This looks
like an improvement to me; e.g., test_coercion used to produce 559
TypeErrors and 2 AttributeErrors, and now they're all TypeErrors. The
error details are more informative too, because the places calling this
were *looking* for TypeErrors in order to replace the generic tuple()
"not a sequence" msg with their own more specific text, and
AttributeErrors snuck by that.
|
|
|
|
| |
internals) so clients can be a lot dumber (wrt their knowledge).
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to no longer insist that len(seq) be defined.
NEEDS DOC CHANGES.
This is meant to be a model for how other functions of this ilk (max,
filter, etc) can be generalized similarly. Feel encouraged to grab your
favorite and convert it!
Note some cute consequences:
list(file) == file.readlines() == list(file.xreadlines())
list(dict) == dict.keys()
list(dict.iteritems()) = dict.items()
list(xrange(i, j, k)) == range(i, j, k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
sees it (test_iter.py is unchanged).
- Added a tp_iternext slot, which calls the iterator's next() method;
this is much faster for built-in iterators over built-in types
such as lists and dicts, speeding up pybench's ForLoop with about
25% compared to Python 2.1. (Now there's a good argument for
iterators. ;-)
- Renamed the built-in sequence iterator SeqIter, affecting the C API
functions for it. (This frees up the PyIter prefix for generic
iterator operations.)
- Added PyIter_Check(obj), which checks that obj's type has a
tp_iternext slot and that the proper feature flag is set.
- Added PyIter_Next(obj) which calls the tp_iternext slot. It has a
somewhat complex return condition due to the need for speed: when it
returns NULL, it may not have set an exception condition, meaning
the iterator is exhausted; when the exception StopIteration is set
(or a derived exception class), it means the same thing; any other
exception means some other error occurred.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
new slot tp_iter in type object, plus new flag Py_TPFLAGS_HAVE_ITER
new C API PyObject_GetIter(), calls tp_iter
new builtin iter(), with two forms: iter(obj), and iter(function, sentinel)
new internal object types iterobject and calliterobject
new exception StopIteration
new opcodes for "for" loops, GET_ITER and FOR_ITER (also supported by dis.py)
new magic number for .pyc files
new special method for instances: __iter__() returns an iterator
iteration over dictionaries: "for x in dict" iterates over the keys
iteration over files: "for x in file" iterates over lines
TODO:
documentation
test suite
decide whether to use a different way to spell iter(function, sentinal)
decide whether "for key in dict" is a good idea
use iterators in map/filter/reduce, min/max, and elsewhere (in/not in?)
speed tuning (make next() a slot tp_next???)
|
|
|
|
|
| |
APIs, PyObject_IsInstance() and PyObject_IsSubclass() -- both
returning an int, or -1 for errors.
|
|
|
|
|
|
| |
- Renamed Py_TPFLAGS_NEWSTYLENUMBER to Py_TPFLAGS_CHECKTYPES.
- Use PyObject_RichCompareBool() in PySequence_Contains().
|
| |
|
|
|
|
|
|
| |
result-object-pointer that is passed in, when an exception occurs during
coercion. The pointer has to be explicitly initialized in the caller to avoid
putting trash on the Python stack.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
operator associativity.
|
|
|
|
|
| |
expression next to a || expression; this is a readability-inspired
warning from GCC.
|
|
|
|
|
| |
the list object supports this currently, but other candidates are
gladly accepted (like arraymodule and such.)
|
|
|
|
| |
initialized in the 'if (..)', do so manually.
|
|
|
|
|
| |
in the PyNumber_* functions. Also, remove unnecessary tests from
PyNumber_Multiply: after BINOP(), neither argument can be an instance.
|
|
|
|
|
|
|
|
| |
is no __getslice__ available. Also does the same for C extension types.
Includes rudimentary documentation (it could use a cross reference to the
section on slice objects, I couldn't figure out how to do that) and a test
suite for all Python __hooks__ I could think of, including the new
behaviour.
|
|
|
|
|
|
| |
This doesn't change the copyright status for these files -- just the
markings! Doing it on the main branch for these three files for which
the HEAD revision was pushed back into 1.6.
|
|
|
|
| |
they include prototypes.
|
|
|
|
|
|
| |
New code will see the macros and therefore use the PyXXX_Size()
APIs instead.
By Thomas Wouters.
|
|
|
|
| |
add macros for backwards compatibility with C source
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
this patch introduces PySequence_Fast and PySequence_Fast_GET_ITEM,
and modifies the list.extend method to accept any kind of sequence.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
his copy of test_contains.py seems to be broken -- the lines he
deleted were already absent). Checkin messages:
New Unicode support for int(), float(), complex() and long().
- new APIs PyInt_FromUnicode() and PyLong_FromUnicode()
- added support for Unicode to PyFloat_FromString()
- new encoding API PyUnicode_EncodeDecimal() which converts
Unicode to a decimal char* string (used in the above new
APIs)
- shortcuts for calls like int(<int object>) and float(<float obj>)
- tests for all of the above
Unicode compares and contains checks:
- comparing Unicode and non-string types now works; TypeErrors
are masked, all other errors such as ValueError during
Unicode coercion are passed through (note that PyUnicode_Compare
does not implement the masking -- PyObject_Compare does this)
- contains now works for non-string types too; TypeErrors are
masked and 0 returned; all other errors are passed through
Better testing support for the standard codecs.
Misc minor enhancements, such as an alias dbcs for the mbcs codec.
Changes:
- PyLong_FromString() now applies the same error checks as
does PyInt_FromString(): trailing garbage is reported
as error and not longer silently ignored. The only characters
which may be trailing the digits are 'L' and 'l' -- these
are still silently ignored.
- string.ato?() now directly interface to int(), long() and
float(). The error strings are now a little different, but
the type still remains the same. These functions are now
ready to get declared obsolete ;-)
- PyNumber_Int() now also does a check for embedded NULL chars
in the input string; PyNumber_Long() already did this (and
still does)
Followed by:
Looks like I've gone a step too far there... (and test_contains.py
seem to have a bug too).
I've changed back to reporting all errors in PyUnicode_Contains()
and added a few more test cases to test_contains.py (plus corrected
the join() NameError).
|
| |
|
|
|
|
|
| |
PySequence_Contains() now that string objects have this code in their
tp_contains.
|
|
|
|
|
| |
patches PySequence_Contains() to check for a valid sq_contains field.
More to follow.
|
|
|
|
|
|
| |
and _DelItem().
In sequence multiplication by a long, only call PyErr_Occurred() when the
value returned is -1.
|
| |
|
|
|
|
| |
messages for specific changes.
|
|
|
|
|
| |
float to the negative power (which is already and better done in
floatobject.c.)
|