diff options
Diffstat (limited to 'ext/sqlite/libsqlite/src/select.c')
| -rw-r--r-- | ext/sqlite/libsqlite/src/select.c | 2434 | 
1 files changed, 0 insertions, 2434 deletions
diff --git a/ext/sqlite/libsqlite/src/select.c b/ext/sqlite/libsqlite/src/select.c deleted file mode 100644 index c19c2bac86..0000000000 --- a/ext/sqlite/libsqlite/src/select.c +++ /dev/null @@ -1,2434 +0,0 @@ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code.  In place of -** a legal notice, here is a blessing: -** -**    May you do good and not evil. -**    May you find forgiveness for yourself and forgive others. -**    May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains C code routines that are called by the parser -** to handle SELECT statements in SQLite. -** -** $Id$ -*/ -#include "sqliteInt.h" - - -/* -** Allocate a new Select structure and return a pointer to that -** structure. -*/ -Select *sqliteSelectNew( -  ExprList *pEList,     /* which columns to include in the result */ -  SrcList *pSrc,        /* the FROM clause -- which tables to scan */ -  Expr *pWhere,         /* the WHERE clause */ -  ExprList *pGroupBy,   /* the GROUP BY clause */ -  Expr *pHaving,        /* the HAVING clause */ -  ExprList *pOrderBy,   /* the ORDER BY clause */ -  int isDistinct,       /* true if the DISTINCT keyword is present */ -  int nLimit,           /* LIMIT value.  -1 means not used */ -  int nOffset           /* OFFSET value.  0 means no offset */ -){ -  Select *pNew; -  pNew = sqliteMalloc( sizeof(*pNew) ); -  if( pNew==0 ){ -    sqliteExprListDelete(pEList); -    sqliteSrcListDelete(pSrc); -    sqliteExprDelete(pWhere); -    sqliteExprListDelete(pGroupBy); -    sqliteExprDelete(pHaving); -    sqliteExprListDelete(pOrderBy); -  }else{ -    if( pEList==0 ){ -      pEList = sqliteExprListAppend(0, sqliteExpr(TK_ALL,0,0,0), 0); -    } -    pNew->pEList = pEList; -    pNew->pSrc = pSrc; -    pNew->pWhere = pWhere; -    pNew->pGroupBy = pGroupBy; -    pNew->pHaving = pHaving; -    pNew->pOrderBy = pOrderBy; -    pNew->isDistinct = isDistinct; -    pNew->op = TK_SELECT; -    pNew->nLimit = nLimit; -    pNew->nOffset = nOffset; -    pNew->iLimit = -1; -    pNew->iOffset = -1; -  } -  return pNew; -} - -/* -** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the -** type of join.  Return an integer constant that expresses that type -** in terms of the following bit values: -** -**     JT_INNER -**     JT_OUTER -**     JT_NATURAL -**     JT_LEFT -**     JT_RIGHT -** -** A full outer join is the combination of JT_LEFT and JT_RIGHT. -** -** If an illegal or unsupported join type is seen, then still return -** a join type, but put an error in the pParse structure. -*/ -int sqliteJoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ -  int jointype = 0; -  Token *apAll[3]; -  Token *p; -  static struct { -    const char *zKeyword; -    int nChar; -    int code; -  } keywords[] = { -    { "natural", 7, JT_NATURAL }, -    { "left",    4, JT_LEFT|JT_OUTER }, -    { "right",   5, JT_RIGHT|JT_OUTER }, -    { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER }, -    { "outer",   5, JT_OUTER }, -    { "inner",   5, JT_INNER }, -    { "cross",   5, JT_INNER }, -  }; -  int i, j; -  apAll[0] = pA; -  apAll[1] = pB; -  apAll[2] = pC; -  for(i=0; i<3 && apAll[i]; i++){ -    p = apAll[i]; -    for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ -      if( p->n==keywords[j].nChar  -          && sqliteStrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){ -        jointype |= keywords[j].code; -        break; -      } -    } -    if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ -      jointype |= JT_ERROR; -      break; -    } -  } -  if( -     (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || -     (jointype & JT_ERROR)!=0 -  ){ -    static Token dummy = { 0, 0 }; -    char *zSp1 = " ", *zSp2 = " "; -    if( pB==0 ){ pB = &dummy; zSp1 = 0; } -    if( pC==0 ){ pC = &dummy; zSp2 = 0; } -    sqliteSetNString(&pParse->zErrMsg, "unknown or unsupported join type: ", 0, -       pA->z, pA->n, zSp1, 1, pB->z, pB->n, zSp2, 1, pC->z, pC->n, 0); -    pParse->nErr++; -    jointype = JT_INNER; -  }else if( jointype & JT_RIGHT ){ -    sqliteErrorMsg(pParse,  -      "RIGHT and FULL OUTER JOINs are not currently supported"); -    jointype = JT_INNER; -  } -  return jointype; -} - -/* -** Return the index of a column in a table.  Return -1 if the column -** is not contained in the table. -*/ -static int columnIndex(Table *pTab, const char *zCol){ -  int i; -  for(i=0; i<pTab->nCol; i++){ -    if( sqliteStrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; -  } -  return -1; -} - -/* -** Add a term to the WHERE expression in *ppExpr that requires the -** zCol column to be equal in the two tables pTab1 and pTab2. -*/ -static void addWhereTerm( -  const char *zCol,        /* Name of the column */ -  const Table *pTab1,      /* First table */ -  const Table *pTab2,      /* Second table */ -  Expr **ppExpr            /* Add the equality term to this expression */ -){ -  Token dummy; -  Expr *pE1a, *pE1b, *pE1c; -  Expr *pE2a, *pE2b, *pE2c; -  Expr *pE; - -  dummy.z = zCol; -  dummy.n = strlen(zCol); -  dummy.dyn = 0; -  pE1a = sqliteExpr(TK_ID, 0, 0, &dummy); -  pE2a = sqliteExpr(TK_ID, 0, 0, &dummy); -  dummy.z = pTab1->zName; -  dummy.n = strlen(dummy.z); -  pE1b = sqliteExpr(TK_ID, 0, 0, &dummy); -  dummy.z = pTab2->zName; -  dummy.n = strlen(dummy.z); -  pE2b = sqliteExpr(TK_ID, 0, 0, &dummy); -  pE1c = sqliteExpr(TK_DOT, pE1b, pE1a, 0); -  pE2c = sqliteExpr(TK_DOT, pE2b, pE2a, 0); -  pE = sqliteExpr(TK_EQ, pE1c, pE2c, 0); -  ExprSetProperty(pE, EP_FromJoin); -  if( *ppExpr ){ -    *ppExpr = sqliteExpr(TK_AND, *ppExpr, pE, 0); -  }else{ -    *ppExpr = pE; -  } -} - -/* -** Set the EP_FromJoin property on all terms of the given expression. -** -** The EP_FromJoin property is used on terms of an expression to tell -** the LEFT OUTER JOIN processing logic that this term is part of the -** join restriction specified in the ON or USING clause and not a part -** of the more general WHERE clause.  These terms are moved over to the -** WHERE clause during join processing but we need to remember that they -** originated in the ON or USING clause. -*/ -static void setJoinExpr(Expr *p){ -  while( p ){ -    ExprSetProperty(p, EP_FromJoin); -    setJoinExpr(p->pLeft); -    p = p->pRight; -  }  -} - -/* -** This routine processes the join information for a SELECT statement. -** ON and USING clauses are converted into extra terms of the WHERE clause. -** NATURAL joins also create extra WHERE clause terms. -** -** This routine returns the number of errors encountered. -*/ -static int sqliteProcessJoin(Parse *pParse, Select *p){ -  SrcList *pSrc; -  int i, j; -  pSrc = p->pSrc; -  for(i=0; i<pSrc->nSrc-1; i++){ -    struct SrcList_item *pTerm = &pSrc->a[i]; -    struct SrcList_item *pOther = &pSrc->a[i+1]; - -    if( pTerm->pTab==0 || pOther->pTab==0 ) continue; - -    /* When the NATURAL keyword is present, add WHERE clause terms for -    ** every column that the two tables have in common. -    */ -    if( pTerm->jointype & JT_NATURAL ){ -      Table *pTab; -      if( pTerm->pOn || pTerm->pUsing ){ -        sqliteErrorMsg(pParse, "a NATURAL join may not have " -           "an ON or USING clause", 0); -        return 1; -      } -      pTab = pTerm->pTab; -      for(j=0; j<pTab->nCol; j++){ -        if( columnIndex(pOther->pTab, pTab->aCol[j].zName)>=0 ){ -          addWhereTerm(pTab->aCol[j].zName, pTab, pOther->pTab, &p->pWhere); -        } -      } -    } - -    /* Disallow both ON and USING clauses in the same join -    */ -    if( pTerm->pOn && pTerm->pUsing ){ -      sqliteErrorMsg(pParse, "cannot have both ON and USING " -        "clauses in the same join"); -      return 1; -    } - -    /* Add the ON clause to the end of the WHERE clause, connected by -    ** and AND operator. -    */ -    if( pTerm->pOn ){ -      setJoinExpr(pTerm->pOn); -      if( p->pWhere==0 ){ -        p->pWhere = pTerm->pOn; -      }else{ -        p->pWhere = sqliteExpr(TK_AND, p->pWhere, pTerm->pOn, 0); -      } -      pTerm->pOn = 0; -    } - -    /* Create extra terms on the WHERE clause for each column named -    ** in the USING clause.  Example: If the two tables to be joined are  -    ** A and B and the USING clause names X, Y, and Z, then add this -    ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z -    ** Report an error if any column mentioned in the USING clause is -    ** not contained in both tables to be joined. -    */ -    if( pTerm->pUsing ){ -      IdList *pList; -      int j; -      assert( i<pSrc->nSrc-1 ); -      pList = pTerm->pUsing; -      for(j=0; j<pList->nId; j++){ -        if( columnIndex(pTerm->pTab, pList->a[j].zName)<0 || -            columnIndex(pOther->pTab, pList->a[j].zName)<0 ){ -          sqliteErrorMsg(pParse, "cannot join using column %s - column " -            "not present in both tables", pList->a[j].zName); -          return 1; -        } -        addWhereTerm(pList->a[j].zName, pTerm->pTab, pOther->pTab, &p->pWhere); -      } -    } -  } -  return 0; -} - -/* -** Delete the given Select structure and all of its substructures. -*/ -void sqliteSelectDelete(Select *p){ -  if( p==0 ) return; -  sqliteExprListDelete(p->pEList); -  sqliteSrcListDelete(p->pSrc); -  sqliteExprDelete(p->pWhere); -  sqliteExprListDelete(p->pGroupBy); -  sqliteExprDelete(p->pHaving); -  sqliteExprListDelete(p->pOrderBy); -  sqliteSelectDelete(p->pPrior); -  sqliteFree(p->zSelect); -  sqliteFree(p); -} - -/* -** Delete the aggregate information from the parse structure. -*/ -static void sqliteAggregateInfoReset(Parse *pParse){ -  sqliteFree(pParse->aAgg); -  pParse->aAgg = 0; -  pParse->nAgg = 0; -  pParse->useAgg = 0; -} - -/* -** Insert code into "v" that will push the record on the top of the -** stack into the sorter. -*/ -static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){ -  char *zSortOrder; -  int i; -  zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 ); -  if( zSortOrder==0 ) return; -  for(i=0; i<pOrderBy->nExpr; i++){ -    int order = pOrderBy->a[i].sortOrder; -    int type; -    int c; -    if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){ -      type = SQLITE_SO_TEXT; -    }else if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_NUM ){ -      type = SQLITE_SO_NUM; -    }else if( pParse->db->file_format>=4 ){ -      type = sqliteExprType(pOrderBy->a[i].pExpr); -    }else{ -      type = SQLITE_SO_NUM; -    } -    if( (order & SQLITE_SO_DIRMASK)==SQLITE_SO_ASC ){ -      c = type==SQLITE_SO_TEXT ? 'A' : '+'; -    }else{ -      c = type==SQLITE_SO_TEXT ? 'D' : '-'; -    } -    zSortOrder[i] = c; -    sqliteExprCode(pParse, pOrderBy->a[i].pExpr); -  } -  zSortOrder[pOrderBy->nExpr] = 0; -  sqliteVdbeOp3(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, P3_DYNAMIC); -  sqliteVdbeAddOp(v, OP_SortPut, 0, 0); -} - -/* -** This routine adds a P3 argument to the last VDBE opcode that was -** inserted. The P3 argument added is a string suitable for the  -** OP_MakeKey or OP_MakeIdxKey opcodes.  The string consists of -** characters 't' or 'n' depending on whether or not the various -** fields of the key to be generated should be treated as numeric -** or as text.  See the OP_MakeKey and OP_MakeIdxKey opcode -** documentation for additional information about the P3 string. -** See also the sqliteAddIdxKeyType() routine. -*/ -void sqliteAddKeyType(Vdbe *v, ExprList *pEList){ -  int nColumn = pEList->nExpr; -  char *zType = sqliteMalloc( nColumn+1 ); -  int i; -  if( zType==0 ) return; -  for(i=0; i<nColumn; i++){ -    zType[i] = sqliteExprType(pEList->a[i].pExpr)==SQLITE_SO_NUM ? 'n' : 't'; -  } -  zType[i] = 0; -  sqliteVdbeChangeP3(v, -1, zType, P3_DYNAMIC); -} - -/* -** Add code to implement the OFFSET and LIMIT -*/ -static void codeLimiter( -  Vdbe *v,          /* Generate code into this VM */ -  Select *p,        /* The SELECT statement being coded */ -  int iContinue,    /* Jump here to skip the current record */ -  int iBreak,       /* Jump here to end the loop */ -  int nPop          /* Number of times to pop stack when jumping */ -){ -  if( p->iOffset>=0 ){ -    int addr = sqliteVdbeCurrentAddr(v) + 2; -    if( nPop>0 ) addr++; -    sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr); -    if( nPop>0 ){ -      sqliteVdbeAddOp(v, OP_Pop, nPop, 0); -    } -    sqliteVdbeAddOp(v, OP_Goto, 0, iContinue); -  } -  if( p->iLimit>=0 ){ -    sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak); -  } -} - -/* -** This routine generates the code for the inside of the inner loop -** of a SELECT. -** -** If srcTab and nColumn are both zero, then the pEList expressions -** are evaluated in order to get the data for this row.  If nColumn>0 -** then data is pulled from srcTab and pEList is used only to get the -** datatypes for each column. -*/ -static int selectInnerLoop( -  Parse *pParse,          /* The parser context */ -  Select *p,              /* The complete select statement being coded */ -  ExprList *pEList,       /* List of values being extracted */ -  int srcTab,             /* Pull data from this table */ -  int nColumn,            /* Number of columns in the source table */ -  ExprList *pOrderBy,     /* If not NULL, sort results using this key */ -  int distinct,           /* If >=0, make sure results are distinct */ -  int eDest,              /* How to dispose of the results */ -  int iParm,              /* An argument to the disposal method */ -  int iContinue,          /* Jump here to continue with next row */ -  int iBreak              /* Jump here to break out of the inner loop */ -){ -  Vdbe *v = pParse->pVdbe; -  int i; -  int hasDistinct;        /* True if the DISTINCT keyword is present */ - -  if( v==0 ) return 0; -  assert( pEList!=0 ); - -  /* If there was a LIMIT clause on the SELECT statement, then do the check -  ** to see if this row should be output. -  */ -  hasDistinct = distinct>=0 && pEList && pEList->nExpr>0; -  if( pOrderBy==0 && !hasDistinct ){ -    codeLimiter(v, p, iContinue, iBreak, 0); -  } - -  /* Pull the requested columns. -  */ -  if( nColumn>0 ){ -    for(i=0; i<nColumn; i++){ -      sqliteVdbeAddOp(v, OP_Column, srcTab, i); -    } -  }else{ -    nColumn = pEList->nExpr; -    for(i=0; i<pEList->nExpr; i++){ -      sqliteExprCode(pParse, pEList->a[i].pExpr); -    } -  } - -  /* If the DISTINCT keyword was present on the SELECT statement -  ** and this row has been seen before, then do not make this row -  ** part of the result. -  */ -  if( hasDistinct ){ -#if NULL_ALWAYS_DISTINCT -    sqliteVdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqliteVdbeCurrentAddr(v)+7); -#endif -    sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1); -    if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pEList); -    sqliteVdbeAddOp(v, OP_Distinct, distinct, sqliteVdbeCurrentAddr(v)+3); -    sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0); -    sqliteVdbeAddOp(v, OP_Goto, 0, iContinue); -    sqliteVdbeAddOp(v, OP_String, 0, 0); -    sqliteVdbeAddOp(v, OP_PutStrKey, distinct, 0); -    if( pOrderBy==0 ){ -      codeLimiter(v, p, iContinue, iBreak, nColumn); -    } -  } - -  switch( eDest ){ -    /* In this mode, write each query result to the key of the temporary -    ** table iParm. -    */ -    case SRT_Union: { -      sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT); -      sqliteVdbeAddOp(v, OP_String, 0, 0); -      sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0); -      break; -    } - -    /* Store the result as data using a unique key. -    */ -    case SRT_Table: -    case SRT_TempTable: { -      sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0); -      if( pOrderBy ){ -        pushOntoSorter(pParse, v, pOrderBy); -      }else{ -        sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0); -        sqliteVdbeAddOp(v, OP_Pull, 1, 0); -        sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0); -      } -      break; -    } - -    /* Construct a record from the query result, but instead of -    ** saving that record, use it as a key to delete elements from -    ** the temporary table iParm. -    */ -    case SRT_Except: { -      int addr; -      addr = sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT); -      sqliteVdbeAddOp(v, OP_NotFound, iParm, addr+3); -      sqliteVdbeAddOp(v, OP_Delete, iParm, 0); -      break; -    } - -    /* If we are creating a set for an "expr IN (SELECT ...)" construct, -    ** then there should be a single item on the stack.  Write this -    ** item into the set table with bogus data. -    */ -    case SRT_Set: { -      int addr1 = sqliteVdbeCurrentAddr(v); -      int addr2; -      assert( nColumn==1 ); -      sqliteVdbeAddOp(v, OP_NotNull, -1, addr1+3); -      sqliteVdbeAddOp(v, OP_Pop, 1, 0); -      addr2 = sqliteVdbeAddOp(v, OP_Goto, 0, 0); -      if( pOrderBy ){ -        pushOntoSorter(pParse, v, pOrderBy); -      }else{ -        sqliteVdbeAddOp(v, OP_String, 0, 0); -        sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0); -      } -      sqliteVdbeChangeP2(v, addr2, sqliteVdbeCurrentAddr(v)); -      break; -    } - -    /* If this is a scalar select that is part of an expression, then -    ** store the results in the appropriate memory cell and break out -    ** of the scan loop. -    */ -    case SRT_Mem: { -      assert( nColumn==1 ); -      if( pOrderBy ){ -        pushOntoSorter(pParse, v, pOrderBy); -      }else{ -        sqliteVdbeAddOp(v, OP_MemStore, iParm, 1); -        sqliteVdbeAddOp(v, OP_Goto, 0, iBreak); -      } -      break; -    } - -    /* Send the data to the callback function. -    */ -    case SRT_Callback: -    case SRT_Sorter: { -      if( pOrderBy ){ -        sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0); -        pushOntoSorter(pParse, v, pOrderBy); -      }else{ -        assert( eDest==SRT_Callback ); -        sqliteVdbeAddOp(v, OP_Callback, nColumn, 0); -      } -      break; -    } - -    /* Invoke a subroutine to handle the results.  The subroutine itself -    ** is responsible for popping the results off of the stack. -    */ -    case SRT_Subroutine: { -      if( pOrderBy ){ -        sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0); -        pushOntoSorter(pParse, v, pOrderBy); -      }else{ -        sqliteVdbeAddOp(v, OP_Gosub, 0, iParm); -      } -      break; -    } - -    /* Discard the results.  This is used for SELECT statements inside -    ** the body of a TRIGGER.  The purpose of such selects is to call -    ** user-defined functions that have side effects.  We do not care -    ** about the actual results of the select. -    */ -    default: { -      assert( eDest==SRT_Discard ); -      sqliteVdbeAddOp(v, OP_Pop, nColumn, 0); -      break; -    } -  } -  return 0; -} - -/* -** If the inner loop was generated using a non-null pOrderBy argument, -** then the results were placed in a sorter.  After the loop is terminated -** we need to run the sorter and output the results.  The following -** routine generates the code needed to do that. -*/ -static void generateSortTail( -  Select *p,       /* The SELECT statement */ -  Vdbe *v,         /* Generate code into this VDBE */ -  int nColumn,     /* Number of columns of data */ -  int eDest,       /* Write the sorted results here */ -  int iParm        /* Optional parameter associated with eDest */ -){ -  int end1 = sqliteVdbeMakeLabel(v); -  int end2 = sqliteVdbeMakeLabel(v); -  int addr; -  if( eDest==SRT_Sorter ) return; -  sqliteVdbeAddOp(v, OP_Sort, 0, 0); -  addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end1); -  codeLimiter(v, p, addr, end2, 1); -  switch( eDest ){ -    case SRT_Callback: { -      sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0); -      break; -    } -    case SRT_Table: -    case SRT_TempTable: { -      sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0); -      sqliteVdbeAddOp(v, OP_Pull, 1, 0); -      sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0); -      break; -    } -    case SRT_Set: { -      assert( nColumn==1 ); -      sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3); -      sqliteVdbeAddOp(v, OP_Pop, 1, 0); -      sqliteVdbeAddOp(v, OP_Goto, 0, sqliteVdbeCurrentAddr(v)+3); -      sqliteVdbeAddOp(v, OP_String, 0, 0); -      sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0); -      break; -    } -    case SRT_Mem: { -      assert( nColumn==1 ); -      sqliteVdbeAddOp(v, OP_MemStore, iParm, 1); -      sqliteVdbeAddOp(v, OP_Goto, 0, end1); -      break; -    } -    case SRT_Subroutine: { -      int i; -      for(i=0; i<nColumn; i++){ -        sqliteVdbeAddOp(v, OP_Column, -1-i, i); -      } -      sqliteVdbeAddOp(v, OP_Gosub, 0, iParm); -      sqliteVdbeAddOp(v, OP_Pop, 1, 0); -      break; -    } -    default: { -      /* Do nothing */ -      break; -    } -  } -  sqliteVdbeAddOp(v, OP_Goto, 0, addr); -  sqliteVdbeResolveLabel(v, end2); -  sqliteVdbeAddOp(v, OP_Pop, 1, 0); -  sqliteVdbeResolveLabel(v, end1); -  sqliteVdbeAddOp(v, OP_SortReset, 0, 0); -} - -/* -** Generate code that will tell the VDBE the datatypes of -** columns in the result set. -** -** This routine only generates code if the "PRAGMA show_datatypes=on" -** has been executed.  The datatypes are reported out in the azCol -** parameter to the callback function.  The first N azCol[] entries -** are the names of the columns, and the second N entries are the -** datatypes for the columns. -** -** The "datatype" for a result that is a column of a type is the -** datatype definition extracted from the CREATE TABLE statement. -** The datatype for an expression is either TEXT or NUMERIC.  The -** datatype for a ROWID field is INTEGER. -*/ -static void generateColumnTypes( -  Parse *pParse,      /* Parser context */ -  SrcList *pTabList,  /* List of tables */ -  ExprList *pEList    /* Expressions defining the result set */ -){ -  Vdbe *v = pParse->pVdbe; -  int i, j; -  for(i=0; i<pEList->nExpr; i++){ -    Expr *p = pEList->a[i].pExpr; -    char *zType = 0; -    if( p==0 ) continue; -    if( p->op==TK_COLUMN && pTabList ){ -      Table *pTab; -      int iCol = p->iColumn; -      for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} -      assert( j<pTabList->nSrc ); -      pTab = pTabList->a[j].pTab; -      if( iCol<0 ) iCol = pTab->iPKey; -      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); -      if( iCol<0 ){ -        zType = "INTEGER"; -      }else{ -        zType = pTab->aCol[iCol].zType; -      } -    }else{ -      if( sqliteExprType(p)==SQLITE_SO_TEXT ){ -        zType = "TEXT"; -      }else{ -        zType = "NUMERIC"; -      } -    } -    sqliteVdbeOp3(v, OP_ColumnName, i + pEList->nExpr, 0, zType, 0); -  } -} - -/* -** Generate code that will tell the VDBE the names of columns -** in the result set.  This information is used to provide the -** azCol[] values in the callback. -*/ -static void generateColumnNames( -  Parse *pParse,      /* Parser context */ -  SrcList *pTabList,  /* List of tables */ -  ExprList *pEList    /* Expressions defining the result set */ -){ -  Vdbe *v = pParse->pVdbe; -  int i, j; -  sqlite *db = pParse->db; -  int fullNames, shortNames; - -  assert( v!=0 ); -  if( pParse->colNamesSet || v==0 || sqlite_malloc_failed ) return; -  pParse->colNamesSet = 1; -  fullNames = (db->flags & SQLITE_FullColNames)!=0; -  shortNames = (db->flags & SQLITE_ShortColNames)!=0; -  for(i=0; i<pEList->nExpr; i++){ -    Expr *p; -    int p2 = i==pEList->nExpr-1; -    p = pEList->a[i].pExpr; -    if( p==0 ) continue; -    if( pEList->a[i].zName ){ -      char *zName = pEList->a[i].zName; -      sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0); -      continue; -    } -    if( p->op==TK_COLUMN && pTabList ){ -      Table *pTab; -      char *zCol; -      int iCol = p->iColumn; -      for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} -      assert( j<pTabList->nSrc ); -      pTab = pTabList->a[j].pTab; -      if( iCol<0 ) iCol = pTab->iPKey; -      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); -      if( iCol<0 ){ -        zCol = "_ROWID_"; -      }else{ -        zCol = pTab->aCol[iCol].zName; -      } -      if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ -        int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n); -        sqliteVdbeCompressSpace(v, addr); -      }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ -        char *zName = 0; -        char *zTab; -  -        zTab = pTabList->a[j].zAlias; -        if( fullNames || zTab==0 ) zTab = pTab->zName; -        sqliteSetString(&zName, zTab, ".", zCol, 0); -        sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, P3_DYNAMIC); -      }else{ -        sqliteVdbeOp3(v, OP_ColumnName, i, p2, zCol, 0); -      } -    }else if( p->span.z && p->span.z[0] ){ -      int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n); -      sqliteVdbeCompressSpace(v, addr); -    }else{ -      char zName[30]; -      assert( p->op!=TK_COLUMN || pTabList==0 ); -      sprintf(zName, "column%d", i+1); -      sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0); -    } -  } -} - -/* -** Name of the connection operator, used for error messages. -*/ -static const char *selectOpName(int id){ -  char *z; -  switch( id ){ -    case TK_ALL:       z = "UNION ALL";   break; -    case TK_INTERSECT: z = "INTERSECT";   break; -    case TK_EXCEPT:    z = "EXCEPT";      break; -    default:           z = "UNION";       break; -  } -  return z; -} - -/* -** Forward declaration -*/ -static int fillInColumnList(Parse*, Select*); - -/* -** Given a SELECT statement, generate a Table structure that describes -** the result set of that SELECT. -*/ -Table *sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ -  Table *pTab; -  int i, j; -  ExprList *pEList; -  Column *aCol; - -  if( fillInColumnList(pParse, pSelect) ){ -    return 0; -  } -  pTab = sqliteMalloc( sizeof(Table) ); -  if( pTab==0 ){ -    return 0; -  } -  pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0; -  pEList = pSelect->pEList; -  pTab->nCol = pEList->nExpr; -  assert( pTab->nCol>0 ); -  pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol ); -  for(i=0; i<pTab->nCol; i++){ -    Expr *p, *pR; -    if( pEList->a[i].zName ){ -      aCol[i].zName = sqliteStrDup(pEList->a[i].zName); -    }else if( (p=pEList->a[i].pExpr)->op==TK_DOT  -               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ -      int cnt; -      sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, 0); -      for(j=cnt=0; j<i; j++){ -        if( sqliteStrICmp(aCol[j].zName, aCol[i].zName)==0 ){ -          int n; -          char zBuf[30]; -          sprintf(zBuf,"_%d",++cnt); -          n = strlen(zBuf); -          sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, zBuf, n,0); -          j = -1; -        } -      } -    }else if( p->span.z && p->span.z[0] ){ -      sqliteSetNString(&pTab->aCol[i].zName, p->span.z, p->span.n, 0); -    }else{ -      char zBuf[30]; -      sprintf(zBuf, "column%d", i+1); -      aCol[i].zName = sqliteStrDup(zBuf); -    } -    sqliteDequote(aCol[i].zName); -  } -  pTab->iPKey = -1; -  return pTab; -} - -/* -** For the given SELECT statement, do three things. -** -**    (1)  Fill in the pTabList->a[].pTab fields in the SrcList that  -**         defines the set of tables that should be scanned.  For views, -**         fill pTabList->a[].pSelect with a copy of the SELECT statement -**         that implements the view.  A copy is made of the view's SELECT -**         statement so that we can freely modify or delete that statement -**         without worrying about messing up the presistent representation -**         of the view. -** -**    (2)  Add terms to the WHERE clause to accomodate the NATURAL keyword -**         on joins and the ON and USING clause of joins. -** -**    (3)  Scan the list of columns in the result set (pEList) looking -**         for instances of the "*" operator or the TABLE.* operator. -**         If found, expand each "*" to be every column in every table -**         and TABLE.* to be every column in TABLE. -** -** Return 0 on success.  If there are problems, leave an error message -** in pParse and return non-zero. -*/ -static int fillInColumnList(Parse *pParse, Select *p){ -  int i, j, k, rc; -  SrcList *pTabList; -  ExprList *pEList; -  Table *pTab; - -  if( p==0 || p->pSrc==0 ) return 1; -  pTabList = p->pSrc; -  pEList = p->pEList; - -  /* Look up every table in the table list. -  */ -  for(i=0; i<pTabList->nSrc; i++){ -    if( pTabList->a[i].pTab ){ -      /* This routine has run before!  No need to continue */ -      return 0; -    } -    if( pTabList->a[i].zName==0 ){ -      /* A sub-query in the FROM clause of a SELECT */ -      assert( pTabList->a[i].pSelect!=0 ); -      if( pTabList->a[i].zAlias==0 ){ -        char zFakeName[60]; -        sprintf(zFakeName, "sqlite_subquery_%p_", -           (void*)pTabList->a[i].pSelect); -        sqliteSetString(&pTabList->a[i].zAlias, zFakeName, 0); -      } -      pTabList->a[i].pTab = pTab =  -        sqliteResultSetOfSelect(pParse, pTabList->a[i].zAlias, -                                        pTabList->a[i].pSelect); -      if( pTab==0 ){ -        return 1; -      } -      /* The isTransient flag indicates that the Table structure has been -      ** dynamically allocated and may be freed at any time.  In other words, -      ** pTab is not pointing to a persistent table structure that defines -      ** part of the schema. */ -      pTab->isTransient = 1; -    }else{ -      /* An ordinary table or view name in the FROM clause */ -      pTabList->a[i].pTab = pTab =  -        sqliteLocateTable(pParse,pTabList->a[i].zName,pTabList->a[i].zDatabase); -      if( pTab==0 ){ -        return 1; -      } -      if( pTab->pSelect ){ -        /* We reach here if the named table is a really a view */ -        if( sqliteViewGetColumnNames(pParse, pTab) ){ -          return 1; -        } -        /* If pTabList->a[i].pSelect!=0 it means we are dealing with a -        ** view within a view.  The SELECT structure has already been -        ** copied by the outer view so we can skip the copy step here -        ** in the inner view. -        */ -        if( pTabList->a[i].pSelect==0 ){ -          pTabList->a[i].pSelect = sqliteSelectDup(pTab->pSelect); -        } -      } -    } -  } - -  /* Process NATURAL keywords, and ON and USING clauses of joins. -  */ -  if( sqliteProcessJoin(pParse, p) ) return 1; - -  /* For every "*" that occurs in the column list, insert the names of -  ** all columns in all tables.  And for every TABLE.* insert the names -  ** of all columns in TABLE.  The parser inserted a special expression -  ** with the TK_ALL operator for each "*" that it found in the column list. -  ** The following code just has to locate the TK_ALL expressions and expand -  ** each one to the list of all columns in all tables. -  ** -  ** The first loop just checks to see if there are any "*" operators -  ** that need expanding. -  */ -  for(k=0; k<pEList->nExpr; k++){ -    Expr *pE = pEList->a[k].pExpr; -    if( pE->op==TK_ALL ) break; -    if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL -         && pE->pLeft && pE->pLeft->op==TK_ID ) break; -  } -  rc = 0; -  if( k<pEList->nExpr ){ -    /* -    ** If we get here it means the result set contains one or more "*" -    ** operators that need to be expanded.  Loop through each expression -    ** in the result set and expand them one by one. -    */ -    struct ExprList_item *a = pEList->a; -    ExprList *pNew = 0; -    for(k=0; k<pEList->nExpr; k++){ -      Expr *pE = a[k].pExpr; -      if( pE->op!=TK_ALL && -           (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ -        /* This particular expression does not need to be expanded. -        */ -        pNew = sqliteExprListAppend(pNew, a[k].pExpr, 0); -        pNew->a[pNew->nExpr-1].zName = a[k].zName; -        a[k].pExpr = 0; -        a[k].zName = 0; -      }else{ -        /* This expression is a "*" or a "TABLE.*" and needs to be -        ** expanded. */ -        int tableSeen = 0;      /* Set to 1 when TABLE matches */ -        char *zTName;           /* text of name of TABLE */ -        if( pE->op==TK_DOT && pE->pLeft ){ -          zTName = sqliteTableNameFromToken(&pE->pLeft->token); -        }else{ -          zTName = 0; -        } -        for(i=0; i<pTabList->nSrc; i++){ -          Table *pTab = pTabList->a[i].pTab; -          char *zTabName = pTabList->a[i].zAlias; -          if( zTabName==0 || zTabName[0]==0 ){  -            zTabName = pTab->zName; -          } -          if( zTName && (zTabName==0 || zTabName[0]==0 ||  -                 sqliteStrICmp(zTName, zTabName)!=0) ){ -            continue; -          } -          tableSeen = 1; -          for(j=0; j<pTab->nCol; j++){ -            Expr *pExpr, *pLeft, *pRight; -            char *zName = pTab->aCol[j].zName; - -            if( i>0 && (pTabList->a[i-1].jointype & JT_NATURAL)!=0 && -                columnIndex(pTabList->a[i-1].pTab, zName)>=0 ){ -              /* In a NATURAL join, omit the join columns from the  -              ** table on the right */ -              continue; -            } -            if( i>0 && sqliteIdListIndex(pTabList->a[i-1].pUsing, zName)>=0 ){ -              /* In a join with a USING clause, omit columns in the -              ** using clause from the table on the right. */ -              continue; -            } -            pRight = sqliteExpr(TK_ID, 0, 0, 0); -            if( pRight==0 ) break; -            pRight->token.z = zName; -            pRight->token.n = strlen(zName); -            pRight->token.dyn = 0; -            if( zTabName && pTabList->nSrc>1 ){ -              pLeft = sqliteExpr(TK_ID, 0, 0, 0); -              pExpr = sqliteExpr(TK_DOT, pLeft, pRight, 0); -              if( pExpr==0 ) break; -              pLeft->token.z = zTabName; -              pLeft->token.n = strlen(zTabName); -              pLeft->token.dyn = 0; -              sqliteSetString((char**)&pExpr->span.z, zTabName, ".", zName, 0); -              pExpr->span.n = strlen(pExpr->span.z); -              pExpr->span.dyn = 1; -              pExpr->token.z = 0; -              pExpr->token.n = 0; -              pExpr->token.dyn = 0; -            }else{ -              pExpr = pRight; -              pExpr->span = pExpr->token; -            } -            pNew = sqliteExprListAppend(pNew, pExpr, 0); -          } -        } -        if( !tableSeen ){ -          if( zTName ){ -            sqliteErrorMsg(pParse, "no such table: %s", zTName); -          }else{ -            sqliteErrorMsg(pParse, "no tables specified"); -          } -          rc = 1; -        } -        sqliteFree(zTName); -      } -    } -    sqliteExprListDelete(pEList); -    p->pEList = pNew; -  } -  return rc; -} - -/* -** This routine recursively unlinks the Select.pSrc.a[].pTab pointers -** in a select structure.  It just sets the pointers to NULL.  This -** routine is recursive in the sense that if the Select.pSrc.a[].pSelect -** pointer is not NULL, this routine is called recursively on that pointer. -** -** This routine is called on the Select structure that defines a -** VIEW in order to undo any bindings to tables.  This is necessary -** because those tables might be DROPed by a subsequent SQL command. -** If the bindings are not removed, then the Select.pSrc->a[].pTab field -** will be left pointing to a deallocated Table structure after the -** DROP and a coredump will occur the next time the VIEW is used. -*/ -void sqliteSelectUnbind(Select *p){ -  int i; -  SrcList *pSrc = p->pSrc; -  Table *pTab; -  if( p==0 ) return; -  for(i=0; i<pSrc->nSrc; i++){ -    if( (pTab = pSrc->a[i].pTab)!=0 ){ -      if( pTab->isTransient ){ -        sqliteDeleteTable(0, pTab); -      } -      pSrc->a[i].pTab = 0; -      if( pSrc->a[i].pSelect ){ -        sqliteSelectUnbind(pSrc->a[i].pSelect); -      } -    } -  } -} - -/* -** This routine associates entries in an ORDER BY expression list with -** columns in a result.  For each ORDER BY expression, the opcode of -** the top-level node is changed to TK_COLUMN and the iColumn value of -** the top-level node is filled in with column number and the iTable -** value of the top-level node is filled with iTable parameter. -** -** If there are prior SELECT clauses, they are processed first.  A match -** in an earlier SELECT takes precedence over a later SELECT. -** -** Any entry that does not match is flagged as an error.  The number -** of errors is returned. -** -** This routine does NOT correctly initialize the Expr.dataType  field -** of the ORDER BY expressions.  The multiSelectSortOrder() routine -** must be called to do that after the individual select statements -** have all been analyzed.  This routine is unable to compute Expr.dataType -** because it must be called before the individual select statements -** have been analyzed. -*/ -static int matchOrderbyToColumn( -  Parse *pParse,          /* A place to leave error messages */ -  Select *pSelect,        /* Match to result columns of this SELECT */ -  ExprList *pOrderBy,     /* The ORDER BY values to match against columns */ -  int iTable,             /* Insert this value in iTable */ -  int mustComplete        /* If TRUE all ORDER BYs must match */ -){ -  int nErr = 0; -  int i, j; -  ExprList *pEList; - -  if( pSelect==0 || pOrderBy==0 ) return 1; -  if( mustComplete ){ -    for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; } -  } -  if( fillInColumnList(pParse, pSelect) ){ -    return 1; -  } -  if( pSelect->pPrior ){ -    if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){ -      return 1; -    } -  } -  pEList = pSelect->pEList; -  for(i=0; i<pOrderBy->nExpr; i++){ -    Expr *pE = pOrderBy->a[i].pExpr; -    int iCol = -1; -    if( pOrderBy->a[i].done ) continue; -    if( sqliteExprIsInteger(pE, &iCol) ){ -      if( iCol<=0 || iCol>pEList->nExpr ){ -        sqliteErrorMsg(pParse, -          "ORDER BY position %d should be between 1 and %d", -          iCol, pEList->nExpr); -        nErr++; -        break; -      } -      if( !mustComplete ) continue; -      iCol--; -    } -    for(j=0; iCol<0 && j<pEList->nExpr; j++){ -      if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){ -        char *zName, *zLabel; -        zName = pEList->a[j].zName; -        assert( pE->token.z ); -        zLabel = sqliteStrNDup(pE->token.z, pE->token.n); -        sqliteDequote(zLabel); -        if( sqliteStrICmp(zName, zLabel)==0 ){  -          iCol = j; -        } -        sqliteFree(zLabel); -      } -      if( iCol<0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){ -        iCol = j; -      } -    } -    if( iCol>=0 ){ -      pE->op = TK_COLUMN; -      pE->iColumn = iCol; -      pE->iTable = iTable; -      pOrderBy->a[i].done = 1; -    } -    if( iCol<0 && mustComplete ){ -      sqliteErrorMsg(pParse, -        "ORDER BY term number %d does not match any result column", i+1); -      nErr++; -      break; -    } -  } -  return nErr;   -} - -/* -** Get a VDBE for the given parser context.  Create a new one if necessary. -** If an error occurs, return NULL and leave a message in pParse. -*/ -Vdbe *sqliteGetVdbe(Parse *pParse){ -  Vdbe *v = pParse->pVdbe; -  if( v==0 ){ -    v = pParse->pVdbe = sqliteVdbeCreate(pParse->db); -  } -  return v; -} - -/* -** This routine sets the Expr.dataType field on all elements of -** the pOrderBy expression list.  The pOrderBy list will have been -** set up by matchOrderbyToColumn().  Hence each expression has -** a TK_COLUMN as its root node.  The Expr.iColumn refers to a  -** column in the result set.   The datatype is set to SQLITE_SO_TEXT -** if the corresponding column in p and every SELECT to the left of -** p has a datatype of SQLITE_SO_TEXT.  If the cooressponding column -** in p or any of the left SELECTs is SQLITE_SO_NUM, then the datatype -** of the order-by expression is set to SQLITE_SO_NUM. -** -** Examples: -** -**     CREATE TABLE one(a INTEGER, b TEXT); -**     CREATE TABLE two(c VARCHAR(5), d FLOAT); -** -**     SELECT b, b FROM one UNION SELECT d, c FROM two ORDER BY 1, 2; -** -** The primary sort key will use SQLITE_SO_NUM because the "d" in -** the second SELECT is numeric.  The 1st column of the first SELECT -** is text but that does not matter because a numeric always overrides -** a text. -** -** The secondary key will use the SQLITE_SO_TEXT sort order because -** both the (second) "b" in the first SELECT and the "c" in the second -** SELECT have a datatype of text. -*/  -static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){ -  int i; -  ExprList *pEList; -  if( pOrderBy==0 ) return; -  if( p==0 ){ -    for(i=0; i<pOrderBy->nExpr; i++){ -      pOrderBy->a[i].pExpr->dataType = SQLITE_SO_TEXT; -    } -    return; -  } -  multiSelectSortOrder(p->pPrior, pOrderBy); -  pEList = p->pEList; -  for(i=0; i<pOrderBy->nExpr; i++){ -    Expr *pE = pOrderBy->a[i].pExpr; -    if( pE->dataType==SQLITE_SO_NUM ) continue; -    assert( pE->iColumn>=0 ); -    if( pEList->nExpr>pE->iColumn ){ -      pE->dataType = sqliteExprType(pEList->a[pE->iColumn].pExpr); -    } -  } -} - -/* -** Compute the iLimit and iOffset fields of the SELECT based on the -** nLimit and nOffset fields.  nLimit and nOffset hold the integers -** that appear in the original SQL statement after the LIMIT and OFFSET -** keywords.  Or that hold -1 and 0 if those keywords are omitted. -** iLimit and iOffset are the integer memory register numbers for -** counters used to compute the limit and offset.  If there is no -** limit and/or offset, then iLimit and iOffset are negative. -** -** This routine changes the values if iLimit and iOffset only if -** a limit or offset is defined by nLimit and nOffset.  iLimit and -** iOffset should have been preset to appropriate default values -** (usually but not always -1) prior to calling this routine. -** Only if nLimit>=0 or nOffset>0 do the limit registers get -** redefined.  The UNION ALL operator uses this property to force -** the reuse of the same limit and offset registers across multiple -** SELECT statements. -*/ -static void computeLimitRegisters(Parse *pParse, Select *p){ -  /*  -  ** If the comparison is p->nLimit>0 then "LIMIT 0" shows -  ** all rows.  It is the same as no limit. If the comparision is -  ** p->nLimit>=0 then "LIMIT 0" show no rows at all. -  ** "LIMIT -1" always shows all rows.  There is some -  ** contraversy about what the correct behavior should be. -  ** The current implementation interprets "LIMIT 0" to mean -  ** no rows. -  */ -  if( p->nLimit>=0 ){ -    int iMem = pParse->nMem++; -    Vdbe *v = sqliteGetVdbe(pParse); -    if( v==0 ) return; -    sqliteVdbeAddOp(v, OP_Integer, -p->nLimit, 0); -    sqliteVdbeAddOp(v, OP_MemStore, iMem, 1); -    p->iLimit = iMem; -  } -  if( p->nOffset>0 ){ -    int iMem = pParse->nMem++; -    Vdbe *v = sqliteGetVdbe(pParse); -    if( v==0 ) return; -    sqliteVdbeAddOp(v, OP_Integer, -p->nOffset, 0); -    sqliteVdbeAddOp(v, OP_MemStore, iMem, 1); -    p->iOffset = iMem; -  } -} - -/* -** This routine is called to process a query that is really the union -** or intersection of two or more separate queries. -** -** "p" points to the right-most of the two queries.  the query on the -** left is p->pPrior.  The left query could also be a compound query -** in which case this routine will be called recursively.  -** -** The results of the total query are to be written into a destination -** of type eDest with parameter iParm. -** -** Example 1:  Consider a three-way compound SQL statement. -** -**     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 -** -** This statement is parsed up as follows: -** -**     SELECT c FROM t3 -**      | -**      `----->  SELECT b FROM t2 -**                | -**                `------>  SELECT a FROM t1 -** -** The arrows in the diagram above represent the Select.pPrior pointer. -** So if this routine is called with p equal to the t3 query, then -** pPrior will be the t2 query.  p->op will be TK_UNION in this case. -** -** Notice that because of the way SQLite parses compound SELECTs, the -** individual selects always group from left to right. -*/ -static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){ -  int rc;             /* Success code from a subroutine */ -  Select *pPrior;     /* Another SELECT immediately to our left */ -  Vdbe *v;            /* Generate code to this VDBE */ - -  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only -  ** the last SELECT in the series may have an ORDER BY or LIMIT. -  */ -  if( p==0 || p->pPrior==0 ) return 1; -  pPrior = p->pPrior; -  if( pPrior->pOrderBy ){ -    sqliteErrorMsg(pParse,"ORDER BY clause should come after %s not before", -      selectOpName(p->op)); -    return 1; -  } -  if( pPrior->nLimit>=0 || pPrior->nOffset>0 ){ -    sqliteErrorMsg(pParse,"LIMIT clause should come after %s not before", -      selectOpName(p->op)); -    return 1; -  } - -  /* Make sure we have a valid query engine.  If not, create a new one. -  */ -  v = sqliteGetVdbe(pParse); -  if( v==0 ) return 1; - -  /* Create the destination temporary table if necessary -  */ -  if( eDest==SRT_TempTable ){ -    sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0); -    eDest = SRT_Table; -  } - -  /* Generate code for the left and right SELECT statements. -  */ -  switch( p->op ){ -    case TK_ALL: { -      if( p->pOrderBy==0 ){ -        pPrior->nLimit = p->nLimit; -        pPrior->nOffset = p->nOffset; -        rc = sqliteSelect(pParse, pPrior, eDest, iParm, 0, 0, 0); -        if( rc ) return rc; -        p->pPrior = 0; -        p->iLimit = pPrior->iLimit; -        p->iOffset = pPrior->iOffset; -        p->nLimit = -1; -        p->nOffset = 0; -        rc = sqliteSelect(pParse, p, eDest, iParm, 0, 0, 0); -        p->pPrior = pPrior; -        if( rc ) return rc; -        break; -      } -      /* For UNION ALL ... ORDER BY fall through to the next case */ -    } -    case TK_EXCEPT: -    case TK_UNION: { -      int unionTab;    /* Cursor number of the temporary table holding result */ -      int op;          /* One of the SRT_ operations to apply to self */ -      int priorOp;     /* The SRT_ operation to apply to prior selects */ -      int nLimit, nOffset; /* Saved values of p->nLimit and p->nOffset */ -      ExprList *pOrderBy;  /* The ORDER BY clause for the right SELECT */ - -      priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; -      if( eDest==priorOp && p->pOrderBy==0 && p->nLimit<0 && p->nOffset==0 ){ -        /* We can reuse a temporary table generated by a SELECT to our -        ** right. -        */ -        unionTab = iParm; -      }else{ -        /* We will need to create our own temporary table to hold the -        ** intermediate results. -        */ -        unionTab = pParse->nTab++; -        if( p->pOrderBy  -        && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){ -          return 1; -        } -        if( p->op!=TK_ALL ){ -          sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1); -          sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1); -        }else{ -          sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0); -        } -      } - -      /* Code the SELECT statements to our left -      */ -      rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0); -      if( rc ) return rc; - -      /* Code the current SELECT statement -      */ -      switch( p->op ){ -         case TK_EXCEPT:  op = SRT_Except;   break; -         case TK_UNION:   op = SRT_Union;    break; -         case TK_ALL:     op = SRT_Table;    break; -      } -      p->pPrior = 0; -      pOrderBy = p->pOrderBy; -      p->pOrderBy = 0; -      nLimit = p->nLimit; -      p->nLimit = -1; -      nOffset = p->nOffset; -      p->nOffset = 0; -      rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0); -      p->pPrior = pPrior; -      p->pOrderBy = pOrderBy; -      p->nLimit = nLimit; -      p->nOffset = nOffset; -      if( rc ) return rc; - -      /* Convert the data in the temporary table into whatever form -      ** it is that we currently need. -      */       -      if( eDest!=priorOp || unionTab!=iParm ){ -        int iCont, iBreak, iStart; -        assert( p->pEList ); -        if( eDest==SRT_Callback ){ -          generateColumnNames(pParse, 0, p->pEList); -          generateColumnTypes(pParse, p->pSrc, p->pEList); -        } -        iBreak = sqliteVdbeMakeLabel(v); -        iCont = sqliteVdbeMakeLabel(v); -        sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak); -        computeLimitRegisters(pParse, p); -        iStart = sqliteVdbeCurrentAddr(v); -        multiSelectSortOrder(p, p->pOrderBy); -        rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, -                             p->pOrderBy, -1, eDest, iParm,  -                             iCont, iBreak); -        if( rc ) return 1; -        sqliteVdbeResolveLabel(v, iCont); -        sqliteVdbeAddOp(v, OP_Next, unionTab, iStart); -        sqliteVdbeResolveLabel(v, iBreak); -        sqliteVdbeAddOp(v, OP_Close, unionTab, 0); -        if( p->pOrderBy ){ -          generateSortTail(p, v, p->pEList->nExpr, eDest, iParm); -        } -      } -      break; -    } -    case TK_INTERSECT: { -      int tab1, tab2; -      int iCont, iBreak, iStart; -      int nLimit, nOffset; - -      /* INTERSECT is different from the others since it requires -      ** two temporary tables.  Hence it has its own case.  Begin -      ** by allocating the tables we will need. -      */ -      tab1 = pParse->nTab++; -      tab2 = pParse->nTab++; -      if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){ -        return 1; -      } -      sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1); -      sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1); - -      /* Code the SELECTs to our left into temporary table "tab1". -      */ -      rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0); -      if( rc ) return rc; - -      /* Code the current SELECT into temporary table "tab2" -      */ -      sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1); -      sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1); -      p->pPrior = 0; -      nLimit = p->nLimit; -      p->nLimit = -1; -      nOffset = p->nOffset; -      p->nOffset = 0; -      rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0); -      p->pPrior = pPrior; -      p->nLimit = nLimit; -      p->nOffset = nOffset; -      if( rc ) return rc; - -      /* Generate code to take the intersection of the two temporary -      ** tables. -      */ -      assert( p->pEList ); -      if( eDest==SRT_Callback ){ -        generateColumnNames(pParse, 0, p->pEList); -        generateColumnTypes(pParse, p->pSrc, p->pEList); -      } -      iBreak = sqliteVdbeMakeLabel(v); -      iCont = sqliteVdbeMakeLabel(v); -      sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak); -      computeLimitRegisters(pParse, p); -      iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0); -      sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont); -      multiSelectSortOrder(p, p->pOrderBy); -      rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, -                             p->pOrderBy, -1, eDest, iParm,  -                             iCont, iBreak); -      if( rc ) return 1; -      sqliteVdbeResolveLabel(v, iCont); -      sqliteVdbeAddOp(v, OP_Next, tab1, iStart); -      sqliteVdbeResolveLabel(v, iBreak); -      sqliteVdbeAddOp(v, OP_Close, tab2, 0); -      sqliteVdbeAddOp(v, OP_Close, tab1, 0); -      if( p->pOrderBy ){ -        generateSortTail(p, v, p->pEList->nExpr, eDest, iParm); -      } -      break; -    } -  } -  assert( p->pEList && pPrior->pEList ); -  if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ -    sqliteErrorMsg(pParse, "SELECTs to the left and right of %s" -      " do not have the same number of result columns", selectOpName(p->op)); -    return 1; -  } -  return 0; -} - -/* -** Scan through the expression pExpr.  Replace every reference to -** a column in table number iTable with a copy of the iColumn-th -** entry in pEList.  (But leave references to the ROWID column  -** unchanged.) -** -** This routine is part of the flattening procedure.  A subquery -** whose result set is defined by pEList appears as entry in the -** FROM clause of a SELECT such that the VDBE cursor assigned to that -** FORM clause entry is iTable.  This routine make the necessary  -** changes to pExpr so that it refers directly to the source table -** of the subquery rather the result set of the subquery. -*/ -static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */ -static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){ -  if( pExpr==0 ) return; -  if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ -    if( pExpr->iColumn<0 ){ -      pExpr->op = TK_NULL; -    }else{ -      Expr *pNew; -      assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); -      assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); -      pNew = pEList->a[pExpr->iColumn].pExpr; -      assert( pNew!=0 ); -      pExpr->op = pNew->op; -      pExpr->dataType = pNew->dataType; -      assert( pExpr->pLeft==0 ); -      pExpr->pLeft = sqliteExprDup(pNew->pLeft); -      assert( pExpr->pRight==0 ); -      pExpr->pRight = sqliteExprDup(pNew->pRight); -      assert( pExpr->pList==0 ); -      pExpr->pList = sqliteExprListDup(pNew->pList); -      pExpr->iTable = pNew->iTable; -      pExpr->iColumn = pNew->iColumn; -      pExpr->iAgg = pNew->iAgg; -      sqliteTokenCopy(&pExpr->token, &pNew->token); -      sqliteTokenCopy(&pExpr->span, &pNew->span); -    } -  }else{ -    substExpr(pExpr->pLeft, iTable, pEList); -    substExpr(pExpr->pRight, iTable, pEList); -    substExprList(pExpr->pList, iTable, pEList); -  } -} -static void  -substExprList(ExprList *pList, int iTable, ExprList *pEList){ -  int i; -  if( pList==0 ) return; -  for(i=0; i<pList->nExpr; i++){ -    substExpr(pList->a[i].pExpr, iTable, pEList); -  } -} - -/* -** This routine attempts to flatten subqueries in order to speed -** execution.  It returns 1 if it makes changes and 0 if no flattening -** occurs. -** -** To understand the concept of flattening, consider the following -** query: -** -**     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 -** -** The default way of implementing this query is to execute the -** subquery first and store the results in a temporary table, then -** run the outer query on that temporary table.  This requires two -** passes over the data.  Furthermore, because the temporary table -** has no indices, the WHERE clause on the outer query cannot be -** optimized. -** -** This routine attempts to rewrite queries such as the above into -** a single flat select, like this: -** -**     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 -** -** The code generated for this simpification gives the same result -** but only has to scan the data once.  And because indices might  -** exist on the table t1, a complete scan of the data might be -** avoided. -** -** Flattening is only attempted if all of the following are true: -** -**   (1)  The subquery and the outer query do not both use aggregates. -** -**   (2)  The subquery is not an aggregate or the outer query is not a join. -** -**   (3)  The subquery is not the right operand of a left outer join, or -**        the subquery is not itself a join.  (Ticket #306) -** -**   (4)  The subquery is not DISTINCT or the outer query is not a join. -** -**   (5)  The subquery is not DISTINCT or the outer query does not use -**        aggregates. -** -**   (6)  The subquery does not use aggregates or the outer query is not -**        DISTINCT. -** -**   (7)  The subquery has a FROM clause. -** -**   (8)  The subquery does not use LIMIT or the outer query is not a join. -** -**   (9)  The subquery does not use LIMIT or the outer query does not use -**        aggregates. -** -**  (10)  The subquery does not use aggregates or the outer query does not -**        use LIMIT. -** -**  (11)  The subquery and the outer query do not both have ORDER BY clauses. -** -**  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the -**        subquery has no WHERE clause.  (added by ticket #350) -** -** In this routine, the "p" parameter is a pointer to the outer query. -** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query -** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. -** -** If flattening is not attempted, this routine is a no-op and returns 0. -** If flattening is attempted this routine returns 1. -** -** All of the expression analysis must occur on both the outer query and -** the subquery before this routine runs. -*/ -static int flattenSubquery( -  Parse *pParse,       /* The parsing context */ -  Select *p,           /* The parent or outer SELECT statement */ -  int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */ -  int isAgg,           /* True if outer SELECT uses aggregate functions */ -  int subqueryIsAgg    /* True if the subquery uses aggregate functions */ -){ -  Select *pSub;       /* The inner query or "subquery" */ -  SrcList *pSrc;      /* The FROM clause of the outer query */ -  SrcList *pSubSrc;   /* The FROM clause of the subquery */ -  ExprList *pList;    /* The result set of the outer query */ -  int iParent;        /* VDBE cursor number of the pSub result set temp table */ -  int i; -  Expr *pWhere; - -  /* Check to see if flattening is permitted.  Return 0 if not. -  */ -  if( p==0 ) return 0; -  pSrc = p->pSrc; -  assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); -  pSub = pSrc->a[iFrom].pSelect; -  assert( pSub!=0 ); -  if( isAgg && subqueryIsAgg ) return 0; -  if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; -  pSubSrc = pSub->pSrc; -  assert( pSubSrc ); -  if( pSubSrc->nSrc==0 ) return 0; -  if( (pSub->isDistinct || pSub->nLimit>=0) &&  (pSrc->nSrc>1 || isAgg) ){ -     return 0; -  } -  if( (p->isDistinct || p->nLimit>=0) && subqueryIsAgg ) return 0; -  if( p->pOrderBy && pSub->pOrderBy ) return 0; - -  /* Restriction 3:  If the subquery is a join, make sure the subquery is  -  ** not used as the right operand of an outer join.  Examples of why this -  ** is not allowed: -  ** -  **         t1 LEFT OUTER JOIN (t2 JOIN t3) -  ** -  ** If we flatten the above, we would get -  ** -  **         (t1 LEFT OUTER JOIN t2) JOIN t3 -  ** -  ** which is not at all the same thing. -  */ -  if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){ -    return 0; -  } - -  /* Restriction 12:  If the subquery is the right operand of a left outer -  ** join, make sure the subquery has no WHERE clause. -  ** An examples of why this is not allowed: -  ** -  **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) -  ** -  ** If we flatten the above, we would get -  ** -  **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 -  ** -  ** But the t2.x>0 test will always fail on a NULL row of t2, which -  ** effectively converts the OUTER JOIN into an INNER JOIN. -  */ -  if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0  -      && pSub->pWhere!=0 ){ -    return 0; -  } - -  /* If we reach this point, it means flattening is permitted for the -  ** iFrom-th entry of the FROM clause in the outer query. -  */ - -  /* Move all of the FROM elements of the subquery into the -  ** the FROM clause of the outer query.  Before doing this, remember -  ** the cursor number for the original outer query FROM element in -  ** iParent.  The iParent cursor will never be used.  Subsequent code -  ** will scan expressions looking for iParent references and replace -  ** those references with expressions that resolve to the subquery FROM -  ** elements we are now copying in. -  */ -  iParent = pSrc->a[iFrom].iCursor; -  { -    int nSubSrc = pSubSrc->nSrc; -    int jointype = pSrc->a[iFrom].jointype; - -    if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){ -      sqliteDeleteTable(0, pSrc->a[iFrom].pTab); -    } -    sqliteFree(pSrc->a[iFrom].zDatabase); -    sqliteFree(pSrc->a[iFrom].zName); -    sqliteFree(pSrc->a[iFrom].zAlias); -    if( nSubSrc>1 ){ -      int extra = nSubSrc - 1; -      for(i=1; i<nSubSrc; i++){ -        pSrc = sqliteSrcListAppend(pSrc, 0, 0); -      } -      p->pSrc = pSrc; -      for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ -        pSrc->a[i] = pSrc->a[i-extra]; -      } -    } -    for(i=0; i<nSubSrc; i++){ -      pSrc->a[i+iFrom] = pSubSrc->a[i]; -      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); -    } -    pSrc->a[iFrom+nSubSrc-1].jointype = jointype; -  } - -  /* Now begin substituting subquery result set expressions for  -  ** references to the iParent in the outer query. -  **  -  ** Example: -  ** -  **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; -  **   \                     \_____________ subquery __________/          / -  **    \_____________________ outer query ______________________________/ -  ** -  ** We look at every expression in the outer query and every place we see -  ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". -  */ -  substExprList(p->pEList, iParent, pSub->pEList); -  pList = p->pEList; -  for(i=0; i<pList->nExpr; i++){ -    Expr *pExpr; -    if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ -      pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n); -    } -  } -  if( isAgg ){ -    substExprList(p->pGroupBy, iParent, pSub->pEList); -    substExpr(p->pHaving, iParent, pSub->pEList); -  } -  if( pSub->pOrderBy ){ -    assert( p->pOrderBy==0 ); -    p->pOrderBy = pSub->pOrderBy; -    pSub->pOrderBy = 0; -  }else if( p->pOrderBy ){ -    substExprList(p->pOrderBy, iParent, pSub->pEList); -  } -  if( pSub->pWhere ){ -    pWhere = sqliteExprDup(pSub->pWhere); -  }else{ -    pWhere = 0; -  } -  if( subqueryIsAgg ){ -    assert( p->pHaving==0 ); -    p->pHaving = p->pWhere; -    p->pWhere = pWhere; -    substExpr(p->pHaving, iParent, pSub->pEList); -    if( pSub->pHaving ){ -      Expr *pHaving = sqliteExprDup(pSub->pHaving); -      if( p->pHaving ){ -        p->pHaving = sqliteExpr(TK_AND, p->pHaving, pHaving, 0); -      }else{ -        p->pHaving = pHaving; -      } -    } -    assert( p->pGroupBy==0 ); -    p->pGroupBy = sqliteExprListDup(pSub->pGroupBy); -  }else if( p->pWhere==0 ){ -    p->pWhere = pWhere; -  }else{ -    substExpr(p->pWhere, iParent, pSub->pEList); -    if( pWhere ){ -      p->pWhere = sqliteExpr(TK_AND, p->pWhere, pWhere, 0); -    } -  } - -  /* The flattened query is distinct if either the inner or the -  ** outer query is distinct.  -  */ -  p->isDistinct = p->isDistinct || pSub->isDistinct; - -  /* Transfer the limit expression from the subquery to the outer -  ** query. -  */ -  if( pSub->nLimit>=0 ){ -    if( p->nLimit<0 ){ -      p->nLimit = pSub->nLimit; -    }else if( p->nLimit+p->nOffset > pSub->nLimit+pSub->nOffset ){ -      p->nLimit = pSub->nLimit + pSub->nOffset - p->nOffset; -    } -  } -  p->nOffset += pSub->nOffset; - -  /* Finially, delete what is left of the subquery and return -  ** success. -  */ -  sqliteSelectDelete(pSub); -  return 1; -} - -/* -** Analyze the SELECT statement passed in as an argument to see if it -** is a simple min() or max() query.  If it is and this query can be -** satisfied using a single seek to the beginning or end of an index, -** then generate the code for this SELECT and return 1.  If this is not a  -** simple min() or max() query, then return 0; -** -** A simply min() or max() query looks like this: -** -**    SELECT min(a) FROM table; -**    SELECT max(a) FROM table; -** -** The query may have only a single table in its FROM argument.  There -** can be no GROUP BY or HAVING or WHERE clauses.  The result set must -** be the min() or max() of a single column of the table.  The column -** in the min() or max() function must be indexed. -** -** The parameters to this routine are the same as for sqliteSelect(). -** See the header comment on that routine for additional information. -*/ -static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ -  Expr *pExpr; -  int iCol; -  Table *pTab; -  Index *pIdx; -  int base; -  Vdbe *v; -  int seekOp; -  int cont; -  ExprList *pEList, *pList, eList; -  struct ExprList_item eListItem; -  SrcList *pSrc; -   - -  /* Check to see if this query is a simple min() or max() query.  Return -  ** zero if it is  not. -  */ -  if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; -  pSrc = p->pSrc; -  if( pSrc->nSrc!=1 ) return 0; -  pEList = p->pEList; -  if( pEList->nExpr!=1 ) return 0; -  pExpr = pEList->a[0].pExpr; -  if( pExpr->op!=TK_AGG_FUNCTION ) return 0; -  pList = pExpr->pList; -  if( pList==0 || pList->nExpr!=1 ) return 0; -  if( pExpr->token.n!=3 ) return 0; -  if( sqliteStrNICmp(pExpr->token.z,"min",3)==0 ){ -    seekOp = OP_Rewind; -  }else if( sqliteStrNICmp(pExpr->token.z,"max",3)==0 ){ -    seekOp = OP_Last; -  }else{ -    return 0; -  } -  pExpr = pList->a[0].pExpr; -  if( pExpr->op!=TK_COLUMN ) return 0; -  iCol = pExpr->iColumn; -  pTab = pSrc->a[0].pTab; - -  /* If we get to here, it means the query is of the correct form. -  ** Check to make sure we have an index and make pIdx point to the -  ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY -  ** key column, no index is necessary so set pIdx to NULL.  If no -  ** usable index is found, return 0. -  */ -  if( iCol<0 ){ -    pIdx = 0; -  }else{ -    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ -      assert( pIdx->nColumn>=1 ); -      if( pIdx->aiColumn[0]==iCol ) break; -    } -    if( pIdx==0 ) return 0; -  } - -  /* Identify column types if we will be using the callback.  This -  ** step is skipped if the output is going to a table or a memory cell. -  ** The column names have already been generated in the calling function. -  */ -  v = sqliteGetVdbe(pParse); -  if( v==0 ) return 0; -  if( eDest==SRT_Callback ){ -    generateColumnTypes(pParse, p->pSrc, p->pEList); -  } - -  /* If the output is destined for a temporary table, open that table. -  */ -  if( eDest==SRT_TempTable ){ -    sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0); -  } - -  /* Generating code to find the min or the max.  Basically all we have -  ** to do is find the first or the last entry in the chosen index.  If -  ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first -  ** or last entry in the main table. -  */ -  sqliteCodeVerifySchema(pParse, pTab->iDb); -  base = pSrc->a[0].iCursor; -  computeLimitRegisters(pParse, p); -  if( pSrc->a[0].pSelect==0 ){ -    sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); -    sqliteVdbeOp3(v, OP_OpenRead, base, pTab->tnum, pTab->zName, 0); -  } -  cont = sqliteVdbeMakeLabel(v); -  if( pIdx==0 ){ -    sqliteVdbeAddOp(v, seekOp, base, 0); -  }else{ -    sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0); -    sqliteVdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum, pIdx->zName, P3_STATIC); -    if( seekOp==OP_Rewind ){ -      sqliteVdbeAddOp(v, OP_String, 0, 0); -      sqliteVdbeAddOp(v, OP_MakeKey, 1, 0); -      sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); -      seekOp = OP_MoveTo; -    } -    sqliteVdbeAddOp(v, seekOp, base+1, 0); -    sqliteVdbeAddOp(v, OP_IdxRecno, base+1, 0); -    sqliteVdbeAddOp(v, OP_Close, base+1, 0); -    sqliteVdbeAddOp(v, OP_MoveTo, base, 0); -  } -  eList.nExpr = 1; -  memset(&eListItem, 0, sizeof(eListItem)); -  eList.a = &eListItem; -  eList.a[0].pExpr = pExpr; -  selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont); -  sqliteVdbeResolveLabel(v, cont); -  sqliteVdbeAddOp(v, OP_Close, base, 0); -   -  return 1; -} - -/* -** Generate code for the given SELECT statement. -** -** The results are distributed in various ways depending on the -** value of eDest and iParm. -** -**     eDest Value       Result -**     ------------    ------------------------------------------- -**     SRT_Callback    Invoke the callback for each row of the result. -** -**     SRT_Mem         Store first result in memory cell iParm -** -**     SRT_Set         Store results as keys of a table with cursor iParm -** -**     SRT_Union       Store results as a key in a temporary table iParm -** -**     SRT_Except      Remove results from the temporary table iParm. -** -**     SRT_Table       Store results in temporary table iParm -** -** The table above is incomplete.  Additional eDist value have be added -** since this comment was written.  See the selectInnerLoop() function for -** a complete listing of the allowed values of eDest and their meanings. -** -** This routine returns the number of errors.  If any errors are -** encountered, then an appropriate error message is left in -** pParse->zErrMsg. -** -** This routine does NOT free the Select structure passed in.  The -** calling function needs to do that. -** -** The pParent, parentTab, and *pParentAgg fields are filled in if this -** SELECT is a subquery.  This routine may try to combine this SELECT -** with its parent to form a single flat query.  In so doing, it might -** change the parent query from a non-aggregate to an aggregate query. -** For that reason, the pParentAgg flag is passed as a pointer, so it -** can be changed. -** -** Example 1:   The meaning of the pParent parameter. -** -**    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; -**    \                      \_______ subquery _______/        / -**     \                                                      / -**      \____________________ outer query ___________________/ -** -** This routine is called for the outer query first.   For that call, -** pParent will be NULL.  During the processing of the outer query, this  -** routine is called recursively to handle the subquery.  For the recursive -** call, pParent will point to the outer query.  Because the subquery is -** the second element in a three-way join, the parentTab parameter will -** be 1 (the 2nd value of a 0-indexed array.) -*/ -int sqliteSelect( -  Parse *pParse,         /* The parser context */ -  Select *p,             /* The SELECT statement being coded. */ -  int eDest,             /* How to dispose of the results */ -  int iParm,             /* A parameter used by the eDest disposal method */ -  Select *pParent,       /* Another SELECT for which this is a sub-query */ -  int parentTab,         /* Index in pParent->pSrc of this query */ -  int *pParentAgg        /* True if pParent uses aggregate functions */ -){ -  int i; -  WhereInfo *pWInfo; -  Vdbe *v; -  int isAgg = 0;         /* True for select lists like "count(*)" */ -  ExprList *pEList;      /* List of columns to extract. */ -  SrcList *pTabList;     /* List of tables to select from */ -  Expr *pWhere;          /* The WHERE clause.  May be NULL */ -  ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */ -  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */ -  Expr *pHaving;         /* The HAVING clause.  May be NULL */ -  int isDistinct;        /* True if the DISTINCT keyword is present */ -  int distinct;          /* Table to use for the distinct set */ -  int rc = 1;            /* Value to return from this function */ - -  if( sqlite_malloc_failed || pParse->nErr || p==0 ) return 1; -  if( sqliteAuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; - -  /* If there is are a sequence of queries, do the earlier ones first. -  */ -  if( p->pPrior ){ -    return multiSelect(pParse, p, eDest, iParm); -  } - -  /* Make local copies of the parameters for this query. -  */ -  pTabList = p->pSrc; -  pWhere = p->pWhere; -  pOrderBy = p->pOrderBy; -  pGroupBy = p->pGroupBy; -  pHaving = p->pHaving; -  isDistinct = p->isDistinct; - -  /* Allocate VDBE cursors for each table in the FROM clause -  */ -  sqliteSrcListAssignCursors(pParse, pTabList); - -  /*  -  ** Do not even attempt to generate any code if we have already seen -  ** errors before this routine starts. -  */ -  if( pParse->nErr>0 ) goto select_end; - -  /* Expand any "*" terms in the result set.  (For example the "*" in -  ** "SELECT * FROM t1")  The fillInColumnlist() routine also does some -  ** other housekeeping - see the header comment for details. -  */ -  if( fillInColumnList(pParse, p) ){ -    goto select_end; -  } -  pWhere = p->pWhere; -  pEList = p->pEList; -  if( pEList==0 ) goto select_end; - -  /* If writing to memory or generating a set -  ** only a single column may be output. -  */ -  if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){ -    sqliteErrorMsg(pParse, "only a single result allowed for " -       "a SELECT that is part of an expression"); -    goto select_end; -  } - -  /* ORDER BY is ignored for some destinations. -  */ -  switch( eDest ){ -    case SRT_Union: -    case SRT_Except: -    case SRT_Discard: -      pOrderBy = 0; -      break; -    default: -      break; -  } - -  /* At this point, we should have allocated all the cursors that we -  ** need to handle subquerys and temporary tables.   -  ** -  ** Resolve the column names and do a semantics check on all the expressions. -  */ -  for(i=0; i<pEList->nExpr; i++){ -    if( sqliteExprResolveIds(pParse, pTabList, 0, pEList->a[i].pExpr) ){ -      goto select_end; -    } -    if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){ -      goto select_end; -    } -  } -  if( pWhere ){ -    if( sqliteExprResolveIds(pParse, pTabList, pEList, pWhere) ){ -      goto select_end; -    } -    if( sqliteExprCheck(pParse, pWhere, 0, 0) ){ -      goto select_end; -    } -  } -  if( pHaving ){ -    if( pGroupBy==0 ){ -      sqliteErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); -      goto select_end; -    } -    if( sqliteExprResolveIds(pParse, pTabList, pEList, pHaving) ){ -      goto select_end; -    } -    if( sqliteExprCheck(pParse, pHaving, 1, &isAgg) ){ -      goto select_end; -    } -  } -  if( pOrderBy ){ -    for(i=0; i<pOrderBy->nExpr; i++){ -      int iCol; -      Expr *pE = pOrderBy->a[i].pExpr; -      if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){ -        sqliteExprDelete(pE); -        pE = pOrderBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr); -      } -      if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){ -        goto select_end; -      } -      if( sqliteExprCheck(pParse, pE, isAgg, 0) ){ -        goto select_end; -      } -      if( sqliteExprIsConstant(pE) ){ -        if( sqliteExprIsInteger(pE, &iCol)==0 ){ -          sqliteErrorMsg(pParse, -             "ORDER BY terms must not be non-integer constants"); -          goto select_end; -        }else if( iCol<=0 || iCol>pEList->nExpr ){ -          sqliteErrorMsg(pParse,  -             "ORDER BY column number %d out of range - should be " -             "between 1 and %d", iCol, pEList->nExpr); -          goto select_end; -        } -      } -    } -  } -  if( pGroupBy ){ -    for(i=0; i<pGroupBy->nExpr; i++){ -      int iCol; -      Expr *pE = pGroupBy->a[i].pExpr; -      if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){ -        sqliteExprDelete(pE); -        pE = pGroupBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr); -      } -      if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){ -        goto select_end; -      } -      if( sqliteExprCheck(pParse, pE, isAgg, 0) ){ -        goto select_end; -      } -      if( sqliteExprIsConstant(pE) ){ -        if( sqliteExprIsInteger(pE, &iCol)==0 ){ -          sqliteErrorMsg(pParse, -            "GROUP BY terms must not be non-integer constants"); -          goto select_end; -        }else if( iCol<=0 || iCol>pEList->nExpr ){ -          sqliteErrorMsg(pParse, -             "GROUP BY column number %d out of range - should be " -             "between 1 and %d", iCol, pEList->nExpr); -          goto select_end; -        } -      } -    } -  } - -  /* Begin generating code. -  */ -  v = sqliteGetVdbe(pParse); -  if( v==0 ) goto select_end; - -  /* Identify column names if we will be using them in a callback.  This -  ** step is skipped if the output is going to some other destination. -  */ -  if( eDest==SRT_Callback ){ -    generateColumnNames(pParse, pTabList, pEList); -  } - -  /* Generate code for all sub-queries in the FROM clause -  */ -  for(i=0; i<pTabList->nSrc; i++){ -    const char *zSavedAuthContext; -    int needRestoreContext; - -    if( pTabList->a[i].pSelect==0 ) continue; -    if( pTabList->a[i].zName!=0 ){ -      zSavedAuthContext = pParse->zAuthContext; -      pParse->zAuthContext = pTabList->a[i].zName; -      needRestoreContext = 1; -    }else{ -      needRestoreContext = 0; -    } -    sqliteSelect(pParse, pTabList->a[i].pSelect, SRT_TempTable,  -                 pTabList->a[i].iCursor, p, i, &isAgg); -    if( needRestoreContext ){ -      pParse->zAuthContext = zSavedAuthContext; -    } -    pTabList = p->pSrc; -    pWhere = p->pWhere; -    if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){ -      pOrderBy = p->pOrderBy; -    } -    pGroupBy = p->pGroupBy; -    pHaving = p->pHaving; -    isDistinct = p->isDistinct; -  } - -  /* Check for the special case of a min() or max() function by itself -  ** in the result set. -  */ -  if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ -    rc = 0; -    goto select_end; -  } - -  /* Check to see if this is a subquery that can be "flattened" into its parent. -  ** If flattening is a possiblity, do so and return immediately.   -  */ -  if( pParent && pParentAgg && -      flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){ -    if( isAgg ) *pParentAgg = 1; -    return rc; -  } - -  /* Set the limiter. -  */ -  computeLimitRegisters(pParse, p); - -  /* Identify column types if we will be using a callback.  This -  ** step is skipped if the output is going to a destination other -  ** than a callback. -  ** -  ** We have to do this separately from the creation of column names -  ** above because if the pTabList contains views then they will not -  ** have been resolved and we will not know the column types until -  ** now. -  */ -  if( eDest==SRT_Callback ){ -    generateColumnTypes(pParse, pTabList, pEList); -  } - -  /* If the output is destined for a temporary table, open that table. -  */ -  if( eDest==SRT_TempTable ){ -    sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0); -  } - -  /* Do an analysis of aggregate expressions. -  */ -  sqliteAggregateInfoReset(pParse); -  if( isAgg || pGroupBy ){ -    assert( pParse->nAgg==0 ); -    isAgg = 1; -    for(i=0; i<pEList->nExpr; i++){ -      if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){ -        goto select_end; -      } -    } -    if( pGroupBy ){ -      for(i=0; i<pGroupBy->nExpr; i++){ -        if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){ -          goto select_end; -        } -      } -    } -    if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){ -      goto select_end; -    } -    if( pOrderBy ){ -      for(i=0; i<pOrderBy->nExpr; i++){ -        if( sqliteExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){ -          goto select_end; -        } -      } -    } -  } - -  /* Reset the aggregator -  */ -  if( isAgg ){ -    sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg); -    for(i=0; i<pParse->nAgg; i++){ -      FuncDef *pFunc; -      if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){ -        sqliteVdbeOp3(v, OP_AggInit, 0, i, (char*)pFunc, P3_POINTER); -      } -    } -    if( pGroupBy==0 ){ -      sqliteVdbeAddOp(v, OP_String, 0, 0); -      sqliteVdbeAddOp(v, OP_AggFocus, 0, 0); -    } -  } - -  /* Initialize the memory cell to NULL -  */ -  if( eDest==SRT_Mem ){ -    sqliteVdbeAddOp(v, OP_String, 0, 0); -    sqliteVdbeAddOp(v, OP_MemStore, iParm, 1); -  } - -  /* Open a temporary table to use for the distinct set. -  */ -  if( isDistinct ){ -    distinct = pParse->nTab++; -    sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 1); -  }else{ -    distinct = -1; -  } - -  /* Begin the database scan -  */ -  pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 0,  -                            pGroupBy ? 0 : &pOrderBy); -  if( pWInfo==0 ) goto select_end; - -  /* Use the standard inner loop if we are not dealing with -  ** aggregates -  */ -  if( !isAgg ){ -    if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, -                    iParm, pWInfo->iContinue, pWInfo->iBreak) ){ -       goto select_end; -    } -  } - -  /* If we are dealing with aggregates, then do the special aggregate -  ** processing.   -  */ -  else{ -    AggExpr *pAgg; -    if( pGroupBy ){ -      int lbl1; -      for(i=0; i<pGroupBy->nExpr; i++){ -        sqliteExprCode(pParse, pGroupBy->a[i].pExpr); -      } -      sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0); -      if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pGroupBy); -      lbl1 = sqliteVdbeMakeLabel(v); -      sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1); -      for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){ -        if( pAgg->isAgg ) continue; -        sqliteExprCode(pParse, pAgg->pExpr); -        sqliteVdbeAddOp(v, OP_AggSet, 0, i); -      } -      sqliteVdbeResolveLabel(v, lbl1); -    } -    for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){ -      Expr *pE; -      int nExpr; -      FuncDef *pDef; -      if( !pAgg->isAgg ) continue; -      assert( pAgg->pFunc!=0 ); -      assert( pAgg->pFunc->xStep!=0 ); -      pDef = pAgg->pFunc; -      pE = pAgg->pExpr; -      assert( pE!=0 ); -      assert( pE->op==TK_AGG_FUNCTION ); -      nExpr = sqliteExprCodeExprList(pParse, pE->pList, pDef->includeTypes); -      sqliteVdbeAddOp(v, OP_Integer, i, 0); -      sqliteVdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_POINTER); -    } -  } - -  /* End the database scan loop. -  */ -  sqliteWhereEnd(pWInfo); - -  /* If we are processing aggregates, we need to set up a second loop -  ** over all of the aggregate values and process them. -  */ -  if( isAgg ){ -    int endagg = sqliteVdbeMakeLabel(v); -    int startagg; -    startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg); -    pParse->useAgg = 1; -    if( pHaving ){ -      sqliteExprIfFalse(pParse, pHaving, startagg, 1); -    } -    if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, -                    iParm, startagg, endagg) ){ -      goto select_end; -    } -    sqliteVdbeAddOp(v, OP_Goto, 0, startagg); -    sqliteVdbeResolveLabel(v, endagg); -    sqliteVdbeAddOp(v, OP_Noop, 0, 0); -    pParse->useAgg = 0; -  } - -  /* If there is an ORDER BY clause, then we need to sort the results -  ** and send them to the callback one by one. -  */ -  if( pOrderBy ){ -    generateSortTail(p, v, pEList->nExpr, eDest, iParm); -  } - -  /* If this was a subquery, we have now converted the subquery into a -  ** temporary table.  So delete the subquery structure from the parent -  ** to prevent this subquery from being evaluated again and to force the -  ** the use of the temporary table. -  */ -  if( pParent ){ -    assert( pParent->pSrc->nSrc>parentTab ); -    assert( pParent->pSrc->a[parentTab].pSelect==p ); -    sqliteSelectDelete(p); -    pParent->pSrc->a[parentTab].pSelect = 0; -  } - -  /* The SELECT was successfully coded.   Set the return code to 0 -  ** to indicate no errors. -  */ -  rc = 0; - -  /* Control jumps to here if an error is encountered above, or upon -  ** successful coding of the SELECT. -  */ -select_end: -  sqliteAggregateInfoReset(pParse); -  return rc; -}  | 
