summaryrefslogtreecommitdiff
path: root/ext/sqlite/libsqlite/src/vdbe.c
diff options
context:
space:
mode:
Diffstat (limited to 'ext/sqlite/libsqlite/src/vdbe.c')
-rw-r--r--ext/sqlite/libsqlite/src/vdbe.c5748
1 files changed, 5748 insertions, 0 deletions
diff --git a/ext/sqlite/libsqlite/src/vdbe.c b/ext/sqlite/libsqlite/src/vdbe.c
new file mode 100644
index 0000000000..f9b94824c4
--- /dev/null
+++ b/ext/sqlite/libsqlite/src/vdbe.c
@@ -0,0 +1,5748 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** The code in this file implements the Virtual Database Engine (VDBE)
+**
+** The SQL parser generates a program which is then executed by
+** the VDBE to do the work of the SQL statement. VDBE programs are
+** similar in form to assembly language. The program consists of
+** a linear sequence of operations. Each operation has an opcode
+** and 3 operands. Operands P1 and P2 are integers. Operand P3
+** is a null-terminated string. The P2 operand must be non-negative.
+** Opcodes will typically ignore one or more operands. Many opcodes
+** ignore all three operands.
+**
+** Computation results are stored on a stack. Each entry on the
+** stack is either an integer, a null-terminated string, a floating point
+** number, or the SQL "NULL" value. An inplicit conversion from one
+** type to the other occurs as necessary.
+**
+** Most of the code in this file is taken up by the sqliteVdbeExec()
+** function which does the work of interpreting a VDBE program.
+** But other routines are also provided to help in building up
+** a program instruction by instruction.
+**
+** Various scripts scan this source file in order to generate HTML
+** documentation, headers files, or other derived files. The formatting
+** of the code in this file is, therefore, important. See other comments
+** in this file for details. If in doubt, do not deviate from existing
+** commenting and indentation practices when changing or adding code.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+#include <ctype.h>
+
+/*
+** The makefile scans this source file and creates the following
+** array of string constants which are the names of all VDBE opcodes.
+** This array is defined in a separate source code file named opcode.c
+** which is automatically generated by the makefile.
+*/
+extern char *sqliteOpcodeNames[];
+
+/*
+** The following global variable is incremented every time a cursor
+** moves, either by the OP_MoveTo or the OP_Next opcode. The test
+** procedures use this information to make sure that indices are
+** working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+int sqlite_search_count = 0;
+
+/*
+** SQL is translated into a sequence of instructions to be
+** executed by a virtual machine. Each instruction is an instance
+** of the following structure.
+*/
+typedef struct VdbeOp Op;
+
+/*
+** Boolean values
+*/
+typedef unsigned char Bool;
+
+/*
+** A cursor is a pointer into a single BTree within a database file.
+** The cursor can seek to a BTree entry with a particular key, or
+** loop over all entries of the Btree. You can also insert new BTree
+** entries or retrieve the key or data from the entry that the cursor
+** is currently pointing to.
+**
+** Every cursor that the virtual machine has open is represented by an
+** instance of the following structure.
+*/
+struct Cursor {
+ BtCursor *pCursor; /* The cursor structure of the backend */
+ int lastRecno; /* Last recno from a Next or NextIdx operation */
+ int nextRowid; /* Next rowid returned by OP_NewRowid */
+ Bool recnoIsValid; /* True if lastRecno is valid */
+ Bool keyAsData; /* The OP_Column command works on key instead of data */
+ Bool atFirst; /* True if pointing to first entry */
+ Bool useRandomRowid; /* Generate new record numbers semi-randomly */
+ Bool nullRow; /* True if pointing to a row with no data */
+ Bool nextRowidValid; /* True if the nextRowid field is valid */
+ Btree *pBt; /* Separate file holding temporary table */
+};
+typedef struct Cursor Cursor;
+
+/*
+** A sorter builds a list of elements to be sorted. Each element of
+** the list is an instance of the following structure.
+*/
+typedef struct Sorter Sorter;
+struct Sorter {
+ int nKey; /* Number of bytes in the key */
+ char *zKey; /* The key by which we will sort */
+ int nData; /* Number of bytes in the data */
+ char *pData; /* The data associated with this key */
+ Sorter *pNext; /* Next in the list */
+};
+
+/*
+** Number of buckets used for merge-sort.
+*/
+#define NSORT 30
+
+/*
+** Number of bytes of string storage space available to each stack
+** layer without having to malloc. NBFS is short for Number of Bytes
+** For Strings.
+*/
+#define NBFS 32
+
+/*
+** A single level of the stack is an instance of the following
+** structure. Except, string values are stored on a separate
+** list of of pointers to character. The reason for storing
+** strings separately is so that they can be easily passed
+** to the callback function.
+*/
+struct Stack {
+ int i; /* Integer value */
+ int n; /* Number of characters in string value, including '\0' */
+ int flags; /* Some combination of STK_Null, STK_Str, STK_Dyn, etc. */
+ double r; /* Real value */
+ char z[NBFS]; /* Space for short strings */
+};
+typedef struct Stack Stack;
+
+/*
+** Memory cells use the same structure as the stack except that space
+** for an arbitrary string is added.
+*/
+struct Mem {
+ Stack s; /* All values of the memory cell besides string */
+ char *z; /* String value for this memory cell */
+};
+typedef struct Mem Mem;
+
+/*
+** Allowed values for Stack.flags
+*/
+#define STK_Null 0x0001 /* Value is NULL */
+#define STK_Str 0x0002 /* Value is a string */
+#define STK_Int 0x0004 /* Value is an integer */
+#define STK_Real 0x0008 /* Value is a real number */
+#define STK_Dyn 0x0010 /* Need to call sqliteFree() on zStack[] */
+#define STK_Static 0x0020 /* zStack[] points to a static string */
+#define STK_Ephem 0x0040 /* zStack[] points to an ephemeral string */
+
+/* The following STK_ value appears only in AggElem.aMem.s.flag fields.
+** It indicates that the corresponding AggElem.aMem.z points to a
+** aggregate function context that needs to be finalized.
+*/
+#define STK_AggCtx 0x0040 /* zStack[] points to an agg function context */
+
+/*
+** The "context" argument for a installable function. A pointer to an
+** instance of this structure is the first argument to the routines used
+** implement the SQL functions.
+**
+** There is a typedef for this structure in sqlite.h. So all routines,
+** even the public interface to SQLite, can use a pointer to this structure.
+** But this file is the only place where the internal details of this
+** structure are known.
+**
+** This structure is defined inside of vdbe.c because it uses substructures
+** (Stack) which are only defined there.
+*/
+struct sqlite_func {
+ FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
+ Stack s; /* Small strings, ints, and double values go here */
+ char *z; /* Space for holding dynamic string results */
+ void *pAgg; /* Aggregate context */
+ u8 isError; /* Set to true for an error */
+ u8 isStep; /* Current in the step function */
+ int cnt; /* Number of times that the step function has been called */
+};
+
+/*
+** An Agg structure describes an Aggregator. Each Agg consists of
+** zero or more Aggregator elements (AggElem). Each AggElem contains
+** a key and one or more values. The values are used in processing
+** aggregate functions in a SELECT. The key is used to implement
+** the GROUP BY clause of a select.
+*/
+typedef struct Agg Agg;
+typedef struct AggElem AggElem;
+struct Agg {
+ int nMem; /* Number of values stored in each AggElem */
+ AggElem *pCurrent; /* The AggElem currently in focus */
+ HashElem *pSearch; /* The hash element for pCurrent */
+ Hash hash; /* Hash table of all aggregate elements */
+ FuncDef **apFunc; /* Information about aggregate functions */
+};
+struct AggElem {
+ char *zKey; /* The key to this AggElem */
+ int nKey; /* Number of bytes in the key, including '\0' at end */
+ Mem aMem[1]; /* The values for this AggElem */
+};
+
+/*
+** A Set structure is used for quick testing to see if a value
+** is part of a small set. Sets are used to implement code like
+** this:
+** x.y IN ('hi','hoo','hum')
+*/
+typedef struct Set Set;
+struct Set {
+ Hash hash; /* A set is just a hash table */
+ HashElem *prev; /* Previously accessed hash elemen */
+};
+
+/*
+** A Keylist is a bunch of keys into a table. The keylist can
+** grow without bound. The keylist stores the ROWIDs of database
+** records that need to be deleted or updated.
+*/
+typedef struct Keylist Keylist;
+struct Keylist {
+ int nKey; /* Number of slots in aKey[] */
+ int nUsed; /* Next unwritten slot in aKey[] */
+ int nRead; /* Next unread slot in aKey[] */
+ Keylist *pNext; /* Next block of keys */
+ int aKey[1]; /* One or more keys. Extra space allocated as needed */
+};
+
+/*
+** An instance of the virtual machine. This structure contains the complete
+** state of the virtual machine.
+**
+** The "sqlite_vm" structure pointer that is returned by sqlite_compile()
+** is really a pointer to an instance of this structure.
+*/
+struct Vdbe {
+ sqlite *db; /* The whole database */
+ Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
+ Btree *pBt; /* Opaque context structure used by DB backend */
+ FILE *trace; /* Write an execution trace here, if not NULL */
+ int nOp; /* Number of instructions in the program */
+ int nOpAlloc; /* Number of slots allocated for aOp[] */
+ Op *aOp; /* Space to hold the virtual machine's program */
+ int nLabel; /* Number of labels used */
+ int nLabelAlloc; /* Number of slots allocated in aLabel[] */
+ int *aLabel; /* Space to hold the labels */
+ int tos; /* Index of top of stack */
+ Stack *aStack; /* The operand stack, except string values */
+ char **zStack; /* Text or binary values of the stack */
+ char **azColName; /* Becomes the 4th parameter to callbacks */
+ int nCursor; /* Number of slots in aCsr[] */
+ Cursor *aCsr; /* One element of this array for each open cursor */
+ Sorter *pSort; /* A linked list of objects to be sorted */
+ FILE *pFile; /* At most one open file handler */
+ int nField; /* Number of file fields */
+ char **azField; /* Data for each file field */
+ char *zLine; /* A single line from the input file */
+ int magic; /* Magic number for sanity checking */
+ int nLineAlloc; /* Number of spaces allocated for zLine */
+ int nMem; /* Number of memory locations currently allocated */
+ Mem *aMem; /* The memory locations */
+ Agg agg; /* Aggregate information */
+ int nSet; /* Number of sets allocated */
+ Set *aSet; /* An array of sets */
+ int nCallback; /* Number of callbacks invoked so far */
+ Keylist *pList; /* A list of ROWIDs */
+ int keylistStackDepth; /* The size of the "keylist" stack */
+ Keylist **keylistStack; /* The stack used by opcodes ListPush & ListPop */
+ int pc; /* The program counter */
+ int rc; /* Value to return */
+ unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
+ int errorAction; /* Recovery action to do in case of an error */
+ int undoTransOnError; /* If error, either ROLLBACK or COMMIT */
+ int inTempTrans; /* True if temp database is transactioned */
+ int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */
+ int returnDepth; /* Next unused element in returnStack[] */
+ int nResColumn; /* Number of columns in one row of the result set */
+ char **azResColumn; /* Values for one row of result */
+ int (*xCallback)(void*,int,char**,char**); /* Callback for SELECT results */
+ void *pCbArg; /* First argument to xCallback() */
+ int popStack; /* Pop the stack this much on entry to VdbeExec() */
+ char *zErrMsg; /* Error message written here */
+ u8 explain; /* True if EXPLAIN present on SQL command */
+};
+
+/*
+** The following are allowed values for Vdbe.magic
+*/
+#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
+#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
+#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
+#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
+
+/*
+** When debugging the code generator in a symbolic debugger, one can
+** set the sqlite_vdbe_addop_trace to 1 and all opcodes will be printed
+** as they are added to the instruction stream.
+*/
+#ifndef NDEBUG
+int sqlite_vdbe_addop_trace = 0;
+static void vdbePrintOp(FILE*, int, Op*);
+#endif
+
+/*
+** Create a new virtual database engine.
+*/
+Vdbe *sqliteVdbeCreate(sqlite *db){
+ Vdbe *p;
+ p = sqliteMalloc( sizeof(Vdbe) );
+ if( p==0 ) return 0;
+ p->pBt = db->pBe;
+ p->db = db;
+ if( db->pVdbe ){
+ db->pVdbe->pPrev = p;
+ }
+ p->pNext = db->pVdbe;
+ p->pPrev = 0;
+ db->pVdbe = p;
+ p->magic = VDBE_MAGIC_INIT;
+ return p;
+}
+
+/*
+** Turn tracing on or off
+*/
+void sqliteVdbeTrace(Vdbe *p, FILE *trace){
+ p->trace = trace;
+}
+
+/*
+** Add a new instruction to the list of instructions current in the
+** VDBE. Return the address of the new instruction.
+**
+** Parameters:
+**
+** p Pointer to the VDBE
+**
+** op The opcode for this instruction
+**
+** p1, p2 First two of the three possible operands.
+**
+** Use the sqliteVdbeResolveLabel() function to fix an address and
+** the sqliteVdbeChangeP3() function to change the value of the P3
+** operand.
+*/
+int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){
+ int i;
+
+ i = p->nOp;
+ p->nOp++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( i>=p->nOpAlloc ){
+ int oldSize = p->nOpAlloc;
+ Op *aNew;
+ p->nOpAlloc = p->nOpAlloc*2 + 100;
+ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
+ if( aNew==0 ){
+ p->nOpAlloc = oldSize;
+ return 0;
+ }
+ p->aOp = aNew;
+ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
+ }
+ p->aOp[i].opcode = op;
+ p->aOp[i].p1 = p1;
+ if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
+ p2 = p->aLabel[-1-p2];
+ }
+ p->aOp[i].p2 = p2;
+ p->aOp[i].p3 = 0;
+ p->aOp[i].p3type = P3_NOTUSED;
+#ifndef NDEBUG
+ if( sqlite_vdbe_addop_trace ) vdbePrintOp(0, i, &p->aOp[i]);
+#endif
+ return i;
+}
+
+/*
+** Create a new symbolic label for an instruction that has yet to be
+** coded. The symbolic label is really just a negative number. The
+** label can be used as the P2 value of an operation. Later, when
+** the label is resolved to a specific address, the VDBE will scan
+** through its operation list and change all values of P2 which match
+** the label into the resolved address.
+**
+** The VDBE knows that a P2 value is a label because labels are
+** always negative and P2 values are suppose to be non-negative.
+** Hence, a negative P2 value is a label that has yet to be resolved.
+*/
+int sqliteVdbeMakeLabel(Vdbe *p){
+ int i;
+ i = p->nLabel++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( i>=p->nLabelAlloc ){
+ int *aNew;
+ p->nLabelAlloc = p->nLabelAlloc*2 + 10;
+ aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
+ if( aNew==0 ){
+ sqliteFree(p->aLabel);
+ }
+ p->aLabel = aNew;
+ }
+ if( p->aLabel==0 ){
+ p->nLabel = 0;
+ p->nLabelAlloc = 0;
+ return 0;
+ }
+ p->aLabel[i] = -1;
+ return -1-i;
+}
+
+/*
+** Resolve label "x" to be the address of the next instruction to
+** be inserted. The parameter "x" must have been obtained from
+** a prior call to sqliteVdbeMakeLabel().
+*/
+void sqliteVdbeResolveLabel(Vdbe *p, int x){
+ int j;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( x<0 && (-x)<=p->nLabel && p->aOp ){
+ if( p->aLabel[-1-x]==p->nOp ) return;
+ assert( p->aLabel[-1-x]<0 );
+ p->aLabel[-1-x] = p->nOp;
+ for(j=0; j<p->nOp; j++){
+ if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp;
+ }
+ }
+}
+
+/*
+** Return the address of the next instruction to be inserted.
+*/
+int sqliteVdbeCurrentAddr(Vdbe *p){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ return p->nOp;
+}
+
+/*
+** Add a whole list of operations to the operation stack. Return the
+** address of the first operation added.
+*/
+int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOp const *aOp){
+ int addr;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->nOp + nOp >= p->nOpAlloc ){
+ int oldSize = p->nOpAlloc;
+ Op *aNew;
+ p->nOpAlloc = p->nOpAlloc*2 + nOp + 10;
+ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
+ if( aNew==0 ){
+ p->nOpAlloc = oldSize;
+ return 0;
+ }
+ p->aOp = aNew;
+ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
+ }
+ addr = p->nOp;
+ if( nOp>0 ){
+ int i;
+ for(i=0; i<nOp; i++){
+ int p2 = aOp[i].p2;
+ p->aOp[i+addr] = aOp[i];
+ if( p2<0 ) p->aOp[i+addr].p2 = addr + ADDR(p2);
+ p->aOp[i+addr].p3type = aOp[i].p3 ? P3_STATIC : P3_NOTUSED;
+#ifndef NDEBUG
+ if( sqlite_vdbe_addop_trace ) vdbePrintOp(0, i+addr, &p->aOp[i+addr]);
+#endif
+ }
+ p->nOp += nOp;
+ }
+ return addr;
+}
+
+/*
+** Change the value of the P1 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqliteVdbeAddOpList but we want to make a
+** few minor changes to the program.
+*/
+void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p1 = val;
+ }
+}
+
+/*
+** Change the value of the P2 operand for a specific instruction.
+** This routine is useful for setting a jump destination.
+*/
+void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){
+ assert( val>=0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p2 = val;
+ }
+}
+
+/*
+** Change the value of the P3 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqliteVdbeAddOpList but we want to make a
+** few minor changes to the program.
+**
+** If n>=0 then the P3 operand is dynamic, meaning that a copy of
+** the string is made into memory obtained from sqliteMalloc().
+** A value of n==0 means copy bytes of zP3 up to and including the
+** first null byte. If n>0 then copy n+1 bytes of zP3.
+**
+** If n==P3_STATIC it means that zP3 is a pointer to a constant static
+** string and we can just copy the pointer. n==P3_POINTER means zP3 is
+** a pointer to some object other than a string.
+**
+** If addr<0 then change P3 on the most recently inserted instruction.
+*/
+void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p==0 || p->aOp==0 ) return;
+ if( addr<0 || addr>=p->nOp ){
+ addr = p->nOp - 1;
+ if( addr<0 ) return;
+ }
+ pOp = &p->aOp[addr];
+ if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
+ sqliteFree(pOp->p3);
+ pOp->p3 = 0;
+ }
+ if( zP3==0 ){
+ pOp->p3 = 0;
+ pOp->p3type = P3_NOTUSED;
+ }else if( n<0 ){
+ pOp->p3 = (char*)zP3;
+ pOp->p3type = n;
+ }else{
+ sqliteSetNString(&pOp->p3, zP3, n, 0);
+ pOp->p3type = P3_DYNAMIC;
+ }
+}
+
+/*
+** If the P3 operand to the specified instruction appears
+** to be a quoted string token, then this procedure removes
+** the quotes.
+**
+** The quoting operator can be either a grave ascent (ASCII 0x27)
+** or a double quote character (ASCII 0x22). Two quotes in a row
+** resolve to be a single actual quote character within the string.
+*/
+void sqliteVdbeDequoteP3(Vdbe *p, int addr){
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
+ pOp = &p->aOp[addr];
+ if( pOp->p3==0 || pOp->p3[0]==0 ) return;
+ if( pOp->p3type==P3_POINTER ) return;
+ if( pOp->p3type!=P3_DYNAMIC ){
+ pOp->p3 = sqliteStrDup(pOp->p3);
+ pOp->p3type = P3_DYNAMIC;
+ }
+ sqliteDequote(pOp->p3);
+}
+
+/*
+** On the P3 argument of the given instruction, change all
+** strings of whitespace characters into a single space and
+** delete leading and trailing whitespace.
+*/
+void sqliteVdbeCompressSpace(Vdbe *p, int addr){
+ char *z;
+ int i, j;
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
+ pOp = &p->aOp[addr];
+ if( pOp->p3type==P3_POINTER ){
+ return;
+ }
+ if( pOp->p3type!=P3_DYNAMIC ){
+ pOp->p3 = sqliteStrDup(pOp->p3);
+ pOp->p3type = P3_DYNAMIC;
+ }
+ z = pOp->p3;
+ if( z==0 ) return;
+ i = j = 0;
+ while( isspace(z[i]) ){ i++; }
+ while( z[i] ){
+ if( isspace(z[i]) ){
+ z[j++] = ' ';
+ while( isspace(z[++i]) ){}
+ }else{
+ z[j++] = z[i++];
+ }
+ }
+ while( j>0 && isspace(z[j-1]) ){ j--; }
+ z[j] = 0;
+}
+
+/*
+** Search for the current program for the given opcode and P2
+** value. Return 1 if found and 0 if not found.
+*/
+int sqliteVdbeFindOp(Vdbe *p, int op, int p2){
+ int i;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ for(i=0; i<p->nOp; i++){
+ if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return 1;
+ }
+ return 0;
+}
+
+/*
+** The following group or routines are employed by installable functions
+** to return their results.
+**
+** The sqlite_set_result_string() routine can be used to return a string
+** value or to return a NULL. To return a NULL, pass in NULL for zResult.
+** A copy is made of the string before this routine returns so it is safe
+** to pass in an ephemeral string.
+**
+** sqlite_set_result_error() works like sqlite_set_result_string() except
+** that it signals a fatal error. The string argument, if any, is the
+** error message. If the argument is NULL a generic substitute error message
+** is used.
+**
+** The sqlite_set_result_int() and sqlite_set_result_double() set the return
+** value of the user function to an integer or a double.
+**
+** These routines are defined here in vdbe.c because they depend on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
+ assert( !p->isStep );
+ if( p->s.flags & STK_Dyn ){
+ sqliteFree(p->z);
+ }
+ if( zResult==0 ){
+ p->s.flags = STK_Null;
+ n = 0;
+ p->z = 0;
+ p->s.n = 0;
+ }else{
+ if( n<0 ) n = strlen(zResult);
+ if( n<NBFS-1 ){
+ memcpy(p->s.z, zResult, n);
+ p->s.z[n] = 0;
+ p->s.flags = STK_Str;
+ p->z = p->s.z;
+ }else{
+ p->z = sqliteMallocRaw( n+1 );
+ if( p->z ){
+ memcpy(p->z, zResult, n);
+ p->z[n] = 0;
+ }
+ p->s.flags = STK_Str | STK_Dyn;
+ }
+ p->s.n = n+1;
+ }
+ return p->z;
+}
+void sqlite_set_result_int(sqlite_func *p, int iResult){
+ assert( !p->isStep );
+ if( p->s.flags & STK_Dyn ){
+ sqliteFree(p->z);
+ }
+ p->s.i = iResult;
+ p->s.flags = STK_Int;
+}
+void sqlite_set_result_double(sqlite_func *p, double rResult){
+ assert( !p->isStep );
+ if( p->s.flags & STK_Dyn ){
+ sqliteFree(p->z);
+ }
+ p->s.r = rResult;
+ p->s.flags = STK_Real;
+}
+void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){
+ assert( !p->isStep );
+ sqlite_set_result_string(p, zMsg, n);
+ p->isError = 1;
+}
+
+/*
+** Extract the user data from a sqlite_func structure and return a
+** pointer to it.
+**
+** This routine is defined here in vdbe.c because it depends on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+void *sqlite_user_data(sqlite_func *p){
+ assert( p && p->pFunc );
+ return p->pFunc->pUserData;
+}
+
+/*
+** Allocate or return the aggregate context for a user function. A new
+** context is allocated on the first call. Subsequent calls return the
+** same context that was returned on prior calls.
+**
+** This routine is defined here in vdbe.c because it depends on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+void *sqlite_aggregate_context(sqlite_func *p, int nByte){
+ assert( p && p->pFunc && p->pFunc->xStep );
+ if( p->pAgg==0 ){
+ if( nByte<=NBFS ){
+ p->pAgg = (void*)p->z;
+ }else{
+ p->pAgg = sqliteMalloc( nByte );
+ }
+ }
+ return p->pAgg;
+}
+
+/*
+** Return the number of times the Step function of a aggregate has been
+** called.
+**
+** This routine is defined here in vdbe.c because it depends on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+int sqlite_aggregate_count(sqlite_func *p){
+ assert( p && p->pFunc && p->pFunc->xStep );
+ return p->cnt;
+}
+
+/*
+** Advance the virtual machine to the next output row.
+**
+** The return vale will be either SQLITE_BUSY, SQLITE_DONE,
+** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
+**
+** SQLITE_BUSY means that the virtual machine attempted to open
+** a locked database and there is no busy callback registered.
+** Call sqlite_step() again to retry the open. *pN is set to 0
+** and *pazColName and *pazValue are both set to NULL.
+**
+** SQLITE_DONE means that the virtual machine has finished
+** executing. sqlite_step() should not be called again on this
+** virtual machine. *pN and *pazColName are set appropriately
+** but *pazValue is set to NULL.
+**
+** SQLITE_ROW means that the virtual machine has generated another
+** row of the result set. *pN is set to the number of columns in
+** the row. *pazColName is set to the names of the columns followed
+** by the column datatypes. *pazValue is set to the values of each
+** column in the row. The value of the i-th column is (*pazValue)[i].
+** The name of the i-th column is (*pazColName)[i] and the datatype
+** of the i-th column is (*pazColName)[i+*pN].
+**
+** SQLITE_ERROR means that a run-time error (such as a constraint
+** violation) has occurred. The details of the error will be returned
+** by the next call to sqlite_finalize(). sqlite_step() should not
+** be called again on the VM.
+**
+** SQLITE_MISUSE means that the this routine was called inappropriately.
+** Perhaps it was called on a virtual machine that had already been
+** finalized or on one that had previously returned SQLITE_ERROR or
+** SQLITE_DONE. Or it could be the case the the same database connection
+** is being used simulataneously by two or more threads.
+*/
+int sqlite_step(
+ sqlite_vm *pVm, /* The virtual machine to execute */
+ int *pN, /* OUT: Number of columns in result */
+ const char ***pazValue, /* OUT: Column data */
+ const char ***pazColName /* OUT: Column names and datatypes */
+){
+ Vdbe *p = (Vdbe*)pVm;
+ sqlite *db;
+ int rc;
+
+ if( p->magic!=VDBE_MAGIC_RUN ){
+ return SQLITE_MISUSE;
+ }
+ db = p->db;
+ if( sqliteSafetyOn(db) ){
+ return SQLITE_MISUSE;
+ }
+ if( p->explain ){
+ rc = sqliteVdbeList(p);
+ }else{
+ rc = sqliteVdbeExec(p);
+ }
+ if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
+ *pazColName = (const char**)p->azColName;
+ *pN = p->nResColumn;
+ }else{
+ *pN = 0;
+ *pazColName = 0;
+ }
+ if( rc==SQLITE_ROW ){
+ *pazValue = (const char**)p->azResColumn;
+ }else{
+ *pazValue = 0;
+ }
+ if( sqliteSafetyOff(db) ){
+ return SQLITE_MISUSE;
+ }
+ return rc;
+}
+
+/*
+** Reset an Agg structure. Delete all its contents.
+**
+** For installable aggregate functions, if the step function has been
+** called, make sure the finalizer function has also been called. The
+** finalizer might need to free memory that was allocated as part of its
+** private context. If the finalizer has not been called yet, call it
+** now.
+*/
+static void AggReset(Agg *pAgg){
+ int i;
+ HashElem *p;
+ for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
+ AggElem *pElem = sqliteHashData(p);
+ assert( pAgg->apFunc!=0 );
+ for(i=0; i<pAgg->nMem; i++){
+ Mem *pMem = &pElem->aMem[i];
+ if( pAgg->apFunc[i] && (pMem->s.flags & STK_AggCtx)!=0 ){
+ sqlite_func ctx;
+ ctx.pFunc = pAgg->apFunc[i];
+ ctx.s.flags = STK_Null;
+ ctx.z = 0;
+ ctx.pAgg = pMem->z;
+ ctx.cnt = pMem->s.i;
+ ctx.isStep = 0;
+ ctx.isError = 0;
+ (*pAgg->apFunc[i]->xFinalize)(&ctx);
+ if( pMem->z!=0 && pMem->z!=pMem->s.z ){
+ sqliteFree(pMem->z);
+ }
+ }else if( pMem->s.flags & STK_Dyn ){
+ sqliteFree(pMem->z);
+ }
+ }
+ sqliteFree(pElem);
+ }
+ sqliteHashClear(&pAgg->hash);
+ sqliteFree(pAgg->apFunc);
+ pAgg->apFunc = 0;
+ pAgg->pCurrent = 0;
+ pAgg->pSearch = 0;
+ pAgg->nMem = 0;
+}
+
+/*
+** Insert a new aggregate element and make it the element that
+** has focus.
+**
+** Return 0 on success and 1 if memory is exhausted.
+*/
+static int AggInsert(Agg *p, char *zKey, int nKey){
+ AggElem *pElem, *pOld;
+ int i;
+ pElem = sqliteMalloc( sizeof(AggElem) + nKey +
+ (p->nMem-1)*sizeof(pElem->aMem[0]) );
+ if( pElem==0 ) return 1;
+ pElem->zKey = (char*)&pElem->aMem[p->nMem];
+ memcpy(pElem->zKey, zKey, nKey);
+ pElem->nKey = nKey;
+ pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
+ if( pOld!=0 ){
+ assert( pOld==pElem ); /* Malloc failed on insert */
+ sqliteFree(pOld);
+ return 0;
+ }
+ for(i=0; i<p->nMem; i++){
+ pElem->aMem[i].s.flags = STK_Null;
+ }
+ p->pCurrent = pElem;
+ return 0;
+}
+
+/*
+** Get the AggElem currently in focus
+*/
+#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
+static AggElem *_AggInFocus(Agg *p){
+ HashElem *pElem = sqliteHashFirst(&p->hash);
+ if( pElem==0 ){
+ AggInsert(p,"",1);
+ pElem = sqliteHashFirst(&p->hash);
+ }
+ return pElem ? sqliteHashData(pElem) : 0;
+}
+
+/*
+** Convert the given stack entity into a string if it isn't one
+** already.
+*/
+#define Stringify(P,I) if((aStack[I].flags & STK_Str)==0){hardStringify(P,I);}
+static int hardStringify(Vdbe *p, int i){
+ Stack *pStack = &p->aStack[i];
+ int fg = pStack->flags;
+ if( fg & STK_Real ){
+ sprintf(pStack->z,"%.15g",pStack->r);
+ }else if( fg & STK_Int ){
+ sprintf(pStack->z,"%d",pStack->i);
+ }else{
+ pStack->z[0] = 0;
+ }
+ p->zStack[i] = pStack->z;
+ pStack->n = strlen(pStack->z)+1;
+ pStack->flags = STK_Str;
+ return 0;
+}
+
+/*
+** Convert the given stack entity into a string that has been obtained
+** from sqliteMalloc(). This is different from Stringify() above in that
+** Stringify() will use the NBFS bytes of static string space if the string
+** will fit but this routine always mallocs for space.
+** Return non-zero if we run out of memory.
+*/
+#define Dynamicify(P,I) ((aStack[I].flags & STK_Dyn)==0 ? hardDynamicify(P,I):0)
+static int hardDynamicify(Vdbe *p, int i){
+ Stack *pStack = &p->aStack[i];
+ int fg = pStack->flags;
+ char *z;
+ if( (fg & STK_Str)==0 ){
+ hardStringify(p, i);
+ }
+ assert( (fg & STK_Dyn)==0 );
+ z = sqliteMallocRaw( pStack->n );
+ if( z==0 ) return 1;
+ memcpy(z, p->zStack[i], pStack->n);
+ p->zStack[i] = z;
+ pStack->flags |= STK_Dyn;
+ return 0;
+}
+
+/*
+** An ephemeral string value (signified by the STK_Ephem flag) contains
+** a pointer to a dynamically allocated string where some other entity
+** is responsible for deallocating that string. Because the stack entry
+** does not control the string, it might be deleted without the stack
+** entry knowing it.
+**
+** This routine converts an ephemeral string into a dynamically allocated
+** string that the stack entry itself controls. In other words, it
+** converts an STK_Ephem string into an STK_Dyn string.
+*/
+#define Deephemeralize(P,I) \
+ if( ((P)->aStack[I].flags&STK_Ephem)!=0 && hardDeephem(P,I) ){ goto no_mem;}
+static int hardDeephem(Vdbe *p, int i){
+ Stack *pStack = &p->aStack[i];
+ char **pzStack = &p->zStack[i];
+ char *z;
+ assert( (pStack->flags & STK_Ephem)!=0 );
+ z = sqliteMallocRaw( pStack->n );
+ if( z==0 ) return 1;
+ memcpy(z, *pzStack, pStack->n);
+ *pzStack = z;
+ return 0;
+}
+
+/*
+** Release the memory associated with the given stack level
+*/
+#define Release(P,I) if((P)->aStack[I].flags&STK_Dyn){ hardRelease(P,I); }
+static void hardRelease(Vdbe *p, int i){
+ sqliteFree(p->zStack[i]);
+ p->zStack[i] = 0;
+ p->aStack[i].flags &= ~(STK_Str|STK_Dyn|STK_Static|STK_Ephem);
+}
+
+/*
+** Return TRUE if zNum is an integer and write
+** the value of the integer into *pNum.
+**
+** Under Linux (RedHat 7.2) this routine is much faster than atoi()
+** for converting strings into integers.
+*/
+static int toInt(const char *zNum, int *pNum){
+ int v = 0;
+ int neg;
+ if( *zNum=='-' ){
+ neg = 1;
+ zNum++;
+ }else if( *zNum=='+' ){
+ neg = 0;
+ zNum++;
+ }else{
+ neg = 0;
+ }
+ while( isdigit(*zNum) ){
+ v = v*10 + *zNum - '0';
+ zNum++;
+ }
+ *pNum = neg ? -v : v;
+ return *zNum==0;
+}
+
+/*
+** Convert the given stack entity into a integer if it isn't one
+** already.
+**
+** Any prior string or real representation is invalidated.
+** NULLs are converted into 0.
+*/
+#define Integerify(P,I) \
+ if(((P)->aStack[(I)].flags&STK_Int)==0){ hardIntegerify(P,I); }
+static void hardIntegerify(Vdbe *p, int i){
+ if( p->aStack[i].flags & STK_Real ){
+ p->aStack[i].i = (int)p->aStack[i].r;
+ Release(p, i);
+ }else if( p->aStack[i].flags & STK_Str ){
+ toInt(p->zStack[i], &p->aStack[i].i);
+ Release(p, i);
+ }else{
+ p->aStack[i].i = 0;
+ }
+ p->aStack[i].flags = STK_Int;
+}
+
+/*
+** Get a valid Real representation for the given stack element.
+**
+** Any prior string or integer representation is retained.
+** NULLs are converted into 0.0.
+*/
+#define Realify(P,I) \
+ if(((P)->aStack[(I)].flags&STK_Real)==0){ hardRealify(P,I); }
+static void hardRealify(Vdbe *p, int i){
+ if( p->aStack[i].flags & STK_Str ){
+ p->aStack[i].r = atof(p->zStack[i]);
+ }else if( p->aStack[i].flags & STK_Int ){
+ p->aStack[i].r = p->aStack[i].i;
+ }else{
+ p->aStack[i].r = 0.0;
+ }
+ p->aStack[i].flags |= STK_Real;
+}
+
+/*
+** Pop the stack N times. Free any memory associated with the
+** popped stack elements.
+*/
+static void PopStack(Vdbe *p, int N){
+ assert( N>=0 );
+ if( p->zStack==0 ) return;
+ assert( p->aStack || sqlite_malloc_failed );
+ if( p->aStack==0 ) return;
+ while( N-- > 0 ){
+ if( p->aStack[p->tos].flags & STK_Dyn ){
+ sqliteFree(p->zStack[p->tos]);
+ }
+ p->aStack[p->tos].flags = 0;
+ p->zStack[p->tos] = 0;
+ p->tos--;
+ }
+}
+
+/*
+** Here is a macro to handle the common case of popping the stack
+** once. This macro only works from within the sqliteVdbeExec()
+** function.
+*/
+#define POPSTACK \
+ assert(p->tos>=0); \
+ if( aStack[p->tos].flags & STK_Dyn ) sqliteFree(zStack[p->tos]); \
+ p->tos--;
+
+/*
+** Return TRUE if zNum is a floating-point or integer number.
+*/
+static int isNumber(const char *zNum){
+ if( *zNum=='-' || *zNum=='+' ) zNum++;
+ if( !isdigit(*zNum) ) return 0;
+ while( isdigit(*zNum) ) zNum++;
+ if( *zNum==0 ) return 1;
+ if( *zNum!='.' ) return 0;
+ zNum++;
+ if( !isdigit(*zNum) ) return 0;
+ while( isdigit(*zNum) ) zNum++;
+ if( *zNum==0 ) return 1;
+ if( *zNum!='e' && *zNum!='E' ) return 0;
+ zNum++;
+ if( *zNum=='-' || *zNum=='+' ) zNum++;
+ if( !isdigit(*zNum) ) return 0;
+ while( isdigit(*zNum) ) zNum++;
+ return *zNum==0;
+}
+
+/*
+** Delete a keylist
+*/
+static void KeylistFree(Keylist *p){
+ while( p ){
+ Keylist *pNext = p->pNext;
+ sqliteFree(p);
+ p = pNext;
+ }
+}
+
+/*
+** Close a cursor and release all the resources that cursor happens
+** to hold.
+*/
+static void cleanupCursor(Cursor *pCx){
+ if( pCx->pCursor ){
+ sqliteBtreeCloseCursor(pCx->pCursor);
+ }
+ if( pCx->pBt ){
+ sqliteBtreeClose(pCx->pBt);
+ }
+ memset(pCx, 0, sizeof(Cursor));
+}
+
+/*
+** Close all cursors
+*/
+static void closeAllCursors(Vdbe *p){
+ int i;
+ for(i=0; i<p->nCursor; i++){
+ cleanupCursor(&p->aCsr[i]);
+ }
+ sqliteFree(p->aCsr);
+ p->aCsr = 0;
+ p->nCursor = 0;
+}
+
+/*
+** Remove any elements that remain on the sorter for the VDBE given.
+*/
+static void SorterReset(Vdbe *p){
+ while( p->pSort ){
+ Sorter *pSorter = p->pSort;
+ p->pSort = pSorter->pNext;
+ sqliteFree(pSorter->zKey);
+ sqliteFree(pSorter->pData);
+ sqliteFree(pSorter);
+ }
+}
+
+/*
+** Clean up the VM after execution.
+**
+** This routine will automatically close any cursors, lists, and/or
+** sorters that were left open.
+*/
+static void Cleanup(Vdbe *p){
+ int i;
+ PopStack(p, p->tos+1);
+ closeAllCursors(p);
+ if( p->aMem ){
+ for(i=0; i<p->nMem; i++){
+ if( p->aMem[i].s.flags & STK_Dyn ){
+ sqliteFree(p->aMem[i].z);
+ }
+ }
+ }
+ sqliteFree(p->aMem);
+ p->aMem = 0;
+ p->nMem = 0;
+ if( p->pList ){
+ KeylistFree(p->pList);
+ p->pList = 0;
+ }
+ SorterReset(p);
+ if( p->pFile ){
+ if( p->pFile!=stdin ) fclose(p->pFile);
+ p->pFile = 0;
+ }
+ if( p->azField ){
+ sqliteFree(p->azField);
+ p->azField = 0;
+ }
+ p->nField = 0;
+ if( p->zLine ){
+ sqliteFree(p->zLine);
+ p->zLine = 0;
+ }
+ p->nLineAlloc = 0;
+ AggReset(&p->agg);
+ if( p->aSet ){
+ for(i=0; i<p->nSet; i++){
+ sqliteHashClear(&p->aSet[i].hash);
+ }
+ }
+ sqliteFree(p->aSet);
+ p->aSet = 0;
+ p->nSet = 0;
+ if( p->keylistStack ){
+ int ii;
+ for(ii = 0; ii < p->keylistStackDepth; ii++){
+ KeylistFree(p->keylistStack[ii]);
+ }
+ sqliteFree(p->keylistStack);
+ p->keylistStackDepth = 0;
+ p->keylistStack = 0;
+ }
+ sqliteFree(p->zErrMsg);
+ p->zErrMsg = 0;
+ p->magic = VDBE_MAGIC_DEAD;
+}
+
+/*
+** Delete an entire VDBE.
+*/
+void sqliteVdbeDelete(Vdbe *p){
+ int i;
+ if( p==0 ) return;
+ Cleanup(p);
+ if( p->pPrev ){
+ p->pPrev->pNext = p->pNext;
+ }else{
+ assert( p->db->pVdbe==p );
+ p->db->pVdbe = p->pNext;
+ }
+ if( p->pNext ){
+ p->pNext->pPrev = p->pPrev;
+ }
+ p->pPrev = p->pNext = 0;
+ if( p->nOpAlloc==0 ){
+ p->aOp = 0;
+ p->nOp = 0;
+ }
+ for(i=0; i<p->nOp; i++){
+ if( p->aOp[i].p3type==P3_DYNAMIC ){
+ sqliteFree(p->aOp[i].p3);
+ }
+ }
+ sqliteFree(p->aOp);
+ sqliteFree(p->aLabel);
+ sqliteFree(p->aStack);
+ sqliteFree(p);
+}
+
+/*
+** Give a listing of the program in the virtual machine.
+**
+** The interface is the same as sqliteVdbeExec(). But instead of
+** running the code, it invokes the callback once for each instruction.
+** This feature is used to implement "EXPLAIN".
+*/
+int sqliteVdbeList(
+ Vdbe *p /* The VDBE */
+){
+ sqlite *db = p->db;
+ int i;
+ static char *azColumnNames[] = {
+ "addr", "opcode", "p1", "p2", "p3",
+ "int", "text", "int", "int", "text",
+ 0
+ };
+
+ assert( p->popStack==0 );
+ assert( p->explain );
+ p->azColName = azColumnNames;
+ p->azResColumn = p->zStack;
+ for(i=0; i<5; i++) p->zStack[i] = p->aStack[i].z;
+ p->rc = SQLITE_OK;
+ for(i=p->pc; p->rc==SQLITE_OK && i<p->nOp; i++){
+ if( db->flags & SQLITE_Interrupt ){
+ db->flags &= ~SQLITE_Interrupt;
+ if( db->magic!=SQLITE_MAGIC_BUSY ){
+ p->rc = SQLITE_MISUSE;
+ }else{
+ p->rc = SQLITE_INTERRUPT;
+ }
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), 0);
+ break;
+ }
+ sprintf(p->zStack[0],"%d",i);
+ sprintf(p->zStack[2],"%d", p->aOp[i].p1);
+ sprintf(p->zStack[3],"%d", p->aOp[i].p2);
+ if( p->aOp[i].p3type==P3_POINTER ){
+ sprintf(p->aStack[4].z, "ptr(%#x)", (int)p->aOp[i].p3);
+ p->zStack[4] = p->aStack[4].z;
+ }else{
+ p->zStack[4] = p->aOp[i].p3;
+ }
+ p->zStack[1] = sqliteOpcodeNames[p->aOp[i].opcode];
+ if( p->xCallback==0 ){
+ p->pc = i+1;
+ p->azResColumn = p->zStack;
+ p->nResColumn = 5;
+ return SQLITE_ROW;
+ }
+ if( sqliteSafetyOff(db) ){
+ p->rc = SQLITE_MISUSE;
+ break;
+ }
+ if( p->xCallback(p->pCbArg, 5, p->zStack, p->azColName) ){
+ p->rc = SQLITE_ABORT;
+ }
+ if( sqliteSafetyOn(db) ){
+ p->rc = SQLITE_MISUSE;
+ }
+ }
+ return p->rc==SQLITE_OK ? SQLITE_OK : SQLITE_ERROR;
+}
+
+/*
+** The parameters are pointers to the head of two sorted lists
+** of Sorter structures. Merge these two lists together and return
+** a single sorted list. This routine forms the core of the merge-sort
+** algorithm.
+**
+** In the case of a tie, left sorts in front of right.
+*/
+static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
+ Sorter sHead;
+ Sorter *pTail;
+ pTail = &sHead;
+ pTail->pNext = 0;
+ while( pLeft && pRight ){
+ int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
+ if( c<=0 ){
+ pTail->pNext = pLeft;
+ pLeft = pLeft->pNext;
+ }else{
+ pTail->pNext = pRight;
+ pRight = pRight->pNext;
+ }
+ pTail = pTail->pNext;
+ }
+ if( pLeft ){
+ pTail->pNext = pLeft;
+ }else if( pRight ){
+ pTail->pNext = pRight;
+ }
+ return sHead.pNext;
+}
+
+/*
+** Convert an integer in between the native integer format and
+** the bigEndian format used as the record number for tables.
+**
+** The bigEndian format (most significant byte first) is used for
+** record numbers so that records will sort into the correct order
+** even though memcmp() is used to compare the keys. On machines
+** whose native integer format is little endian (ex: i486) the
+** order of bytes is reversed. On native big-endian machines
+** (ex: Alpha, Sparc, Motorola) the byte order is the same.
+**
+** This function is its own inverse. In other words
+**
+** X == byteSwap(byteSwap(X))
+*/
+static int byteSwap(int x){
+ union {
+ char zBuf[sizeof(int)];
+ int i;
+ } ux;
+ ux.zBuf[3] = x&0xff;
+ ux.zBuf[2] = (x>>8)&0xff;
+ ux.zBuf[1] = (x>>16)&0xff;
+ ux.zBuf[0] = (x>>24)&0xff;
+ return ux.i;
+}
+
+/*
+** When converting from the native format to the key format and back
+** again, in addition to changing the byte order we invert the high-order
+** bit of the most significant byte. This causes negative numbers to
+** sort before positive numbers in the memcmp() function.
+*/
+#define keyToInt(X) (byteSwap(X) ^ 0x80000000)
+#define intToKey(X) (byteSwap((X) ^ 0x80000000))
+
+/*
+** Code contained within the VERIFY() macro is not needed for correct
+** execution. It is there only to catch errors. So when we compile
+** with NDEBUG=1, the VERIFY() code is omitted.
+*/
+#ifdef NDEBUG
+# define VERIFY(X)
+#else
+# define VERIFY(X) X
+#endif
+
+/*
+** The following routine works like a replacement for the standard
+** library routine fgets(). The difference is in how end-of-line (EOL)
+** is handled. Standard fgets() uses LF for EOL under unix, CRLF
+** under windows, and CR under mac. This routine accepts any of these
+** character sequences as an EOL mark. The EOL mark is replaced by
+** a single LF character in zBuf.
+*/
+static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
+ int i, c;
+ for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
+ zBuf[i] = c;
+ if( c=='\r' || c=='\n' ){
+ if( c=='\r' ){
+ zBuf[i] = '\n';
+ c = getc(in);
+ if( c!=EOF && c!='\n' ) ungetc(c, in);
+ }
+ i++;
+ break;
+ }
+ }
+ zBuf[i] = 0;
+ return i>0 ? zBuf : 0;
+}
+
+#if !defined(NDEBUG) || defined(VDBE_PROFILE)
+/*
+** Print a single opcode. This routine is used for debugging only.
+*/
+static void vdbePrintOp(FILE *pOut, int pc, Op *pOp){
+ char *zP3;
+ char zPtr[40];
+ if( pOp->p3type==P3_POINTER ){
+ sprintf(zPtr, "ptr(%#x)", (int)pOp->p3);
+ zP3 = zPtr;
+ }else{
+ zP3 = pOp->p3;
+ }
+ if( pOut==0 ) pOut = stdout;
+ fprintf(pOut,"%4d %-12s %4d %4d %s\n",
+ pc, sqliteOpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");
+ fflush(pOut);
+}
+#endif
+
+/*
+** Make sure there is space in the Vdbe structure to hold at least
+** mxCursor cursors. If there is not currently enough space, then
+** allocate more.
+**
+** If a memory allocation error occurs, return 1. Return 0 if
+** everything works.
+*/
+static int expandCursorArraySize(Vdbe *p, int mxCursor){
+ if( mxCursor>=p->nCursor ){
+ Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
+ if( aCsr==0 ) return 1;
+ p->aCsr = aCsr;
+ memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
+ p->nCursor = mxCursor+1;
+ }
+ return 0;
+}
+
+#ifdef VDBE_PROFILE
+/*
+** The following routine only works on pentium-class processors.
+** It uses the RDTSC opcode to read cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+__inline__ unsigned long long int hwtime(void){
+ unsigned long long int x;
+ __asm__("rdtsc\n\t"
+ "mov %%edx, %%ecx\n\t"
+ :"=A" (x));
+ return x;
+}
+#endif
+
+/*
+** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
+** sqlite_interrupt() routine has been called. If it has been, then
+** processing of the VDBE program is interrupted.
+**
+** This macro added to every instruction that does a jump in order to
+** implement a loop. This test used to be on every single instruction,
+** but that meant we more testing that we needed. By only testing the
+** flag on jump instructions, we get a (small) speed improvement.
+*/
+#define CHECK_FOR_INTERRUPT \
+ if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
+
+
+/*
+** Prepare a virtual machine for execution. This involves things such
+** as allocating stack space and initializing the program counter.
+** After the VDBE has be prepped, it can be executed by one or more
+** calls to sqliteVdbeExec().
+**
+** The behavior of sqliteVdbeExec() is influenced by the parameters to
+** this routine. If xCallback is NULL, then sqliteVdbeExec() will return
+** with SQLITE_ROW whenever there is a row of the result set ready
+** to be delivered. p->azResColumn will point to the row and
+** p->nResColumn gives the number of columns in the row. If xCallback
+** is not NULL, then the xCallback() routine is invoked to process each
+** row in the result set.
+*/
+void sqliteVdbeMakeReady(
+ Vdbe *p, /* The VDBE */
+ sqlite_callback xCallback, /* Result callback */
+ void *pCallbackArg, /* 1st argument to xCallback() */
+ int isExplain /* True if the EXPLAIN keywords is present */
+){
+ int n;
+
+ assert( p!=0 );
+ assert( p->aStack==0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+
+ /* Add a HALT instruction to the very end of the program.
+ */
+ sqliteVdbeAddOp(p, OP_Halt, 0, 0);
+
+ /* No instruction ever pushes more than a single element onto the
+ ** stack. And the stack never grows on successive executions of the
+ ** same loop. So the total number of instructions is an upper bound
+ ** on the maximum stack depth required.
+ **
+ ** Allocation all the stack space we will ever need.
+ */
+ n = isExplain ? 10 : p->nOp;
+ p->aStack = sqliteMalloc( n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) );
+ p->zStack = (char**)&p->aStack[n];
+ p->azColName = (char**)&p->zStack[n];
+
+ sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
+ p->agg.pSearch = 0;
+#ifdef MEMORY_DEBUG
+ if( access("vdbe_trace",0)==0 ){
+ p->trace = stdout;
+ }
+#endif
+ p->tos = -1;
+ p->pc = 0;
+ p->rc = SQLITE_OK;
+ p->uniqueCnt = 0;
+ p->returnDepth = 0;
+ p->errorAction = OE_Abort;
+ p->undoTransOnError = 0;
+ p->xCallback = xCallback;
+ p->pCbArg = pCallbackArg;
+ p->popStack = 0;
+ p->explain = isExplain;
+ p->magic = VDBE_MAGIC_RUN;
+#ifdef VDBE_PROFILE
+ for(i=0; i<p->nOp; i++){
+ p->aOp[i].cnt = 0;
+ p->aOp[i].cycles = 0;
+ }
+#endif
+}
+
+/*
+** Execute as much of a VDBE program as we can then return.
+**
+** sqliteVdbeMakeReady() must be called before this routine in order to
+** close the program with a final OP_Halt and to set up the callbacks
+** and the error message pointer.
+**
+** Whenever a row or result data is available, this routine will either
+** invoke the result callback (if there is one) or return with
+** SQLITE_ROW.
+**
+** If an attempt is made to open a locked database, then this routine
+** will either invoke the busy callback (if there is one) or it will
+** return SQLITE_BUSY.
+**
+** If an error occurs, an error message is written to memory obtained
+** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
+** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
+**
+** If the callback ever returns non-zero, then the program exits
+** immediately. There will be no error message but the p->rc field is
+** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
+**
+** A memory allocation error causes p->rc to be set SQLITE_NOMEM and this
+** routien to return SQLITE_ERROR.
+**
+** Other fatal errors return SQLITE_ERROR.
+**
+** After this routine has finished, sqliteVdbeFinalize() should be
+** used to clean up the mess that was left behind.
+*/
+int sqliteVdbeExec(
+ Vdbe *p /* The VDBE */
+){
+ int pc; /* The program counter */
+ Op *pOp; /* Current operation */
+ int rc = SQLITE_OK; /* Value to return */
+ Btree *pBt = p->pBt; /* The backend driver */
+ sqlite *db = p->db; /* The database */
+ char **zStack = p->zStack; /* Text stack */
+ Stack *aStack = p->aStack; /* Additional stack information */
+ char zBuf[100]; /* Space to sprintf() an integer */
+#ifdef VDBE_PROFILE
+ unsigned long long start; /* CPU clock count at start of opcode */
+ int origPc; /* Program counter at start of opcode */
+#endif
+
+ if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
+ assert( db->magic==SQLITE_MAGIC_BUSY );
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
+ p->rc = SQLITE_OK;
+ assert( p->explain==0 );
+ if( sqlite_malloc_failed ) goto no_mem;
+ if( p->popStack ){
+ PopStack(p, p->popStack);
+ p->popStack = 0;
+ }
+ for(pc=p->pc; rc==SQLITE_OK; pc++){
+ assert( pc>=0 && pc<p->nOp );
+#ifdef VDBE_PROFILE
+ origPc = pc;
+ start = hwtime();
+#endif
+ pOp = &p->aOp[pc];
+
+ /* Only allow tracing if NDEBUG is not defined.
+ */
+#ifndef NDEBUG
+ if( p->trace ){
+ vdbePrintOp(p->trace, pc, pOp);
+ }
+#endif
+
+ switch( pOp->opcode ){
+
+/*****************************************************************************
+** What follows is a massive switch statement where each case implements a
+** separate instruction in the virtual machine. If we follow the usual
+** indentation conventions, each case should be indented by 6 spaces. But
+** that is a lot of wasted space on the left margin. So the code within
+** the switch statement will break with convention and be flush-left. Another
+** big comment (similar to this one) will mark the point in the code where
+** we transition back to normal indentation.
+**
+** The formatting of each case is important. The makefile for SQLite
+** generates two C files "opcodes.h" and "opcodes.c" by scanning this
+** file looking for lines that begin with "case OP_". The opcodes.h files
+** will be filled with #defines that give unique integer values to each
+** opcode and the opcodes.c file is filled with an array of strings where
+** each string is the symbolic name for the corresponding opcode.
+**
+** Documentation about VDBE opcodes is generated by scanning this file
+** for lines of that contain "Opcode:". That line and all subsequent
+** comment lines are used in the generation of the opcode.html documentation
+** file.
+**
+** SUMMARY:
+**
+** Formatting is important to scripts that scan this file.
+** Do not deviate from the formatting style currently in use.
+**
+*****************************************************************************/
+
+/* Opcode: Goto * P2 *
+**
+** An unconditional jump to address P2.
+** The next instruction executed will be
+** the one at index P2 from the beginning of
+** the program.
+*/
+case OP_Goto: {
+ CHECK_FOR_INTERRUPT;
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Gosub * P2 *
+**
+** Push the current address plus 1 onto the return address stack
+** and then jump to address P2.
+**
+** The return address stack is of limited depth. If too many
+** OP_Gosub operations occur without intervening OP_Returns, then
+** the return address stack will fill up and processing will abort
+** with a fatal error.
+*/
+case OP_Gosub: {
+ if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
+ sqliteSetString(&p->zErrMsg, "return address stack overflow", 0);
+ p->rc = SQLITE_INTERNAL;
+ return SQLITE_ERROR;
+ }
+ p->returnStack[p->returnDepth++] = pc+1;
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Return * * *
+**
+** Jump immediately to the next instruction after the last unreturned
+** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
+** processing aborts with a fatal error.
+*/
+case OP_Return: {
+ if( p->returnDepth<=0 ){
+ sqliteSetString(&p->zErrMsg, "return address stack underflow", 0);
+ p->rc = SQLITE_INTERNAL;
+ return SQLITE_ERROR;
+ }
+ p->returnDepth--;
+ pc = p->returnStack[p->returnDepth] - 1;
+ break;
+}
+
+/* Opcode: Halt P1 P2 *
+**
+** Exit immediately. All open cursors, Lists, Sorts, etc are closed
+** automatically.
+**
+** P1 is the result code returned by sqlite_exec(). For a normal
+** halt, this should be SQLITE_OK (0). For errors, it can be some
+** other value. If P1!=0 then P2 will determine whether or not to
+** rollback the current transaction. Do not rollback if P2==OE_Fail.
+** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back
+** out all changes that have occurred during this execution of the
+** VDBE, but do not rollback the transaction.
+**
+** There is an implied "Halt 0 0 0" instruction inserted at the very end of
+** every program. So a jump past the last instruction of the program
+** is the same as executing Halt.
+*/
+case OP_Halt: {
+ p->magic = VDBE_MAGIC_HALT;
+ if( pOp->p1!=SQLITE_OK ){
+ p->rc = pOp->p1;
+ p->errorAction = pOp->p2;
+ if( pOp->p3 ){
+ sqliteSetString(&p->zErrMsg, pOp->p3, 0);
+ }
+ return SQLITE_ERROR;
+ }else{
+ p->rc = SQLITE_OK;
+ return SQLITE_DONE;
+ }
+}
+
+/* Opcode: Integer P1 * P3
+**
+** The integer value P1 is pushed onto the stack. If P3 is not zero
+** then it is assumed to be a string representation of the same integer.
+*/
+case OP_Integer: {
+ int i = ++p->tos;
+ aStack[i].i = pOp->p1;
+ aStack[i].flags = STK_Int;
+ if( pOp->p3 ){
+ zStack[i] = pOp->p3;
+ aStack[i].flags |= STK_Str | STK_Static;
+ aStack[i].n = strlen(pOp->p3)+1;
+ }
+ break;
+}
+
+/* Opcode: String * * P3
+**
+** The string value P3 is pushed onto the stack. If P3==0 then a
+** NULL is pushed onto the stack.
+*/
+case OP_String: {
+ int i = ++p->tos;
+ char *z;
+ z = pOp->p3;
+ if( z==0 ){
+ zStack[i] = 0;
+ aStack[i].n = 0;
+ aStack[i].flags = STK_Null;
+ }else{
+ zStack[i] = z;
+ aStack[i].n = strlen(z) + 1;
+ aStack[i].flags = STK_Str | STK_Static;
+ }
+ break;
+}
+
+/* Opcode: Pop P1 * *
+**
+** P1 elements are popped off of the top of stack and discarded.
+*/
+case OP_Pop: {
+ assert( p->tos+1>=pOp->p1 );
+ PopStack(p, pOp->p1);
+ break;
+}
+
+/* Opcode: Dup P1 P2 *
+**
+** A copy of the P1-th element of the stack
+** is made and pushed onto the top of the stack.
+** The top of the stack is element 0. So the
+** instruction "Dup 0 0 0" will make a copy of the
+** top of the stack.
+**
+** If the content of the P1-th element is a dynamically
+** allocated string, then a new copy of that string
+** is made if P2==0. If P2!=0, then just a pointer
+** to the string is copied.
+**
+** Also see the Pull instruction.
+*/
+case OP_Dup: {
+ int i = p->tos - pOp->p1;
+ int j = ++p->tos;
+ VERIFY( if( i<0 ) goto not_enough_stack; )
+ memcpy(&aStack[j], &aStack[i], sizeof(aStack[i])-NBFS);
+ if( aStack[j].flags & STK_Str ){
+ int isStatic = (aStack[j].flags & STK_Static)!=0;
+ if( pOp->p2 || isStatic ){
+ zStack[j] = zStack[i];
+ aStack[j].flags &= ~STK_Dyn;
+ if( !isStatic ) aStack[j].flags |= STK_Ephem;
+ }else if( aStack[i].n<=NBFS ){
+ memcpy(aStack[j].z, zStack[i], aStack[j].n);
+ zStack[j] = aStack[j].z;
+ aStack[j].flags &= ~(STK_Static|STK_Dyn|STK_Ephem);
+ }else{
+ zStack[j] = sqliteMallocRaw( aStack[j].n );
+ if( zStack[j]==0 ) goto no_mem;
+ memcpy(zStack[j], zStack[i], aStack[j].n);
+ aStack[j].flags &= ~(STK_Static|STK_Ephem);
+ aStack[j].flags |= STK_Dyn;
+ }
+ }
+ break;
+}
+
+/* Opcode: Pull P1 * *
+**
+** The P1-th element is removed from its current location on
+** the stack and pushed back on top of the stack. The
+** top of the stack is element 0, so "Pull 0 0 0" is
+** a no-op. "Pull 1 0 0" swaps the top two elements of
+** the stack.
+**
+** See also the Dup instruction.
+*/
+case OP_Pull: {
+ int from = p->tos - pOp->p1;
+ int to = p->tos;
+ int i;
+ Stack ts;
+ char *tz;
+ VERIFY( if( from<0 ) goto not_enough_stack; )
+ ts = aStack[from];
+ tz = zStack[from];
+ Deephemeralize(p, to);
+ for(i=from; i<to; i++){
+ Deephemeralize(p, i);
+ aStack[i] = aStack[i+1];
+ assert( (aStack[i].flags & STK_Ephem)==0 );
+ if( aStack[i].flags & (STK_Dyn|STK_Static) ){
+ zStack[i] = zStack[i+1];
+ }else{
+ zStack[i] = aStack[i].z;
+ }
+ }
+ aStack[to] = ts;
+ assert( (aStack[to].flags & STK_Ephem)==0 );
+ if( aStack[to].flags & (STK_Dyn|STK_Static) ){
+ zStack[to] = tz;
+ }else{
+ zStack[to] = aStack[to].z;
+ }
+ break;
+}
+
+/* Opcode: Push P1 * *
+**
+** Overwrite the value of the P1-th element down on the
+** stack (P1==0 is the top of the stack) with the value
+** of the top of the stack. Then pop the top of the stack.
+*/
+case OP_Push: {
+ int from = p->tos;
+ int to = p->tos - pOp->p1;
+
+ VERIFY( if( to<0 ) goto not_enough_stack; )
+ if( aStack[to].flags & STK_Dyn ){
+ sqliteFree(zStack[to]);
+ }
+ Deephemeralize(p, from);
+ aStack[to] = aStack[from];
+ if( aStack[to].flags & (STK_Dyn|STK_Static|STK_Ephem) ){
+ zStack[to] = zStack[from];
+ }else{
+ zStack[to] = aStack[to].z;
+ }
+ aStack[from].flags = 0;
+ p->tos--;
+ break;
+}
+
+/* Opcode: ColumnName P1 * P3
+**
+** P3 becomes the P1-th column name (first is 0). An array of pointers
+** to all column names is passed as the 4th parameter to the callback.
+*/
+case OP_ColumnName: {
+ p->azColName[pOp->p1] = pOp->p3;
+ p->nCallback = 0;
+ break;
+}
+
+/* Opcode: Callback P1 * *
+**
+** Pop P1 values off the stack and form them into an array. Then
+** invoke the callback function using the newly formed array as the
+** 3rd parameter.
+*/
+case OP_Callback: {
+ int i = p->tos - pOp->p1 + 1;
+ int j;
+ VERIFY( if( i<0 ) goto not_enough_stack; )
+ for(j=i; j<=p->tos; j++){
+ if( aStack[j].flags & STK_Null ){
+ zStack[j] = 0;
+ }else{
+ Stringify(p, j);
+ }
+ }
+ zStack[p->tos+1] = 0;
+ if( p->xCallback==0 ){
+ p->azResColumn = &zStack[i];
+ p->nResColumn = pOp->p1;
+ p->popStack = pOp->p1;
+ p->pc = pc + 1;
+ return SQLITE_ROW;
+ }
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
+ if( p->xCallback(p->pCbArg, pOp->p1, &zStack[i], p->azColName)!=0 ){
+ rc = SQLITE_ABORT;
+ }
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
+ p->nCallback++;
+ PopStack(p, pOp->p1);
+ if( sqlite_malloc_failed ) goto no_mem;
+ break;
+}
+
+/* Opcode: NullCallback P1 * *
+**
+** Invoke the callback function once with the 2nd argument (the
+** number of columns) equal to P1 and with the 4th argument (the
+** names of the columns) set according to prior OP_ColumnName
+** instructions. This is all like the regular
+** OP_Callback or OP_SortCallback opcodes. But the 3rd argument
+** which normally contains a pointer to an array of pointers to
+** data is NULL.
+**
+** The callback is only invoked if there have been no prior calls
+** to OP_Callback or OP_SortCallback.
+**
+** This opcode is used to report the number and names of columns
+** in cases where the result set is empty.
+*/
+case OP_NullCallback: {
+ if( p->nCallback==0 && p->xCallback!=0 ){
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
+ if( p->xCallback(p->pCbArg, pOp->p1, 0, p->azColName)!=0 ){
+ rc = SQLITE_ABORT;
+ }
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
+ p->nCallback++;
+ if( sqlite_malloc_failed ) goto no_mem;
+ }
+ p->nResColumn = pOp->p1;
+ break;
+}
+
+/* Opcode: Concat P1 P2 P3
+**
+** Look at the first P1 elements of the stack. Append them all
+** together with the lowest element first. Use P3 as a separator.
+** Put the result on the top of the stack. The original P1 elements
+** are popped from the stack if P2==0 and retained if P2==1. If
+** any element of the stack is NULL, then the result is NULL.
+**
+** If P3 is NULL, then use no separator. When P1==1, this routine
+** makes a copy of the top stack element into memory obtained
+** from sqliteMalloc().
+*/
+case OP_Concat: {
+ char *zNew;
+ int nByte;
+ int nField;
+ int i, j;
+ char *zSep;
+ int nSep;
+
+ nField = pOp->p1;
+ zSep = pOp->p3;
+ if( zSep==0 ) zSep = "";
+ nSep = strlen(zSep);
+ VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
+ nByte = 1 - nSep;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( aStack[i].flags & STK_Null ){
+ nByte = -1;
+ break;
+ }else{
+ Stringify(p, i);
+ nByte += aStack[i].n - 1 + nSep;
+ }
+ }
+ if( nByte<0 ){
+ if( pOp->p2==0 ) PopStack(p, nField);
+ p->tos++;
+ aStack[p->tos].flags = STK_Null;
+ zStack[p->tos] = 0;
+ break;
+ }
+ zNew = sqliteMallocRaw( nByte );
+ if( zNew==0 ) goto no_mem;
+ j = 0;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null)==0 ){
+ memcpy(&zNew[j], zStack[i], aStack[i].n-1);
+ j += aStack[i].n-1;
+ }
+ if( nSep>0 && i<p->tos ){
+ memcpy(&zNew[j], zSep, nSep);
+ j += nSep;
+ }
+ }
+ zNew[j] = 0;
+ if( pOp->p2==0 ) PopStack(p, nField);
+ p->tos++;
+ aStack[p->tos].n = nByte;
+ aStack[p->tos].flags = STK_Str|STK_Dyn;
+ zStack[p->tos] = zNew;
+ break;
+}
+
+/* Opcode: Add * * *
+**
+** Pop the top two elements from the stack, add them together,
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the addition.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Multiply * * *
+**
+** Pop the top two elements from the stack, multiply them together,
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the multiplication.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Subtract * * *
+**
+** Pop the top two elements from the stack, subtract the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the subtraction.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Divide * * *
+**
+** Pop the top two elements from the stack, divide the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the division. Division by zero returns NULL.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Remainder * * *
+**
+** Pop the top two elements from the stack, divide the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the remainder after division onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the division. Division by zero returns NULL.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_Add:
+case OP_Subtract:
+case OP_Multiply:
+case OP_Divide:
+case OP_Remainder: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ if( ((aStack[tos].flags | aStack[nos].flags) & STK_Null)!=0 ){
+ POPSTACK;
+ Release(p, nos);
+ aStack[nos].flags = STK_Null;
+ }else if( (aStack[tos].flags & aStack[nos].flags & STK_Int)==STK_Int ){
+ int a, b;
+ a = aStack[tos].i;
+ b = aStack[nos].i;
+ switch( pOp->opcode ){
+ case OP_Add: b += a; break;
+ case OP_Subtract: b -= a; break;
+ case OP_Multiply: b *= a; break;
+ case OP_Divide: {
+ if( a==0 ) goto divide_by_zero;
+ b /= a;
+ break;
+ }
+ default: {
+ if( a==0 ) goto divide_by_zero;
+ b %= a;
+ break;
+ }
+ }
+ POPSTACK;
+ Release(p, nos);
+ aStack[nos].i = b;
+ aStack[nos].flags = STK_Int;
+ }else{
+ double a, b;
+ Realify(p, tos);
+ Realify(p, nos);
+ a = aStack[tos].r;
+ b = aStack[nos].r;
+ switch( pOp->opcode ){
+ case OP_Add: b += a; break;
+ case OP_Subtract: b -= a; break;
+ case OP_Multiply: b *= a; break;
+ case OP_Divide: {
+ if( a==0.0 ) goto divide_by_zero;
+ b /= a;
+ break;
+ }
+ default: {
+ int ia = (int)a;
+ int ib = (int)b;
+ if( ia==0.0 ) goto divide_by_zero;
+ b = ib % ia;
+ break;
+ }
+ }
+ POPSTACK;
+ Release(p, nos);
+ aStack[nos].r = b;
+ aStack[nos].flags = STK_Real;
+ }
+ break;
+
+divide_by_zero:
+ PopStack(p, 2);
+ p->tos = nos;
+ aStack[nos].flags = STK_Null;
+ break;
+}
+
+/* Opcode: Function P1 * P3
+**
+** Invoke a user function (P3 is a pointer to a Function structure that
+** defines the function) with P1 string arguments taken from the stack.
+** Pop all arguments from the stack and push back the result.
+**
+** See also: AggFunc
+*/
+case OP_Function: {
+ int n, i;
+ sqlite_func ctx;
+
+ n = pOp->p1;
+ VERIFY( if( n<0 ) goto bad_instruction; )
+ VERIFY( if( p->tos+1<n ) goto not_enough_stack; )
+ for(i=p->tos-n+1; i<=p->tos; i++){
+ if( aStack[i].flags & STK_Null ){
+ zStack[i] = 0;
+ }else{
+ Stringify(p, i);
+ }
+ }
+ ctx.pFunc = (FuncDef*)pOp->p3;
+ ctx.s.flags = STK_Null;
+ ctx.z = 0;
+ ctx.isError = 0;
+ ctx.isStep = 0;
+ (*ctx.pFunc->xFunc)(&ctx, n, (const char**)&zStack[p->tos-n+1]);
+ PopStack(p, n);
+ p->tos++;
+ aStack[p->tos] = ctx.s;
+ if( ctx.s.flags & STK_Dyn ){
+ zStack[p->tos] = ctx.z;
+ }else if( ctx.s.flags & STK_Str ){
+ zStack[p->tos] = aStack[p->tos].z;
+ }else{
+ zStack[p->tos] = 0;
+ }
+ if( ctx.isError ){
+ sqliteSetString(&p->zErrMsg,
+ zStack[p->tos] ? zStack[p->tos] : "user function error", 0);
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: BitAnd * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the bit-wise AND of the
+** two elements.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: BitOr * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the bit-wise OR of the
+** two elements.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: ShiftLeft * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the top element shifted
+** left by N bits where N is the second element on the stack.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: ShiftRight * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the top element shifted
+** right by N bits where N is the second element on the stack.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_BitAnd:
+case OP_BitOr:
+case OP_ShiftLeft:
+case OP_ShiftRight: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ int a, b;
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ if( (aStack[tos].flags | aStack[nos].flags) & STK_Null ){
+ POPSTACK;
+ Release(p,nos);
+ aStack[nos].flags = STK_Null;
+ break;
+ }
+ Integerify(p, tos);
+ Integerify(p, nos);
+ a = aStack[tos].i;
+ b = aStack[nos].i;
+ switch( pOp->opcode ){
+ case OP_BitAnd: a &= b; break;
+ case OP_BitOr: a |= b; break;
+ case OP_ShiftLeft: a <<= b; break;
+ case OP_ShiftRight: a >>= b; break;
+ default: /* CANT HAPPEN */ break;
+ }
+ POPSTACK;
+ Release(p, nos);
+ aStack[nos].i = a;
+ aStack[nos].flags = STK_Int;
+ break;
+}
+
+/* Opcode: AddImm P1 * *
+**
+** Add the value P1 to whatever is on top of the stack. The result
+** is always an integer.
+**
+** To force the top of the stack to be an integer, just add 0.
+*/
+case OP_AddImm: {
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ Integerify(p, tos);
+ aStack[tos].i += pOp->p1;
+ break;
+}
+
+/* Opcode: MustBeInt P1 P2 *
+**
+** Force the top of the stack to be an integer. If the top of the
+** stack is not an integer and cannot be converted into an integer
+** with out data loss, then jump immediately to P2, or if P2==0
+** raise an SQLITE_MISMATCH exception.
+**
+** If the top of the stack is not an integer and P2 is not zero and
+** P1 is 1, then the stack is popped. In all other cases, the depth
+** of the stack is unchanged.
+*/
+case OP_MustBeInt: {
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( aStack[tos].flags & STK_Int ){
+ /* Do nothing */
+ }else if( aStack[tos].flags & STK_Real ){
+ int i = aStack[tos].r;
+ double r = i;
+ if( r!=aStack[tos].r ){
+ goto mismatch;
+ }
+ aStack[tos].i = i;
+ }else if( aStack[tos].flags & STK_Str ){
+ int v;
+ if( !toInt(zStack[tos], &v) ){
+ goto mismatch;
+ }
+ p->aStack[tos].i = v;
+ }else{
+ goto mismatch;
+ }
+ Release(p, tos);
+ p->aStack[tos].flags = STK_Int;
+ break;
+
+mismatch:
+ if( pOp->p2==0 ){
+ rc = SQLITE_MISMATCH;
+ goto abort_due_to_error;
+ }else{
+ if( pOp->p1 ) POPSTACK;
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: Eq P1 P2 *
+**
+** Pop the top two elements from the stack. If they are equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared for equality that way. Otherwise the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrEq.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Ne P1 P2 *
+**
+** Pop the top two elements from the stack. If they are not equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Otherwise the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrNe.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Lt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than the first (the top of stack), then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+** In other words, jump if NOS<TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrLt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Le P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS<=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrLe.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Gt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is greater than the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrGt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Ge P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the next
+** on stack) is greater than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrGe.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+case OP_Eq:
+case OP_Ne:
+case OP_Lt:
+case OP_Le:
+case OP_Gt:
+case OP_Ge: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ int c, v;
+ int ft, fn;
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ ft = aStack[tos].flags;
+ fn = aStack[nos].flags;
+ if( (ft | fn) & STK_Null ){
+ POPSTACK;
+ POPSTACK;
+ if( pOp->p2 ){
+ if( pOp->p1 ) pc = pOp->p2-1;
+ }else{
+ p->tos++;
+ aStack[nos].flags = STK_Null;
+ }
+ break;
+ }else if( (ft & fn & STK_Int)==STK_Int ){
+ c = aStack[nos].i - aStack[tos].i;
+ }else if( (ft & STK_Int)!=0 && (fn & STK_Str)!=0 && toInt(zStack[nos],&v) ){
+ Release(p, nos);
+ aStack[nos].i = v;
+ aStack[nos].flags = STK_Int;
+ c = aStack[nos].i - aStack[tos].i;
+ }else if( (fn & STK_Int)!=0 && (ft & STK_Str)!=0 && toInt(zStack[tos],&v) ){
+ Release(p, tos);
+ aStack[tos].i = v;
+ aStack[tos].flags = STK_Int;
+ c = aStack[nos].i - aStack[tos].i;
+ }else{
+ Stringify(p, tos);
+ Stringify(p, nos);
+ c = sqliteCompare(zStack[nos], zStack[tos]);
+ }
+ switch( pOp->opcode ){
+ case OP_Eq: c = c==0; break;
+ case OP_Ne: c = c!=0; break;
+ case OP_Lt: c = c<0; break;
+ case OP_Le: c = c<=0; break;
+ case OP_Gt: c = c>0; break;
+ default: c = c>=0; break;
+ }
+ POPSTACK;
+ POPSTACK;
+ if( pOp->p2 ){
+ if( c ) pc = pOp->p2-1;
+ }else{
+ p->tos++;
+ aStack[nos].flags = STK_Int;
+ aStack[nos].i = c;
+ }
+ break;
+}
+/* INSERT NO CODE HERE!
+**
+** The opcode numbers are extracted from this source file by doing
+**
+** grep '^case OP_' vdbe.c | ... >opcodes.h
+**
+** The opcodes are numbered in the order that they appear in this file.
+** But in order for the expression generating code to work right, the
+** string comparison operators that follow must be numbered exactly 6
+** greater than the numeric comparison opcodes above. So no other
+** cases can appear between the two.
+*/
+/* Opcode: StrEq P1 P2 *
+**
+** Pop the top two elements from the stack. If they are equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Eq.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrNe P1 P2 *
+**
+** Pop the top two elements from the stack. If they are not equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Ne.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrLt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than the first (the top of stack), then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+** In other words, jump if NOS<TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Lt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrLe P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS<=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Le.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrGt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is greater than the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Gt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrGe P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the next
+** on stack) is greater than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Ge.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+case OP_StrEq:
+case OP_StrNe:
+case OP_StrLt:
+case OP_StrLe:
+case OP_StrGt:
+case OP_StrGe: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ int c;
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ if( (aStack[nos].flags | aStack[tos].flags) & STK_Null ){
+ POPSTACK;
+ POPSTACK;
+ if( pOp->p2 ){
+ if( pOp->p1 ) pc = pOp->p2-1;
+ }else{
+ p->tos++;
+ aStack[nos].flags = STK_Null;
+ }
+ break;
+ }else{
+ Stringify(p, tos);
+ Stringify(p, nos);
+ c = strcmp(zStack[nos], zStack[tos]);
+ }
+ /* The asserts on each case of the following switch are there to verify
+ ** that string comparison opcodes are always exactly 6 greater than the
+ ** corresponding numeric comparison opcodes. The code generator depends
+ ** on this fact.
+ */
+ switch( pOp->opcode ){
+ case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break;
+ case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break;
+ case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break;
+ case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break;
+ case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break;
+ default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break;
+ }
+ POPSTACK;
+ POPSTACK;
+ if( pOp->p2 ){
+ if( c ) pc = pOp->p2-1;
+ }else{
+ p->tos++;
+ aStack[nos].flags = STK_Int;
+ aStack[nos].i = c;
+ }
+ break;
+}
+
+/* Opcode: And * * *
+**
+** Pop two values off the stack. Take the logical AND of the
+** two values and push the resulting boolean value back onto the
+** stack.
+*/
+/* Opcode: Or * * *
+**
+** Pop two values off the stack. Take the logical OR of the
+** two values and push the resulting boolean value back onto the
+** stack.
+*/
+case OP_And:
+case OP_Or: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
+
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ if( aStack[tos].flags & STK_Null ){
+ v1 = 2;
+ }else{
+ Integerify(p, tos);
+ v1 = aStack[tos].i==0;
+ }
+ if( aStack[nos].flags & STK_Null ){
+ v2 = 2;
+ }else{
+ Integerify(p, nos);
+ v2 = aStack[nos].i==0;
+ }
+ if( pOp->opcode==OP_And ){
+ static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
+ v1 = and_logic[v1*3+v2];
+ }else{
+ static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
+ v1 = or_logic[v1*3+v2];
+ }
+ POPSTACK;
+ Release(p, nos);
+ if( v1==2 ){
+ aStack[nos].flags = STK_Null;
+ }else{
+ aStack[nos].i = v1==0;
+ aStack[nos].flags = STK_Int;
+ }
+ break;
+}
+
+/* Opcode: Negative * * *
+**
+** Treat the top of the stack as a numeric quantity. Replace it
+** with its additive inverse. If the top of the stack is NULL
+** its value is unchanged.
+*/
+/* Opcode: AbsValue * * *
+**
+** Treat the top of the stack as a numeric quantity. Replace it
+** with its absolute value. If the top of the stack is NULL
+** its value is unchanged.
+*/
+case OP_Negative:
+case OP_AbsValue: {
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( aStack[tos].flags & STK_Real ){
+ Release(p, tos);
+ if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){
+ aStack[tos].r = -aStack[tos].r;
+ }
+ aStack[tos].flags = STK_Real;
+ }else if( aStack[tos].flags & STK_Int ){
+ Release(p, tos);
+ if( pOp->opcode==OP_Negative || aStack[tos].i<0 ){
+ aStack[tos].i = -aStack[tos].i;
+ }
+ aStack[tos].flags = STK_Int;
+ }else if( aStack[tos].flags & STK_Null ){
+ /* Do nothing */
+ }else{
+ Realify(p, tos);
+ Release(p, tos);
+ if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){
+ aStack[tos].r = -aStack[tos].r;
+ }
+ aStack[tos].flags = STK_Real;
+ }
+ break;
+}
+
+/* Opcode: Not * * *
+**
+** Interpret the top of the stack as a boolean value. Replace it
+** with its complement. If the top of the stack is NULL its value
+** is unchanged.
+*/
+case OP_Not: {
+ int tos = p->tos;
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ if( aStack[tos].flags & STK_Null ) break; /* Do nothing to NULLs */
+ Integerify(p, tos);
+ Release(p, tos);
+ aStack[tos].i = !aStack[tos].i;
+ aStack[tos].flags = STK_Int;
+ break;
+}
+
+/* Opcode: BitNot * * *
+**
+** Interpret the top of the stack as an value. Replace it
+** with its ones-complement. If the top of the stack is NULL its
+** value is unchanged.
+*/
+case OP_BitNot: {
+ int tos = p->tos;
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ if( aStack[tos].flags & STK_Null ) break; /* Do nothing to NULLs */
+ Integerify(p, tos);
+ Release(p, tos);
+ aStack[tos].i = ~aStack[tos].i;
+ aStack[tos].flags = STK_Int;
+ break;
+}
+
+/* Opcode: Noop * * *
+**
+** Do nothing. This instruction is often useful as a jump
+** destination.
+*/
+case OP_Noop: {
+ break;
+}
+
+/* Opcode: If P1 P2 *
+**
+** Pop a single boolean from the stack. If the boolean popped is
+** true, then jump to p2. Otherwise continue to the next instruction.
+** An integer is false if zero and true otherwise. A string is
+** false if it has zero length and true otherwise.
+**
+** If the value popped of the stack is NULL, then take the jump if P1
+** is true and fall through if P1 is false.
+*/
+/* Opcode: IfNot P1 P2 *
+**
+** Pop a single boolean from the stack. If the boolean popped is
+** false, then jump to p2. Otherwise continue to the next instruction.
+** An integer is false if zero and true otherwise. A string is
+** false if it has zero length and true otherwise.
+**
+** If the value popped of the stack is NULL, then take the jump if P1
+** is true and fall through if P1 is false.
+*/
+case OP_If:
+case OP_IfNot: {
+ int c;
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ if( aStack[p->tos].flags & STK_Null ){
+ c = pOp->p1;
+ }else{
+ Integerify(p, p->tos);
+ c = aStack[p->tos].i;
+ if( pOp->opcode==OP_IfNot ) c = !c;
+ }
+ POPSTACK;
+ if( c ) pc = pOp->p2-1;
+ break;
+}
+
+/* Opcode: IsNull P1 P2 *
+**
+** If any of the top abs(P1) values on the stack are NULL, then jump
+** to P2. The stack is popped P1 times if P1>0. If P1<0 then all values
+** are left unchanged on the stack.
+*/
+case OP_IsNull: {
+ int i, cnt;
+ cnt = pOp->p1;
+ if( cnt<0 ) cnt = -cnt;
+ VERIFY( if( p->tos+1-cnt<0 ) goto not_enough_stack; )
+ for(i=0; i<cnt; i++){
+ if( aStack[p->tos-i].flags & STK_Null ){
+ pc = pOp->p2-1;
+ break;
+ }
+ }
+ if( pOp->p1>0 ) PopStack(p, cnt);
+ break;
+}
+
+/* Opcode: NotNull P1 P2 *
+**
+** Jump to P2 if the top value on the stack is not NULL. Pop the
+** stack if P1 is greater than zero. If P1 is less than or equal to
+** zero then leave the value on the stack.
+*/
+case OP_NotNull: {
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ if( (aStack[p->tos].flags & STK_Null)==0 ) pc = pOp->p2-1;
+ if( pOp->p1>0 ){ POPSTACK; }
+ break;
+}
+
+/* Opcode: MakeRecord P1 P2 *
+**
+** Convert the top P1 entries of the stack into a single entry
+** suitable for use as a data record in a database table. The
+** details of the format are irrelavant as long as the OP_Column
+** opcode can decode the record later. Refer to source code
+** comments for the details of the record format.
+**
+** If P2 is true (non-zero) and one or more of the P1 entries
+** that go into building the record is NULL, then add some extra
+** bytes to the record to make it distinct for other entries created
+** during the same run of the VDBE. The extra bytes added are a
+** counter that is reset with each run of the VDBE, so records
+** created this way will not necessarily be distinct across runs.
+** But they should be distinct for transient tables (created using
+** OP_OpenTemp) which is what they are intended for.
+**
+** (Later:) The P2==1 option was intended to make NULLs distinct
+** for the UNION operator. But I have since discovered that NULLs
+** are indistinct for UNION. So this option is never used.
+*/
+case OP_MakeRecord: {
+ char *zNewRecord;
+ int nByte;
+ int nField;
+ int i, j;
+ int idxWidth;
+ u32 addr;
+ int addUnique = 0; /* True to cause bytes to be added to make the
+ ** generated record distinct */
+ char zTemp[NBFS]; /* Temp space for small records */
+
+ /* Assuming the record contains N fields, the record format looks
+ ** like this:
+ **
+ ** -------------------------------------------------------------------
+ ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
+ ** -------------------------------------------------------------------
+ **
+ ** All data fields are converted to strings before being stored and
+ ** are stored with their null terminators. NULL entries omit the
+ ** null terminator. Thus an empty string uses 1 byte and a NULL uses
+ ** zero bytes. Data(0) is taken from the lowest element of the stack
+ ** and data(N-1) is the top of the stack.
+ **
+ ** Each of the idx() entries is either 1, 2, or 3 bytes depending on
+ ** how big the total record is. Idx(0) contains the offset to the start
+ ** of data(0). Idx(k) contains the offset to the start of data(k).
+ ** Idx(N) contains the total number of bytes in the record.
+ */
+ nField = pOp->p1;
+ VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
+ nByte = 0;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null) ){
+ addUnique = pOp->p2;
+ }else{
+ Stringify(p, i);
+ nByte += aStack[i].n;
+ }
+ }
+ if( addUnique ) nByte += sizeof(p->uniqueCnt);
+ if( nByte + nField + 1 < 256 ){
+ idxWidth = 1;
+ }else if( nByte + 2*nField + 2 < 65536 ){
+ idxWidth = 2;
+ }else{
+ idxWidth = 3;
+ }
+ nByte += idxWidth*(nField + 1);
+ if( nByte>MAX_BYTES_PER_ROW ){
+ rc = SQLITE_TOOBIG;
+ goto abort_due_to_error;
+ }
+ if( nByte<=NBFS ){
+ zNewRecord = zTemp;
+ }else{
+ zNewRecord = sqliteMallocRaw( nByte );
+ if( zNewRecord==0 ) goto no_mem;
+ }
+ j = 0;
+ addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ zNewRecord[j++] = addr & 0xff;
+ if( idxWidth>1 ){
+ zNewRecord[j++] = (addr>>8)&0xff;
+ if( idxWidth>2 ){
+ zNewRecord[j++] = (addr>>16)&0xff;
+ }
+ }
+ if( (aStack[i].flags & STK_Null)==0 ){
+ addr += aStack[i].n;
+ }
+ }
+ zNewRecord[j++] = addr & 0xff;
+ if( idxWidth>1 ){
+ zNewRecord[j++] = (addr>>8)&0xff;
+ if( idxWidth>2 ){
+ zNewRecord[j++] = (addr>>16)&0xff;
+ }
+ }
+ if( addUnique ){
+ memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
+ p->uniqueCnt++;
+ j += sizeof(p->uniqueCnt);
+ }
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null)==0 ){
+ memcpy(&zNewRecord[j], zStack[i], aStack[i].n);
+ j += aStack[i].n;
+ }
+ }
+ PopStack(p, nField);
+ p->tos++;
+ aStack[p->tos].n = nByte;
+ if( nByte<=NBFS ){
+ assert( zNewRecord==zTemp );
+ memcpy(aStack[p->tos].z, zTemp, nByte);
+ zStack[p->tos] = aStack[p->tos].z;
+ aStack[p->tos].flags = STK_Str;
+ }else{
+ assert( zNewRecord!=zTemp );
+ aStack[p->tos].flags = STK_Str | STK_Dyn;
+ zStack[p->tos] = zNewRecord;
+ }
+ break;
+}
+
+/* Opcode: MakeKey P1 P2 P3
+**
+** Convert the top P1 entries of the stack into a single entry suitable
+** for use as the key in an index. The top P1 records are
+** converted to strings and merged. The null-terminators
+** are retained and used as separators.
+** The lowest entry in the stack is the first field and the top of the
+** stack becomes the last.
+**
+** If P2 is not zero, then the original entries remain on the stack
+** and the new key is pushed on top. If P2 is zero, the original
+** data is popped off the stack first then the new key is pushed
+** back in its place.
+**
+** P3 is a string that is P1 characters long. Each character is either
+** an 'n' or a 't' to indicates if the argument should be numeric or
+** text. The first character corresponds to the lowest element on the
+** stack. If P3 is NULL then all arguments are assumed to be numeric.
+**
+** The key is a concatenation of fields. Each field is terminated by
+** a single 0x00 character. A NULL field is introduced by an 'a' and
+** is followed immediately by its 0x00 terminator. A numeric field is
+** introduced by a single character 'b' and is followed by a sequence
+** of characters that represent the number such that a comparison of
+** the character string using memcpy() sorts the numbers in numerical
+** order. The character strings for numbers are generated using the
+** sqliteRealToSortable() function. A text field is introduced by a
+** 'c' character and is followed by the exact text of the field. The
+** use of an 'a', 'b', or 'c' character at the beginning of each field
+** guarantees that NULL sort before numbers and that numbers sort
+** before text. 0x00 characters do not occur except as separators
+** between fields.
+**
+** See also: MakeIdxKey, SortMakeKey
+*/
+/* Opcode: MakeIdxKey P1 P2 P3
+**
+** Convert the top P1 entries of the stack into a single entry suitable
+** for use as the key in an index. In addition, take one additional integer
+** off of the stack, treat that integer as a four-byte record number, and
+** append the four bytes to the key. Thus a total of P1+1 entries are
+** popped from the stack for this instruction and a single entry is pushed
+** back. The first P1 entries that are popped are strings and the last
+** entry (the lowest on the stack) is an integer record number.
+**
+** The converstion of the first P1 string entries occurs just like in
+** MakeKey. Each entry is separated from the others by a null.
+** The entire concatenation is null-terminated. The lowest entry
+** in the stack is the first field and the top of the stack becomes the
+** last.
+**
+** If P2 is not zero and one or more of the P1 entries that go into the
+** generated key is NULL, then jump to P2 after the new key has been
+** pushed on the stack. In other words, jump to P2 if the key is
+** guaranteed to be unique. This jump can be used to skip a subsequent
+** uniqueness test.
+**
+** P3 is a string that is P1 characters long. Each character is either
+** an 'n' or a 't' to indicates if the argument should be numeric or
+** text. The first character corresponds to the lowest element on the
+** stack. If P3 is null then all arguments are assumed to be numeric.
+**
+** See also: MakeKey, SortMakeKey
+*/
+case OP_MakeIdxKey:
+case OP_MakeKey: {
+ char *zNewKey;
+ int nByte;
+ int nField;
+ int addRowid;
+ int i, j;
+ int containsNull = 0;
+ char zTemp[NBFS];
+
+ addRowid = pOp->opcode==OP_MakeIdxKey;
+ nField = pOp->p1;
+ VERIFY( if( p->tos+1+addRowid<nField ) goto not_enough_stack; )
+ nByte = 0;
+ for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){
+ int flags = aStack[i].flags;
+ int len;
+ char *z;
+ if( flags & STK_Null ){
+ nByte += 2;
+ containsNull = 1;
+ }else if( pOp->p3 && pOp->p3[j]=='t' ){
+ Stringify(p, i);
+ aStack[i].flags &= ~(STK_Int|STK_Real);
+ nByte += aStack[i].n+1;
+ }else if( (flags & (STK_Real|STK_Int))!=0 || isNumber(zStack[i]) ){
+ if( (flags & (STK_Real|STK_Int))==STK_Int ){
+ aStack[i].r = aStack[i].i;
+ }else if( (flags & (STK_Real|STK_Int))==0 ){
+ aStack[i].r = atof(zStack[i]);
+ }
+ Release(p, i);
+ z = aStack[i].z;
+ sqliteRealToSortable(aStack[i].r, z);
+ len = strlen(z);
+ zStack[i] = 0;
+ aStack[i].flags = STK_Real;
+ aStack[i].n = len+1;
+ nByte += aStack[i].n+1;
+ }else{
+ nByte += aStack[i].n+1;
+ }
+ }
+ if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
+ rc = SQLITE_TOOBIG;
+ goto abort_due_to_error;
+ }
+ if( addRowid ) nByte += sizeof(u32);
+ if( nByte<=NBFS ){
+ zNewKey = zTemp;
+ }else{
+ zNewKey = sqliteMallocRaw( nByte );
+ if( zNewKey==0 ) goto no_mem;
+ }
+ j = 0;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( aStack[i].flags & STK_Null ){
+ zNewKey[j++] = 'a';
+ zNewKey[j++] = 0;
+ }else{
+ if( aStack[i].flags & (STK_Int|STK_Real) ){
+ zNewKey[j++] = 'b';
+ }else{
+ zNewKey[j++] = 'c';
+ }
+ memcpy(&zNewKey[j], zStack[i] ? zStack[i] : aStack[i].z, aStack[i].n);
+ j += aStack[i].n;
+ }
+ }
+ if( addRowid ){
+ u32 iKey;
+ Integerify(p, p->tos-nField);
+ iKey = intToKey(aStack[p->tos-nField].i);
+ memcpy(&zNewKey[j], &iKey, sizeof(u32));
+ PopStack(p, nField+1);
+ if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
+ }else{
+ if( pOp->p2==0 ) PopStack(p, nField+addRowid);
+ }
+ p->tos++;
+ aStack[p->tos].n = nByte;
+ if( nByte<=NBFS ){
+ assert( zNewKey==zTemp );
+ zStack[p->tos] = aStack[p->tos].z;
+ memcpy(zStack[p->tos], zTemp, nByte);
+ aStack[p->tos].flags = STK_Str;
+ }else{
+ aStack[p->tos].flags = STK_Str|STK_Dyn;
+ zStack[p->tos] = zNewKey;
+ }
+ break;
+}
+
+/* Opcode: IncrKey * * *
+**
+** The top of the stack should contain an index key generated by
+** The MakeKey opcode. This routine increases the least significant
+** byte of that key by one. This is used so that the MoveTo opcode
+** will move to the first entry greater than the key rather than to
+** the key itself.
+*/
+case OP_IncrKey: {
+ int tos = p->tos;
+
+ VERIFY( if( tos<0 ) goto bad_instruction );
+ Stringify(p, tos);
+ if( aStack[tos].flags & (STK_Static|STK_Ephem) ){
+ /* CANT HAPPEN. The IncrKey opcode is only applied to keys
+ ** generated by MakeKey or MakeIdxKey and the results of those
+ ** operands are always dynamic strings.
+ */
+ goto abort_due_to_error;
+ }
+ zStack[tos][aStack[tos].n-1]++;
+ break;
+}
+
+/* Opcode: Checkpoint * * *
+**
+** Begin a checkpoint. A checkpoint is the beginning of a operation that
+** is part of a larger transaction but which might need to be rolled back
+** itself without effecting the containing transaction. A checkpoint will
+** be automatically committed or rollback when the VDBE halts.
+*/
+case OP_Checkpoint: {
+ rc = sqliteBtreeBeginCkpt(pBt);
+ if( rc==SQLITE_OK && db->pBeTemp ){
+ rc = sqliteBtreeBeginCkpt(db->pBeTemp);
+ }
+ break;
+}
+
+/* Opcode: Transaction P1 * *
+**
+** Begin a transaction. The transaction ends when a Commit or Rollback
+** opcode is encountered. Depending on the ON CONFLICT setting, the
+** transaction might also be rolled back if an error is encountered.
+**
+** If P1 is true, then the transaction is started on the temporary
+** tables of the database only. The main database file is not write
+** locked and other processes can continue to read the main database
+** file.
+**
+** A write lock is obtained on the database file when a transaction is
+** started. No other process can read or write the file while the
+** transaction is underway. Starting a transaction also creates a
+** rollback journal. A transaction must be started before any changes
+** can be made to the database.
+*/
+case OP_Transaction: {
+ int busy = 1;
+ if( db->pBeTemp && !p->inTempTrans ){
+ rc = sqliteBtreeBeginTrans(db->pBeTemp);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ p->inTempTrans = 1;
+ }
+ while( pOp->p1==0 && busy ){
+ rc = sqliteBtreeBeginTrans(pBt);
+ switch( rc ){
+ case SQLITE_BUSY: {
+ if( db->xBusyCallback==0 ){
+ p->pc = pc;
+ p->undoTransOnError = 1;
+ p->rc = SQLITE_BUSY;
+ return SQLITE_BUSY;
+ }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0);
+ busy = 0;
+ }
+ break;
+ }
+ case SQLITE_READONLY: {
+ rc = SQLITE_OK;
+ /* Fall thru into the next case */
+ }
+ case SQLITE_OK: {
+ p->inTempTrans = 0;
+ busy = 0;
+ break;
+ }
+ default: {
+ goto abort_due_to_error;
+ }
+ }
+ }
+ p->undoTransOnError = 1;
+ break;
+}
+
+/* Opcode: Commit * * *
+**
+** Cause all modifications to the database that have been made since the
+** last Transaction to actually take effect. No additional modifications
+** are allowed until another transaction is started. The Commit instruction
+** deletes the journal file and releases the write lock on the database.
+** A read lock continues to be held if there are still cursors open.
+*/
+case OP_Commit: {
+ if( db->pBeTemp==0 || (rc = sqliteBtreeCommit(db->pBeTemp))==SQLITE_OK ){
+ rc = p->inTempTrans ? SQLITE_OK : sqliteBtreeCommit(pBt);
+ }
+ if( rc==SQLITE_OK ){
+ sqliteCommitInternalChanges(db);
+ }else{
+ if( db->pBeTemp ) sqliteBtreeRollback(db->pBeTemp);
+ sqliteBtreeRollback(pBt);
+ sqliteRollbackInternalChanges(db);
+ }
+ p->inTempTrans = 0;
+ break;
+}
+
+/* Opcode: Rollback * * *
+**
+** Cause all modifications to the database that have been made since the
+** last Transaction to be undone. The database is restored to its state
+** before the Transaction opcode was executed. No additional modifications
+** are allowed until another transaction is started.
+**
+** This instruction automatically closes all cursors and releases both
+** the read and write locks on the database.
+*/
+case OP_Rollback: {
+ if( db->pBeTemp ){
+ sqliteBtreeRollback(db->pBeTemp);
+ }
+ rc = sqliteBtreeRollback(pBt);
+ sqliteRollbackInternalChanges(db);
+ break;
+}
+
+/* Opcode: ReadCookie * P2 *
+**
+** When P2==0,
+** read the schema cookie from the database file and push it onto the
+** stack. The schema cookie is an integer that is used like a version
+** number for the database schema. Everytime the schema changes, the
+** cookie changes to a new random value. This opcode is used during
+** initialization to read the initial cookie value so that subsequent
+** database accesses can verify that the cookie has not changed.
+**
+** If P2>0, then read global database parameter number P2. There is
+** a small fixed number of global database parameters. P2==1 is the
+** database version number. P2==2 is the recommended pager cache size.
+** Other parameters are currently unused.
+**
+** There must be a read-lock on the database (either a transaction
+** must be started or there must be an open cursor) before
+** executing this instruction.
+*/
+case OP_ReadCookie: {
+ int i = ++p->tos;
+ int aMeta[SQLITE_N_BTREE_META];
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ rc = sqliteBtreeGetMeta(pBt, aMeta);
+ aStack[i].i = aMeta[1+pOp->p2];
+ aStack[i].flags = STK_Int;
+ break;
+}
+
+/* Opcode: SetCookie * P2 *
+**
+** When P2==0,
+** this operation changes the value of the schema cookie on the database.
+** The new value is top of the stack.
+** When P2>0, the value of global database parameter
+** number P2 is changed. See ReadCookie for more information about
+** global database parametes.
+**
+** The schema cookie changes its value whenever the database schema changes.
+** That way, other processes can recognize when the schema has changed
+** and reread it.
+**
+** A transaction must be started before executing this opcode.
+*/
+case OP_SetCookie: {
+ int aMeta[SQLITE_N_BTREE_META];
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ Integerify(p, p->tos)
+ rc = sqliteBtreeGetMeta(pBt, aMeta);
+ if( rc==SQLITE_OK ){
+ aMeta[1+pOp->p2] = aStack[p->tos].i;
+ rc = sqliteBtreeUpdateMeta(pBt, aMeta);
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: VerifyCookie P1 P2 *
+**
+** Check the value of global database parameter number P2 and make
+** sure it is equal to P1. P2==0 is the schema cookie. P1==1 is
+** the database version. If the values do not match, abort with
+** an SQLITE_SCHEMA error.
+**
+** The cookie changes its value whenever the database schema changes.
+** This operation is used to detect when that the cookie has changed
+** and that the current process needs to reread the schema.
+**
+** Either a transaction needs to have been started or an OP_Open needs
+** to be executed (to establish a read lock) before this opcode is
+** invoked.
+*/
+case OP_VerifyCookie: {
+ int aMeta[SQLITE_N_BTREE_META];
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ rc = sqliteBtreeGetMeta(pBt, aMeta);
+ if( rc==SQLITE_OK && aMeta[1+pOp->p2]!=pOp->p1 ){
+ sqliteSetString(&p->zErrMsg, "database schema has changed", 0);
+ rc = SQLITE_SCHEMA;
+ }
+ break;
+}
+
+/* Opcode: Open P1 P2 P3
+**
+** Open a read-only cursor for the database table whose root page is
+** P2 in the main database file. Give the new cursor an identifier
+** of P1. The P1 values need not be contiguous but all P1 values
+** should be small integers. It is an error for P1 to be negative.
+**
+** If P2==0 then take the root page number from the top of the stack.
+**
+** There will be a read lock on the database whenever there is an
+** open cursor. If the database was unlocked prior to this instruction
+** then a read lock is acquired as part of this instruction. A read
+** lock allows other processes to read the database but prohibits
+** any other process from modifying the database. The read lock is
+** released when all cursors are closed. If this instruction attempts
+** to get a read lock but fails, the script terminates with an
+** SQLITE_BUSY error code.
+**
+** The P3 value is the name of the table or index being opened.
+** The P3 value is not actually used by this opcode and may be
+** omitted. But the code generator usually inserts the index or
+** table name into P3 to make the code easier to read.
+**
+** See also OpenAux and OpenWrite.
+*/
+/* Opcode: OpenAux P1 P2 P3
+**
+** Open a read-only cursor in the auxiliary table set. This opcode
+** works exactly like OP_Open except that it opens the cursor on the
+** auxiliary table set (the file used to store tables created using
+** CREATE TEMPORARY TABLE) instead of in the main database file.
+** See OP_Open for additional information.
+*/
+/* Opcode: OpenWrite P1 P2 P3
+**
+** Open a read/write cursor named P1 on the table or index whose root
+** page is P2. If P2==0 then take the root page number from the stack.
+**
+** This instruction works just like Open except that it opens the cursor
+** in read/write mode. For a given table, there can be one or more read-only
+** cursors or a single read/write cursor but not both.
+**
+** See also OpWrAux.
+*/
+/* Opcode: OpenWrAux P1 P2 P3
+**
+** Open a read/write cursor in the auxiliary table set. This opcode works
+** just like OpenWrite except that the auxiliary table set (the file used
+** to store tables created using CREATE TEMPORARY TABLE) is used in place
+** of the main database file.
+*/
+case OP_OpenAux:
+case OP_OpenWrAux:
+case OP_OpenWrite:
+case OP_Open: {
+ int busy = 0;
+ int i = pOp->p1;
+ int tos = p->tos;
+ int p2 = pOp->p2;
+ int wrFlag;
+ Btree *pX;
+ switch( pOp->opcode ){
+ case OP_Open: wrFlag = 0; pX = pBt; break;
+ case OP_OpenWrite: wrFlag = 1; pX = pBt; break;
+ case OP_OpenAux: wrFlag = 0; pX = db->pBeTemp; break;
+ case OP_OpenWrAux: wrFlag = 1; pX = db->pBeTemp; break;
+ }
+ if( p2<=0 ){
+ if( tos<0 ) goto not_enough_stack;
+ Integerify(p, tos);
+ p2 = p->aStack[tos].i;
+ POPSTACK;
+ if( p2<2 ){
+ sqliteSetString(&p->zErrMsg, "root page number less than 2", 0);
+ rc = SQLITE_INTERNAL;
+ break;
+ }
+ }
+ VERIFY( if( i<0 ) goto bad_instruction; )
+ if( expandCursorArraySize(p, i) ) goto no_mem;
+ cleanupCursor(&p->aCsr[i]);
+ memset(&p->aCsr[i], 0, sizeof(Cursor));
+ p->aCsr[i].nullRow = 1;
+ if( pX==0 ) break;
+ do{
+ rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
+ switch( rc ){
+ case SQLITE_BUSY: {
+ if( db->xBusyCallback==0 ){
+ p->pc = pc;
+ p->rc = SQLITE_BUSY;
+ return SQLITE_BUSY;
+ }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0);
+ busy = 0;
+ }
+ break;
+ }
+ case SQLITE_OK: {
+ busy = 0;
+ break;
+ }
+ default: {
+ goto abort_due_to_error;
+ }
+ }
+ }while( busy );
+ if( p2<=0 ){
+ POPSTACK;
+ }
+ break;
+}
+
+/* Opcode: OpenTemp P1 P2 *
+**
+** Open a new cursor that points to a table or index in a temporary
+** database file. The temporary file is opened read/write even if
+** the main database is read-only. The temporary file is deleted
+** when the cursor is closed.
+**
+** The cursor points to a BTree table if P2==0 and to a BTree index
+** if P2==1. A BTree table must have an integer key and can have arbitrary
+** data. A BTree index has no data but can have an arbitrary key.
+**
+** This opcode is used for tables that exist for the duration of a single
+** SQL statement only. Tables created using CREATE TEMPORARY TABLE
+** are opened using OP_OpenAux or OP_OpenWrAux. "Temporary" in the
+** context of this opcode means for the duration of a single SQL statement
+** whereas "Temporary" in the context of CREATE TABLE means for the duration
+** of the connection to the database. Same word; different meanings.
+*/
+case OP_OpenTemp: {
+ int i = pOp->p1;
+ Cursor *pCx;
+ VERIFY( if( i<0 ) goto bad_instruction; )
+ if( expandCursorArraySize(p, i) ) goto no_mem;
+ pCx = &p->aCsr[i];
+ cleanupCursor(pCx);
+ memset(pCx, 0, sizeof(*pCx));
+ pCx->nullRow = 1;
+ rc = sqliteBtreeOpen(0, 1, TEMP_PAGES, &pCx->pBt);
+ if( rc==SQLITE_OK ){
+ rc = sqliteBtreeBeginTrans(pCx->pBt);
+ }
+ if( rc==SQLITE_OK ){
+ if( pOp->p2 ){
+ int pgno;
+ rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
+ if( rc==SQLITE_OK ){
+ rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
+ }
+ }else{
+ rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
+ }
+ }
+ break;
+}
+
+/*
+** Opcode: RenameCursor P1 P2 *
+**
+** Rename cursor number P1 as cursor number P2. If P2 was previously
+** opened is is closed before the renaming occurs.
+*/
+case OP_RenameCursor: {
+ int from = pOp->p1;
+ int to = pOp->p2;
+ VERIFY( if( from<0 || to<0 ) goto bad_instruction; )
+ if( to<p->nCursor && p->aCsr[to].pCursor ){
+ cleanupCursor(&p->aCsr[to]);
+ }
+ expandCursorArraySize(p, to);
+ if( from<p->nCursor ){
+ memcpy(&p->aCsr[to], &p->aCsr[from], sizeof(p->aCsr[0]));
+ memset(&p->aCsr[from], 0, sizeof(p->aCsr[0]));
+ }
+ break;
+}
+
+/* Opcode: Close P1 * *
+**
+** Close a cursor previously opened as P1. If P1 is not
+** currently open, this instruction is a no-op.
+*/
+case OP_Close: {
+ int i = pOp->p1;
+ if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor ){
+ cleanupCursor(&p->aCsr[i]);
+ }
+ break;
+}
+
+/* Opcode: MoveTo P1 P2 *
+**
+** Pop the top of the stack and use its value as a key. Reposition
+** cursor P1 so that it points to an entry with a matching key. If
+** the table contains no record with a matching key, then the cursor
+** is left pointing at the first record that is greater than the key.
+** If there are no records greater than the key and P2 is not zero,
+** then an immediate jump to P2 is made.
+**
+** See also: Found, NotFound, Distinct, MoveLt
+*/
+/* Opcode: MoveLt P1 P2 *
+**
+** Pop the top of the stack and use its value as a key. Reposition
+** cursor P1 so that it points to the entry with the largest key that is
+** less than the key popped from the stack.
+** If there are no records less than than the key and P2
+** is not zero then an immediate jump to P2 is made.
+**
+** See also: MoveTo
+*/
+case OP_MoveLt:
+case OP_MoveTo: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ Cursor *pC;
+
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( i>=0 && i<p->nCursor && (pC = &p->aCsr[i])->pCursor!=0 ){
+ int res, oc;
+ if( aStack[tos].flags & STK_Int ){
+ int iKey = intToKey(aStack[tos].i);
+ sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
+ pC->lastRecno = aStack[tos].i;
+ pC->recnoIsValid = res==0;
+ }else{
+ Stringify(p, tos);
+ sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res);
+ pC->recnoIsValid = 0;
+ }
+ pC->nullRow = 0;
+ sqlite_search_count++;
+ oc = pOp->opcode;
+ if( oc==OP_MoveTo && res<0 ){
+ sqliteBtreeNext(pC->pCursor, &res);
+ pC->recnoIsValid = 0;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }else if( oc==OP_MoveLt ){
+ if( res>=0 ){
+ sqliteBtreePrevious(pC->pCursor, &res);
+ pC->recnoIsValid = 0;
+ }else{
+ /* res might be negative because the table is empty. Check to
+ ** see if this is the case.
+ */
+ int keysize;
+ res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
+ }
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: Distinct P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key does
+** not exist in the table of cursor P1, then jump to P2. If the record
+** does already exist, then fall thru. The cursor is left pointing
+** at the record if it exists. The key is not popped from the stack.
+**
+** This operation is similar to NotFound except that this operation
+** does not pop the key from the stack.
+**
+** See also: Found, NotFound, MoveTo, IsUnique, NotExists
+*/
+/* Opcode: Found P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key
+** does exist in table of P1, then jump to P2. If the record
+** does not exist, then fall thru. The cursor is left pointing
+** to the record if it exists. The key is popped from the stack.
+**
+** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
+*/
+/* Opcode: NotFound P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key
+** does not exist in table of P1, then jump to P2. If the record
+** does exist, then fall thru. The cursor is left pointing to the
+** record if it exists. The key is popped from the stack.
+**
+** The difference between this operation and Distinct is that
+** Distinct does not pop the key from the stack.
+**
+** See also: Distinct, Found, MoveTo, NotExists, IsUnique
+*/
+case OP_Distinct:
+case OP_NotFound:
+case OP_Found: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ int alreadyExists = 0;
+ Cursor *pC;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
+ int res, rx;
+ Stringify(p, tos);
+ rx = sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res);
+ alreadyExists = rx==SQLITE_OK && res==0;
+ }
+ if( pOp->opcode==OP_Found ){
+ if( alreadyExists ) pc = pOp->p2 - 1;
+ }else{
+ if( !alreadyExists ) pc = pOp->p2 - 1;
+ }
+ if( pOp->opcode!=OP_Distinct ){
+ POPSTACK;
+ }
+ break;
+}
+
+/* Opcode: IsUnique P1 P2 *
+**
+** The top of the stack is an integer record number. Call this
+** record number R. The next on the stack is an index key created
+** using MakeIdxKey. Call it K. This instruction pops R from the
+** stack but it leaves K unchanged.
+**
+** P1 is an index. So all but the last four bytes of K are an
+** index string. The last four bytes of K are a record number.
+**
+** This instruction asks if there is an entry in P1 where the
+** index string matches K but the record number is different
+** from R. If there is no such entry, then there is an immediate
+** jump to P2. If any entry does exist where the index string
+** matches K but the record number is not R, then the record
+** number for that entry is pushed onto the stack and control
+** falls through to the next instruction.
+**
+** See also: Distinct, NotFound, NotExists, Found
+*/
+case OP_IsUnique: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ int nos = tos-1;
+ BtCursor *pCrsr;
+ int R;
+
+ /* Pop the value R off the top of the stack
+ */
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ Integerify(p, tos);
+ R = aStack[tos].i;
+ POPSTACK;
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res, rc;
+ int v; /* The record number on the P1 entry that matches K */
+ char *zKey; /* The value of K */
+ int nKey; /* Number of bytes in K */
+
+ /* Make sure K is a string and make zKey point to K
+ */
+ Stringify(p, nos);
+ zKey = zStack[nos];
+ nKey = aStack[nos].n;
+ assert( nKey >= 4 );
+
+ /* Search for an entry in P1 where all but the last four bytes match K.
+ ** If there is no such entry, jump immediately to P2.
+ */
+ rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ if( res<0 ){
+ rc = sqliteBtreeNext(pCrsr, &res);
+ if( res ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ }
+ rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ if( res>0 ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+
+ /* At this point, pCrsr is pointing to an entry in P1 where all but
+ ** the last for bytes of the key match K. Check to see if the last
+ ** four bytes of the key are different from R. If the last four
+ ** bytes equal R then jump immediately to P2.
+ */
+ sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
+ v = keyToInt(v);
+ if( v==R ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+
+ /* The last four bytes of the key are different from R. Convert the
+ ** last four bytes of the key into an integer and push it onto the
+ ** stack. (These bytes are the record number of an entry that
+ ** violates a UNIQUE constraint.)
+ */
+ p->tos++;
+ aStack[tos].i = v;
+ aStack[tos].flags = STK_Int;
+ }
+ break;
+}
+
+/* Opcode: NotExists P1 P2 *
+**
+** Use the top of the stack as a integer key. If a record with that key
+** does not exist in table of P1, then jump to P2. If the record
+** does exist, then fall thru. The cursor is left pointing to the
+** record if it exists. The integer key is popped from the stack.
+**
+** The difference between this operation and NotFound is that this
+** operation assumes the key is an integer and NotFound assumes it
+** is a string.
+**
+** See also: Distinct, Found, MoveTo, NotFound, IsUnique
+*/
+case OP_NotExists: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ BtCursor *pCrsr;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res, rx, iKey;
+ assert( aStack[tos].flags & STK_Int );
+ iKey = intToKey(aStack[tos].i);
+ rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
+ p->aCsr[i].lastRecno = aStack[tos].i;
+ p->aCsr[i].recnoIsValid = res==0;
+ p->aCsr[i].nullRow = 0;
+ if( rx!=SQLITE_OK || res!=0 ){
+ pc = pOp->p2 - 1;
+ p->aCsr[i].recnoIsValid = 0;
+ }
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: NewRecno P1 * *
+**
+** Get a new integer record number used as the key to a table.
+** The record number is not previously used as a key in the database
+** table that cursor P1 points to. The new record number is pushed
+** onto the stack.
+*/
+case OP_NewRecno: {
+ int i = pOp->p1;
+ int v = 0;
+ Cursor *pC;
+ if( VERIFY( i<0 || i>=p->nCursor || ) (pC = &p->aCsr[i])->pCursor==0 ){
+ v = 0;
+ }else{
+ /* The next rowid or record number (different terms for the same
+ ** thing) is obtained in a two-step algorithm.
+ **
+ ** First we attempt to find the largest existing rowid and add one
+ ** to that. But if the largest existing rowid is already the maximum
+ ** positive integer, we have to fall through to the second
+ ** probabilistic algorithm
+ **
+ ** The second algorithm is to select a rowid at random and see if
+ ** it already exists in the table. If it does not exist, we have
+ ** succeeded. If the random rowid does exist, we select a new one
+ ** and try again, up to 1000 times.
+ **
+ ** For a table with less than 2 billion entries, the probability
+ ** of not finding a unused rowid is about 1.0e-300. This is a
+ ** non-zero probability, but it is still vanishingly small and should
+ ** never cause a problem. You are much, much more likely to have a
+ ** hardware failure than for this algorithm to fail.
+ **
+ ** The analysis in the previous paragraph assumes that you have a good
+ ** source of random numbers. Is a library function like lrand48()
+ ** good enough? Maybe. Maybe not. It's hard to know whether there
+ ** might be subtle bugs is some implementations of lrand48() that
+ ** could cause problems. To avoid uncertainty, SQLite uses its own
+ ** random number generator based on the RC4 algorithm.
+ **
+ ** To promote locality of reference for repetitive inserts, the
+ ** first few attempts at chosing a random rowid pick values just a little
+ ** larger than the previous rowid. This has been shown experimentally
+ ** to double the speed of the COPY operation.
+ */
+ int res, rx, cnt, x;
+ cnt = 0;
+ if( !pC->useRandomRowid ){
+ if( pC->nextRowidValid ){
+ v = pC->nextRowid;
+ }else{
+ rx = sqliteBtreeLast(pC->pCursor, &res);
+ if( res ){
+ v = 1;
+ }else{
+ sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
+ v = keyToInt(v);
+ if( v==0x7fffffff ){
+ pC->useRandomRowid = 1;
+ }else{
+ v++;
+ }
+ }
+ }
+ if( v<0x7fffffff ){
+ pC->nextRowidValid = 1;
+ pC->nextRowid = v+1;
+ }else{
+ pC->nextRowidValid = 0;
+ }
+ }
+ if( pC->useRandomRowid ){
+ v = db->priorNewRowid;
+ cnt = 0;
+ do{
+ if( v==0 || cnt>2 ){
+ v = sqliteRandomInteger();
+ if( cnt<5 ) v &= 0xffffff;
+ }else{
+ v += sqliteRandomByte() + 1;
+ }
+ if( v==0 ) continue;
+ x = intToKey(v);
+ rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
+ cnt++;
+ }while( cnt<1000 && rx==SQLITE_OK && res==0 );
+ db->priorNewRowid = v;
+ if( rx==SQLITE_OK && res==0 ){
+ rc = SQLITE_FULL;
+ goto abort_due_to_error;
+ }
+ }
+ pC->recnoIsValid = 0;
+ }
+ p->tos++;
+ aStack[p->tos].i = v;
+ aStack[p->tos].flags = STK_Int;
+ break;
+}
+
+/* Opcode: PutIntKey P1 P2 *
+**
+** Write an entry into the database file P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value on the top of the
+** stack. The key is the next value down on the stack. The key must
+** be an integer. The stack is popped twice by this instruction.
+**
+** If P2==1 then the row change count is incremented. If P2==0 the
+** row change count is unmodified.
+*/
+/* Opcode: PutStrKey P1 * *
+**
+** Write an entry into the database file P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value on the top of the
+** stack. The key is the next value down on the stack. The key must
+** be a string. The stack is popped twice by this instruction.
+*/
+case OP_PutIntKey:
+case OP_PutStrKey: {
+ int tos = p->tos;
+ int nos = p->tos-1;
+ int i = pOp->p1;
+ Cursor *pC;
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
+ char *zKey;
+ int nKey, iKey;
+ if( pOp->opcode==OP_PutStrKey ){
+ Stringify(p, nos);
+ nKey = aStack[nos].n;
+ zKey = zStack[nos];
+ }else{
+ assert( aStack[nos].flags & STK_Int );
+ nKey = sizeof(int);
+ iKey = intToKey(aStack[nos].i);
+ zKey = (char*)&iKey;
+ db->lastRowid = aStack[nos].i;
+ if( pOp->p2 ) db->nChange++;
+ if( pC->nextRowidValid && aStack[nos].i>=pC->nextRowid ){
+ pC->nextRowidValid = 0;
+ }
+ }
+ rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey,
+ zStack[tos], aStack[tos].n);
+ pC->recnoIsValid = 0;
+ }
+ POPSTACK;
+ POPSTACK;
+ break;
+}
+
+/* Opcode: Delete P1 P2 *
+**
+** Delete the record at which the P1 cursor is currently pointing.
+**
+** The cursor will be left pointing at either the next or the previous
+** record in the table. If it is left pointing at the next record, then
+** the next Next instruction will be a no-op. Hence it is OK to delete
+** a record from within an Next loop.
+**
+** The row change counter is incremented if P2==1 and is unmodified
+** if P2==0.
+*/
+case OP_Delete: {
+ int i = pOp->p1;
+ Cursor *pC;
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
+ rc = sqliteBtreeDelete(pC->pCursor);
+ pC->nextRowidValid = 0;
+ }
+ if( pOp->p2 ) db->nChange++;
+ break;
+}
+
+/* Opcode: KeyAsData P1 P2 *
+**
+** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
+** off (if P2==0). In key-as-data mode, the Field opcode pulls
+** data off of the key rather than the data. This is useful for
+** processing compound selects.
+*/
+case OP_KeyAsData: {
+ int i = pOp->p1;
+ if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor!=0 ){
+ p->aCsr[i].keyAsData = pOp->p2;
+ }
+ break;
+}
+
+/* Opcode: Column P1 P2 *
+**
+** Interpret the data that cursor P1 points to as
+** a structure built using the MakeRecord instruction.
+** (See the MakeRecord opcode for additional information about
+** the format of the data.)
+** Push onto the stack the value of the P2-th column contained
+** in the data.
+**
+** If the KeyAsData opcode has previously executed on this cursor,
+** then the field might be extracted from the key rather than the
+** data.
+**
+** If P1 is negative, then the record is stored on the stack rather
+** than in a table. For P1==-1, the top of the stack is used.
+** For P1==-2, the next on the stack is used. And so forth. The
+** value pushed is always just a pointer into the record which is
+** stored further down on the stack. The column value is not copied.
+*/
+case OP_Column: {
+ int amt, offset, end, payloadSize;
+ int i = pOp->p1;
+ int p2 = pOp->p2;
+ int tos = p->tos+1;
+ Cursor *pC;
+ char *zRec;
+ BtCursor *pCrsr;
+ int idxWidth;
+ unsigned char aHdr[10];
+
+ if( i<0 ){
+ VERIFY( if( tos+i<0 ) goto bad_instruction; )
+ VERIFY( if( (aStack[tos+i].flags & STK_Str)==0 ) goto bad_instruction; )
+ zRec = zStack[tos+i];
+ payloadSize = aStack[tos+i].n;
+ }else if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
+ zRec = 0;
+ pCrsr = pC->pCursor;
+ if( pC->nullRow ){
+ payloadSize = 0;
+ }else if( pC->keyAsData ){
+ sqliteBtreeKeySize(pCrsr, &payloadSize);
+ }else{
+ sqliteBtreeDataSize(pCrsr, &payloadSize);
+ }
+ }else{
+ payloadSize = 0;
+ }
+
+ /* Figure out how many bytes in the column data and where the column
+ ** data begins.
+ */
+ if( payloadSize==0 ){
+ aStack[tos].flags = STK_Null;
+ p->tos = tos;
+ break;
+ }else if( payloadSize<256 ){
+ idxWidth = 1;
+ }else if( payloadSize<65536 ){
+ idxWidth = 2;
+ }else{
+ idxWidth = 3;
+ }
+
+ /* Figure out where the requested column is stored and how big it is.
+ */
+ if( payloadSize < idxWidth*(p2+1) ){
+ rc = SQLITE_CORRUPT;
+ goto abort_due_to_error;
+ }
+ if( zRec ){
+ memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
+ }else if( pC->keyAsData ){
+ sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
+ }else{
+ sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
+ }
+ offset = aHdr[0];
+ end = aHdr[idxWidth];
+ if( idxWidth>1 ){
+ offset |= aHdr[1]<<8;
+ end |= aHdr[idxWidth+1]<<8;
+ if( idxWidth>2 ){
+ offset |= aHdr[2]<<16;
+ end |= aHdr[idxWidth+2]<<16;
+ }
+ }
+ amt = end - offset;
+ if( amt<0 || offset<0 || end>payloadSize ){
+ rc = SQLITE_CORRUPT;
+ goto abort_due_to_error;
+ }
+
+ /* amt and offset now hold the offset to the start of data and the
+ ** amount of data. Go get the data and put it on the stack.
+ */
+ if( amt==0 ){
+ aStack[tos].flags = STK_Null;
+ }else if( zRec ){
+ aStack[tos].flags = STK_Str | STK_Ephem;
+ aStack[tos].n = amt;
+ zStack[tos] = &zRec[offset];
+ }else{
+ if( amt<=NBFS ){
+ aStack[tos].flags = STK_Str;
+ zStack[tos] = aStack[tos].z;
+ aStack[tos].n = amt;
+ }else{
+ char *z = sqliteMallocRaw( amt );
+ if( z==0 ) goto no_mem;
+ aStack[tos].flags = STK_Str | STK_Dyn;
+ zStack[tos] = z;
+ aStack[tos].n = amt;
+ }
+ if( pC->keyAsData ){
+ sqliteBtreeKey(pCrsr, offset, amt, zStack[tos]);
+ }else{
+ sqliteBtreeData(pCrsr, offset, amt, zStack[tos]);
+ }
+ }
+ p->tos = tos;
+ break;
+}
+
+/* Opcode: Recno P1 * *
+**
+** Push onto the stack an integer which is the first 4 bytes of the
+** the key to the current entry in a sequential scan of the database
+** file P1. The sequential scan should have been started using the
+** Next opcode.
+*/
+case OP_Recno: {
+ int i = pOp->p1;
+ int tos = ++p->tos;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int v;
+ if( p->aCsr[i].recnoIsValid ){
+ v = p->aCsr[i].lastRecno;
+ }else if( p->aCsr[i].nullRow ){
+ aStack[tos].flags = STK_Null;
+ break;
+ }else{
+ sqliteBtreeKey(pCrsr, 0, sizeof(u32), (char*)&v);
+ v = keyToInt(v);
+ }
+ aStack[tos].i = v;
+ aStack[tos].flags = STK_Int;
+ }
+ break;
+}
+
+/* Opcode: FullKey P1 * *
+**
+** Extract the complete key from the record that cursor P1 is currently
+** pointing to and push the key onto the stack as a string.
+**
+** Compare this opcode to Recno. The Recno opcode extracts the first
+** 4 bytes of the key and pushes those bytes onto the stack as an
+** integer. This instruction pushes the entire key as a string.
+*/
+case OP_FullKey: {
+ int i = pOp->p1;
+ int tos = ++p->tos;
+ BtCursor *pCrsr;
+
+ VERIFY( if( !p->aCsr[i].keyAsData ) goto bad_instruction; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int amt;
+ char *z;
+
+ sqliteBtreeKeySize(pCrsr, &amt);
+ if( amt<=0 ){
+ rc = SQLITE_CORRUPT;
+ goto abort_due_to_error;
+ }
+ if( amt>NBFS ){
+ z = sqliteMallocRaw( amt );
+ if( z==0 ) goto no_mem;
+ aStack[tos].flags = STK_Str | STK_Dyn;
+ }else{
+ z = aStack[tos].z;
+ aStack[tos].flags = STK_Str;
+ }
+ sqliteBtreeKey(pCrsr, 0, amt, z);
+ zStack[tos] = z;
+ aStack[tos].n = amt;
+ }
+ break;
+}
+
+/* Opcode: NullRow P1 * *
+**
+** Move the cursor P1 to a null row. Any OP_Column operations
+** that occur while the cursor is on the null row will always push
+** a NULL onto the stack.
+*/
+case OP_NullRow: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ p->aCsr[i].nullRow = 1;
+ }
+ break;
+}
+
+/* Opcode: Last P1 P2 *
+**
+** The next use of the Recno or Column or Next instruction for P1
+** will refer to the last entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Last: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res;
+ sqliteBtreeLast(pCrsr, &res);
+ p->aCsr[i].nullRow = res;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }
+ break;
+}
+
+/* Opcode: Rewind P1 P2 *
+**
+** The next use of the Recno or Column or Next instruction for P1
+** will refer to the first entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Rewind: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res;
+ sqliteBtreeFirst(pCrsr, &res);
+ p->aCsr[i].atFirst = res==0;
+ p->aCsr[i].nullRow = res;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }
+ break;
+}
+
+/* Opcode: Next P1 P2 *
+**
+** Advance cursor P1 so that it points to the next key/data pair in its
+** table or index. If there are no more key/value pairs then fall through
+** to the following instruction. But if the cursor advance was successful,
+** jump immediately to P2.
+**
+** See also: Prev
+*/
+/* Opcode: Prev P1 P2 *
+**
+** Back up cursor P1 so that it points to the previous key/data pair in its
+** table or index. If there is no previous key/value pairs then fall through
+** to the following instruction. But if the cursor backup was successful,
+** jump immediately to P2.
+*/
+case OP_Prev:
+case OP_Next: {
+ Cursor *pC;
+ BtCursor *pCrsr;
+
+ CHECK_FOR_INTERRUPT;
+ if( VERIFY( pOp->p1>=0 && pOp->p1<p->nCursor && )
+ (pCrsr = (pC = &p->aCsr[pOp->p1])->pCursor)!=0 ){
+ int res;
+ if( pC->nullRow ){
+ res = 1;
+ }else{
+ rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
+ sqliteBtreePrevious(pCrsr, &res);
+ pC->nullRow = res;
+ }
+ if( res==0 ){
+ pc = pOp->p2 - 1;
+ sqlite_search_count++;
+ }
+ pC->recnoIsValid = 0;
+ }
+ break;
+}
+
+/* Opcode: IdxPut P1 P2 P3
+**
+** The top of the stack hold an SQL index key made using the
+** MakeIdxKey instruction. This opcode writes that key into the
+** index P1. Data for the entry is nil.
+**
+** If P2==1, then the key must be unique. If the key is not unique,
+** the program aborts with a SQLITE_CONSTRAINT error and the database
+** is rolled back. If P3 is not null, then it because part of the
+** error message returned with the SQLITE_CONSTRAINT.
+*/
+case OP_IdxPut: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ BtCursor *pCrsr;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int nKey = aStack[tos].n;
+ const char *zKey = zStack[tos];
+ if( pOp->p2 ){
+ int res, n;
+ assert( aStack[tos].n >= 4 );
+ rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ while( res!=0 ){
+ int c;
+ sqliteBtreeKeySize(pCrsr, &n);
+ if( n==nKey
+ && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
+ && c==0
+ ){
+ rc = SQLITE_CONSTRAINT;
+ if( pOp->p3 && pOp->p3[0] ){
+ sqliteSetString(&p->zErrMsg, pOp->p3, 0);
+ }
+ goto abort_due_to_error;
+ }
+ if( res<0 ){
+ sqliteBtreeNext(pCrsr, &res);
+ res = +1;
+ }else{
+ break;
+ }
+ }
+ }
+ rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: IdxDelete P1 * *
+**
+** The top of the stack is an index key built using the MakeIdxKey opcode.
+** This opcode removes that entry from the index.
+*/
+case OP_IdxDelete: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ BtCursor *pCrsr;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int rx, res;
+ rx = sqliteBtreeMoveto(pCrsr, zStack[tos], aStack[tos].n, &res);
+ if( rx==SQLITE_OK && res==0 ){
+ rc = sqliteBtreeDelete(pCrsr);
+ }
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: IdxRecno P1 * *
+**
+** Push onto the stack an integer which is the last 4 bytes of the
+** the key to the current entry in index P1. These 4 bytes should
+** be the record number of the table entry to which this index entry
+** points.
+**
+** See also: Recno, MakeIdxKey.
+*/
+case OP_IdxRecno: {
+ int i = pOp->p1;
+ int tos = ++p->tos;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int v;
+ int sz;
+ sqliteBtreeKeySize(pCrsr, &sz);
+ sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
+ v = keyToInt(v);
+ aStack[tos].i = v;
+ aStack[tos].flags = STK_Int;
+ }
+ break;
+}
+
+/* Opcode: IdxGT P1 P2 *
+**
+** Compare the top of the stack against the key on the index entry that
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
+** index entry. If the index entry is greater than the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+*/
+/* Opcode: IdxGE P1 P2 *
+**
+** Compare the top of the stack against the key on the index entry that
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
+** index entry. If the index entry is greater than or equal to
+** the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+*/
+/* Opcode: IdxLT P1 P2 *
+**
+** Compare the top of the stack against the key on the index entry that
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
+** index entry. If the index entry is less than the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+*/
+case OP_IdxLT:
+case OP_IdxGT:
+case OP_IdxGE: {
+ int i= pOp->p1;
+ int tos = p->tos;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res, rc;
+
+ Stringify(p, tos);
+ rc = sqliteBtreeKeyCompare(pCrsr, zStack[tos], aStack[tos].n, 4, &res);
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ if( pOp->opcode==OP_IdxLT ){
+ res = -res;
+ }else if( pOp->opcode==OP_IdxGE ){
+ res++;
+ }
+ if( res>0 ){
+ pc = pOp->p2 - 1 ;
+ }
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: Destroy P1 P2 *
+**
+** Delete an entire database table or index whose root page in the database
+** file is given by P1.
+**
+** The table being destroyed is in the main database file if P2==0. If
+** P2==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** See also: Clear
+*/
+case OP_Destroy: {
+ sqliteBtreeDropTable(pOp->p2 ? db->pBeTemp : pBt, pOp->p1);
+ break;
+}
+
+/* Opcode: Clear P1 P2 *
+**
+** Delete all contents of the database table or index whose root page
+** in the database file is given by P1. But, unlike Destroy, do not
+** remove the table or index from the database file.
+**
+** The table being clear is in the main database file if P2==0. If
+** P2==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** See also: Destroy
+*/
+case OP_Clear: {
+ sqliteBtreeClearTable(pOp->p2 ? db->pBeTemp : pBt, pOp->p1);
+ break;
+}
+
+/* Opcode: CreateTable * P2 P3
+**
+** Allocate a new table in the main database file if P2==0 or in the
+** auxiliary database file if P2==1. Push the page number
+** for the root page of the new table onto the stack.
+**
+** The root page number is also written to a memory location that P3
+** points to. This is the mechanism is used to write the root page
+** number into the parser's internal data structures that describe the
+** new table.
+**
+** The difference between a table and an index is this: A table must
+** have a 4-byte integer key and can have arbitrary data. An index
+** has an arbitrary key but no data.
+**
+** See also: CreateIndex
+*/
+/* Opcode: CreateIndex * P2 P3
+**
+** Allocate a new index in the main database file if P2==0 or in the
+** auxiliary database file if P2==1. Push the page number of the
+** root page of the new index onto the stack.
+**
+** See documentation on OP_CreateTable for additional information.
+*/
+case OP_CreateIndex:
+case OP_CreateTable: {
+ int i = ++p->tos;
+ int pgno;
+ assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
+ if( pOp->opcode==OP_CreateTable ){
+ rc = sqliteBtreeCreateTable(pOp->p2 ? db->pBeTemp : pBt, &pgno);
+ }else{
+ rc = sqliteBtreeCreateIndex(pOp->p2 ? db->pBeTemp : pBt, &pgno);
+ }
+ if( rc==SQLITE_OK ){
+ aStack[i].i = pgno;
+ aStack[i].flags = STK_Int;
+ *(u32*)pOp->p3 = pgno;
+ pOp->p3 = 0;
+ }
+ break;
+}
+
+/* Opcode: IntegrityCk P1 P2 *
+**
+** Do an analysis of the currently open database. Push onto the
+** stack the text of an error message describing any problems.
+** If there are no errors, push a "ok" onto the stack.
+**
+** P1 is the index of a set that contains the root page numbers
+** for all tables and indices in the main database file.
+**
+** If P2 is not zero, the check is done on the auxiliary database
+** file, not the main database file.
+**
+** This opcode is used for testing purposes only.
+*/
+case OP_IntegrityCk: {
+ int nRoot;
+ int *aRoot;
+ int tos = ++p->tos;
+ int iSet = pOp->p1;
+ Set *pSet;
+ int j;
+ HashElem *i;
+ char *z;
+
+ VERIFY( if( iSet<0 || iSet>=p->nSet ) goto bad_instruction; )
+ pSet = &p->aSet[iSet];
+ nRoot = sqliteHashCount(&pSet->hash);
+ aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
+ if( aRoot==0 ) goto no_mem;
+ for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
+ toInt((char*)sqliteHashKey(i), &aRoot[j]);
+ }
+ aRoot[j] = 0;
+ z = sqliteBtreeIntegrityCheck(pOp->p2 ? db->pBeTemp : pBt, aRoot, nRoot);
+ if( z==0 || z[0]==0 ){
+ if( z ) sqliteFree(z);
+ zStack[tos] = "ok";
+ aStack[tos].n = 3;
+ aStack[tos].flags = STK_Str | STK_Static;
+ }else{
+ zStack[tos] = z;
+ aStack[tos].n = strlen(z) + 1;
+ aStack[tos].flags = STK_Str | STK_Dyn;
+ }
+ sqliteFree(aRoot);
+ break;
+}
+
+/* Opcode: ListWrite * * *
+**
+** Write the integer on the top of the stack
+** into the temporary storage list.
+*/
+case OP_ListWrite: {
+ Keylist *pKeylist;
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ pKeylist = p->pList;
+ if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
+ pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
+ if( pKeylist==0 ) goto no_mem;
+ pKeylist->nKey = 1000;
+ pKeylist->nRead = 0;
+ pKeylist->nUsed = 0;
+ pKeylist->pNext = p->pList;
+ p->pList = pKeylist;
+ }
+ Integerify(p, p->tos);
+ pKeylist->aKey[pKeylist->nUsed++] = aStack[p->tos].i;
+ POPSTACK;
+ break;
+}
+
+/* Opcode: ListRewind * * *
+**
+** Rewind the temporary buffer back to the beginning.
+*/
+case OP_ListRewind: {
+ /* This is now a no-op */
+ break;
+}
+
+/* Opcode: ListRead * P2 *
+**
+** Attempt to read an integer from the temporary storage buffer
+** and push it onto the stack. If the storage buffer is empty,
+** push nothing but instead jump to P2.
+*/
+case OP_ListRead: {
+ Keylist *pKeylist;
+ CHECK_FOR_INTERRUPT;
+ pKeylist = p->pList;
+ if( pKeylist!=0 ){
+ VERIFY(
+ if( pKeylist->nRead<0
+ || pKeylist->nRead>=pKeylist->nUsed
+ || pKeylist->nRead>=pKeylist->nKey ) goto bad_instruction;
+ )
+ p->tos++;
+ aStack[p->tos].i = pKeylist->aKey[pKeylist->nRead++];
+ aStack[p->tos].flags = STK_Int;
+ zStack[p->tos] = 0;
+ if( pKeylist->nRead>=pKeylist->nUsed ){
+ p->pList = pKeylist->pNext;
+ sqliteFree(pKeylist);
+ }
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: ListReset * * *
+**
+** Reset the temporary storage buffer so that it holds nothing.
+*/
+case OP_ListReset: {
+ if( p->pList ){
+ KeylistFree(p->pList);
+ p->pList = 0;
+ }
+ break;
+}
+
+/* Opcode: ListPush * * *
+**
+** Save the current Vdbe list such that it can be restored by a ListPop
+** opcode. The list is empty after this is executed.
+*/
+case OP_ListPush: {
+ p->keylistStackDepth++;
+ assert(p->keylistStackDepth > 0);
+ p->keylistStack = sqliteRealloc(p->keylistStack,
+ sizeof(Keylist *) * p->keylistStackDepth);
+ if( p->keylistStack==0 ) goto no_mem;
+ p->keylistStack[p->keylistStackDepth - 1] = p->pList;
+ p->pList = 0;
+ break;
+}
+
+/* Opcode: ListPop * * *
+**
+** Restore the Vdbe list to the state it was in when ListPush was last
+** executed.
+*/
+case OP_ListPop: {
+ assert(p->keylistStackDepth > 0);
+ p->keylistStackDepth--;
+ KeylistFree(p->pList);
+ p->pList = p->keylistStack[p->keylistStackDepth];
+ p->keylistStack[p->keylistStackDepth] = 0;
+ if( p->keylistStackDepth == 0 ){
+ sqliteFree(p->keylistStack);
+ p->keylistStack = 0;
+ }
+ break;
+}
+
+/* Opcode: SortPut * * *
+**
+** The TOS is the key and the NOS is the data. Pop both from the stack
+** and put them on the sorter. The key and data should have been
+** made using SortMakeKey and SortMakeRec, respectively.
+*/
+case OP_SortPut: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ Sorter *pSorter;
+ VERIFY( if( tos<1 ) goto not_enough_stack; )
+ if( Dynamicify(p, tos) || Dynamicify(p, nos) ) goto no_mem;
+ pSorter = sqliteMallocRaw( sizeof(Sorter) );
+ if( pSorter==0 ) goto no_mem;
+ pSorter->pNext = p->pSort;
+ p->pSort = pSorter;
+ assert( aStack[tos].flags & STK_Dyn );
+ pSorter->nKey = aStack[tos].n;
+ pSorter->zKey = zStack[tos];
+ pSorter->nData = aStack[nos].n;
+ if( aStack[nos].flags & STK_Dyn ){
+ pSorter->pData = zStack[nos];
+ }else{
+ pSorter->pData = sqliteStrDup(zStack[nos]);
+ }
+ aStack[tos].flags = 0;
+ aStack[nos].flags = 0;
+ zStack[tos] = 0;
+ zStack[nos] = 0;
+ p->tos -= 2;
+ break;
+}
+
+/* Opcode: SortMakeRec P1 * *
+**
+** The top P1 elements are the arguments to a callback. Form these
+** elements into a single data entry that can be stored on a sorter
+** using SortPut and later fed to a callback using SortCallback.
+*/
+case OP_SortMakeRec: {
+ char *z;
+ char **azArg;
+ int nByte;
+ int nField;
+ int i, j;
+
+ nField = pOp->p1;
+ VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
+ nByte = 0;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null)==0 ){
+ Stringify(p, i);
+ nByte += aStack[i].n;
+ }
+ }
+ nByte += sizeof(char*)*(nField+1);
+ azArg = sqliteMallocRaw( nByte );
+ if( azArg==0 ) goto no_mem;
+ z = (char*)&azArg[nField+1];
+ for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){
+ if( aStack[i].flags & STK_Null ){
+ azArg[j] = 0;
+ }else{
+ azArg[j] = z;
+ strcpy(z, zStack[i]);
+ z += aStack[i].n;
+ }
+ }
+ PopStack(p, nField);
+ p->tos++;
+ aStack[p->tos].n = nByte;
+ zStack[p->tos] = (char*)azArg;
+ aStack[p->tos].flags = STK_Str|STK_Dyn;
+ break;
+}
+
+/* Opcode: SortMakeKey * * P3
+**
+** Convert the top few entries of the stack into a sort key. The
+** number of stack entries consumed is the number of characters in
+** the string P3. One character from P3 is prepended to each entry.
+** The first character of P3 is prepended to the element lowest in
+** the stack and the last character of P3 is prepended to the top of
+** the stack. All stack entries are separated by a \000 character
+** in the result. The whole key is terminated by two \000 characters
+** in a row.
+**
+** "N" is substituted in place of the P3 character for NULL values.
+**
+** See also the MakeKey and MakeIdxKey opcodes.
+*/
+case OP_SortMakeKey: {
+ char *zNewKey;
+ int nByte;
+ int nField;
+ int i, j, k;
+
+ nField = strlen(pOp->p3);
+ VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
+ nByte = 1;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null)!=0 ){
+ nByte += 2;
+ }else{
+ Stringify(p, i);
+ nByte += aStack[i].n+2;
+ }
+ }
+ zNewKey = sqliteMallocRaw( nByte );
+ if( zNewKey==0 ) goto no_mem;
+ j = 0;
+ k = 0;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null)!=0 ){
+ zNewKey[j++] = 'N';
+ zNewKey[j++] = 0;
+ k++;
+ }else{
+ zNewKey[j++] = pOp->p3[k++];
+ memcpy(&zNewKey[j], zStack[i], aStack[i].n-1);
+ j += aStack[i].n-1;
+ zNewKey[j++] = 0;
+ }
+ }
+ zNewKey[j] = 0;
+ assert( j<nByte );
+ PopStack(p, nField);
+ p->tos++;
+ aStack[p->tos].n = nByte;
+ aStack[p->tos].flags = STK_Str|STK_Dyn;
+ zStack[p->tos] = zNewKey;
+ break;
+}
+
+/* Opcode: Sort * * *
+**
+** Sort all elements on the sorter. The algorithm is a
+** mergesort.
+*/
+case OP_Sort: {
+ int i;
+ Sorter *pElem;
+ Sorter *apSorter[NSORT];
+ for(i=0; i<NSORT; i++){
+ apSorter[i] = 0;
+ }
+ while( p->pSort ){
+ pElem = p->pSort;
+ p->pSort = pElem->pNext;
+ pElem->pNext = 0;
+ for(i=0; i<NSORT-1; i++){
+ if( apSorter[i]==0 ){
+ apSorter[i] = pElem;
+ break;
+ }else{
+ pElem = Merge(apSorter[i], pElem);
+ apSorter[i] = 0;
+ }
+ }
+ if( i>=NSORT-1 ){
+ apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
+ }
+ }
+ pElem = 0;
+ for(i=0; i<NSORT; i++){
+ pElem = Merge(apSorter[i], pElem);
+ }
+ p->pSort = pElem;
+ break;
+}
+
+/* Opcode: SortNext * P2 *
+**
+** Push the data for the topmost element in the sorter onto the
+** stack, then remove the element from the sorter. If the sorter
+** is empty, push nothing on the stack and instead jump immediately
+** to instruction P2.
+*/
+case OP_SortNext: {
+ Sorter *pSorter = p->pSort;
+ CHECK_FOR_INTERRUPT;
+ if( pSorter!=0 ){
+ p->pSort = pSorter->pNext;
+ p->tos++;
+ zStack[p->tos] = pSorter->pData;
+ aStack[p->tos].n = pSorter->nData;
+ aStack[p->tos].flags = STK_Str|STK_Dyn;
+ sqliteFree(pSorter->zKey);
+ sqliteFree(pSorter);
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: SortCallback P1 * *
+**
+** The top of the stack contains a callback record built using
+** the SortMakeRec operation with the same P1 value as this
+** instruction. Pop this record from the stack and invoke the
+** callback on it.
+*/
+case OP_SortCallback: {
+ int i = p->tos;
+ VERIFY( if( i<0 ) goto not_enough_stack; )
+ if( p->xCallback==0 ){
+ p->pc = pc+1;
+ p->azResColumn = (char**)zStack[i];
+ p->nResColumn = pOp->p1;
+ p->popStack = 1;
+ return SQLITE_ROW;
+ }else{
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
+ if( p->xCallback(p->pCbArg, pOp->p1, (char**)zStack[i], p->azColName)!=0 ){
+ rc = SQLITE_ABORT;
+ }
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
+ p->nCallback++;
+ }
+ POPSTACK;
+ if( sqlite_malloc_failed ) goto no_mem;
+ break;
+}
+
+/* Opcode: SortReset * * *
+**
+** Remove any elements that remain on the sorter.
+*/
+case OP_SortReset: {
+ SorterReset(p);
+ break;
+}
+
+/* Opcode: FileOpen * * P3
+**
+** Open the file named by P3 for reading using the FileRead opcode.
+** If P3 is "stdin" then open standard input for reading.
+*/
+case OP_FileOpen: {
+ VERIFY( if( pOp->p3==0 ) goto bad_instruction; )
+ if( p->pFile ){
+ if( p->pFile!=stdin ) fclose(p->pFile);
+ p->pFile = 0;
+ }
+ if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
+ p->pFile = stdin;
+ }else{
+ p->pFile = fopen(pOp->p3, "r");
+ }
+ if( p->pFile==0 ){
+ sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, 0);
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: FileRead P1 P2 P3
+**
+** Read a single line of input from the open file (the file opened using
+** FileOpen). If we reach end-of-file, jump immediately to P2. If
+** we are able to get another line, split the line apart using P3 as
+** a delimiter. There should be P1 fields. If the input line contains
+** more than P1 fields, ignore the excess. If the input line contains
+** fewer than P1 fields, assume the remaining fields contain NULLs.
+**
+** Input ends if a line consists of just "\.". A field containing only
+** "\N" is a null field. The backslash \ character can be used be used
+** to escape newlines or the delimiter.
+*/
+case OP_FileRead: {
+ int n, eol, nField, i, c, nDelim;
+ char *zDelim, *z;
+ CHECK_FOR_INTERRUPT;
+ if( p->pFile==0 ) goto fileread_jump;
+ nField = pOp->p1;
+ if( nField<=0 ) goto fileread_jump;
+ if( nField!=p->nField || p->azField==0 ){
+ char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
+ if( azField==0 ){ goto no_mem; }
+ p->azField = azField;
+ p->nField = nField;
+ }
+ n = 0;
+ eol = 0;
+ while( eol==0 ){
+ if( p->zLine==0 || n+200>p->nLineAlloc ){
+ char *zLine;
+ p->nLineAlloc = p->nLineAlloc*2 + 300;
+ zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
+ if( zLine==0 ){
+ p->nLineAlloc = 0;
+ sqliteFree(p->zLine);
+ p->zLine = 0;
+ goto no_mem;
+ }
+ p->zLine = zLine;
+ }
+ if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
+ eol = 1;
+ p->zLine[n] = 0;
+ }else{
+ int c;
+ while( (c = p->zLine[n])!=0 ){
+ if( c=='\\' ){
+ if( p->zLine[n+1]==0 ) break;
+ n += 2;
+ }else if( c=='\n' ){
+ p->zLine[n] = 0;
+ eol = 1;
+ break;
+ }else{
+ n++;
+ }
+ }
+ }
+ }
+ if( n==0 ) goto fileread_jump;
+ z = p->zLine;
+ if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
+ goto fileread_jump;
+ }
+ zDelim = pOp->p3;
+ if( zDelim==0 ) zDelim = "\t";
+ c = zDelim[0];
+ nDelim = strlen(zDelim);
+ p->azField[0] = z;
+ for(i=1; *z!=0 && i<=nField; i++){
+ int from, to;
+ from = to = 0;
+ if( z[0]=='\\' && z[1]=='N'
+ && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
+ if( i<=nField ) p->azField[i-1] = 0;
+ z += 2 + nDelim;
+ if( i<nField ) p->azField[i] = z;
+ continue;
+ }
+ while( z[from] ){
+ if( z[from]=='\\' && z[from+1]!=0 ){
+ z[to++] = z[from+1];
+ from += 2;
+ continue;
+ }
+ if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
+ z[to++] = z[from++];
+ }
+ if( z[from] ){
+ z[to] = 0;
+ z += from + nDelim;
+ if( i<nField ) p->azField[i] = z;
+ }else{
+ z[to] = 0;
+ z = "";
+ }
+ }
+ while( i<nField ){
+ p->azField[i++] = 0;
+ }
+ break;
+
+ /* If we reach end-of-file, or if anything goes wrong, jump here.
+ ** This code will cause a jump to P2 */
+fileread_jump:
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: FileColumn P1 * *
+**
+** Push onto the stack the P1-th column of the most recently read line
+** from the input file.
+*/
+case OP_FileColumn: {
+ int i = pOp->p1;
+ char *z;
+ if( VERIFY( i>=0 && i<p->nField && ) p->azField ){
+ z = p->azField[i];
+ }else{
+ z = 0;
+ }
+ p->tos++;
+ if( z ){
+ aStack[p->tos].n = strlen(z) + 1;
+ zStack[p->tos] = z;
+ aStack[p->tos].flags = STK_Str;
+ }else{
+ aStack[p->tos].n = 0;
+ zStack[p->tos] = 0;
+ aStack[p->tos].flags = STK_Null;
+ }
+ break;
+}
+
+/* Opcode: MemStore P1 P2 *
+**
+** Write the top of the stack into memory location P1.
+** P1 should be a small integer since space is allocated
+** for all memory locations between 0 and P1 inclusive.
+**
+** After the data is stored in the memory location, the
+** stack is popped once if P2 is 1. If P2 is zero, then
+** the original data remains on the stack.
+*/
+case OP_MemStore: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ char *zOld;
+ Mem *pMem;
+ int flags;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( i>=p->nMem ){
+ int nOld = p->nMem;
+ Mem *aMem;
+ p->nMem = i + 5;
+ aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
+ if( aMem==0 ) goto no_mem;
+ if( aMem!=p->aMem ){
+ int j;
+ for(j=0; j<nOld; j++){
+ if( aMem[j].z==p->aMem[j].s.z ){
+ aMem[j].z = aMem[j].s.z;
+ }
+ }
+ }
+ p->aMem = aMem;
+ if( nOld<p->nMem ){
+ memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
+ }
+ }
+ pMem = &p->aMem[i];
+ flags = pMem->s.flags;
+ if( flags & STK_Dyn ){
+ zOld = pMem->z;
+ }else{
+ zOld = 0;
+ }
+ pMem->s = aStack[tos];
+ flags = pMem->s.flags;
+ if( flags & (STK_Static|STK_Dyn|STK_Ephem) ){
+ if( (flags & STK_Static)!=0 || (pOp->p2 && (flags & STK_Dyn)!=0) ){
+ pMem->z = zStack[tos];
+ }else if( flags & STK_Str ){
+ pMem->z = sqliteMallocRaw( pMem->s.n );
+ if( pMem->z==0 ) goto no_mem;
+ memcpy(pMem->z, zStack[tos], pMem->s.n);
+ pMem->s.flags |= STK_Dyn;
+ pMem->s.flags &= ~(STK_Static|STK_Ephem);
+ }
+ }else{
+ pMem->z = pMem->s.z;
+ }
+ if( zOld ) sqliteFree(zOld);
+ if( pOp->p2 ){
+ zStack[tos] = 0;
+ aStack[tos].flags = 0;
+ POPSTACK;
+ }
+ break;
+}
+
+/* Opcode: MemLoad P1 * *
+**
+** Push a copy of the value in memory location P1 onto the stack.
+**
+** If the value is a string, then the value pushed is a pointer to
+** the string that is stored in the memory location. If the memory
+** location is subsequently changed (using OP_MemStore) then the
+** value pushed onto the stack will change too.
+*/
+case OP_MemLoad: {
+ int tos = ++p->tos;
+ int i = pOp->p1;
+ VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; )
+ memcpy(&aStack[tos], &p->aMem[i].s, sizeof(aStack[tos])-NBFS);;
+ if( aStack[tos].flags & STK_Str ){
+ zStack[tos] = p->aMem[i].z;
+ aStack[tos].flags |= STK_Ephem;
+ aStack[tos].flags &= ~(STK_Dyn|STK_Static);
+ }
+ break;
+}
+
+/* Opcode: MemIncr P1 P2 *
+**
+** Increment the integer valued memory cell P1 by 1. If P2 is not zero
+** and the result after the increment is greater than zero, then jump
+** to P2.
+**
+** This instruction throws an error if the memory cell is not initially
+** an integer.
+*/
+case OP_MemIncr: {
+ int i = pOp->p1;
+ Mem *pMem;
+ VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; )
+ pMem = &p->aMem[i];
+ VERIFY( if( pMem->s.flags != STK_Int ) goto bad_instruction; )
+ pMem->s.i++;
+ if( pOp->p2>0 && pMem->s.i>0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: AggReset * P2 *
+**
+** Reset the aggregator so that it no longer contains any data.
+** Future aggregator elements will contain P2 values each.
+*/
+case OP_AggReset: {
+ AggReset(&p->agg);
+ p->agg.nMem = pOp->p2;
+ p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
+ if( p->agg.apFunc==0 ) goto no_mem;
+ break;
+}
+
+/* Opcode: AggInit * P2 P3
+**
+** Initialize the function parameters for an aggregate function.
+** The aggregate will operate out of aggregate column P2.
+** P3 is a pointer to the FuncDef structure for the function.
+*/
+case OP_AggInit: {
+ int i = pOp->p2;
+ VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; )
+ p->agg.apFunc[i] = (FuncDef*)pOp->p3;
+ break;
+}
+
+/* Opcode: AggFunc * P2 P3
+**
+** Execute the step function for an aggregate. The
+** function has P2 arguments. P3 is a pointer to the FuncDef
+** structure that specifies the function.
+**
+** The top of the stack must be an integer which is the index of
+** the aggregate column that corresponds to this aggregate function.
+** Ideally, this index would be another parameter, but there are
+** no free parameters left. The integer is popped from the stack.
+*/
+case OP_AggFunc: {
+ int n = pOp->p2;
+ int i;
+ Mem *pMem;
+ sqlite_func ctx;
+
+ VERIFY( if( n<0 ) goto bad_instruction; )
+ VERIFY( if( p->tos+1<n ) goto not_enough_stack; )
+ VERIFY( if( aStack[p->tos].flags!=STK_Int ) goto bad_instruction; )
+ for(i=p->tos-n; i<p->tos; i++){
+ if( aStack[i].flags & STK_Null ){
+ zStack[i] = 0;
+ }else{
+ Stringify(p, i);
+ }
+ }
+ i = aStack[p->tos].i;
+ VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; )
+ ctx.pFunc = (FuncDef*)pOp->p3;
+ pMem = &p->agg.pCurrent->aMem[i];
+ ctx.z = pMem->s.z;
+ ctx.pAgg = pMem->z;
+ ctx.cnt = ++pMem->s.i;
+ ctx.isError = 0;
+ ctx.isStep = 1;
+ (ctx.pFunc->xStep)(&ctx, n, (const char**)&zStack[p->tos-n]);
+ pMem->z = ctx.pAgg;
+ pMem->s.flags = STK_AggCtx;
+ PopStack(p, n+1);
+ if( ctx.isError ){
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: AggFocus * P2 *
+**
+** Pop the top of the stack and use that as an aggregator key. If
+** an aggregator with that same key already exists, then make the
+** aggregator the current aggregator and jump to P2. If no aggregator
+** with the given key exists, create one and make it current but
+** do not jump.
+**
+** The order of aggregator opcodes is important. The order is:
+** AggReset AggFocus AggNext. In other words, you must execute
+** AggReset first, then zero or more AggFocus operations, then
+** zero or more AggNext operations. You must not execute an AggFocus
+** in between an AggNext and an AggReset.
+*/
+case OP_AggFocus: {
+ int tos = p->tos;
+ AggElem *pElem;
+ char *zKey;
+ int nKey;
+
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ Stringify(p, tos);
+ zKey = zStack[tos];
+ nKey = aStack[tos].n;
+ pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
+ if( pElem ){
+ p->agg.pCurrent = pElem;
+ pc = pOp->p2 - 1;
+ }else{
+ AggInsert(&p->agg, zKey, nKey);
+ if( sqlite_malloc_failed ) goto no_mem;
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: AggSet * P2 *
+**
+** Move the top of the stack into the P2-th field of the current
+** aggregate. String values are duplicated into new memory.
+*/
+case OP_AggSet: {
+ AggElem *pFocus = AggInFocus(p->agg);
+ int i = pOp->p2;
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( pFocus==0 ) goto no_mem;
+ if( VERIFY( i>=0 && ) i<p->agg.nMem ){
+ Mem *pMem = &pFocus->aMem[i];
+ char *zOld;
+ if( pMem->s.flags & STK_Dyn ){
+ zOld = pMem->z;
+ }else{
+ zOld = 0;
+ }
+ Deephemeralize(p, tos);
+ pMem->s = aStack[tos];
+ if( pMem->s.flags & STK_Dyn ){
+ pMem->z = zStack[tos];
+ zStack[tos] = 0;
+ aStack[tos].flags = 0;
+ }else if( pMem->s.flags & (STK_Static|STK_AggCtx) ){
+ pMem->z = zStack[tos];
+ }else if( pMem->s.flags & STK_Str ){
+ pMem->z = pMem->s.z;
+ }
+ if( zOld ) sqliteFree(zOld);
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: AggGet * P2 *
+**
+** Push a new entry onto the stack which is a copy of the P2-th field
+** of the current aggregate. Strings are not duplicated so
+** string values will be ephemeral.
+*/
+case OP_AggGet: {
+ AggElem *pFocus = AggInFocus(p->agg);
+ int i = pOp->p2;
+ int tos = ++p->tos;
+ if( pFocus==0 ) goto no_mem;
+ if( VERIFY( i>=0 && ) i<p->agg.nMem ){
+ Mem *pMem = &pFocus->aMem[i];
+ aStack[tos] = pMem->s;
+ zStack[tos] = pMem->z;
+ aStack[tos].flags &= ~STK_Dyn;
+ aStack[tos].flags |= STK_Ephem;
+ }
+ break;
+}
+
+/* Opcode: AggNext * P2 *
+**
+** Make the next aggregate value the current aggregate. The prior
+** aggregate is deleted. If all aggregate values have been consumed,
+** jump to P2.
+**
+** The order of aggregator opcodes is important. The order is:
+** AggReset AggFocus AggNext. In other words, you must execute
+** AggReset first, then zero or more AggFocus operations, then
+** zero or more AggNext operations. You must not execute an AggFocus
+** in between an AggNext and an AggReset.
+*/
+case OP_AggNext: {
+ CHECK_FOR_INTERRUPT;
+ if( p->agg.pSearch==0 ){
+ p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
+ }else{
+ p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
+ }
+ if( p->agg.pSearch==0 ){
+ pc = pOp->p2 - 1;
+ } else {
+ int i;
+ sqlite_func ctx;
+ Mem *aMem;
+ p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
+ aMem = p->agg.pCurrent->aMem;
+ for(i=0; i<p->agg.nMem; i++){
+ int freeCtx;
+ if( p->agg.apFunc[i]==0 ) continue;
+ if( p->agg.apFunc[i]->xFinalize==0 ) continue;
+ ctx.s.flags = STK_Null;
+ ctx.z = 0;
+ ctx.pAgg = (void*)aMem[i].z;
+ freeCtx = aMem[i].z && aMem[i].z!=aMem[i].s.z;
+ ctx.cnt = aMem[i].s.i;
+ ctx.isStep = 0;
+ ctx.pFunc = p->agg.apFunc[i];
+ (*p->agg.apFunc[i]->xFinalize)(&ctx);
+ if( freeCtx ){
+ sqliteFree( aMem[i].z );
+ }
+ aMem[i].s = ctx.s;
+ aMem[i].z = ctx.z;
+ if( (aMem[i].s.flags & STK_Str) &&
+ (aMem[i].s.flags & (STK_Dyn|STK_Static|STK_Ephem))==0 ){
+ aMem[i].z = aMem[i].s.z;
+ }
+ }
+ }
+ break;
+}
+
+/* Opcode: SetInsert P1 * P3
+**
+** If Set P1 does not exist then create it. Then insert value
+** P3 into that set. If P3 is NULL, then insert the top of the
+** stack into the set.
+*/
+case OP_SetInsert: {
+ int i = pOp->p1;
+ if( p->nSet<=i ){
+ int k;
+ Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
+ if( aSet==0 ) goto no_mem;
+ p->aSet = aSet;
+ for(k=p->nSet; k<=i; k++){
+ sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
+ }
+ p->nSet = i+1;
+ }
+ if( pOp->p3 ){
+ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
+ }else{
+ int tos = p->tos;
+ if( tos<0 ) goto not_enough_stack;
+ Stringify(p, tos);
+ sqliteHashInsert(&p->aSet[i].hash, zStack[tos], aStack[tos].n, p);
+ POPSTACK;
+ }
+ if( sqlite_malloc_failed ) goto no_mem;
+ break;
+}
+
+/* Opcode: SetFound P1 P2 *
+**
+** Pop the stack once and compare the value popped off with the
+** contents of set P1. If the element popped exists in set P1,
+** then jump to P2. Otherwise fall through.
+*/
+case OP_SetFound: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ Stringify(p, tos);
+ if( i>=0 && i<p->nSet &&
+ sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)){
+ pc = pOp->p2 - 1;
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: SetNotFound P1 P2 *
+**
+** Pop the stack once and compare the value popped off with the
+** contents of set P1. If the element popped does not exists in
+** set P1, then jump to P2. Otherwise fall through.
+*/
+case OP_SetNotFound: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ Stringify(p, tos);
+ if( i<0 || i>=p->nSet ||
+ sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)==0 ){
+ pc = pOp->p2 - 1;
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: SetFirst P1 P2 *
+**
+** Read the first element from set P1 and push it onto the stack. If the
+** set is empty, push nothing and jump immediately to P2. This opcode is
+** used in combination with OP_SetNext to loop over all elements of a set.
+*/
+/* Opcode: SetNext P1 P2 *
+**
+** Read the next element from set P1 and push it onto the stack. If there
+** are no more elements in the set, do not do the push and fall through.
+** Otherwise, jump to P2 after pushing the next set element.
+*/
+case OP_SetFirst:
+case OP_SetNext: {
+ Set *pSet;
+ int tos;
+ CHECK_FOR_INTERRUPT;
+ if( pOp->p1<0 || pOp->p1>=p->nSet ){
+ if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
+ break;
+ }
+ pSet = &p->aSet[pOp->p1];
+ if( pOp->opcode==OP_SetFirst ){
+ pSet->prev = sqliteHashFirst(&pSet->hash);
+ if( pSet->prev==0 ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ }else{
+ VERIFY( if( pSet->prev==0 ) goto bad_instruction; )
+ pSet->prev = sqliteHashNext(pSet->prev);
+ if( pSet->prev==0 ){
+ break;
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ }
+ tos = ++p->tos;
+ zStack[tos] = sqliteHashKey(pSet->prev);
+ aStack[tos].n = sqliteHashKeysize(pSet->prev);
+ aStack[tos].flags = STK_Str | STK_Ephem;
+ break;
+}
+
+/* An other opcode is illegal...
+*/
+default: {
+ sprintf(zBuf,"%d",pOp->opcode);
+ sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, 0);
+ rc = SQLITE_INTERNAL;
+ break;
+}
+
+/*****************************************************************************
+** The cases of the switch statement above this line should all be indented
+** by 6 spaces. But the left-most 6 spaces have been removed to improve the
+** readability. From this point on down, the normal indentation rules are
+** restored.
+*****************************************************************************/
+ }
+
+#ifdef VDBE_PROFILE
+ {
+ long long elapse = hwtime() - start;
+ pOp->cycles += elapse;
+ pOp->cnt++;
+#if 0
+ fprintf(stdout, "%10lld ", elapse);
+ vdbePrintOp(stdout, origPc, &p->aOp[origPc]);
+#endif
+ }
+#endif
+
+ /* The following code adds nothing to the actual functionality
+ ** of the program. It is only here for testing and debugging.
+ ** On the other hand, it does burn CPU cycles every time through
+ ** the evaluator loop. So we can leave it out when NDEBUG is defined.
+ */
+#ifndef NDEBUG
+ if( pc<-1 || pc>=p->nOp ){
+ sqliteSetString(&p->zErrMsg, "jump destination out of range", 0);
+ rc = SQLITE_INTERNAL;
+ }
+ if( p->trace && p->tos>=0 ){
+ int i;
+ fprintf(p->trace, "Stack:");
+ for(i=p->tos; i>=0 && i>p->tos-5; i--){
+ if( aStack[i].flags & STK_Null ){
+ fprintf(p->trace, " NULL");
+ }else if( (aStack[i].flags & (STK_Int|STK_Str))==(STK_Int|STK_Str) ){
+ fprintf(p->trace, " si:%d", aStack[i].i);
+ }else if( aStack[i].flags & STK_Int ){
+ fprintf(p->trace, " i:%d", aStack[i].i);
+ }else if( aStack[i].flags & STK_Real ){
+ fprintf(p->trace, " r:%g", aStack[i].r);
+ }else if( aStack[i].flags & STK_Str ){
+ int j, k;
+ char zBuf[100];
+ zBuf[0] = ' ';
+ if( aStack[i].flags & STK_Dyn ){
+ zBuf[1] = 'z';
+ assert( (aStack[i].flags & (STK_Static|STK_Ephem))==0 );
+ }else if( aStack[i].flags & STK_Static ){
+ zBuf[1] = 't';
+ assert( (aStack[i].flags & (STK_Dyn|STK_Ephem))==0 );
+ }else if( aStack[i].flags & STK_Ephem ){
+ zBuf[1] = 'e';
+ assert( (aStack[i].flags & (STK_Static|STK_Dyn))==0 );
+ }else{
+ zBuf[1] = 's';
+ }
+ zBuf[2] = '[';
+ k = 3;
+ for(j=0; j<20 && j<aStack[i].n; j++){
+ int c = zStack[i][j];
+ if( c==0 && j==aStack[i].n-1 ) break;
+ if( isprint(c) && !isspace(c) ){
+ zBuf[k++] = c;
+ }else{
+ zBuf[k++] = '.';
+ }
+ }
+ zBuf[k++] = ']';
+ zBuf[k++] = 0;
+ fprintf(p->trace, "%s", zBuf);
+ }else{
+ fprintf(p->trace, " ???");
+ }
+ }
+ if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
+ fprintf(p->trace,"\n");
+ }
+#endif
+ } /* The end of the for(;;) loop the loops through opcodes */
+
+ /* If we reach this point, it means that execution is finished.
+ */
+vdbe_halt:
+ if( rc ){
+ p->rc = rc;
+ rc = SQLITE_ERROR;
+ }else{
+ rc = SQLITE_DONE;
+ }
+ p->magic = VDBE_MAGIC_HALT;
+ return rc;
+
+ /* Jump to here if a malloc() fails. It's hard to get a malloc()
+ ** to fail on a modern VM computer, so this code is untested.
+ */
+no_mem:
+ sqliteSetString(&p->zErrMsg, "out of memory", 0);
+ rc = SQLITE_NOMEM;
+ goto vdbe_halt;
+
+ /* Jump to here for an SQLITE_MISUSE error.
+ */
+abort_due_to_misuse:
+ rc = SQLITE_MISUSE;
+ /* Fall thru into abort_due_to_error */
+
+ /* Jump to here for any other kind of fatal error. The "rc" variable
+ ** should hold the error number.
+ */
+abort_due_to_error:
+ if( p->zErrMsg==0 ){
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0);
+ }
+ goto vdbe_halt;
+
+ /* Jump to here if the sqlite_interrupt() API sets the interrupt
+ ** flag.
+ */
+abort_due_to_interrupt:
+ assert( db->flags & SQLITE_Interrupt );
+ db->flags &= ~SQLITE_Interrupt;
+ if( db->magic!=SQLITE_MAGIC_BUSY ){
+ rc = SQLITE_MISUSE;
+ }else{
+ rc = SQLITE_INTERRUPT;
+ }
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0);
+ goto vdbe_halt;
+
+ /* Jump to here if a operator is encountered that requires more stack
+ ** operands than are currently available on the stack.
+ */
+not_enough_stack:
+ sprintf(zBuf,"%d",pc);
+ sqliteSetString(&p->zErrMsg, "too few operands on stack at ", zBuf, 0);
+ rc = SQLITE_INTERNAL;
+ goto vdbe_halt;
+
+ /* Jump here if an illegal or illformed instruction is executed.
+ */
+VERIFY(
+bad_instruction:
+ sprintf(zBuf,"%d",pc);
+ sqliteSetString(&p->zErrMsg, "illegal operation at ", zBuf, 0);
+ rc = SQLITE_INTERNAL;
+ goto vdbe_halt;
+)
+}
+
+
+/*
+** Clean up the VDBE after execution. Return an integer which is the
+** result code.
+*/
+int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){
+ sqlite *db = p->db;
+ Btree *pBt = p->pBt;
+ int rc;
+
+ if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), 0);
+ return SQLITE_MISUSE;
+ }
+ if( p->zErrMsg ){
+ if( pzErrMsg && *pzErrMsg==0 ){
+ *pzErrMsg = p->zErrMsg;
+ }else{
+ sqliteFree(p->zErrMsg);
+ }
+ p->zErrMsg = 0;
+ }
+ Cleanup(p);
+ if( p->rc!=SQLITE_OK ){
+ switch( p->errorAction ){
+ case OE_Abort: {
+ if( !p->undoTransOnError ){
+ sqliteBtreeRollbackCkpt(pBt);
+ if( db->pBeTemp ) sqliteBtreeRollbackCkpt(db->pBeTemp);
+ break;
+ }
+ /* Fall through to ROLLBACK */
+ }
+ case OE_Rollback: {
+ sqliteBtreeRollback(pBt);
+ if( db->pBeTemp ) sqliteBtreeRollback(db->pBeTemp);
+ db->flags &= ~SQLITE_InTrans;
+ db->onError = OE_Default;
+ break;
+ }
+ default: {
+ if( p->undoTransOnError ){
+ sqliteBtreeCommit(pBt);
+ if( db->pBeTemp ) sqliteBtreeCommit(db->pBeTemp);
+ db->flags &= ~SQLITE_InTrans;
+ db->onError = OE_Default;
+ }
+ break;
+ }
+ }
+ sqliteRollbackInternalChanges(db);
+ }
+ sqliteBtreeCommitCkpt(pBt);
+ if( db->pBeTemp ) sqliteBtreeCommitCkpt(db->pBeTemp);
+ assert( p->tos<p->pc || sqlite_malloc_failed==1 );
+#ifdef VDBE_PROFILE
+ {
+ FILE *out = fopen("vdbe_profile.out", "a");
+ if( out ){
+ int i;
+ fprintf(out, "---- ");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%02x", p->aOp[i].opcode);
+ }
+ fprintf(out, "\n");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%6d %10lld %8lld ",
+ p->aOp[i].cnt,
+ p->aOp[i].cycles,
+ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
+ );
+ vdbePrintOp(out, i, &p->aOp[i]);
+ }
+ fclose(out);
+ }
+ }
+#endif
+ rc = p->rc;
+ sqliteVdbeDelete(p);
+ if( db->want_to_close && db->pVdbe==0 ){
+ sqlite_close(db);
+ }
+ return rc;
+}