diff options
Diffstat (limited to 'ext/sqlite/libsqlite/src/where.c')
| -rw-r--r-- | ext/sqlite/libsqlite/src/where.c | 1235 | 
1 files changed, 0 insertions, 1235 deletions
diff --git a/ext/sqlite/libsqlite/src/where.c b/ext/sqlite/libsqlite/src/where.c deleted file mode 100644 index cffeccbed7..0000000000 --- a/ext/sqlite/libsqlite/src/where.c +++ /dev/null @@ -1,1235 +0,0 @@ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code.  In place of -** a legal notice, here is a blessing: -** -**    May you do good and not evil. -**    May you find forgiveness for yourself and forgive others. -**    May you share freely, never taking more than you give. -** -************************************************************************* -** This module contains C code that generates VDBE code used to process -** the WHERE clause of SQL statements. -** -** $Id$ -*/ -#include "sqliteInt.h" - -/* -** The query generator uses an array of instances of this structure to -** help it analyze the subexpressions of the WHERE clause.  Each WHERE -** clause subexpression is separated from the others by an AND operator. -*/ -typedef struct ExprInfo ExprInfo; -struct ExprInfo { -  Expr *p;                /* Pointer to the subexpression */ -  u8 indexable;           /* True if this subexprssion is usable by an index */ -  short int idxLeft;      /* p->pLeft is a column in this table number. -1 if -                          ** p->pLeft is not the column of any table */ -  short int idxRight;     /* p->pRight is a column in this table number. -1 if -                          ** p->pRight is not the column of any table */ -  unsigned prereqLeft;    /* Bitmask of tables referenced by p->pLeft */ -  unsigned prereqRight;   /* Bitmask of tables referenced by p->pRight */ -  unsigned prereqAll;     /* Bitmask of tables referenced by p */ -}; - -/* -** An instance of the following structure keeps track of a mapping -** between VDBE cursor numbers and bitmasks.  The VDBE cursor numbers -** are small integers contained in SrcList_item.iCursor and Expr.iTable -** fields.  For any given WHERE clause, we want to track which cursors -** are being used, so we assign a single bit in a 32-bit word to track -** that cursor.  Then a 32-bit integer is able to show the set of all -** cursors being used. -*/ -typedef struct ExprMaskSet ExprMaskSet; -struct ExprMaskSet { -  int n;          /* Number of assigned cursor values */ -  int ix[31];     /* Cursor assigned to each bit */ -}; - -/* -** Determine the number of elements in an array. -*/ -#define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0])) - -/* -** This routine is used to divide the WHERE expression into subexpressions -** separated by the AND operator. -** -** aSlot[] is an array of subexpressions structures. -** There are nSlot spaces left in this array.  This routine attempts to -** split pExpr into subexpressions and fills aSlot[] with those subexpressions. -** The return value is the number of slots filled. -*/ -static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){ -  int cnt = 0; -  if( pExpr==0 || nSlot<1 ) return 0; -  if( nSlot==1 || pExpr->op!=TK_AND ){ -    aSlot[0].p = pExpr; -    return 1; -  } -  if( pExpr->pLeft->op!=TK_AND ){ -    aSlot[0].p = pExpr->pLeft; -    cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight); -  }else{ -    cnt = exprSplit(nSlot, aSlot, pExpr->pLeft); -    cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight); -  } -  return cnt; -} - -/* -** Initialize an expression mask set -*/ -#define initMaskSet(P)  memset(P, 0, sizeof(*P)) - -/* -** Return the bitmask for the given cursor.  Assign a new bitmask -** if this is the first time the cursor has been seen. -*/ -static int getMask(ExprMaskSet *pMaskSet, int iCursor){ -  int i; -  for(i=0; i<pMaskSet->n; i++){ -    if( pMaskSet->ix[i]==iCursor ) return 1<<i; -  } -  if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){ -    pMaskSet->n++; -    pMaskSet->ix[i] = iCursor; -    return 1<<i; -  } -  return 0; -} - -/* -** Destroy an expression mask set -*/ -#define freeMaskSet(P)   /* NO-OP */ - -/* -** This routine walks (recursively) an expression tree and generates -** a bitmask indicating which tables are used in that expression -** tree. -** -** In order for this routine to work, the calling function must have -** previously invoked sqliteExprResolveIds() on the expression.  See -** the header comment on that routine for additional information. -** The sqliteExprResolveIds() routines looks for column names and -** sets their opcodes to TK_COLUMN and their Expr.iTable fields to -** the VDBE cursor number of the table. -*/ -static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ -  unsigned int mask = 0; -  if( p==0 ) return 0; -  if( p->op==TK_COLUMN ){ -    mask = getMask(pMaskSet, p->iTable); -    if( mask==0 ) mask = -1; -    return mask; -  } -  if( p->pRight ){ -    mask = exprTableUsage(pMaskSet, p->pRight); -  } -  if( p->pLeft ){ -    mask |= exprTableUsage(pMaskSet, p->pLeft); -  } -  if( p->pList ){ -    int i; -    for(i=0; i<p->pList->nExpr; i++){ -      mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr); -    } -  } -  return mask; -} - -/* -** Return TRUE if the given operator is one of the operators that is -** allowed for an indexable WHERE clause.  The allowed operators are -** "=", "<", ">", "<=", ">=", and "IN". -*/ -static int allowedOp(int op){ -  switch( op ){ -    case TK_LT: -    case TK_LE: -    case TK_GT: -    case TK_GE: -    case TK_EQ: -    case TK_IN: -      return 1; -    default: -      return 0; -  } -} - -/* -** The input to this routine is an ExprInfo structure with only the -** "p" field filled in.  The job of this routine is to analyze the -** subexpression and populate all the other fields of the ExprInfo -** structure. -*/ -static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){ -  Expr *pExpr = pInfo->p; -  pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); -  pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); -  pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr); -  pInfo->indexable = 0; -  pInfo->idxLeft = -1; -  pInfo->idxRight = -1; -  if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){ -    if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){ -      pInfo->idxRight = pExpr->pRight->iTable; -      pInfo->indexable = 1; -    } -    if( pExpr->pLeft->op==TK_COLUMN ){ -      pInfo->idxLeft = pExpr->pLeft->iTable; -      pInfo->indexable = 1; -    } -  } -} - -/* -** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the -** left-most table in the FROM clause of that same SELECT statement and -** the table has a cursor number of "base". -** -** This routine attempts to find an index for pTab that generates the -** correct record sequence for the given ORDER BY clause.  The return value -** is a pointer to an index that does the job.  NULL is returned if the -** table has no index that will generate the correct sort order. -** -** If there are two or more indices that generate the correct sort order -** and pPreferredIdx is one of those indices, then return pPreferredIdx. -** -** nEqCol is the number of columns of pPreferredIdx that are used as -** equality constraints.  Any index returned must have exactly this same -** set of columns.  The ORDER BY clause only matches index columns beyond the -** the first nEqCol columns. -** -** All terms of the ORDER BY clause must be either ASC or DESC.  The -** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is -** set to 0 if the ORDER BY clause is all ASC. -*/ -static Index *findSortingIndex( -  Table *pTab,            /* The table to be sorted */ -  int base,               /* Cursor number for pTab */ -  ExprList *pOrderBy,     /* The ORDER BY clause */ -  Index *pPreferredIdx,   /* Use this index, if possible and not NULL */ -  int nEqCol,             /* Number of index columns used with == constraints */ -  int *pbRev              /* Set to 1 if ORDER BY is DESC */ -){ -  int i, j; -  Index *pMatch; -  Index *pIdx; -  int sortOrder; - -  assert( pOrderBy!=0 ); -  assert( pOrderBy->nExpr>0 ); -  sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK; -  for(i=0; i<pOrderBy->nExpr; i++){ -    Expr *p; -    if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){ -      /* Indices can only be used if all ORDER BY terms are either -      ** DESC or ASC.  Indices cannot be used on a mixture. */ -      return 0; -    } -    if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){ -      /* Do not sort by index if there is a COLLATE clause */ -      return 0; -    } -    p = pOrderBy->a[i].pExpr; -    if( p->op!=TK_COLUMN || p->iTable!=base ){ -      /* Can not use an index sort on anything that is not a column in the -      ** left-most table of the FROM clause */ -      return 0; -    } -  } -   -  /* If we get this far, it means the ORDER BY clause consists only of -  ** ascending columns in the left-most table of the FROM clause.  Now -  ** check for a matching index. -  */ -  pMatch = 0; -  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ -    int nExpr = pOrderBy->nExpr; -    if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue; -    for(i=j=0; i<nEqCol; i++){ -      if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break; -      if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; } -    } -    if( i<nEqCol ) continue; -    for(i=0; i+j<nExpr; i++){ -      if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break; -    } -    if( i+j>=nExpr ){ -      pMatch = pIdx; -      if( pIdx==pPreferredIdx ) break; -    } -  } -  if( pMatch && pbRev ){ -    *pbRev = sortOrder==SQLITE_SO_DESC; -  } -  return pMatch; -} - -/* -** Disable a term in the WHERE clause.  Except, do not disable the term -** if it controls a LEFT OUTER JOIN and it did not originate in the ON -** or USING clause of that join. -** -** Consider the term t2.z='ok' in the following queries: -** -**   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' -**   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' -**   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' -** -** The t2.z='ok' is disabled in the in (2) because it did not originate -** in the ON clause.  The term is disabled in (3) because it is not part -** of a LEFT OUTER JOIN.  In (1), the term is not disabled. -** -** Disabling a term causes that term to not be tested in the inner loop -** of the join.  Disabling is an optimization.  We would get the correct -** results if nothing were ever disabled, but joins might run a little -** slower.  The trick is to disable as much as we can without disabling -** too much.  If we disabled in (1), we'd get the wrong answer. -** See ticket #813. -*/ -static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){ -  Expr *pExpr = *ppExpr; -  if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){ -    *ppExpr = 0; -  } -} - -/* -** Generate the beginning of the loop used for WHERE clause processing. -** The return value is a pointer to an (opaque) structure that contains -** information needed to terminate the loop.  Later, the calling routine -** should invoke sqliteWhereEnd() with the return value of this function -** in order to complete the WHERE clause processing. -** -** If an error occurs, this routine returns NULL. -** -** The basic idea is to do a nested loop, one loop for each table in -** the FROM clause of a select.  (INSERT and UPDATE statements are the -** same as a SELECT with only a single table in the FROM clause.)  For -** example, if the SQL is this: -** -**       SELECT * FROM t1, t2, t3 WHERE ...; -** -** Then the code generated is conceptually like the following: -** -**      foreach row1 in t1 do       \    Code generated -**        foreach row2 in t2 do      |-- by sqliteWhereBegin() -**          foreach row3 in t3 do   / -**            ... -**          end                     \    Code generated -**        end                        |-- by sqliteWhereEnd() -**      end                         / -** -** There are Btree cursors associated with each table.  t1 uses cursor -** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor. -** And so forth.  This routine generates code to open those VDBE cursors -** and sqliteWhereEnd() generates the code to close them. -** -** If the WHERE clause is empty, the foreach loops must each scan their -** entire tables.  Thus a three-way join is an O(N^3) operation.  But if -** the tables have indices and there are terms in the WHERE clause that -** refer to those indices, a complete table scan can be avoided and the -** code will run much faster.  Most of the work of this routine is checking -** to see if there are indices that can be used to speed up the loop. -** -** Terms of the WHERE clause are also used to limit which rows actually -** make it to the "..." in the middle of the loop.  After each "foreach", -** terms of the WHERE clause that use only terms in that loop and outer -** loops are evaluated and if false a jump is made around all subsequent -** inner loops (or around the "..." if the test occurs within the inner- -** most loop) -** -** OUTER JOINS -** -** An outer join of tables t1 and t2 is conceptally coded as follows: -** -**    foreach row1 in t1 do -**      flag = 0 -**      foreach row2 in t2 do -**        start: -**          ... -**          flag = 1 -**      end -**      if flag==0 then -**        move the row2 cursor to a null row -**        goto start -**      fi -**    end -** -** ORDER BY CLAUSE PROCESSING -** -** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, -** if there is one.  If there is no ORDER BY clause or if this routine -** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. -** -** If an index can be used so that the natural output order of the table -** scan is correct for the ORDER BY clause, then that index is used and -** *ppOrderBy is set to NULL.  This is an optimization that prevents an -** unnecessary sort of the result set if an index appropriate for the -** ORDER BY clause already exists. -** -** If the where clause loops cannot be arranged to provide the correct -** output order, then the *ppOrderBy is unchanged. -*/ -WhereInfo *sqliteWhereBegin( -  Parse *pParse,       /* The parser context */ -  SrcList *pTabList,   /* A list of all tables to be scanned */ -  Expr *pWhere,        /* The WHERE clause */ -  int pushKey,         /* If TRUE, leave the table key on the stack */ -  ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ -){ -  int i;                     /* Loop counter */ -  WhereInfo *pWInfo;         /* Will become the return value of this function */ -  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */ -  int brk, cont = 0;         /* Addresses used during code generation */ -  int nExpr;           /* Number of subexpressions in the WHERE clause */ -  int loopMask;        /* One bit set for each outer loop */ -  int haveKey;         /* True if KEY is on the stack */ -  ExprMaskSet maskSet; /* The expression mask set */ -  int iDirectEq[32];   /* Term of the form ROWID==X for the N-th table */ -  int iDirectLt[32];   /* Term of the form ROWID<X or ROWID<=X */ -  int iDirectGt[32];   /* Term of the form ROWID>X or ROWID>=X */ -  ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */ - -  /* pushKey is only allowed if there is a single table (as in an INSERT or -  ** UPDATE statement) -  */ -  assert( pushKey==0 || pTabList->nSrc==1 ); - -  /* Split the WHERE clause into separate subexpressions where each -  ** subexpression is separated by an AND operator.  If the aExpr[] -  ** array fills up, the last entry might point to an expression which -  ** contains additional unfactored AND operators. -  */ -  initMaskSet(&maskSet); -  memset(aExpr, 0, sizeof(aExpr)); -  nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere); -  if( nExpr==ARRAYSIZE(aExpr) ){ -    sqliteErrorMsg(pParse, "WHERE clause too complex - no more " -       "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1); -    return 0; -  } -   -  /* Allocate and initialize the WhereInfo structure that will become the -  ** return value. -  */ -  pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); -  if( sqlite_malloc_failed ){ -    sqliteFree(pWInfo); -    return 0; -  } -  pWInfo->pParse = pParse; -  pWInfo->pTabList = pTabList; -  pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab; -  pWInfo->iBreak = sqliteVdbeMakeLabel(v); - -  /* Special case: a WHERE clause that is constant.  Evaluate the -  ** expression and either jump over all of the code or fall thru. -  */ -  if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){ -    sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); -    pWhere = 0; -  } - -  /* Analyze all of the subexpressions. -  */ -  for(i=0; i<nExpr; i++){ -    exprAnalyze(&maskSet, &aExpr[i]); - -    /* If we are executing a trigger body, remove all references to -    ** new.* and old.* tables from the prerequisite masks. -    */ -    if( pParse->trigStack ){ -      int x; -      if( (x = pParse->trigStack->newIdx) >= 0 ){ -        int mask = ~getMask(&maskSet, x); -        aExpr[i].prereqRight &= mask; -        aExpr[i].prereqLeft &= mask; -        aExpr[i].prereqAll &= mask; -      } -      if( (x = pParse->trigStack->oldIdx) >= 0 ){ -        int mask = ~getMask(&maskSet, x); -        aExpr[i].prereqRight &= mask; -        aExpr[i].prereqLeft &= mask; -        aExpr[i].prereqAll &= mask; -      } -    } -  } - -  /* Figure out what index to use (if any) for each nested loop. -  ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested -  ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner -  ** loop.  -  ** -  ** If terms exist that use the ROWID of any table, then set the -  ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table -  ** to the index of the term containing the ROWID.  We always prefer -  ** to use a ROWID which can directly access a table rather than an -  ** index which requires reading an index first to get the rowid then -  ** doing a second read of the actual database table. -  ** -  ** Actually, if there are more than 32 tables in the join, only the -  ** first 32 tables are candidates for indices.  This is (again) due -  ** to the limit of 32 bits in an integer bitmask. -  */ -  loopMask = 0; -  for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){ -    int j; -    int iCur = pTabList->a[i].iCursor;    /* The cursor for this table */ -    int mask = getMask(&maskSet, iCur);   /* Cursor mask for this table */ -    Table *pTab = pTabList->a[i].pTab; -    Index *pIdx; -    Index *pBestIdx = 0; -    int bestScore = 0; - -    /* Check to see if there is an expression that uses only the -    ** ROWID field of this table.  For terms of the form ROWID==expr -    ** set iDirectEq[i] to the index of the term.  For terms of the -    ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index. -    ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i]. -    ** -    ** (Added:) Treat ROWID IN expr like ROWID=expr. -    */ -    pWInfo->a[i].iCur = -1; -    iDirectEq[i] = -1; -    iDirectLt[i] = -1; -    iDirectGt[i] = -1; -    for(j=0; j<nExpr; j++){ -      if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0 -            && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ -        switch( aExpr[j].p->op ){ -          case TK_IN: -          case TK_EQ: iDirectEq[i] = j; break; -          case TK_LE: -          case TK_LT: iDirectLt[i] = j; break; -          case TK_GE: -          case TK_GT: iDirectGt[i] = j;  break; -        } -      } -      if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0 -            && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ -        switch( aExpr[j].p->op ){ -          case TK_EQ: iDirectEq[i] = j;  break; -          case TK_LE: -          case TK_LT: iDirectGt[i] = j;  break; -          case TK_GE: -          case TK_GT: iDirectLt[i] = j;  break; -        } -      } -    } -    if( iDirectEq[i]>=0 ){ -      loopMask |= mask; -      pWInfo->a[i].pIdx = 0; -      continue; -    } - -    /* Do a search for usable indices.  Leave pBestIdx pointing to -    ** the "best" index.  pBestIdx is left set to NULL if no indices -    ** are usable. -    ** -    ** The best index is determined as follows.  For each of the -    ** left-most terms that is fixed by an equality operator, add -    ** 8 to the score.  The right-most term of the index may be -    ** constrained by an inequality.  Add 1 if for an "x<..." constraint -    ** and add 2 for an "x>..." constraint.  Chose the index that -    ** gives the best score. -    ** -    ** This scoring system is designed so that the score can later be -    ** used to determine how the index is used.  If the score&7 is 0 -    ** then all constraints are equalities.  If score&1 is not 0 then -    ** there is an inequality used as a termination key.  (ex: "x<...") -    ** If score&2 is not 0 then there is an inequality used as the -    ** start key.  (ex: "x>...").  A score or 4 is the special case -    ** of an IN operator constraint.  (ex:  "x IN ..."). -    ** -    ** The IN operator (as in "<expr> IN (...)") is treated the same as -    ** an equality comparison except that it can only be used on the -    ** left-most column of an index and other terms of the WHERE clause -    ** cannot be used in conjunction with the IN operator to help satisfy -    ** other columns of the index. -    */ -    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ -      int eqMask = 0;  /* Index columns covered by an x=... term */ -      int ltMask = 0;  /* Index columns covered by an x<... term */ -      int gtMask = 0;  /* Index columns covered by an x>... term */ -      int inMask = 0;  /* Index columns covered by an x IN .. term */ -      int nEq, m, score; - -      if( pIdx->nColumn>32 ) continue;  /* Ignore indices too many columns */ -      for(j=0; j<nExpr; j++){ -        if( aExpr[j].idxLeft==iCur  -             && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ -          int iColumn = aExpr[j].p->pLeft->iColumn; -          int k; -          for(k=0; k<pIdx->nColumn; k++){ -            if( pIdx->aiColumn[k]==iColumn ){ -              switch( aExpr[j].p->op ){ -                case TK_IN: { -                  if( k==0 ) inMask |= 1; -                  break; -                } -                case TK_EQ: { -                  eqMask |= 1<<k; -                  break; -                } -                case TK_LE: -                case TK_LT: { -                  ltMask |= 1<<k; -                  break; -                } -                case TK_GE: -                case TK_GT: { -                  gtMask |= 1<<k; -                  break; -                } -                default: { -                  /* CANT_HAPPEN */ -                  assert( 0 ); -                  break; -                } -              } -              break; -            } -          } -        } -        if( aExpr[j].idxRight==iCur  -             && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ -          int iColumn = aExpr[j].p->pRight->iColumn; -          int k; -          for(k=0; k<pIdx->nColumn; k++){ -            if( pIdx->aiColumn[k]==iColumn ){ -              switch( aExpr[j].p->op ){ -                case TK_EQ: { -                  eqMask |= 1<<k; -                  break; -                } -                case TK_LE: -                case TK_LT: { -                  gtMask |= 1<<k; -                  break; -                } -                case TK_GE: -                case TK_GT: { -                  ltMask |= 1<<k; -                  break; -                } -                default: { -                  /* CANT_HAPPEN */ -                  assert( 0 ); -                  break; -                } -              } -              break; -            } -          } -        } -      } - -      /* The following loop ends with nEq set to the number of columns -      ** on the left of the index with == constraints. -      */ -      for(nEq=0; nEq<pIdx->nColumn; nEq++){ -        m = (1<<(nEq+1))-1; -        if( (m & eqMask)!=m ) break; -      } -      score = nEq*8;   /* Base score is 8 times number of == constraints */ -      m = 1<<nEq; -      if( m & ltMask ) score++;    /* Increase score for a < constraint */ -      if( m & gtMask ) score+=2;   /* Increase score for a > constraint */ -      if( score==0 && inMask ) score = 4;  /* Default score for IN constraint */ -      if( score>bestScore ){ -        pBestIdx = pIdx; -        bestScore = score; -      } -    } -    pWInfo->a[i].pIdx = pBestIdx; -    pWInfo->a[i].score = bestScore; -    pWInfo->a[i].bRev = 0; -    loopMask |= mask; -    if( pBestIdx ){ -      pWInfo->a[i].iCur = pParse->nTab++; -      pWInfo->peakNTab = pParse->nTab; -    } -  } - -  /* Check to see if the ORDER BY clause is or can be satisfied by the -  ** use of an index on the first table. -  */ -  if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){ -     Index *pSortIdx; -     Index *pIdx; -     Table *pTab; -     int bRev = 0; - -     pTab = pTabList->a[0].pTab; -     pIdx = pWInfo->a[0].pIdx; -     if( pIdx && pWInfo->a[0].score==4 ){ -       /* If there is already an IN index on the left-most table, -       ** it will not give the correct sort order. -       ** So, pretend that no suitable index is found. -       */ -       pSortIdx = 0; -     }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){ -       /* If the left-most column is accessed using its ROWID, then do -       ** not try to sort by index. -       */ -       pSortIdx = 0; -     }else{ -       int nEqCol = (pWInfo->a[0].score+4)/8; -       pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor,  -                                   *ppOrderBy, pIdx, nEqCol, &bRev); -     } -     if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){ -       if( pIdx==0 ){ -         pWInfo->a[0].pIdx = pSortIdx; -         pWInfo->a[0].iCur = pParse->nTab++; -         pWInfo->peakNTab = pParse->nTab; -       } -       pWInfo->a[0].bRev = bRev; -       *ppOrderBy = 0; -     } -  } - -  /* Open all tables in the pTabList and all indices used by those tables. -  */ -  for(i=0; i<pTabList->nSrc; i++){ -    Table *pTab; -    Index *pIx; - -    pTab = pTabList->a[i].pTab; -    if( pTab->isTransient || pTab->pSelect ) continue; -    sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); -    sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum, -                     pTab->zName, P3_STATIC); -    sqliteCodeVerifySchema(pParse, pTab->iDb); -    if( (pIx = pWInfo->a[i].pIdx)!=0 ){ -      sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0); -      sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0); -    } -  } - -  /* Generate the code to do the search -  */ -  loopMask = 0; -  for(i=0; i<pTabList->nSrc; i++){ -    int j, k; -    int iCur = pTabList->a[i].iCursor; -    Index *pIdx; -    WhereLevel *pLevel = &pWInfo->a[i]; - -    /* If this is the right table of a LEFT OUTER JOIN, allocate and -    ** initialize a memory cell that records if this table matches any -    ** row of the left table of the join. -    */ -    if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){ -      if( !pParse->nMem ) pParse->nMem++; -      pLevel->iLeftJoin = pParse->nMem++; -      sqliteVdbeAddOp(v, OP_String, 0, 0); -      sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); -    } - -    pIdx = pLevel->pIdx; -    pLevel->inOp = OP_Noop; -    if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){ -      /* Case 1:  We can directly reference a single row using an -      **          equality comparison against the ROWID field.  Or -      **          we reference multiple rows using a "rowid IN (...)" -      **          construct. -      */ -      k = iDirectEq[i]; -      assert( k<nExpr ); -      assert( aExpr[k].p!=0 ); -      assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); -      brk = pLevel->brk = sqliteVdbeMakeLabel(v); -      if( aExpr[k].idxLeft==iCur ){ -        Expr *pX = aExpr[k].p; -        if( pX->op!=TK_IN ){ -          sqliteExprCode(pParse, aExpr[k].p->pRight); -        }else if( pX->pList ){ -          sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk); -          pLevel->inOp = OP_SetNext; -          pLevel->inP1 = pX->iTable; -          pLevel->inP2 = sqliteVdbeCurrentAddr(v); -        }else{ -          assert( pX->pSelect ); -          sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk); -          sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1); -          pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0); -          pLevel->inOp = OP_Next; -          pLevel->inP1 = pX->iTable; -        } -      }else{ -        sqliteExprCode(pParse, aExpr[k].p->pLeft); -      } -      disableTerm(pLevel, &aExpr[k].p); -      cont = pLevel->cont = sqliteVdbeMakeLabel(v); -      sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk); -      haveKey = 0; -      sqliteVdbeAddOp(v, OP_NotExists, iCur, brk); -      pLevel->op = OP_Noop; -    }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){ -      /* Case 2:  There is an index and all terms of the WHERE clause that -      **          refer to the index use the "==" or "IN" operators. -      */ -      int start; -      int testOp; -      int nColumn = (pLevel->score+4)/8; -      brk = pLevel->brk = sqliteVdbeMakeLabel(v); -      for(j=0; j<nColumn; j++){ -        for(k=0; k<nExpr; k++){ -          Expr *pX = aExpr[k].p; -          if( pX==0 ) continue; -          if( aExpr[k].idxLeft==iCur -             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight  -             && pX->pLeft->iColumn==pIdx->aiColumn[j] -          ){ -            if( pX->op==TK_EQ ){ -              sqliteExprCode(pParse, pX->pRight); -              disableTerm(pLevel, &aExpr[k].p); -              break; -            } -            if( pX->op==TK_IN && nColumn==1 ){ -              if( pX->pList ){ -                sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk); -                pLevel->inOp = OP_SetNext; -                pLevel->inP1 = pX->iTable; -                pLevel->inP2 = sqliteVdbeCurrentAddr(v); -              }else{ -                assert( pX->pSelect ); -                sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk); -                sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1); -                pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0); -                pLevel->inOp = OP_Next; -                pLevel->inP1 = pX->iTable; -              } -              disableTerm(pLevel, &aExpr[k].p); -              break; -            } -          } -          if( aExpr[k].idxRight==iCur -             && aExpr[k].p->op==TK_EQ -             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft -             && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] -          ){ -            sqliteExprCode(pParse, aExpr[k].p->pLeft); -            disableTerm(pLevel, &aExpr[k].p); -            break; -          } -        } -      } -      pLevel->iMem = pParse->nMem++; -      cont = pLevel->cont = sqliteVdbeMakeLabel(v); -      sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3); -      sqliteVdbeAddOp(v, OP_Pop, nColumn, 0); -      sqliteVdbeAddOp(v, OP_Goto, 0, brk); -      sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0); -      sqliteAddIdxKeyType(v, pIdx); -      if( nColumn==pIdx->nColumn || pLevel->bRev ){ -        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); -        testOp = OP_IdxGT; -      }else{ -        sqliteVdbeAddOp(v, OP_Dup, 0, 0); -        sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); -        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); -        testOp = OP_IdxGE; -      } -      if( pLevel->bRev ){ -        /* Scan in reverse order */ -        sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); -        sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk); -        start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); -        sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk); -        pLevel->op = OP_Prev; -      }else{ -        /* Scan in the forward order */ -        sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); -        start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); -        sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk); -        pLevel->op = OP_Next; -      } -      sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); -      sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont); -      sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); -      if( i==pTabList->nSrc-1 && pushKey ){ -        haveKey = 1; -      }else{ -        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); -        haveKey = 0; -      } -      pLevel->p1 = pLevel->iCur; -      pLevel->p2 = start; -    }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){ -      /* Case 3:  We have an inequality comparison against the ROWID field. -      */ -      int testOp = OP_Noop; -      int start; - -      brk = pLevel->brk = sqliteVdbeMakeLabel(v); -      cont = pLevel->cont = sqliteVdbeMakeLabel(v); -      if( iDirectGt[i]>=0 ){ -        k = iDirectGt[i]; -        assert( k<nExpr ); -        assert( aExpr[k].p!=0 ); -        assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); -        if( aExpr[k].idxLeft==iCur ){ -          sqliteExprCode(pParse, aExpr[k].p->pRight); -        }else{ -          sqliteExprCode(pParse, aExpr[k].p->pLeft); -        } -        sqliteVdbeAddOp(v, OP_ForceInt, -          aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk); -        sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk); -        disableTerm(pLevel, &aExpr[k].p); -      }else{ -        sqliteVdbeAddOp(v, OP_Rewind, iCur, brk); -      } -      if( iDirectLt[i]>=0 ){ -        k = iDirectLt[i]; -        assert( k<nExpr ); -        assert( aExpr[k].p!=0 ); -        assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); -        if( aExpr[k].idxLeft==iCur ){ -          sqliteExprCode(pParse, aExpr[k].p->pRight); -        }else{ -          sqliteExprCode(pParse, aExpr[k].p->pLeft); -        } -        /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */ -        pLevel->iMem = pParse->nMem++; -        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); -        if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){ -          testOp = OP_Ge; -        }else{ -          testOp = OP_Gt; -        } -        disableTerm(pLevel, &aExpr[k].p); -      } -      start = sqliteVdbeCurrentAddr(v); -      pLevel->op = OP_Next; -      pLevel->p1 = iCur; -      pLevel->p2 = start; -      if( testOp!=OP_Noop ){ -        sqliteVdbeAddOp(v, OP_Recno, iCur, 0); -        sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); -        sqliteVdbeAddOp(v, testOp, 0, brk); -      } -      haveKey = 0; -    }else if( pIdx==0 ){ -      /* Case 4:  There is no usable index.  We must do a complete -      **          scan of the entire database table. -      */ -      int start; - -      brk = pLevel->brk = sqliteVdbeMakeLabel(v); -      cont = pLevel->cont = sqliteVdbeMakeLabel(v); -      sqliteVdbeAddOp(v, OP_Rewind, iCur, brk); -      start = sqliteVdbeCurrentAddr(v); -      pLevel->op = OP_Next; -      pLevel->p1 = iCur; -      pLevel->p2 = start; -      haveKey = 0; -    }else{ -      /* Case 5: The WHERE clause term that refers to the right-most -      **         column of the index is an inequality.  For example, if -      **         the index is on (x,y,z) and the WHERE clause is of the -      **         form "x=5 AND y<10" then this case is used.  Only the -      **         right-most column can be an inequality - the rest must -      **         use the "==" operator. -      ** -      **         This case is also used when there are no WHERE clause -      **         constraints but an index is selected anyway, in order -      **         to force the output order to conform to an ORDER BY. -      */ -      int score = pLevel->score; -      int nEqColumn = score/8; -      int start; -      int leFlag, geFlag; -      int testOp; - -      /* Evaluate the equality constraints -      */ -      for(j=0; j<nEqColumn; j++){ -        for(k=0; k<nExpr; k++){ -          if( aExpr[k].p==0 ) continue; -          if( aExpr[k].idxLeft==iCur -             && aExpr[k].p->op==TK_EQ -             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight  -             && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j] -          ){ -            sqliteExprCode(pParse, aExpr[k].p->pRight); -            disableTerm(pLevel, &aExpr[k].p); -            break; -          } -          if( aExpr[k].idxRight==iCur -             && aExpr[k].p->op==TK_EQ -             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft -             && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] -          ){ -            sqliteExprCode(pParse, aExpr[k].p->pLeft); -            disableTerm(pLevel, &aExpr[k].p); -            break; -          } -        } -      } - -      /* Duplicate the equality term values because they will all be -      ** used twice: once to make the termination key and once to make the -      ** start key. -      */ -      for(j=0; j<nEqColumn; j++){ -        sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0); -      } - -      /* Labels for the beginning and end of the loop -      */ -      cont = pLevel->cont = sqliteVdbeMakeLabel(v); -      brk = pLevel->brk = sqliteVdbeMakeLabel(v); - -      /* Generate the termination key.  This is the key value that -      ** will end the search.  There is no termination key if there -      ** are no equality terms and no "X<..." term. -      ** -      ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" -      ** key computed here really ends up being the start key. -      */ -      if( (score & 1)!=0 ){ -        for(k=0; k<nExpr; k++){ -          Expr *pExpr = aExpr[k].p; -          if( pExpr==0 ) continue; -          if( aExpr[k].idxLeft==iCur -             && (pExpr->op==TK_LT || pExpr->op==TK_LE) -             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight  -             && pExpr->pLeft->iColumn==pIdx->aiColumn[j] -          ){ -            sqliteExprCode(pParse, pExpr->pRight); -            leFlag = pExpr->op==TK_LE; -            disableTerm(pLevel, &aExpr[k].p); -            break; -          } -          if( aExpr[k].idxRight==iCur -             && (pExpr->op==TK_GT || pExpr->op==TK_GE) -             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft -             && pExpr->pRight->iColumn==pIdx->aiColumn[j] -          ){ -            sqliteExprCode(pParse, pExpr->pLeft); -            leFlag = pExpr->op==TK_GE; -            disableTerm(pLevel, &aExpr[k].p); -            break; -          } -        } -        testOp = OP_IdxGE; -      }else{ -        testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop; -        leFlag = 1; -      } -      if( testOp!=OP_Noop ){ -        int nCol = nEqColumn + (score & 1); -        pLevel->iMem = pParse->nMem++; -        sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3); -        sqliteVdbeAddOp(v, OP_Pop, nCol, 0); -        sqliteVdbeAddOp(v, OP_Goto, 0, brk); -        sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0); -        sqliteAddIdxKeyType(v, pIdx); -        if( leFlag ){ -          sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); -        } -        if( pLevel->bRev ){ -          sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk); -        }else{ -          sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); -        } -      }else if( pLevel->bRev ){ -        sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk); -      } - -      /* Generate the start key.  This is the key that defines the lower -      ** bound on the search.  There is no start key if there are no -      ** equality terms and if there is no "X>..." term.  In -      ** that case, generate a "Rewind" instruction in place of the -      ** start key search. -      ** -      ** 2002-Dec-04: In the case of a reverse-order search, the so-called -      ** "start" key really ends up being used as the termination key. -      */ -      if( (score & 2)!=0 ){ -        for(k=0; k<nExpr; k++){ -          Expr *pExpr = aExpr[k].p; -          if( pExpr==0 ) continue; -          if( aExpr[k].idxLeft==iCur -             && (pExpr->op==TK_GT || pExpr->op==TK_GE) -             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight  -             && pExpr->pLeft->iColumn==pIdx->aiColumn[j] -          ){ -            sqliteExprCode(pParse, pExpr->pRight); -            geFlag = pExpr->op==TK_GE; -            disableTerm(pLevel, &aExpr[k].p); -            break; -          } -          if( aExpr[k].idxRight==iCur -             && (pExpr->op==TK_LT || pExpr->op==TK_LE) -             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft -             && pExpr->pRight->iColumn==pIdx->aiColumn[j] -          ){ -            sqliteExprCode(pParse, pExpr->pLeft); -            geFlag = pExpr->op==TK_LE; -            disableTerm(pLevel, &aExpr[k].p); -            break; -          } -        } -      }else{ -        geFlag = 1; -      } -      if( nEqColumn>0 || (score&2)!=0 ){ -        int nCol = nEqColumn + ((score&2)!=0); -        sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3); -        sqliteVdbeAddOp(v, OP_Pop, nCol, 0); -        sqliteVdbeAddOp(v, OP_Goto, 0, brk); -        sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0); -        sqliteAddIdxKeyType(v, pIdx); -        if( !geFlag ){ -          sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); -        } -        if( pLevel->bRev ){ -          pLevel->iMem = pParse->nMem++; -          sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); -          testOp = OP_IdxLT; -        }else{ -          sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); -        } -      }else if( pLevel->bRev ){ -        testOp = OP_Noop; -      }else{ -        sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk); -      } - -      /* Generate the the top of the loop.  If there is a termination -      ** key we have to test for that key and abort at the top of the -      ** loop. -      */ -      start = sqliteVdbeCurrentAddr(v); -      if( testOp!=OP_Noop ){ -        sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); -        sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk); -      } -      sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); -      sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont); -      sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); -      if( i==pTabList->nSrc-1 && pushKey ){ -        haveKey = 1; -      }else{ -        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); -        haveKey = 0; -      } - -      /* Record the instruction used to terminate the loop. -      */ -      pLevel->op = pLevel->bRev ? OP_Prev : OP_Next; -      pLevel->p1 = pLevel->iCur; -      pLevel->p2 = start; -    } -    loopMask |= getMask(&maskSet, iCur); - -    /* Insert code to test every subexpression that can be completely -    ** computed using the current set of tables. -    */ -    for(j=0; j<nExpr; j++){ -      if( aExpr[j].p==0 ) continue; -      if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue; -      if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){ -        continue; -      } -      if( haveKey ){ -        haveKey = 0; -        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); -      } -      sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1); -      aExpr[j].p = 0; -    } -    brk = cont; - -    /* For a LEFT OUTER JOIN, generate code that will record the fact that -    ** at least one row of the right table has matched the left table.   -    */ -    if( pLevel->iLeftJoin ){ -      pLevel->top = sqliteVdbeCurrentAddr(v); -      sqliteVdbeAddOp(v, OP_Integer, 1, 0); -      sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); -      for(j=0; j<nExpr; j++){ -        if( aExpr[j].p==0 ) continue; -        if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue; -        if( haveKey ){ -          /* Cannot happen.  "haveKey" can only be true if pushKey is true -          ** an pushKey can only be true for DELETE and UPDATE and there are -          ** no outer joins with DELETE and UPDATE. -          */ -          haveKey = 0; -          sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); -        } -        sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1); -        aExpr[j].p = 0; -      } -    } -  } -  pWInfo->iContinue = cont; -  if( pushKey && !haveKey ){ -    sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0); -  } -  freeMaskSet(&maskSet); -  return pWInfo; -} - -/* -** Generate the end of the WHERE loop.  See comments on  -** sqliteWhereBegin() for additional information. -*/ -void sqliteWhereEnd(WhereInfo *pWInfo){ -  Vdbe *v = pWInfo->pParse->pVdbe; -  int i; -  WhereLevel *pLevel; -  SrcList *pTabList = pWInfo->pTabList; - -  for(i=pTabList->nSrc-1; i>=0; i--){ -    pLevel = &pWInfo->a[i]; -    sqliteVdbeResolveLabel(v, pLevel->cont); -    if( pLevel->op!=OP_Noop ){ -      sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); -    } -    sqliteVdbeResolveLabel(v, pLevel->brk); -    if( pLevel->inOp!=OP_Noop ){ -      sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2); -    } -    if( pLevel->iLeftJoin ){ -      int addr; -      addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0); -      sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0)); -      sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); -      if( pLevel->iCur>=0 ){ -        sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0); -      } -      sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top); -    } -  } -  sqliteVdbeResolveLabel(v, pWInfo->iBreak); -  for(i=0; i<pTabList->nSrc; i++){ -    Table *pTab = pTabList->a[i].pTab; -    assert( pTab!=0 ); -    if( pTab->isTransient || pTab->pSelect ) continue; -    pLevel = &pWInfo->a[i]; -    sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0); -    if( pLevel->pIdx!=0 ){ -      sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0); -    } -  } -#if 0  /* Never reuse a cursor */ -  if( pWInfo->pParse->nTab==pWInfo->peakNTab ){ -    pWInfo->pParse->nTab = pWInfo->savedNTab; -  } -#endif -  sqliteFree(pWInfo); -  return; -}  | 
