summaryrefslogtreecommitdiff
path: root/kafka
diff options
context:
space:
mode:
authorDana Powers <dana.powers@gmail.com>2014-05-06 21:03:10 -0700
committerDana Powers <dana.powers@gmail.com>2014-05-06 21:03:10 -0700
commit3b18043821f37242bde2b186684fa05d36c61921 (patch)
treef7203196a2803b0ef4c5e1eeb3bf474c4e49776c /kafka
parent914c2e686acd3ad8f8c6dca6bf714e0b166dcbc3 (diff)
parent1fd35a558f96df5a0400dbfd07b7adce97fa050e (diff)
downloadkafka-python-3b18043821f37242bde2b186684fa05d36c61921.tar.gz
Merge pull request #139 from alexcb/master
SimpleProducer randomization of initial round robin ordering
Diffstat (limited to 'kafka')
-rw-r--r--kafka/producer.py16
1 files changed, 15 insertions, 1 deletions
diff --git a/kafka/producer.py b/kafka/producer.py
index 12a2934..8f35963 100644
--- a/kafka/producer.py
+++ b/kafka/producer.py
@@ -2,6 +2,7 @@ from __future__ import absolute_import
import logging
import time
+import random
from Queue import Empty
from collections import defaultdict
@@ -180,14 +181,20 @@ class SimpleProducer(Producer):
batch_send - If True, messages are send in batches
batch_send_every_n - If set, messages are send in batches of this size
batch_send_every_t - If set, messages are send after this timeout
+ random_start - If true, randomize the initial partition which the
+ the first message block will be published to, otherwise
+ if false, the first message block will always publish
+ to partition 0 before cycling through each partition
"""
def __init__(self, client, async=False,
req_acks=Producer.ACK_AFTER_LOCAL_WRITE,
ack_timeout=Producer.DEFAULT_ACK_TIMEOUT,
batch_send=False,
batch_send_every_n=BATCH_SEND_MSG_COUNT,
- batch_send_every_t=BATCH_SEND_DEFAULT_INTERVAL):
+ batch_send_every_t=BATCH_SEND_DEFAULT_INTERVAL,
+ random_start=False):
self.partition_cycles = {}
+ self.random_start = random_start
super(SimpleProducer, self).__init__(client, async, req_acks,
ack_timeout, batch_send,
batch_send_every_n,
@@ -198,6 +205,13 @@ class SimpleProducer(Producer):
if topic not in self.client.topic_partitions:
self.client.load_metadata_for_topics(topic)
self.partition_cycles[topic] = cycle(self.client.topic_partitions[topic])
+
+ # Randomize the initial partition that is returned
+ if self.random_start:
+ num_partitions = len(self.client.topic_partitions[topic])
+ for _ in xrange(random.randint(0, num_partitions-1)):
+ self.partition_cycles[topic].next()
+
return self.partition_cycles[topic].next()
def send_messages(self, topic, *msg):