/**************************************************************************/ /* */ /* OCaml */ /* */ /* Xavier Leroy, projet Cristal, INRIA Rocquencourt */ /* */ /* Copyright 1996 Institut National de Recherche en Informatique et */ /* en Automatique. */ /* */ /* All rights reserved. This file is distributed under the terms of */ /* the GNU Lesser General Public License version 2.1, with the */ /* special exception on linking described in the file LICENSE. */ /* */ /**************************************************************************/ #define CAML_INTERNALS /* Operations on arrays */ #include #include "caml/alloc.h" #include "caml/fail.h" #include "caml/memory.h" #include "caml/misc.h" #include "caml/mlvalues.h" #include "caml/signals.h" #include "caml/runtime_events.h" static const mlsize_t mlsize_t_max = -1; /* returns number of elements (either fields or floats) */ /* [ 'a array -> int ] */ CAMLexport mlsize_t caml_array_length(value array) { #ifdef FLAT_FLOAT_ARRAY if (Tag_val(array) == Double_array_tag) return Wosize_val(array) / Double_wosize; else #endif return Wosize_val(array); } CAMLexport int caml_is_double_array(value array) { return (Tag_val(array) == Double_array_tag); } /* Note: the OCaml types on the following primitives will work both with and without the -no-flat-float-array configure-time option. If you respect them, your C code should work in both configurations. */ /* [ 'a array -> int -> 'a ] where 'a != float */ CAMLprim value caml_array_get_addr(value array, value index) { intnat idx = Long_val(index); if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error(); return Field(array, idx); } /* [ floatarray -> int -> float ] */ CAMLprim value caml_floatarray_get(value array, value index) { intnat idx = Long_val(index); double d; value res; CAMLassert (Tag_val(array) == Double_array_tag); if (idx < 0 || idx >= Wosize_val(array) / Double_wosize) caml_array_bound_error(); d = Double_flat_field(array, idx); Alloc_small(res, Double_wosize, Double_tag, Alloc_small_enter_GC); Store_double_val(res, d); return res; } /* [ 'a array -> int -> 'a ] */ CAMLprim value caml_array_get(value array, value index) { #ifdef FLAT_FLOAT_ARRAY if (Tag_val(array) == Double_array_tag) return caml_floatarray_get(array, index); #else CAMLassert (Tag_val(array) != Double_array_tag); #endif return caml_array_get_addr(array, index); } /* [ 'a array -> int -> 'a -> unit ] where 'a != float */ CAMLprim value caml_array_set_addr(value array, value index, value newval) { intnat idx = Long_val(index); if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error(); caml_modify(&Field(array, idx), newval); return Val_unit; } /* [ floatarray -> int -> float -> unit ] */ CAMLprim value caml_floatarray_set(value array, value index, value newval) { intnat idx = Long_val(index); double d = Double_val (newval); CAMLassert (Tag_val(array) == Double_array_tag); if (idx < 0 || idx >= Wosize_val(array) / Double_wosize) caml_array_bound_error(); Store_double_flat_field(array, idx, d); return Val_unit; } /* [ 'a array -> int -> 'a -> unit ] */ CAMLprim value caml_array_set(value array, value index, value newval) { #ifdef FLAT_FLOAT_ARRAY if (Tag_val(array) == Double_array_tag) return caml_floatarray_set(array, index, newval); #else CAMLassert (Tag_val(array) != Double_array_tag); #endif return caml_array_set_addr(array, index, newval); } /* [ floatarray -> int -> float ] */ CAMLprim value caml_floatarray_unsafe_get(value array, value index) { intnat idx = Long_val(index); double d; value res; CAMLassert (Tag_val(array) == Double_array_tag); d = Double_flat_field(array, idx); Alloc_small(res, Double_wosize, Double_tag, Alloc_small_enter_GC); Store_double_val(res, d); return res; } /* [ 'a array -> int -> 'a ] */ CAMLprim value caml_array_unsafe_get(value array, value index) { #ifdef FLAT_FLOAT_ARRAY if (Tag_val(array) == Double_array_tag) return caml_floatarray_unsafe_get(array, index); #else CAMLassert (Tag_val(array) != Double_array_tag); #endif return Field(array, Long_val(index)); } /* [ 'a array -> int -> 'a -> unit ] where 'a != float */ static value caml_array_unsafe_set_addr(value array, value index,value newval) { intnat idx = Long_val(index); caml_modify(&Field(array, idx), newval); return Val_unit; } /* [ floatarray -> int -> float -> unit ] */ /* [MM]: [caml_array_unsafe_set_addr] has a fence for enforcing the OCaml memory model through its use of [caml_modify]. [MM] [TODO]: [caml_floatarray_unsafe_set] will also need a similar fence in [Store_double_flat_field]. */ CAMLprim value caml_floatarray_unsafe_set(value array, value index,value newval) { intnat idx = Long_val(index); double d = Double_val (newval); Store_double_flat_field(array, idx, d); return Val_unit; } /* [ 'a array -> int -> 'a -> unit ] */ CAMLprim value caml_array_unsafe_set(value array, value index, value newval) { #ifdef FLAT_FLOAT_ARRAY if (Tag_val(array) == Double_array_tag) return caml_floatarray_unsafe_set(array, index, newval); #else CAMLassert (Tag_val(array) != Double_array_tag); #endif return caml_array_unsafe_set_addr(array, index, newval); } /* [len] is a [value] representing number of floats. */ /* [ int -> floatarray ] */ CAMLprim value caml_floatarray_create(value len) { mlsize_t wosize = Long_val(len) * Double_wosize; value result; if (wosize <= Max_young_wosize){ if (wosize == 0) return Atom(0); else Alloc_small (result, wosize, Double_array_tag, Alloc_small_enter_GC); }else if (wosize > Max_wosize) caml_invalid_argument("Float.Array.create"); else { result = caml_alloc_shr (wosize, Double_array_tag); } /* Give the GC a chance to run, and run memprof callbacks */ return caml_process_pending_actions_with_root(result); } /* [len] is a [value] representing number of words or floats */ CAMLprim value caml_make_vect(value len, value init) { CAMLparam2 (len, init); CAMLlocal1 (res); mlsize_t size, i; size = Long_val(len); if (size == 0) { res = Atom(0); #ifdef FLAT_FLOAT_ARRAY } else if (Is_block(init) && Tag_val(init) == Double_tag) { mlsize_t wsize; double d; d = Double_val(init); wsize = size * Double_wosize; if (wsize > Max_wosize) caml_invalid_argument("Array.make"); res = caml_alloc(wsize, Double_array_tag); for (i = 0; i < size; i++) { Store_double_flat_field(res, i, d); } #endif } else { if (size <= Max_young_wosize) { res = caml_alloc_small(size, 0); for (i = 0; i < size; i++) Field(res, i) = init; } else if (size > Max_wosize) caml_invalid_argument("Array.make"); else { if (Is_block(init) && Is_young(init)) { /* We don't want to create so many major-to-minor references, so [init] is moved to the major heap by doing a minor GC. */ CAML_EV_COUNTER (EV_C_FORCE_MINOR_MAKE_VECT, 1); caml_minor_collection (); } CAMLassert(!(Is_block(init) && Is_young(init))); res = caml_alloc_shr(size, 0); /* We now know that [init] is not in the minor heap, so there is no need to call [caml_initialize]. */ for (i = 0; i < size; i++) Field(res, i) = init; } } /* Give the GC a chance to run, and run memprof callbacks */ caml_process_pending_actions (); CAMLreturn (res); } /* [len] is a [value] representing number of floats */ /* [ int -> float array ] */ CAMLprim value caml_make_float_vect(value len) { #ifdef FLAT_FLOAT_ARRAY return caml_floatarray_create (len); #else /* A signaling NaN, statically allocated */ static uintnat some_float_contents[] = { Caml_out_of_heap_header(Double_wosize, Double_tag), #if defined(ARCH_SIXTYFOUR) 0x7FF0000000000001 #elif defined(ARCH_BIG_ENDIAN) 0x7FF00000, 0x00000001, #else 0x00000001, 0x7FF00000 #endif }; value some_float = Val_hp(some_float_contents); return caml_make_vect (len, some_float); #endif } /* This primitive is used internally by the compiler to compile explicit array expressions. For float arrays when FLAT_FLOAT_ARRAY is true, it takes an array of boxed floats and returns the corresponding flat-allocated [float array]. In all other cases, it just returns its argument unchanged. */ CAMLprim value caml_make_array(value init) { #ifdef FLAT_FLOAT_ARRAY CAMLparam1 (init); mlsize_t wsize, size, i; CAMLlocal2 (v, res); size = Wosize_val(init); if (size == 0) { CAMLreturn (init); } else { v = Field(init, 0); if (Is_long(v) || Tag_val(v) != Double_tag) { CAMLreturn (init); } else { wsize = size * Double_wosize; if (wsize <= Max_young_wosize) { res = caml_alloc_small(wsize, Double_array_tag); } else { res = caml_alloc_shr(wsize, Double_array_tag); } for (i = 0; i < size; i++) { double d = Double_val(Field(init, i)); Store_double_flat_field(res, i, d); } /* run memprof callbacks */ caml_process_pending_actions(); CAMLreturn (res); } } #else return init; #endif } /* Blitting */ /* [wo_memmove] copies [nvals] values from [src] to [dst]. If there is a single domain running, then we use [memmove]. Otherwise, we copy one word at a time. Since the [memmove] implementation does not guarantee that the writes are always word-sized, we explicitly perform word-sized writes of the release kind to avoid mixed-mode accesses. Performing release writes should be sufficient to prevent smart compilers from coalesing the writes into vector writes, and hence prevent mixed-mode accesses. [MM]. */ static void wo_memmove (volatile value* const dst, volatile const value* const src, mlsize_t nvals) { mlsize_t i; if (caml_domain_alone ()) { memmove ((value*)dst, (value*)src, nvals * sizeof (value)); } else { /* See memory model [MM] notes in memory.c */ atomic_thread_fence(memory_order_acquire); if (dst < src) { /* copy ascending */ for (i = 0; i < nvals; i++) atomic_store_release(&((atomic_value*)dst)[i], src[i]); } else { /* copy descending */ for (i = nvals; i > 0; i--) atomic_store_release(&((atomic_value*)dst)[i-1], src[i-1]); } } } /* [MM] [TODO]: Not consistent with the memory model. See the discussion in https://github.com/ocaml-multicore/ocaml-multicore/pull/822. */ CAMLprim value caml_floatarray_blit(value a1, value ofs1, value a2, value ofs2, value n) { /* See memory model [MM] notes in memory.c */ atomic_thread_fence(memory_order_acquire); memmove((double *)a2 + Long_val(ofs2), (double *)a1 + Long_val(ofs1), Long_val(n) * sizeof(double)); return Val_unit; } CAMLprim value caml_array_blit(value a1, value ofs1, value a2, value ofs2, value n) { volatile value * src, * dst; intnat count; #ifdef FLAT_FLOAT_ARRAY if (Tag_val(a2) == Double_array_tag) return caml_floatarray_blit(a1, ofs1, a2, ofs2, n); #endif CAMLassert (Tag_val(a2) != Double_array_tag); if (Is_young(a2)) { /* Arrays of values, destination is in young generation. Here too we can do a direct copy since this cannot create old-to-young pointers, nor mess up with the incremental major GC. Again, wo_memmove takes care of overlap. */ wo_memmove(&Field(a2, Long_val(ofs2)), &Field(a1, Long_val(ofs1)), Long_val(n)); return Val_unit; } /* Array of values, destination is in old generation. We must use caml_modify. */ count = Long_val(n); if (a1 == a2 && Long_val(ofs1) < Long_val(ofs2)) { /* Copy in descending order */ for (dst = &Field(a2, Long_val(ofs2) + count - 1), src = &Field(a1, Long_val(ofs1) + count - 1); count > 0; count--, src--, dst--) { caml_modify(dst, *src); } } else { /* Copy in ascending order */ for (dst = &Field(a2, Long_val(ofs2)), src = &Field(a1, Long_val(ofs1)); count > 0; count--, src++, dst++) { caml_modify(dst, *src); } } /* Many caml_modify in a row can create a lot of old-to-young refs. Give the minor GC a chance to run if it needs to. */ caml_check_urgent_gc(Val_unit); return Val_unit; } /* A generic function for extraction and concatenation of sub-arrays */ static value caml_array_gather(intnat num_arrays, value arrays[/*num_arrays*/], intnat offsets[/*num_arrays*/], intnat lengths[/*num_arrays*/]) { CAMLparamN(arrays, num_arrays); value res; /* no need to register it as a root */ #ifdef FLAT_FLOAT_ARRAY int isfloat = 0; mlsize_t wsize; #endif mlsize_t i, size, count, pos; volatile value * src; /* Determine total size and whether result array is an array of floats */ size = 0; for (i = 0; i < num_arrays; i++) { if (mlsize_t_max - lengths[i] < size) caml_invalid_argument("Array.concat"); size += lengths[i]; #ifdef FLAT_FLOAT_ARRAY if (Tag_val(arrays[i]) == Double_array_tag) isfloat = 1; #endif } if (size == 0) { /* If total size = 0, just return empty array */ res = Atom(0); } #ifdef FLAT_FLOAT_ARRAY else if (isfloat) { /* This is an array of floats. We can use memcpy directly. */ if (size > Max_wosize/Double_wosize) caml_invalid_argument("Array.concat"); wsize = size * Double_wosize; res = caml_alloc(wsize, Double_array_tag); for (i = 0, pos = 0; i < num_arrays; i++) { /* [res] is freshly allocated, and no other domain has a reference to it. Hence, a plain [memcpy] is sufficient. */ memcpy((double *)res + pos, (double *)arrays[i] + offsets[i], lengths[i] * sizeof(double)); pos += lengths[i]; } CAMLassert(pos == size); } #endif else if (size <= Max_young_wosize) { /* Array of values, small enough to fit in young generation. We can use memcpy directly. */ res = caml_alloc_small(size, 0); for (i = 0, pos = 0; i < num_arrays; i++) { /* [res] is freshly allocated, and no other domain has a reference to it. Hence, a plain [memcpy] is sufficient. */ memcpy((value*)&Field(res, pos), (value*)&Field(arrays[i], offsets[i]), lengths[i] * sizeof(value)); pos += lengths[i]; } CAMLassert(pos == size); } else if (size > Max_wosize) { /* Array of values, too big. */ caml_invalid_argument("Array.concat"); } else { /* Array of values, must be allocated in old generation and filled using caml_initialize. */ res = caml_alloc_shr(size, 0); for (i = 0, pos = 0; i < num_arrays; i++) { for (src = &Field(arrays[i], offsets[i]), count = lengths[i]; count > 0; count--, src++, pos++) { caml_initialize(&Field(res, pos), *src); } } CAMLassert(pos == size); /* Many caml_initialize in a row can create a lot of old-to-young refs. Give the minor GC a chance to run if it needs to. Run memprof callbacks for the major allocation. */ res = caml_process_pending_actions_with_root (res); } CAMLreturn (res); } CAMLprim value caml_array_sub(value a, value ofs, value len) { value arrays[1] = { a }; intnat offsets[1] = { Long_val(ofs) }; intnat lengths[1] = { Long_val(len) }; return caml_array_gather(1, arrays, offsets, lengths); } CAMLprim value caml_array_append(value a1, value a2) { value arrays[2] = { a1, a2 }; intnat offsets[2] = { 0, 0 }; intnat lengths[2] = { caml_array_length(a1), caml_array_length(a2) }; return caml_array_gather(2, arrays, offsets, lengths); } CAMLprim value caml_array_concat(value al) { #define STATIC_SIZE 16 value static_arrays[STATIC_SIZE], * arrays; intnat static_offsets[STATIC_SIZE], * offsets; intnat static_lengths[STATIC_SIZE], * lengths; intnat n, i; value l, res; /* Length of list = number of arrays */ for (n = 0, l = al; l != Val_emptylist; l = Field(l, 1)) n++; /* Allocate extra storage if too many arrays */ if (n <= STATIC_SIZE) { arrays = static_arrays; offsets = static_offsets; lengths = static_lengths; } else { arrays = caml_stat_alloc(n * sizeof(value)); offsets = caml_stat_alloc_noexc(n * sizeof(intnat)); if (offsets == NULL) { caml_stat_free(arrays); caml_raise_out_of_memory(); } lengths = caml_stat_alloc_noexc(n * sizeof(value)); if (lengths == NULL) { caml_stat_free(offsets); caml_stat_free(arrays); caml_raise_out_of_memory(); } } /* Build the parameters to caml_array_gather */ for (i = 0, l = al; l != Val_emptylist; l = Field(l, 1), i++) { arrays[i] = Field(l, 0); offsets[i] = 0; lengths[i] = caml_array_length(Field(l, 0)); } /* Do the concatenation */ res = caml_array_gather(n, arrays, offsets, lengths); /* Free the extra storage if needed */ if (n > STATIC_SIZE) { caml_stat_free(arrays); caml_stat_free(offsets); caml_stat_free(lengths); } return res; } CAMLprim value caml_array_fill(value array, value v_ofs, value v_len, value val) { intnat ofs = Long_val(v_ofs); intnat len = Long_val(v_len); volatile value* fp; /* This duplicates the logic of caml_modify. Please refer to the implementation of that function for a description of GC invariants we need to enforce.*/ #ifdef FLAT_FLOAT_ARRAY if (Tag_val(array) == Double_array_tag) { double d = Double_val (val); for (; len > 0; len--, ofs++) Store_double_flat_field(array, ofs, d); return Val_unit; } #endif fp = &Field(array, ofs); if (Is_young(array)) { for (; len > 0; len--, fp++) *fp = val; } else { int is_val_young_block = Is_block(val) && Is_young(val); for (; len > 0; len--, fp++) { value old = *fp; if (old == val) continue; *fp = val; if (Is_block(old)) { if (Is_young(old)) continue; caml_darken(Caml_state, old, NULL); } if (is_val_young_block) Ref_table_add(&Caml_state->minor_tables->major_ref, fp); } if (is_val_young_block) caml_check_urgent_gc (Val_unit); } return Val_unit; }