summaryrefslogtreecommitdiff
path: root/compiler/GHC/Unit/Module/ModSummary.hs
Commit message (Collapse)AuthorAgeFilesLines
* Fix typosEric Lindblad2022-09-141-1/+1
| | | | | | | This fixes various typos and spelling mistakes in the compiler. Fixes #21891
* Suggestions due to hlintMatthew Pickering2022-02-241-1/+0
| | | | | It turns out this job hasn't been running for quite a while (perhaps ever) so there are quite a few failures when running the linter locally.
* Multiple Home UnitsMatthew Pickering2021-12-281-23/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Multiple home units allows you to load different packages which may depend on each other into one GHC session. This will allow both GHCi and HLS to support multi component projects more naturally. Public Interface ~~~~~~~~~~~~~~~~ In order to specify multiple units, the -unit @⟨filename⟩ flag is given multiple times with a response file containing the arguments for each unit. The response file contains a newline separated list of arguments. ``` ghc -unit @unitLibCore -unit @unitLib ``` where the `unitLibCore` response file contains the normal arguments that cabal would pass to `--make` mode. ``` -this-unit-id lib-core-0.1.0.0 -i -isrc LibCore.Utils LibCore.Types ``` The response file for lib, can specify a dependency on lib-core, so then modules in lib can use modules from lib-core. ``` -this-unit-id lib-0.1.0.0 -package-id lib-core-0.1.0.0 -i -isrc Lib.Parse Lib.Render ``` Then when the compiler starts in --make mode it will compile both units lib and lib-core. There is also very basic support for multiple home units in GHCi, at the moment you can start a GHCi session with multiple units but only the :reload is supported. Most commands in GHCi assume a single home unit, and so it is additional work to work out how to modify the interface to support multiple loaded home units. Options used when working with Multiple Home Units There are a few extra flags which have been introduced specifically for working with multiple home units. The flags allow a home unit to pretend it’s more like an installed package, for example, specifying the package name, module visibility and reexported modules. -working-dir ⟨dir⟩ It is common to assume that a package is compiled in the directory where its cabal file resides. Thus, all paths used in the compiler are assumed to be relative to this directory. When there are multiple home units the compiler is often not operating in the standard directory and instead where the cabal.project file is located. In this case the -working-dir option can be passed which specifies the path from the current directory to the directory the unit assumes to be it’s root, normally the directory which contains the cabal file. When the flag is passed, any relative paths used by the compiler are offset by the working directory. Notably this includes -i and -I⟨dir⟩ flags. -this-package-name ⟨name⟩ This flag papers over the awkward interaction of the PackageImports and multiple home units. When using PackageImports you can specify the name of the package in an import to disambiguate between modules which appear in multiple packages with the same name. This flag allows a home unit to be given a package name so that you can also disambiguate between multiple home units which provide modules with the same name. -hidden-module ⟨module name⟩ This flag can be supplied multiple times in order to specify which modules in a home unit should not be visible outside of the unit it belongs to. The main use of this flag is to be able to recreate the difference between an exposed and hidden module for installed packages. -reexported-module ⟨module name⟩ This flag can be supplied multiple times in order to specify which modules are not defined in a unit but should be reexported. The effect is that other units will see this module as if it was defined in this unit. The use of this flag is to be able to replicate the reexported modules feature of packages with multiple home units. Offsetting Paths in Template Haskell splices ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When using Template Haskell to embed files into your program, traditionally the paths have been interpreted relative to the directory where the .cabal file resides. This causes problems for multiple home units as we are compiling many different libraries at once which have .cabal files in different directories. For this purpose we have introduced a way to query the value of the -working-dir flag to the Template Haskell API. By using this function we can implement a makeRelativeToProject function which offsets a path which is relative to the original project root by the value of -working-dir. ``` import Language.Haskell.TH.Syntax ( makeRelativeToProject ) foo = $(makeRelativeToProject "./relative/path" >>= embedFile) ``` > If you write a relative path in a Template Haskell splice you should use the makeRelativeToProject function so that your library works correctly with multiple home units. A similar function already exists in the file-embed library. The function in template-haskell implements this function in a more robust manner by honouring the -working-dir flag rather than searching the file system. Closure Property for Home Units ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For tools or libraries using the API there is one very important closure property which must be adhered to: > Any dependency which is not a home unit must not (transitively) depend on a home unit. For example, if you have three packages p, q and r, then if p depends on q which depends on r then it is illegal to load both p and r as home units but not q, because q is a dependency of the home unit p which depends on another home unit r. If you are using GHC by the command line then this property is checked, but if you are using the API then you need to check this property yourself. If you get it wrong you will probably get some very confusing errors about overlapping instances. Limitations of Multiple Home Units ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There are a few limitations of the initial implementation which will be smoothed out on user demand. * Package thinning/renaming syntax is not supported * More complicated reexports/renaming are not yet supported. * It’s more common to run into existing linker bugs when loading a large number of packages in a session (for example #20674, #20689) * Backpack is not yet supported when using multiple home units. * Dependency chasing can be quite slow with a large number of modules and packages. * Loading wired-in packages as home units is currently not supported (this only really affects GHC developers attempting to load template-haskell). * Barely any normal GHCi features are supported, it would be good to support enough for ghcid to work correctly. Despite these limitations, the implementation works already for nearly all packages. It has been testing on large dependency closures, including the whole of head.hackage which is a total of 4784 modules from 452 packages. Internal Changes ~~~~~~~~~~~~~~~~ * The biggest change is that the HomePackageTable is replaced with the HomeUnitGraph. The HomeUnitGraph is a map from UnitId to HomeUnitEnv, which contains information specific to each home unit. * The HomeUnitEnv contains: - A unit state, each home unit can have different package db flags - A set of dynflags, each home unit can have different flags - A HomePackageTable * LinkNode: A new node type is added to the ModuleGraph, this is used to place the linking step into the build plan so linking can proceed in parralel with other packages being built. * New invariant: Dependencies of a ModuleGraphNode can be completely determined by looking at the value of the node. In order to achieve this, downsweep now performs a more complete job of downsweeping and then the dependenices are recorded forever in the node rather than being computed again from the ModSummary. * Some transitive module calculations are rewritten to use the ModuleGraph which is more efficient. * There is always an active home unit, which simplifies modifying a lot of the existing API code which is unit agnostic (for example, in the driver). The road may be bumpy for a little while after this change but the basics are well-tested. One small metric increase, which we accept and also submodule update to haddock which removes ExtendedModSummary. Closes #10827 ------------------------- Metric Increase: MultiLayerModules ------------------------- Co-authored-by: Fendor <power.walross@gmail.com>
* Refactor package importsSylvain Henry2021-10-221-13/+16
| | | | | | | | | Use an (Raw)PkgQual datatype instead of `Maybe FastString` to represent package imports. Factorize the code that renames RawPkgQual into PkgQual in function `rnPkgQual`. Renaming consists in checking if the FastString is the magic "this" keyword, the home-unit unit-id or something else. Bump haddock submodule
* Remove DT_Failed stateMatthew Pickering2021-10-191-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | At the moment if `-dynamic-too` fails then we rerun the whole pipeline as if we were just in `-dynamic` mode. I argue this is a misfeature and we should remove the so-called `DT_Failed` mode. In what situations do we fall back to `DT_Failed`? 1. If the `dyn_hi` file corresponding to a `hi` file is missing completely. 2. If the interface hash of `dyn_hi` doesn't match the interface hash of `hi`. What happens in `DT_Failed` mode? * The whole compiler pipeline is rerun as if the user had just passed `-dynamic`. * Therefore `dyn_hi/dyn_o` files are used which don't agree with the `hi/o` files. (As evidenced by `dynamicToo001` test). * This is very confusing as now a single compiler invocation has produced further `hi`/`dyn_hi` files which are different to each other. Why should we remove it? * In `--make` mode, which is predominately used `DT_Failed` does not work (#19782), there can't be users relying on this functionality. * In `-c` mode, the recovery doesn't fix the root issue, which is the `dyn_hi` and `hi` files are mismatched. We should instead produce an error and pass responsibility to the build system using `-c` to ensure that the prerequisites for `-dynamic-too` (dyn_hi/hi) files are there before we start compiling. * It is a misfeature to support use cases like `dynamicToo001` which allow you to mix different versions of dynamic/non-dynamic interface files. It's more likely to lead to subtle bugs in your resulting programs where out-dated build products are used rather than a deliberate choice. * In practice, people are usually compiling with `-dynamic-too` rather than separately with `-dynamic` and `-static`, so the build products always match and `DT_Failed` is only entered due to compiler bugs (see !6583) What should we do instead? * In `--make` mode, for home packages check during recompilation checking that `dyn_hi` and `hi` are both present and agree, recompile the modules if they do not. * For package modules, when loading the interface check that `dyn_hi` and `hi` are there and that they agree but fail with an error message if they are not. * In `--oneshot` mode, fail with an error message if the right files aren't already there. Closes #19782 #20446 #9176 #13616
* driver: Cleanups related to ModLocationMatthew Pickering2021-10-191-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ModLocation is the data type which tells you the locations of all the build products which can affect recompilation. It is now computed in one place and not modified through the pipeline. Important locations will now just consult ModLocation rather than construct the dynamic object path incorrectly. * Add paths for dynamic object and dynamic interface files to ModLocation. * Always use the paths from mod location when looking for where to find any interface or object file. * Always use the paths in a ModLocation when deciding where to write an interface and object file. * Remove `dynamicOutputFile` and `dynamicOutputHi` functions which *calculated* (incorrectly) the location of `dyn_o` and `dyn_hi` files. * Don't set `outputFile_` and so-on in `enableCodeGenWhen`, `-o` and hence `outputFile_` should not affect the location of object files in `--make` mode. It is now sufficient to just update the ModLocation with the temporary paths. * In `hscGenBackendPipeline` don't recompute the `ModLocation` to account for `-dynamic-too`, the paths are now accurate from the start of the run. * Rename `getLocation` to `mkOneShotModLocation`, as that's the only place it's used. Increase the locality of the definition by moving it close to the use-site. * Load the dynamic interface from ml_dyn_hi_file rather than attempting to reconstruct it in load_dynamic_too. * Add a variety of tests to check how -o -dyno etc interact with each other. Some other clean-ups * DeIOify mkHomeModLocation and friends, they are all pure functions. * Move FinderOpts into GHC.Driver.Config.Finder, next to initFinderOpts. * Be more precise about whether we mean outputFile or outputFile_: there were many places where outputFile was used but the result shouldn't have been affected by `-dyno` (for example the filename of the resulting executable). In these places dynamicNow would never be set but it's still more precise to not allow for this possibility. * Typo fixes suffices -> suffixes in the appropiate places.
* Make ms_ghc_prim_import field strictMatthew Pickering2021-10-121-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | If you don't promptly force this field then it ends up retaining a lot of data structures related to parsing. For example, the following retaining chain can be observed when using GHCi. ``` PState 0x4289365ca0 0x4289385d68 0x4289385db0 0x7f81b37a7838 0x7f81b3832fd8 0x4289365cc8 0x4289365cd8 0x4289365cf0 0x4289365cd8 0x4289365d08 0x4289385e48 0x7f81b4e4c290 0x7f818f63f440 0x7f818f63f440 0x7f81925ccd18 0x7f81b4e41230 0x7f818f63f440 0x7f81925ccd18 0x7f818f63f4a8 0x7f81b3832fd8 0x7f81b3832fd8 0x4289365d20 0x7f81b38233b8 0 19 <PState:GHC.Parser.Lexer:_build-ipe/stage1/compiler/build/GHC/Parser/Lexer.hs:3779:46> _thunk( ) 0x4289384230 0x4289384160 <([LEpaComment], [LEpaComment]):GHC.Parser.Lexer:> _thunk( ) 0x4289383250 <EpAnnComments:GHC.Parser.Lexer:compiler/GHC/Parser/Lexer.x:2306:19-40> _thunk( ) 0x4289399850 0x7f818f63f440 0x4289399868 <SrcSpanAnnA:GHC.Parser:_build-ipe/stage1/compiler/build/GHC/Parser.hs:12527:13-30> L 0x4289397600 0x42893975a8 <GenLocated:GHC.Parser:_build-ipe/stage1/compiler/build/GHC/Parser.hs:12527:32> 0x4289c4e8c8 : 0x4289c4e8b0 <[]:GHC.Parser.Header:compiler/GHC/Parser/Header.hs:104:36-54> (0x4289c4da70,0x7f818f63f440) <(,):GHC.Parser.Header:compiler/GHC/Parser/Header.hs:104:36-54> _thunk( ) 0x4289c4d030 <Bool:GHC.Parser.Header:compiler/GHC/Parser/Header.hs:(112,22)-(115,27)> ExtendedModSummary 0x422e9c8998 0x7f81b617be78 0x422e9c89b0 0x4289c4c0c0 0x7f81925ccd18 0x7f81925ccd18 0x7f81925ccd18 0x7f81925ccd18 0x7f818f63f440 0x4289c4c0d8 0x4289c4c0f0 0x7f81925ccd18 0x422e9c8a20 0x4289c4c108 0x4289c4c730 0x7f818f63f440 <ExtendedModSummary:GHC.Driver.Make:compiler/GHC/Driver/Make.hs:2041:30-38> ModuleNode 0x4289c4b850 <ModuleGraphNode:GHC.Unit.Module.Graph:compiler/GHC/Unit/Module/Graph.hs:139:14-36> 0x4289c4b590 : 0x4289c4b578 <[]:GHC.Unit.Module.Graph:compiler/GHC/Unit/Module/Graph.hs:139:31-36> ModuleGraph 0x4289c4b2f8 0x4289c4b310 0x4289c4b340 0x7f818f63f4a0 <ModuleGraph:GHC.Driver.Make:compiler/GHC/Driver/Make.hs:(242,19)-(244,40)> HscEnv 0x4289d9a4a8 0x4289d9aad0 0x4289d9aae8 0x4217062a88 0x4217060b38 0x4217060b58 0x4217060b68 0x7f81b38a7ce0 0x4217060b78 0x7f818f63f440 0x7f818f63f440 0x4217062af8 0x4289d9ab10 0x7f81b3907b60 0x4217060c00 114 <HscEnv:GHC.Runtime.Eval:compiler/GHC/Runtime/Eval.hs:790:31-44> ```
* Refactor module dependencies codeSylvain Henry2021-09-171-5/+7
| | | | | | * moved deps related code into GHC.Unit.Module.Deps * refactored Deps module to not export Dependencies constructor to help maintaining invariants
* Driver rework pt3: the upsweepMatthew Pickering2021-08-181-4/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch specifies and simplifies the module cycle compilation in upsweep. How things work are described in the Note [Upsweep] Note [Upsweep] ~~~~~~~~~~~~~~ Upsweep takes a 'ModuleGraph' as input, computes a build plan and then executes the plan in order to compile the project. The first step is computing the build plan from a 'ModuleGraph'. The output of this step is a `[BuildPlan]`, which is a topologically sorted plan for how to build all the modules. ``` data BuildPlan = SingleModule ModuleGraphNode -- A simple, single module all alone but *might* have an hs-boot file which isn't part of a cycle | ResolvedCycle [ModuleGraphNode] -- A resolved cycle, linearised by hs-boot files | UnresolvedCycle [ModuleGraphNode] -- An actual cycle, which wasn't resolved by hs-boot files ``` The plan is computed in two steps: Step 1: Topologically sort the module graph without hs-boot files. This returns a [SCC ModuleGraphNode] which contains cycles. Step 2: For each cycle, topologically sort the modules in the cycle *with* the relevant hs-boot files. This should result in an acyclic build plan if the hs-boot files are sufficient to resolve the cycle. The `[BuildPlan]` is then interpreted by the `interpretBuildPlan` function. * `SingleModule nodes` are compiled normally by either the upsweep_inst or upsweep_mod functions. * `ResolvedCycles` need to compiled "together" so that the information which ends up in the interface files at the end is accurate (and doesn't contain temporary information from the hs-boot files.) - During the initial compilation, a `KnotVars` is created which stores an IORef TypeEnv for each module of the loop. These IORefs are gradually updated as the loop completes and provide the required laziness to typecheck the module loop. - At the end of typechecking, all the interface files are typechecked again in the retypecheck loop. This time, the knot-tying is done by the normal laziness based tying, so the environment is run without the KnotVars. * UnresolvedCycles are indicative of a proper cycle, unresolved by hs-boot files and are reported as an error to the user. The main trickiness of `interpretBuildPlan` is deciding which version of a dependency is visible from each module. For modules which are not in a cycle, there is just one version of a module, so that is always used. For modules in a cycle, there are two versions of 'HomeModInfo'. 1. Internal to loop: The version created whilst compiling the loop by upsweep_mod. 2. External to loop: The knot-tied version created by typecheckLoop. Whilst compiling a module inside the loop, we need to use the (1). For a module which is outside of the loop which depends on something from in the loop, the (2) version is used. As the plan is interpreted, which version of a HomeModInfo is visible is updated by updating a map held in a state monad. So after a loop has finished being compiled, the visible module is the one created by typecheckLoop and the internal version is not used again. This plan also ensures the most important invariant to do with module loops: > If you depend on anything within a module loop, before you can use the dependency, the whole loop has to finish compiling. The end result of `interpretBuildPlan` is a `[MakeAction]`, which are pairs of `IO a` actions and a `MVar (Maybe a)`, somewhere to put the result of running the action. This list is topologically sorted, so can be run in order to compute the whole graph. As well as this `interpretBuildPlan` also outputs an `IO [Maybe (Maybe HomeModInfo)]` which can be queried at the end to get the result of all modules at the end, with their proper visibility. For example, if any module in a loop fails then all modules in that loop will report as failed because the visible node at the end will be the result of retypechecking those modules together. Along the way we also fix a number of other bugs in the driver: * Unify upsweep and parUpsweep. * Fix #19937 (static points, ghci and -j) * Adds lots of module loop tests due to Divam. Also related to #20030 Co-authored-by: Divam Narula <dfordivam@gmail.com> ------------------------- Metric Decrease: T10370 -------------------------
* driver: Fix recompilation for modules importing GHC.PrimMatthew Pickering2021-07-211-0/+3
| | | | | | | | | | | | | The GHC.Prim module is quite special as there is no interface file, therefore it doesn't appear in ms_textual_imports, but the ghc-prim package does appear in the direct package dependencies. This confused the recompilation checking which couldn't find any modules from ghc-prim and concluded that the package was no longer a dependency. The fix is to keep track of whether GHC.Prim is imported separately in the relevant places. Fixes #20084
* Driver Rework PatchMatthew Pickering2021-06-031-7/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | This patch comprises of four different but closely related ideas. The net result is fixing a large number of open issues with the driver whilst making it simpler to understand. 1. Use the hash of the source file to determine whether the source file has changed or not. This makes the recompilation checking more robust to modern build systems which are liable to copy files around changing their modification times. 2. Remove the concept of a "stable module", a stable module was one where the object file was older than the source file, and all transitive dependencies were also stable. Now we don't rely on the modification time of the source file, the notion of stability is moot. 3. Fix TH/plugin recompilation after the removal of stable modules. The TH recompilation check used to rely on stable modules. Now there is a uniform and simple way, we directly track the linkables which were loaded into the interpreter whilst compiling a module. This is an over-approximation but more robust wrt package dependencies changing. 4. Fix recompilation checking for dynamic object files. Now we actually check if the dynamic object file exists when compiling with -dynamic-too Fixes #19774 #19771 #19758 #17434 #11556 #9121 #8211 #16495 #7277 #16093
* Add UnitId to Target recordFendor2021-03-281-4/+8
| | | | | | | | | | In the future, we want `HscEnv` to support multiple home units at the same time. This means, that there will be 'Target's that do not belong to the current 'HomeUnit'. This is an API change without changing behaviour. Update haddock submodule to incorporate API changes.
* Put hole instantiation typechecking in the module graph and fix driver batch ↵John Ericson2020-12-281-32/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mode backpack edges Backpack instantiations need to be typechecked to make sure that the arguments fit the parameters. `tcRnInstantiateSignature` checks instantiations with concrete modules, while `tcRnCheckUnit` checks instantiations with free holes (signatures in the current modules). Before this change, it worked that `tcRnInstantiateSignature` was called after typechecking the argument module, see `HscMain.hsc_typecheck`, while `tcRnCheckUnit` was called in `unsweep'` where-bound in `GhcMake.upsweep`. `tcRnCheckUnit` was called once per each instantiation once all the argument sigs were processed. This was done with simple "to do" and "already done" accumulators in the fold. `parUpsweep` did not implement the change. With this change, `tcRnCheckUnit` instead is associated with its own node in the `ModuleGraph`. Nodes are now: ```haskell data ModuleGraphNode -- | Instantiation nodes track the instantiation of other units -- (backpack dependencies) with the holes (signatures) of the current package. = InstantiationNode InstantiatedUnit -- | There is a module summary node for each module, signature, and boot module being built. | ModuleNode ExtendedModSummary ``` instead of just `ModSummary`; the `InstantiationNode` case is the instantiation of a unit to be checked. The dependencies of such nodes are the same "free holes" as was checked with the accumulator before. Both versions of upsweep on such a node call `tcRnCheckUnit`. There previously was an `implicitRequirements` function which would crawl through every non-current-unit module dep to look for all free holes (signatures) to add as dependencies in `GHC.Driver.Make`. But this is no good: we shouldn't be looking for transitive anything when building the graph: the graph should only have immediate edges and the scheduler takes care that all transitive requirements are met. So `GHC.Driver.Make` stopped using `implicitRequirements`, and instead uses a new `implicitRequirementsShallow`, which just returns the outermost instantiation node (or module name if the immediate dependency is itself a signature). The signature dependencies are just treated like any other imported module, but the module ones then go in a list stored in the `ModuleNode` next to the `ModSummary` as the "extra backpack dependencies". When `downsweep` creates the mod summaries, it adds this information too. ------ There is one code quality, and possible correctness thing left: In addition to `implicitRequirements` there is `findExtraSigImports`, which says something like "if you are an instantiation argument (you are substituted or a signature), you need to import its things too". This is a little non-local so I am not quite sure how to get rid of it in `GHC.Driver.Make`, but we probably should eventually. First though, let's try to make a test case that observes that we don't do this, lest it actually be unneeded. Until then, I'm happy to leave it as is. ------ Beside the ability to use `-j`, the other major user-visibile side effect of this change is that that the --make progress log now includes "Instantiating" messages for these new nodes. Those also are numbered like module nodes and count towards the total. ------ Fixes #17188 Updates hackage submomdule Metric Increase: T12425 T13035
* Split GHC.Driver.TypesSylvain Henry2020-10-291-0/+190
I was working on making DynFlags stateless (#17957), especially by storing loaded plugins into HscEnv instead of DynFlags. It turned out to be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I didn't feel like introducing yet another hs-boot file to break the loop. Additionally I remember that while we introduced the module hierarchy (#13009) we talked about splitting GHC.Driver.Types because it contained various unrelated types and functions, but we never executed. I didn't feel like making GHC.Driver.Types bigger with more unrelated Plugins related types, so finally I bit the bullet and split GHC.Driver.Types. As a consequence this patch moves a lot of things. I've tried to put them into appropriate modules but nothing is set in stone. Several other things moved to avoid loops. * Removed Binary instances from GHC.Utils.Binary for random compiler things * Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they import a lot of things that users of GHC.Utils.Binary don't want to depend on. * put everything related to Units/Modules under GHC.Unit: GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.} * Created several modules under GHC.Types: GHC.Types.Fixity, SourceText, etc. * Split GHC.Utils.Error (into GHC.Types.Error) * Finally removed GHC.Driver.Types Note that this patch doesn't put loaded plugins into HscEnv. It's left for another patch. Bump haddock submodule