// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import "unicode/utf8" // range func typecheckrange(n *Node) { var toomany int var why string var t1 *Type var t2 *Type var v1 *Node var v2 *Node var ls []*Node // Typechecking order is important here: // 0. first typecheck range expression (slice/map/chan), // it is evaluated only once and so logically it is not part of the loop. // 1. typcheck produced values, // this part can declare new vars and so it must be typechecked before body, // because body can contain a closure that captures the vars. // 2. decldepth++ to denote loop body. // 3. typecheck body. // 4. decldepth--. n.Right = typecheck(n.Right, Erv) t := n.Right.Type if t == nil { goto out } // delicate little dance. see typecheckas2 ls = n.List.Slice() for i1, n1 := range ls { if n1.Name == nil || n1.Name.Defn != n { ls[i1] = typecheck(ls[i1], Erv|Easgn) } } if t.IsPtr() && t.Elem().IsArray() { t = t.Elem() } n.Type = t toomany = 0 switch t.Etype { default: yyerror("cannot range over %L", n.Right) goto out case TARRAY, TSLICE: t1 = Types[TINT] t2 = t.Elem() case TMAP: t1 = t.Key() t2 = t.Val() case TCHAN: if !t.ChanDir().CanRecv() { yyerror("invalid operation: range %v (receive from send-only type %v)", n.Right, n.Right.Type) goto out } t1 = t.Elem() t2 = nil if n.List.Len() == 2 { toomany = 1 } case TSTRING: t1 = Types[TINT] t2 = runetype } if n.List.Len() > 2 || toomany != 0 { yyerror("too many variables in range") } v1 = nil if n.List.Len() != 0 { v1 = n.List.First() } v2 = nil if n.List.Len() > 1 { v2 = n.List.Second() } // this is not only a optimization but also a requirement in the spec. // "if the second iteration variable is the blank identifier, the range // clause is equivalent to the same clause with only the first variable // present." if isblank(v2) { if v1 != nil { n.List.Set1(v1) } v2 = nil } if v1 != nil { if v1.Name != nil && v1.Name.Defn == n { v1.Type = t1 } else if v1.Type != nil && assignop(t1, v1.Type, &why) == 0 { yyerror("cannot assign type %v to %L in range%s", t1, v1, why) } checkassign(n, v1) } if v2 != nil { if v2.Name != nil && v2.Name.Defn == n { v2.Type = t2 } else if v2.Type != nil && assignop(t2, v2.Type, &why) == 0 { yyerror("cannot assign type %v to %L in range%s", t2, v2, why) } checkassign(n, v2) } // second half of dance out: n.Typecheck = 1 ls = n.List.Slice() for i1, n1 := range ls { if n1.Typecheck == 0 { ls[i1] = typecheck(ls[i1], Erv|Easgn) } } decldepth++ typecheckslice(n.Nbody.Slice(), Etop) decldepth-- } func walkrange(n *Node) { // variable name conventions: // ohv1, hv1, hv2: hidden (old) val 1, 2 // ha, hit: hidden aggregate, iterator // hn, hp: hidden len, pointer // hb: hidden bool // a, v1, v2: not hidden aggregate, val 1, 2 t := n.Type a := n.Right lno := setlineno(a) n.Right = nil var v1 *Node if n.List.Len() != 0 { v1 = n.List.First() } var v2 *Node if n.List.Len() > 1 && !isblank(n.List.Second()) { v2 = n.List.Second() } // n.List has no meaning anymore, clear it // to avoid erroneous processing by racewalk. n.List.Set(nil) var body []*Node var init []*Node switch t.Etype { default: Fatalf("walkrange") case TARRAY, TSLICE: if memclrrange(n, v1, v2, a) { lineno = lno return } // orderstmt arranged for a copy of the array/slice variable if needed. ha := a hv1 := temp(Types[TINT]) hn := temp(Types[TINT]) var hp *Node init = append(init, nod(OAS, hv1, nil)) init = append(init, nod(OAS, hn, nod(OLEN, ha, nil))) if v2 != nil { hp = temp(ptrto(n.Type.Elem())) tmp := nod(OINDEX, ha, nodintconst(0)) tmp.Bounded = true init = append(init, nod(OAS, hp, nod(OADDR, tmp, nil))) } n.Left = nod(OLT, hv1, hn) n.Right = nod(OAS, hv1, nod(OADD, hv1, nodintconst(1))) if v1 == nil { body = nil } else if v2 == nil { body = []*Node{nod(OAS, v1, hv1)} } else { a := nod(OAS2, nil, nil) a.List.Set([]*Node{v1, v2}) a.Rlist.Set([]*Node{hv1, nod(OIND, hp, nil)}) body = []*Node{a} // Advance pointer as part of increment. // We used to advance the pointer before executing the loop body, // but doing so would make the pointer point past the end of the // array during the final iteration, possibly causing another unrelated // piece of memory not to be garbage collected until the loop finished. // Advancing during the increment ensures that the pointer p only points // pass the end of the array during the final "p++; i++; if(i >= len(x)) break;", // after which p is dead, so it cannot confuse the collector. tmp := nod(OADD, hp, nodintconst(t.Elem().Width)) tmp.Type = hp.Type tmp.Typecheck = 1 tmp.Right.Type = Types[Tptr] tmp.Right.Typecheck = 1 a = nod(OAS, hp, tmp) a = typecheck(a, Etop) n.Right.Ninit.Set1(a) } case TMAP: // orderstmt allocated the iterator for us. // we only use a once, so no copy needed. ha := a th := hiter(t) hit := prealloc[n] hit.Type = th n.Left = nil keysym := th.Field(0).Sym // depends on layout of iterator struct. See reflect.go:hiter valsym := th.Field(1).Sym // ditto fn := syslook("mapiterinit") fn = substArgTypes(fn, t.Key(), t.Val(), th) init = append(init, mkcall1(fn, nil, nil, typename(t), ha, nod(OADDR, hit, nil))) n.Left = nod(ONE, nodSym(ODOT, hit, keysym), nodnil()) fn = syslook("mapiternext") fn = substArgTypes(fn, th) n.Right = mkcall1(fn, nil, nil, nod(OADDR, hit, nil)) key := nodSym(ODOT, hit, keysym) key = nod(OIND, key, nil) if v1 == nil { body = nil } else if v2 == nil { body = []*Node{nod(OAS, v1, key)} } else { val := nodSym(ODOT, hit, valsym) val = nod(OIND, val, nil) a := nod(OAS2, nil, nil) a.List.Set([]*Node{v1, v2}) a.Rlist.Set([]*Node{key, val}) body = []*Node{a} } case TCHAN: // orderstmt arranged for a copy of the channel variable. ha := a n.Left = nil hv1 := temp(t.Elem()) hv1.Typecheck = 1 if haspointers(t.Elem()) { init = append(init, nod(OAS, hv1, nil)) } hb := temp(Types[TBOOL]) n.Left = nod(ONE, hb, nodbool(false)) a := nod(OAS2RECV, nil, nil) a.Typecheck = 1 a.List.Set([]*Node{hv1, hb}) a.Rlist.Set1(nod(ORECV, ha, nil)) n.Left.Ninit.Set1(a) if v1 == nil { body = nil } else { body = []*Node{nod(OAS, v1, hv1)} } // Zero hv1. This prevents hv1 from being the sole, inaccessible // reference to an otherwise GC-able value during the next channel receive. // See issue 15281. body = append(body, nod(OAS, hv1, nil)) case TSTRING: // Transform string range statements like "for v1, v2 = range a" into // // ha := a // for hv1 := 0; hv1 < len(ha); { // v1 = hv1 // hv2 := rune(ha[hv1]) // if hv2 < utf8.RuneSelf { // hv1++ // } else { // hv2, hv1 = decoderune(ha, hv1) // } // v2 = hv2 // // original body // } // orderstmt arranged for a copy of the string variable. ha := a hv1 := temp(Types[TINT]) hv2 := temp(runetype) // hv1 := 0 init = append(init, nod(OAS, hv1, nil)) // hv1 < len(ha) n.Left = nod(OLT, hv1, nod(OLEN, ha, nil)) if v1 != nil { // v1 = hv1 body = append(body, nod(OAS, v1, hv1)) } // hv2 := ha[hv1] nind := nod(OINDEX, ha, hv1) nind.Bounded = true body = append(body, nod(OAS, hv2, conv(nind, runetype))) // if hv2 < utf8.RuneSelf nif := nod(OIF, nil, nil) nif.Left = nod(OLT, nind, nodintconst(utf8.RuneSelf)) // hv1++ nif.Nbody.Set1(nod(OAS, hv1, nod(OADD, hv1, nodintconst(1)))) // } else { eif := nod(OAS2, nil, nil) nif.Rlist.Set1(eif) // hv2, hv1 = decoderune(ha, hv1) eif.List.Set2(hv2, hv1) fn := syslook("decoderune") eif.Rlist.Set1(mkcall1(fn, fn.Type.Results(), nil, ha, hv1)) body = append(body, nif) if v2 != nil { // v2 = hv2 body = append(body, nod(OAS, v2, hv2)) } } n.Op = OFOR typecheckslice(init, Etop) n.Ninit.Append(init...) typecheckslice(n.Left.Ninit.Slice(), Etop) n.Left = typecheck(n.Left, Erv) n.Right = typecheck(n.Right, Etop) typecheckslice(body, Etop) n.Nbody.Prepend(body...) n = walkstmt(n) lineno = lno } // Lower n into runtime·memclr if possible, for // fast zeroing of slices and arrays (issue 5373). // Look for instances of // // for i := range a { // a[i] = zero // } // // in which the evaluation of a is side-effect-free. // // Parameters are as in walkrange: "for v1, v2 = range a". func memclrrange(n, v1, v2, a *Node) bool { if Debug['N'] != 0 || instrumenting { return false } if v1 == nil || v2 != nil { return false } if n.Nbody.Len() == 0 || n.Nbody.First() == nil || n.Nbody.Len() > 1 { return false } stmt := n.Nbody.First() // only stmt in body if stmt.Op != OAS || stmt.Left.Op != OINDEX { return false } if !samesafeexpr(stmt.Left.Left, a) || !samesafeexpr(stmt.Left.Right, v1) { return false } elemsize := n.Type.Elem().Width if elemsize <= 0 || !iszero(stmt.Right) { return false } // Convert to // if len(a) != 0 { // hp = &a[0] // hn = len(a)*sizeof(elem(a)) // memclr{NoHeap,Has}Pointers(hp, hn) // i = len(a) - 1 // } n.Op = OIF n.Nbody.Set(nil) n.Left = nod(ONE, nod(OLEN, a, nil), nodintconst(0)) // hp = &a[0] hp := temp(ptrto(Types[TUINT8])) tmp := nod(OINDEX, a, nodintconst(0)) tmp.Bounded = true tmp = nod(OADDR, tmp, nil) tmp = nod(OCONVNOP, tmp, nil) tmp.Type = ptrto(Types[TUINT8]) n.Nbody.Append(nod(OAS, hp, tmp)) // hn = len(a) * sizeof(elem(a)) hn := temp(Types[TUINTPTR]) tmp = nod(OLEN, a, nil) tmp = nod(OMUL, tmp, nodintconst(elemsize)) tmp = conv(tmp, Types[TUINTPTR]) n.Nbody.Append(nod(OAS, hn, tmp)) var fn *Node if haspointers(a.Type.Elem()) { // memclrHasPointers(hp, hn) fn = mkcall("memclrHasPointers", nil, nil, hp, hn) } else { // memclrNoHeapPointers(hp, hn) fn = mkcall("memclrNoHeapPointers", nil, nil, hp, hn) } n.Nbody.Append(fn) // i = len(a) - 1 v1 = nod(OAS, v1, nod(OSUB, nod(OLEN, a, nil), nodintconst(1))) n.Nbody.Append(v1) n.Left = typecheck(n.Left, Erv) typecheckslice(n.Nbody.Slice(), Etop) n = walkstmt(n) return true }