(**************************************************************************) (* *) (* OCaml *) (* *) (* Luc Maranget, projet Moscova, INRIA Rocquencourt *) (* *) (* Copyright 2000 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* see high-level comments in switch.mli *) type 'a shared = Shared of 'a | Single of 'a type ('a, 'ctx) t_store = {act_get : unit -> 'a array ; act_get_shared : unit -> 'a shared array ; act_store : 'ctx -> 'a -> int ; act_store_shared : 'ctx -> 'a -> int ; } module type Stored = sig type t type key val compare_key : key -> key -> int val make_key : t -> key option end module type CtxStored = sig include Stored type context val make_key : context -> t -> key option end module CtxStore(A:CtxStored) = struct module AMap = Map.Make(struct type t = A.key let compare = A.compare_key end) type intern = { mutable map : (bool * int) AMap.t ; mutable next : int ; mutable acts : (bool * A.t) list; } let mk_store () = let st = { map = AMap.empty ; next = 0 ; acts = [] ; } in let add mustshare act = let i = st.next in st.acts <- (mustshare,act) :: st.acts ; st.next <- i+1 ; i in let store mustshare ctx act = match A.make_key ctx act with | Some key -> begin try let (shared,i) = AMap.find key st.map in if not shared then st.map <- AMap.add key (true,i) st.map ; i with Not_found -> let i = add mustshare act in st.map <- AMap.add key (mustshare,i) st.map ; i end | None -> add mustshare act and get () = Array.of_list (List.rev_map (fun (_,act) -> act) st.acts) and get_shared () = let acts = Array.of_list (List.rev_map (fun (shared,act) -> if shared then Shared act else Single act) st.acts) in AMap.iter (fun _ (shared,i) -> if shared then match acts.(i) with | Single act -> acts.(i) <- Shared act | Shared _ -> ()) st.map ; acts in {act_store = store false ; act_store_shared = store true ; act_get = get; act_get_shared = get_shared; } end module Store(A:Stored) = struct module Me = CtxStore (struct include A type context = unit let make_key () = A.make_key end) let mk_store = Me.mk_store end module type S = sig type primitive val eqint : primitive val neint : primitive val leint : primitive val ltint : primitive val geint : primitive val gtint : primitive type loc type arg type test type act val bind : arg -> (arg -> act) -> act val make_const : int -> arg val make_offset : arg -> int -> arg val make_prim : primitive -> arg list -> test val make_isout : arg -> arg -> test val make_isin : arg -> arg -> test val make_is_nonzero : arg -> test val arg_as_test : arg -> test val make_if : test -> act -> act -> act val make_switch : loc -> arg -> int array -> act array -> act val make_catch : act -> int * (act -> act) val make_exit : int -> act end (* The module will ``produce good code for the case statement'' Adaptation of Robert L. Berstein ``Producing good code for the case statement'' Software Practice and Experience, 15(10) (1985) and Sampath Kannan and Todd A. Proebsting ``Correction to ``Producing good code for the case statement'' '' Software Practice and Experience, 24(2) (1993) and David L. Spuler ``Two-Way Comparison Search Trees, a Generalisation of Binary Search Trees and Split Trees'' ``Compiler Code Generation for Multiway Branch Statement as a Static Search Problem'' Technical Reports, James Cook University The article of Bernstein considers how to compile C-style switches: arrays of actions indexed over non-negative integers with some "missing" cases that are sent to a default action. The strategy proposed, which is followed in our implementation below, is as follows: 1. Compute a "clustering" of the cases as a disjoint union of smaller intervals with a high enough "density" (few default cases on the interval). 2. Generate "dense switch" code for each cluster, typically using a jump table. 3. Generate a sequence of tests for the whole switch, whose leaves are the dense switches generated for each cluster. Berstein believes that computing the optimal clustering (smaller number of clusters) is NP-complete, and only proposes a suboptimal heuristic method. Kannan and Proebsting remark that it can be solved by a quadratic dynamic algorithm, which is also used in our implementation. The article of Spuler explains how to generate good test sequences (optimal in worst-case number of tests) for a two-way tests instead of three-way tests: traditional dichotomic search assumes that we check at each step whether the key is (1) equal to the pivot, (2) strictly less or (3) strictly more, but the test instructions in our intermediate representations typically only let us test for (1) lesser or equal or (2) strictly bigger (or: (1) strictly less, (2) bigger or equal, which is symmetric.). Spuler proves that, even in this two-way setting, dichotomic search generates optimal test sequences. The code below uses two additional ideas from Luc Maranget. 1. The code to compute an optimal sequence of tests also makes use of an interval check (is the input in the range [m; n]), which (as remarked by Bernstein) can be implemented efficiently as a subtraction and an unsigned comparison. We don't know of an efficient algorithm to compute optimal test sequences using both comparison and interval checks, so instead: a. on large input intervals, we use the dichotomy b. on medium-sized input intervals, we use the best of the dichotomy and an interval check carving out exactly the lowest and highest cases c. on small input intervals, we use optimal exhaustive search. 2. The works of Bernstein and Kannan-Proebsting compute clusters of sufficient density, where density is defined naturally as the proportion of non-default cases. Maranget instead computes density as the height of the test sequence divided by interval size (note that the number of non-default cases is an upperbound on the test sequence height, as the length of the linear test sequence). As a result, sub-intervals that can be efficiently decided by tests get a lower density, so they are more likely to be merged into the toplevel test sequence instead of generating a less compact jump table. *) module Make (Arg : S) = struct (* A representation of switches over intervals rather than discrete values the [cases] array stores triples [(low, high, act)], where [low] is the lowest input value of the interval, [high] is the highest input value, and [act] is an index into the [actions] array. (There can be substantially less actions than intervals if many actions are shared.) *) type 'a inter = { cases : (int * int * int) array ; actions : 'a array } let small_size_limit = 8 and medium_size_limit = 16 (* let pint chan i = if i = min_int then Printf.fprintf chan "-oo" else if i=max_int then Printf.fprintf chan "oo" else Printf.fprintf chan "%d" i let pcases chan cases = for i =0 to Array.length cases-1 do let l,h,act = cases.(i) in if l=h then Printf.fprintf chan "%d:%d " l act else Printf.fprintf chan "%a..%a:%d " pint l pint h act done let prerr_inter i = Printf.fprintf stderr "cases=%a" pcases i.cases *) let get_act cases i = let _,_,r = cases.(i) in r and get_low cases i = let r,_,_ = cases.(i) in r and get_high cases i = let _,r,_ = cases.(i) in r (* a "cost" as a number of tests in the worst case; [n] is the total number of tests [ni] is the number of interval tests If two choices have the same total number of tests, we will prefer the one with less interval tests as they cost slightly more. *) type ctests = { mutable n : int ; mutable ni : int ; } let too_much = {n=max_int ; ni=max_int} (* let ptests chan {n=n ; ni=ni} = Printf.fprintf chan "{n=%d ; ni=%d}" n ni let pta chan t = for i =0 to Array.length t-1 do Printf.fprintf chan "%d: %a\n" i ptests t.(i) done *) let less_tests c1 c2 = if c1.n < c2.n then true else if c1.n = c2.n then begin if c1.ni < c2.ni then true else false end else false and eq_tests c1 c2 = c1.n = c2.n && c1.ni=c2.ni let less2tests (c1,d1) (c2,d2) = if eq_tests c1 c2 then less_tests d1 d2 else less_tests c1 c2 let add_test t1 t2 = t1.n <- t1.n + t2.n ; t1.ni <- t1.ni + t2.ni ; (* Represents tests in a test sequence [Inter (low, high)] is an interval test [Sep bound] is [fun x -> x < bound] [No] is when no tests are necessary. *) type t_ret = Inter of int * int | Sep of int | No (* let pret chan = function | Inter (i,j)-> Printf.fprintf chan "Inter %d %d" i j | Sep i -> Printf.fprintf chan "Sep %d" i | No -> Printf.fprintf chan "No" *) let coupe cases i = let l,_,_ = cases.(i) in l, Array.sub cases 0 i, Array.sub cases i (Array.length cases-i) let case_append c1 c2 = let len1 = Array.length c1 and len2 = Array.length c2 in match len1,len2 with | 0,_ -> c2 | _,0 -> c1 | _,_ -> let l1,h1,act1 = c1.(Array.length c1-1) and l2,h2,act2 = c2.(0) in if act1 = act2 then let r = Array.make (len1+len2-1) c1.(0) in for i = 0 to len1-2 do r.(i) <- c1.(i) done ; let l = if len1 < 2 then l1 else begin (* 0 <= len1 - 2 < len1 *) let _,h,_ = r.(len1-2) in min (h + 1) l1 end and h = if len2 < 2 then h2 else begin (* 0 <= 1 < len2 *) let l,_,_ = c2.(1) in max h2 (l - 1) end in r.(len1-1) <- (l,h,act1) ; for i=1 to len2-1 do r.(len1-1+i) <- c2.(i) done ; r else if h1 > l1 then let r = Array.make (len1+len2) c1.(0) in for i = 0 to len1-2 do r.(i) <- c1.(i) done ; r.(len1-1) <- (l1,l2-1,act1) ; for i=0 to len2-1 do r.(len1+i) <- c2.(i) done ; r else if h2 > l2 then let r = Array.make (len1+len2) c1.(0) in for i = 0 to len1-1 do r.(i) <- c1.(i) done ; r.(len1) <- (h1+1,h2,act2) ; for i=1 to len2-1 do r.(len1+i) <- c2.(i) done ; r else Array.append c1 c2 let coupe_inter i j cases = let lcases = Array.length cases in let low,_,_ = cases.(i) and _,high,_ = cases.(j) in low,high, Array.sub cases i (j-i+1), case_append (Array.sub cases 0 i) (Array.sub cases (j+1) (lcases-(j+1))) type kind = Kvalue of int | Kinter of int | Kempty (* let pkind chan = function | Kvalue i ->Printf.fprintf chan "V%d" i | Kinter i -> Printf.fprintf chan "I%d" i | Kempty -> Printf.fprintf chan "E" let rec pkey chan = function | [] -> () | [k] -> pkind chan k | k::rem -> Printf.fprintf chan "%a %a" pkey rem pkind k *) let t = Hashtbl.create 17 let make_key cases = let seen = ref [] and count = ref 0 in let rec got_it act = function | [] -> seen := (act,!count):: !seen ; let r = !count in incr count ; r | (act0,index) :: rem -> if act0 = act then index else got_it act rem in let make_one l h act = if l=h then Kvalue (got_it act !seen) else Kinter (got_it act !seen) in let rec make_rec i pl = if i < 0 then [] else let l,h,act = cases.(i) in if pl = h+1 then make_one l h act::make_rec (i-1) l else Kempty::make_one l h act::make_rec (i-1) l in let l,h,act = cases.(Array.length cases-1) in make_one l h act::make_rec (Array.length cases-2) l let same_act t = let len = Array.length t in let a = get_act t (len-1) in let rec do_rec i = if i < 0 then true else let b = get_act t i in b=a && do_rec (i-1) in do_rec (len-2) (* Interval test x in [l,h] works by checking x-l in [0,h-l] * This may be false for arithmetic modulo 2^31 * Subtracting l may change the relative ordering of values and invalid the invariant that matched values are given in increasing order To avoid this, interval check is allowed only when the integers indeed present in the whole case interval are in [-2^16 ; 2^16] This condition is checked by zyva *) let inter_limit = 1 lsl 16 let ok_inter = ref false (* Compute a good test sequence. *) let rec opt_count cases = let key = make_key cases in try Hashtbl.find t key with | Not_found -> let r = let lcases = Array.length cases in match lcases with | 0 -> assert false | _ when same_act cases -> No, ({n=0; ni=0},{n=0; ni=0}) | _ -> if lcases < small_size_limit then enum cases else if lcases < medium_size_limit then heuristic cases else divide cases in Hashtbl.add t key r ; r (* Large inputs: dichotomic sequence. *) and divide cases = let lcases = Array.length cases in let m = lcases/2 in let _,left,right = coupe cases m in let ci = {n=1 ; ni=0} and cm = {n=1 ; ni=0} and _,(cml,cleft) = opt_count left and _,(cmr,cright) = opt_count right in add_test ci cleft ; add_test ci cright ; (* To compute a worst-case cost, we add the more costly of the left/right branches to the running total. *) if less_tests cml cmr then add_test cm cmr else add_test cm cml ; Sep m,(cm, ci) (* Medium-size inputs: dichotomy or interval tests. *) and heuristic cases = let lcases = Array.length cases in let sep,csep = divide cases and inter,cinter = if !ok_inter then begin let _,_,act0 = cases.(0) and _,_,act1 = cases.(lcases-1) in if act0 = act1 then begin let low, high, inside, outside = coupe_inter 1 (lcases-2) cases in let _,(cmi,cinside) = opt_count inside and _,(cmo,coutside) = opt_count outside and cmij = {n=1 ; ni=(if low=high then 0 else 1)} and cij = {n=1 ; ni=(if low=high then 0 else 1)} in add_test cij cinside ; add_test cij coutside ; if less_tests cmi cmo then add_test cmij cmo else add_test cmij cmi ; Inter (1,lcases-2),(cmij,cij) end else Inter (-1,-1),(too_much, too_much) end else Inter (-1,-1),(too_much, too_much) in if less2tests csep cinter then sep,csep else inter,cinter (* Small inputs: exhaustive search for optimal sequence. *) and enum cases = let lcases = Array.length cases in let lim, with_sep = let best = ref (-1) and best_cost = ref (too_much,too_much) in for i = 1 to lcases-(1) do let _,left,right = coupe cases i in let ci = {n=1 ; ni=0} and cm = {n=1 ; ni=0} and _,(cml,cleft) = opt_count left and _,(cmr,cright) = opt_count right in add_test ci cleft ; add_test ci cright ; if less_tests cml cmr then add_test cm cmr else add_test cm cml ; if less2tests (cm,ci) !best_cost then begin best := i ; best_cost := (cm,ci) end done ; !best, !best_cost in let ilow, ihigh, with_inter = if not !ok_inter then let rlow = ref (-1) and rhigh = ref (-1) and best_cost= ref (too_much,too_much) in for i=1 to lcases-2 do let low, high, inside, outside = coupe_inter i i cases in if low=high then begin let _,(cmi,cinside) = opt_count inside and _,(cmo,coutside) = opt_count outside and cmij = {n=1 ; ni=0} and cij = {n=1 ; ni=0} in add_test cij cinside ; add_test cij coutside ; if less_tests cmi cmo then add_test cmij cmo else add_test cmij cmi ; if less2tests (cmij,cij) !best_cost then begin rlow := i ; rhigh := i ; best_cost := (cmij,cij) end end done ; !rlow, !rhigh, !best_cost else let rlow = ref (-1) and rhigh = ref (-1) and best_cost= ref (too_much,too_much) in for i=1 to lcases-2 do for j=i to lcases-2 do let low, high, inside, outside = coupe_inter i j cases in let _,(cmi,cinside) = opt_count inside and _,(cmo,coutside) = opt_count outside and cmij = {n=1 ; ni=(if low=high then 0 else 1)} and cij = {n=1 ; ni=(if low=high then 0 else 1)} in add_test cij cinside ; add_test cij coutside ; if less_tests cmi cmo then add_test cmij cmo else add_test cmij cmi ; if less2tests (cmij,cij) !best_cost then begin rlow := i ; rhigh := j ; best_cost := (cmij,cij) end done done ; !rlow, !rhigh, !best_cost in let r = ref (Inter (ilow,ihigh)) and rc = ref with_inter in if less2tests with_sep !rc then begin r := Sep lim ; rc := with_sep end ; !r, !rc (* Consider the following sequence of interval tests: if a in [2; 10] then if a in [2; 4] then act24 else if a in [5; 8] then act58 else act810 else act_default Our interval check works by subtracting the interval lower bound, then checking a range [0; n] using an unsigned comparison. Naively we would generate code with one subtraction to [a] before each comparison: let tmp1 = a - 2 in if tmp1 <=u 8 then let tmp2 = a - 2 in if tmp2 <=u 2 then act24 else let tmp3 = a - 5 in if tmp3 <=u 3 then act58 else act810 else act_default but we can avoid some substractions by working with the result of the first subtraction, instead of the original index [a], inside the interval. let a2 = a - 2 in if a2 <=u 8 then if a2 in <=u 2 then act24 else let a5 = a2 - 3 in if a5 <=u 3 then act58 else act810 else act_default The type [t_ctx] represents an input argument "shifted" by a certain (negative) offset by repeated substractions. In the example above, [a5] would be represented with [off = -5]. *) type 'a t_ctx = {off : int ; arg : 'a} let make_if_test test arg i ifso ifnot = Arg.make_if (Arg.make_prim test [arg ; Arg.make_const i]) ifso ifnot let make_if_lt arg i ifso ifnot = match i with | 1 -> make_if_test Arg.leint arg 0 ifso ifnot | _ -> make_if_test Arg.ltint arg i ifso ifnot and make_if_ge arg i ifso ifnot = match i with | 1 -> make_if_test Arg.gtint arg 0 ifso ifnot | _ -> make_if_test Arg.geint arg i ifso ifnot and make_if_eq arg i ifso ifnot = make_if_test Arg.eqint arg i ifso ifnot and make_if_ne arg i ifso ifnot = make_if_test Arg.neint arg i ifso ifnot let make_if_nonzero arg ifso ifnot = Arg.make_if (Arg.make_is_nonzero arg) ifso ifnot let make_if_bool arg ifso ifnot = Arg.make_if (Arg.arg_as_test arg) ifso ifnot let do_make_if_out h arg ifso ifno = Arg.make_if (Arg.make_isout h arg) ifso ifno let make_if_out ctx l d mk_ifso mk_ifno = match l with | 0 -> do_make_if_out (Arg.make_const d) ctx.arg (mk_ifso ctx) (mk_ifno ctx) | _ -> Arg.bind (Arg.make_offset ctx.arg (-l)) (fun arg -> let ctx = {off= (-l+ctx.off) ; arg=arg} in do_make_if_out (Arg.make_const d) arg (mk_ifso ctx) (mk_ifno ctx)) let do_make_if_in h arg ifso ifno = Arg.make_if (Arg.make_isin h arg) ifso ifno let make_if_in ctx l d mk_ifso mk_ifno = match l with | 0 -> do_make_if_in (Arg.make_const d) ctx.arg (mk_ifso ctx) (mk_ifno ctx) | _ -> Arg.bind (Arg.make_offset ctx.arg (-l)) (fun arg -> let ctx = {off= (-l+ctx.off) ; arg=arg} in do_make_if_in (Arg.make_const d) arg (mk_ifso ctx) (mk_ifno ctx)) (* Generate the code for a good test sequence. *) let rec c_test ctx ({cases=cases ; actions=actions} as s) = let lcases = Array.length cases in assert(lcases > 0) ; if lcases = 1 then actions.(get_act cases 0) ctx else begin let w,_c = opt_count cases in (* Printf.fprintf stderr "off=%d tactic=%a for %a\n" ctx.off pret w pcases cases ; *) match w with | No -> actions.(get_act cases 0) ctx | Inter (i,j) -> let low,high,inside, outside = coupe_inter i j cases in let _,(cinside,_) = opt_count inside and _,(coutside,_) = opt_count outside in (* Costs are retrieved to put the code with more remaining tests in the privileged (positive) branch of ``if'' *) if low=high then begin if less_tests coutside cinside then make_if_eq ctx.arg (low+ctx.off) (c_test ctx {s with cases=inside}) (c_test ctx {s with cases=outside}) else make_if_ne ctx.arg (low+ctx.off) (c_test ctx {s with cases=outside}) (c_test ctx {s with cases=inside}) end else begin if less_tests coutside cinside then make_if_in ctx (low+ctx.off) (high-low) (fun ctx -> c_test ctx {s with cases=inside}) (fun ctx -> c_test ctx {s with cases=outside}) else make_if_out ctx (low+ctx.off) (high-low) (fun ctx -> c_test ctx {s with cases=outside}) (fun ctx -> c_test ctx {s with cases=inside}) end | Sep i -> let lim,left,right = coupe cases i in let _,(cleft,_) = opt_count left and _,(cright,_) = opt_count right in let left = {s with cases=left} and right = {s with cases=right} in if i=1 && (lim+ctx.off)=1 && get_low cases 0+ctx.off=0 then if lcases = 2 && get_high cases 1+ctx.off = 1 then make_if_bool ctx.arg (c_test ctx right) (c_test ctx left) else make_if_nonzero ctx.arg (c_test ctx right) (c_test ctx left) else if less_tests cright cleft then make_if_lt ctx.arg (lim+ctx.off) (c_test ctx left) (c_test ctx right) else make_if_ge ctx.arg (lim+ctx.off) (c_test ctx right) (c_test ctx left) end (* Minimal density of dense switches. *) let theta = 0.33333 (* Minimal number of tests to make a dense switch. *) let switch_min = 3 (* Particular case 0, 1, 2. *) let particular_case cases i j = j-i = 2 && (let l1,_h1,act1 = cases.(i) and l2,_h2,_act2 = cases.(i+1) and l3,h3,act3 = cases.(i+2) in l1+1=l2 && l2+1=l3 && l3=h3 && act1 <> act3) (* Approximation of the test sequence height, used to determine cluster density. *) let approx_count cases i j = let l = j-i+1 in if l < small_size_limit then (* on small input intervals, use test sequence height *) let _,(_,{n=ntests}) = opt_count (Array.sub cases i l) in ntests else (* otherwise use the standard notion of density (number of non-default cases) *) l-1 (* Sends back a boolean that says whether it is worth making a jump table. *) let dense {cases} i j = if i=j then true else let l,_,_ = cases.(i) and _,h,_ = cases.(j) in let ntests = approx_count cases i j in (* (ntests+1) >= theta * (h-l+1) *) particular_case cases i j || ((* The switch_min test guarantees that we don't use jump tables for very small switches. *) ntests >= switch_min && float_of_int ntests +. 1.0 >= theta *. (float_of_int h -. float_of_int l +. 1.0)) (* Compute an optimal clustering by dynamic programming. *) let comp_clusters s = let len = Array.length s.cases in let min_clusters = Array.make len max_int and k = Array.make len 0 in let get_min i = if i < 0 then 0 else min_clusters.(i) in for i = 0 to len-1 do for j = 0 to i do if dense s j i && get_min (j-1) + 1 < min_clusters.(i) then begin k.(i) <- j ; min_clusters.(i) <- get_min (j-1) + 1 end done ; done ; min_clusters.(len-1),k (* The code to generate a dense switch is provided by the functor parameter as Arg.make_switch (which will typically use a jump table) *) let make_switch loc {cases=cases ; actions=actions} i j = (* Assume j > i *) let ll,_,_ = cases.(i) and _,hh,_ = cases.(j) in let tbl = Array.make (hh-ll+1) 0 and t = Hashtbl.create 17 and index = ref 0 in let get_index act = try Hashtbl.find t act with | Not_found -> let i = !index in incr index ; Hashtbl.add t act i ; i in for k=i to j do let l,h,act = cases.(k) in let index = get_index act in for kk=l-ll to h-ll do tbl.(kk) <- index done done ; let acts = Array.make !index actions.(0) in Hashtbl.iter (fun act i -> acts.(i) <- actions.(act)) t ; (fun ctx -> match -ll-ctx.off with | 0 -> Arg.make_switch loc ctx.arg tbl acts | _ -> Arg.bind (Arg.make_offset ctx.arg (-ll-ctx.off)) (fun arg -> Arg.make_switch loc arg tbl acts)) (* Generate code from a clustering choice. *) let make_clusters loc ({cases=cases ; actions=actions} as s) n_clusters k = let len = Array.length cases in let r = Array.make n_clusters (0,0,0) and t = Hashtbl.create 17 and index = ref 0 and bidon = ref (Array.length actions) in let get_index act = try let i,_ = Hashtbl.find t act in i with | Not_found -> let i = !index in incr index ; Hashtbl.add t act (i,(fun _ -> actions.(act))) ; i and add_index act = let i = !index in incr index ; incr bidon ; Hashtbl.add t !bidon (i,act) ; i in let rec zyva j ir = let i = k.(j) in begin if i=j then let l,h,act = cases.(i) in r.(ir) <- (l,h,get_index act) else (* assert i < j *) let l,_,_ = cases.(i) and _,h,_ = cases.(j) in r.(ir) <- (l,h,add_index (make_switch loc s i j)) end ; if i > 0 then zyva (i-1) (ir-1) in zyva (len-1) (n_clusters-1) ; let acts = Array.make !index (fun _ -> assert false) in Hashtbl.iter (fun _ (i,act) -> acts.(i) <- act) t ; {cases = r ; actions = acts} let do_zyva loc (low,high) arg cases actions = let old_ok = !ok_inter in ok_inter := (abs low <= inter_limit && abs high <= inter_limit) ; if !ok_inter <> old_ok then Hashtbl.clear t ; let s = {cases=cases ; actions=actions} in (* Printf.eprintf "ZYVA: %B [low=%i,high=%i]\n" !ok_inter low high ; pcases stderr cases ; prerr_endline "" ; *) let n_clusters,k = comp_clusters s in let clusters = make_clusters loc s n_clusters k in c_test {arg=arg ; off=0} clusters let abstract_shared actions = let handlers = ref (fun x -> x) in let actions = Array.map (fun act -> match act with | Single act -> act | Shared act -> let i,h = Arg.make_catch act in let oh = !handlers in handlers := (fun act -> h (oh act)) ; Arg.make_exit i) actions in !handlers,actions (* Standard entry point. *) let zyva loc lh arg cases actions = assert (Array.length cases > 0) ; let actions = actions.act_get_shared () in let hs,actions = abstract_shared actions in hs (do_zyva loc lh arg cases actions) (* Generate code using test sequences only, not Arg.make_switch *) and test_sequence arg cases actions = assert (Array.length cases > 0) ; let actions = actions.act_get_shared () in let hs,actions = abstract_shared actions in let old_ok = !ok_inter in ok_inter := false ; if !ok_inter <> old_ok then Hashtbl.clear t ; let s = {cases=cases ; actions=Array.map (fun act -> (fun _ -> act)) actions} in (* Printf.eprintf "SEQUENCE: %B\n" !ok_inter ; pcases stderr cases ; prerr_endline "" ; *) hs (c_test {arg=arg ; off=0} s) end