import logging import struct import zlib from kafka.codec import ( gzip_encode, gzip_decode, snappy_encode, snappy_decode ) from kafka.common import ( BrokerMetadata, PartitionMetadata, Message, OffsetAndMessage, ProduceResponse, FetchResponse, OffsetResponse, OffsetCommitResponse, OffsetFetchResponse ) from kafka.util import ( read_short_string, read_int_string, relative_unpack, write_short_string, write_int_string, group_by_topic_and_partition, BufferUnderflowError, ChecksumError ) log = logging.getLogger("kafka") class KafkaProtocol(object): """ Class to encapsulate all of the protocol encoding/decoding. This class does not have any state associated with it, it is purely for organization. """ PRODUCE_KEY = 0 FETCH_KEY = 1 OFFSET_KEY = 2 METADATA_KEY = 3 OFFSET_COMMIT_KEY = 6 OFFSET_FETCH_KEY = 7 ATTRIBUTE_CODEC_MASK = 0x03 CODEC_NONE = 0x00 CODEC_GZIP = 0x01 CODEC_SNAPPY = 0x02 ################### # Private API # ################### @classmethod def _encode_message_header(cls, client_id, correlation_id, request_key): """ Encode the common request envelope """ return struct.pack('>hhih%ds' % len(client_id), request_key, # ApiKey 0, # ApiVersion correlation_id, # CorrelationId len(client_id), # client_id) # ClientId @classmethod def _encode_message_set(cls, messages): """ Encode a MessageSet. Unlike other arrays in the protocol, MessageSets are not length-prefixed Format ====== MessageSet => [Offset MessageSize Message] Offset => int64 MessageSize => int32 """ message_set = "" for message in messages: encoded_message = KafkaProtocol._encode_message(message) message_set += struct.pack('>qi%ds' % len(encoded_message), 0, len(encoded_message), encoded_message) return message_set @classmethod def _encode_message(cls, message): """ Encode a single message. The magic number of a message is a format version number. The only supported magic number right now is zero Format ====== Message => Crc MagicByte Attributes Key Value Crc => int32 MagicByte => int8 Attributes => int8 Key => bytes Value => bytes """ if message.magic == 0: msg = struct.pack('>BB', message.magic, message.attributes) msg += write_int_string(message.key) msg += write_int_string(message.value) crc = zlib.crc32(msg) msg = struct.pack('>i%ds' % len(msg), crc, msg) else: raise Exception("Unexpected magic number: %d" % message.magic) return msg @classmethod def _decode_message_set_iter(cls, data): """ Iteratively decode a MessageSet Reads repeated elements of (offset, message), calling decode_message to decode a single message. Since compressed messages contain futher MessageSets, these two methods have been decoupled so that they may recurse easily. """ cur = 0 while cur < len(data): try: ((offset, ), cur) = relative_unpack('>q', data, cur) (msg, cur) = read_int_string(data, cur) for (offset, message) in KafkaProtocol._decode_message(msg, offset): yield OffsetAndMessage(offset, message) except BufferUnderflowError: # If we get a partial read of a message, stop raise StopIteration() @classmethod def _decode_message(cls, data, offset): """ Decode a single Message The only caller of this method is decode_message_set_iter. They are decoupled to support nested messages (compressed MessageSets). The offset is actually read from decode_message_set_iter (it is part of the MessageSet payload). """ ((crc, magic, att), cur) = relative_unpack('>iBB', data, 0) if crc != zlib.crc32(data[4:]): raise ChecksumError("Message checksum failed") (key, cur) = read_int_string(data, cur) (value, cur) = read_int_string(data, cur) if att & KafkaProtocol.ATTRIBUTE_CODEC_MASK == KafkaProtocol.CODEC_NONE: yield (offset, Message(magic, att, key, value)) elif att & KafkaProtocol.ATTRIBUTE_CODEC_MASK == KafkaProtocol.CODEC_GZIP: gz = gzip_decode(value) for (offset, message) in KafkaProtocol._decode_message_set_iter(gz): yield (offset, message) elif att & KafkaProtocol.ATTRIBUTE_CODEC_MASK == KafkaProtocol.CODEC_SNAPPY: snp = snappy_decode(value) for (offset, message) in KafkaProtocol._decode_message_set_iter(snp): yield (offset, message) ################## # Public API # ################## @classmethod def encode_produce_request(cls, client_id, correlation_id, payloads=[], acks=1, timeout=1000): """ Encode some ProduceRequest structs Params ====== client_id: string correlation_id: string payloads: list of ProduceRequest acks: How "acky" you want the request to be 0: immediate response 1: written to disk by the leader 2+: waits for this many number of replicas to sync -1: waits for all replicas to be in sync timeout: Maximum time the server will wait for acks from replicas. This is _not_ a socket timeout """ grouped_payloads = group_by_topic_and_partition(payloads) message = cls._encode_message_header(client_id, correlation_id, KafkaProtocol.PRODUCE_KEY) message += struct.pack('>hii', acks, timeout, len(grouped_payloads)) for topic, topic_payloads in grouped_payloads.items(): message += struct.pack('>h%dsi' % len(topic), len(topic), topic, len(topic_payloads)) for partition, payload in topic_payloads.items(): message_set = KafkaProtocol._encode_message_set(payload.messages) message += struct.pack('>ii%ds' % len(message_set), partition, len(message_set), message_set) return struct.pack('>i%ds' % len(message), len(message), message) @classmethod def decode_produce_response(cls, data): """ Decode bytes to a ProduceResponse Params ====== data: bytes to decode """ ((correlation_id, num_topics), cur) = relative_unpack('>ii', data, 0) for i in range(num_topics): ((strlen,), cur) = relative_unpack('>h', data, cur) topic = data[cur:cur+strlen] cur += strlen ((num_partitions,), cur) = relative_unpack('>i', data, cur) for i in range(num_partitions): ((partition, error, offset), cur) = relative_unpack('>ihq', data, cur) yield ProduceResponse(topic, partition, error, offset) @classmethod def encode_fetch_request(cls, client_id, correlation_id, payloads=[], max_wait_time=100, min_bytes=4096): """ Encodes some FetchRequest structs Params ====== client_id: string correlation_id: string payloads: list of FetchRequest max_wait_time: int, how long to block waiting on min_bytes of data min_bytes: int, the minimum number of bytes to accumulate before returning the response """ grouped_payloads = group_by_topic_and_partition(payloads) message = cls._encode_message_header(client_id, correlation_id, KafkaProtocol.FETCH_KEY) message += struct.pack('>iiii', -1, max_wait_time, min_bytes, len(grouped_payloads)) # -1 is the replica id for topic, topic_payloads in grouped_payloads.items(): message += write_short_string(topic) message += struct.pack('>i', len(topic_payloads)) for partition, payload in topic_payloads.items(): message += struct.pack('>iqi', partition, payload.offset, payload.max_bytes) return struct.pack('>i%ds' % len(message), len(message), message) @classmethod def decode_fetch_response(cls, data): """ Decode bytes to a FetchResponse Params ====== data: bytes to decode """ ((correlation_id, num_topics), cur) = relative_unpack('>ii', data, 0) for i in range(num_topics): (topic, cur) = read_short_string(data, cur) ((num_partitions,), cur) = relative_unpack('>i', data, cur) for i in range(num_partitions): ((partition, error, highwater_mark_offset), cur) = relative_unpack('>ihq', data, cur) (message_set, cur) = read_int_string(data, cur) yield FetchResponse(topic, partition, error, highwater_mark_offset, KafkaProtocol._decode_message_set_iter(message_set)) @classmethod def encode_offset_request(cls, client_id, correlation_id, payloads=[]): grouped_payloads = group_by_topic_and_partition(payloads) message = cls._encode_message_header(client_id, correlation_id, KafkaProtocol.OFFSET_KEY) message += struct.pack('>ii', -1, len(grouped_payloads)) # -1 is the replica id for topic, topic_payloads in grouped_payloads.items(): message += write_short_string(topic) message += struct.pack('>i', len(topic_payloads)) for partition, payload in topic_payloads.items(): message += struct.pack('>iqi', partition, payload.time, payload.max_offsets) return struct.pack('>i%ds' % len(message), len(message), message) @classmethod def decode_offset_response(cls, data): """ Decode bytes to an OffsetResponse Params ====== data: bytes to decode """ ((correlation_id, num_topics), cur) = relative_unpack('>ii', data, 0) for i in range(num_topics): (topic, cur) = read_short_string(data, cur) ((num_partitions,), cur) = relative_unpack('>i', data, cur) for i in range(num_partitions): ((partition, error, num_offsets,), cur) = relative_unpack('>ihi', data, cur) offsets = [] for j in range(num_offsets): ((offset,), cur) = relative_unpack('>q', data, cur) offsets.append(offset) yield OffsetResponse(topic, partition, error, tuple(offsets)) @classmethod def encode_metadata_request(cls, client_id, correlation_id, topics=[]): """ Encode a MetadataRequest Params ====== client_id: string correlation_id: string topics: list of strings """ message = cls._encode_message_header(client_id, correlation_id, KafkaProtocol.METADATA_KEY) message += struct.pack('>i', len(topics)) for topic in topics: message += struct.pack('>h%ds' % len(topic), len(topic), topic) return write_int_string(message) @classmethod def decode_metadata_response(cls, data): """ Decode bytes to a MetadataResponse Params ====== data: bytes to decode """ ((correlation_id, numBrokers), cur) = relative_unpack('>ii', data, 0) # Broker info brokers = {} for i in range(numBrokers): ((nodeId, ), cur) = relative_unpack('>i', data, cur) (host, cur) = read_short_string(data, cur) ((port,), cur) = relative_unpack('>i', data, cur) brokers[nodeId] = BrokerMetadata(nodeId, host, port) # Topic info ((num_topics,), cur) = relative_unpack('>i', data, cur) topicMetadata = {} for i in range(num_topics): ((topicError,), cur) = relative_unpack('>h', data, cur) (topicName, cur) = read_short_string(data, cur) ((num_partitions,), cur) = relative_unpack('>i', data, cur) partitionMetadata = {} for j in range(num_partitions): ((partitionErrorCode, partition, leader, numReplicas), cur) = relative_unpack('>hiii', data, cur) (replicas, cur) = relative_unpack('>%di' % numReplicas, data, cur) ((numIsr,), cur) = relative_unpack('>i', data, cur) (isr, cur) = relative_unpack('>%di' % numIsr, data, cur) partitionMetadata[partition] = PartitionMetadata(topicName, partition, leader, replicas, isr) topicMetadata[topicName] = partitionMetadata return (brokers, topicMetadata) @classmethod def encode_offset_commit_request(cls, client_id, correlation_id, group, payloads): """ Encode some OffsetCommitRequest structs Params ====== client_id: string correlation_id: string group: string, the consumer group you are committing offsets for payloads: list of OffsetCommitRequest """ grouped_payloads= group_by_topic_and_partition(payloads) message = cls._encode_message_header(client_id, correlation_id, KafkaProtocol.OFFSET_COMMIT_KEY) message += write_short_string(group) message += struct.pack('>i', len(grouped_payloads)) for topic, topic_payloads in grouped_payloads.items(): message += write_short_string(topic) message += struct.pack('>i', len(topic_payloads)) for partition, payload in topic_payloads.items(): message += struct.pack('>iq', partition, payload.offset) message += write_short_string(payload.metadata) return struct.pack('>i%ds' % len(message), len(message), message) @classmethod def decode_offset_commit_response(cls, data): """ Decode bytes to an OffsetCommitResponse Params ====== data: bytes to decode """ ((correlation_id,), cur) = relative_unpack('>i', data, 0) (client_id, cur) = read_short_string(data, cur) ((num_topics,), cur) = relative_unpack('>i', data, cur) for i in xrange(num_topics): (topic, cur) = read_short_string(data, cur) ((num_partitions,), cur) = relative_unpack('>i', data, cur) for i in xrange(num_partitions): ((partition, error), cur) = relative_unpack('>ih', data, cur) yield OffsetCommitResponse(topic, partition, error) @classmethod def encode_offset_fetch_request(cls, client_id, correlation_id, group, payloads): """ Encode some OffsetFetchRequest structs Params ====== client_id: string correlation_id: string group: string, the consumer group you are fetching offsets for payloads: list of OffsetFetchRequest """ grouped_payloads = group_by_topic_and_partition(payloads) message = cls._encode_message_header(client_id, correlation_id, KafkaProtocol.OFFSET_FETCH_KEY) message += write_short_string(group) message += struct.pack('>i', len(grouped_payloads)) for topic, topic_payloads in grouped_payloads.items(): message += write_short_string(topic) message += struct.pack('>i', len(topic_payloads)) for partition, payload in topic_payloads.items(): message += struct.pack('>i', partition) return struct.pack('>i%ds' % len(message), len(message), message) @classmethod def decode_offset_fetch_response(cls, data): """ Decode bytes to an OffsetFetchResponse Params ====== data: bytes to decode """ ((correlation_id,), cur) = relative_unpack('>i', data, 0) (client_id, cur) = read_short_string(data, cur) ((num_topics,), cur) = relative_unpack('>i', data, cur) for i in range(num_topics): (topic, cur) = read_short_string(data, cur) ((num_partitions,), cur) = relative_unpack('>i', data, cur) for i in range(num_partitions): ((partition, offset), cur) = relative_unpack('>iq', data, cur) (metadata, cur) = read_short_string(data, cur) ((error,), cur) = relative_unpack('>h', data, cur) yield OffsetFetchResponse(topic, partition, offset, metadata, error) def create_message(payload, key=None): """ Construct a Message Params ====== payload: bytes, the payload to send to Kafka key: bytes, a key used for partition routing (optional) """ return Message(0, 0, key, payload) def create_gzip_message(payloads, key=None): """ Construct a Gzipped Message containing multiple Messages The given payloads will be encoded, compressed, and sent as a single atomic message to Kafka. Params ====== payloads: list(bytes), a list of payload to send be sent to Kafka key: bytes, a key used for partition routing (optional) """ message_set = KafkaProtocol._encode_message_set( [create_message(payload) for payload in payloads]) gzipped = gzip_encode(message_set) return Message(0, 0x00 | (KafkaProtocol.ATTRIBUTE_CODEC_MASK & KafkaProtocol.CODEC_GZIP), key, gzipped) def create_snappy_message(payloads, key=None): """ Construct a Snappy Message containing multiple Messages The given payloads will be encoded, compressed, and sent as a single atomic message to Kafka. Params ====== payloads: list(bytes), a list of payload to send be sent to Kafka key: bytes, a key used for partition routing (optional) """ message_set = KafkaProtocol._encode_message_set( [create_message(payload) for payload in payloads]) snapped = snappy_encode(message_set) return Message(0, 0x00 | (KafkaProtocol.ATTRIBUTE_CODEC_MASK & KafkaProtocol.CODEC_SNAPPY), key, snapped)