summaryrefslogtreecommitdiff
path: root/docs/usage.rst
blob: ca326d439210bb720b1439670a58fbc2d740d5f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
Usage
=====

SimpleProducer
--------------

.. code:: python

    from kafka import SimpleProducer, KafkaClient

    # To send messages synchronously
    kafka = KafkaClient("localhost:9092")
    producer = SimpleProducer(kafka)

    # Note that the application is responsible for encoding messages to type str
    producer.send_messages("my-topic", "some message")
    producer.send_messages("my-topic", "this method", "is variadic")

    # Send unicode message
    producer.send_messages("my-topic", u'你怎么样?'.encode('utf-8'))

    # To send messages asynchronously
    # WARNING: current implementation does not guarantee message delivery on failure!
    # messages can get dropped! Use at your own risk! Or help us improve with a PR!
    producer = SimpleProducer(kafka, async=True)
    producer.send_messages("my-topic", "async message")

    # To wait for acknowledgements
    # ACK_AFTER_LOCAL_WRITE : server will wait till the data is written to
    #                         a local log before sending response
    # ACK_AFTER_CLUSTER_COMMIT : server will block until the message is committed
    #                            by all in sync replicas before sending a response
    producer = SimpleProducer(kafka, async=False,
                              req_acks=SimpleProducer.ACK_AFTER_LOCAL_WRITE,
                              ack_timeout=2000)

    response = producer.send_messages("my-topic", "another message")

    if response:
        print(response[0].error)
        print(response[0].offset)

    # To send messages in batch. You can use any of the available
    # producers for doing this. The following producer will collect
    # messages in batch and send them to Kafka after 20 messages are
    # collected or every 60 seconds
    # Notes:
    # * If the producer dies before the messages are sent, there will be losses
    # * Call producer.stop() to send the messages and cleanup
    producer = SimpleProducer(kafka, async=True,
                              batch_send_every_n=20,
                              batch_send_every_t=60)

Keyed messages
--------------

.. code:: python

    from kafka import (KafkaClient, KeyedProducer, HashedPartitioner,
                       RoundRobinPartitioner)

    kafka = KafkaClient("localhost:9092")

    # HashedPartitioner is default
    producer = KeyedProducer(kafka)
    producer.send_messages("my-topic", "key1", "some message")
    producer.send_messages("my-topic", "key2", "this methode")

    producer = KeyedProducer(kafka, partitioner=RoundRobinPartitioner)



KafkaConsumer
-------------

.. code:: python

    from kafka import KafkaConsumer

    # To consume messages
    consumer = KafkaConsumer("my-topic",
                             group_id="my_group",
                             bootstrap_servers=["localhost:9092"])
    for message in consumer:
        # message value is raw byte string -- decode if necessary!
        # e.g., for unicode: `message.value.decode('utf-8')`
        print("%s:%d:%d: key=%s value=%s" % (message.topic, message.partition,
                                             message.offset, message.key,
                                             message.value))

    kafka.close()


messages (m) are namedtuples with attributes:

  * `m.topic`: topic name (str)
  * `m.partition`: partition number (int)
  * `m.offset`: message offset on topic-partition log (int)
  * `m.key`: key (bytes - can be None)
  * `m.value`: message (output of deserializer_class - default is raw bytes)


.. code:: python

    from kafka import KafkaConsumer

    # more advanced consumer -- multiple topics w/ auto commit offset
    # management
    consumer = KafkaConsumer('topic1', 'topic2',
                             bootstrap_servers=['localhost:9092'],
                             group_id='my_consumer_group',
                             auto_commit_enable=True,
                             auto_commit_interval_ms=30 * 1000,
                             auto_offset_reset='smallest')

    # Infinite iteration
    for m in consumer:
      do_some_work(m)

      # Mark this message as fully consumed
      # so it can be included in the next commit
      #
      # **messages that are not marked w/ task_done currently do not commit!
      kafka.task_done(m)

    # If auto_commit_enable is False, remember to commit() periodically
    kafka.commit()

    # Batch process interface
    while True:
      for m in kafka.fetch_messages():
        process_message(m)
        kafka.task_done(m)


  Configuration settings can be passed to constructor,
  otherwise defaults will be used:

.. code:: python

      client_id='kafka.consumer.kafka',
      group_id=None,
      fetch_message_max_bytes=1024*1024,
      fetch_min_bytes=1,
      fetch_wait_max_ms=100,
      refresh_leader_backoff_ms=200,
      bootstrap_servers=[],
      socket_timeout_ms=30*1000,
      auto_offset_reset='largest',
      deserializer_class=lambda msg: msg,
      auto_commit_enable=False,
      auto_commit_interval_ms=60 * 1000,
      consumer_timeout_ms=-1

  Configuration parameters are described in more detail at
  http://kafka.apache.org/documentation.html#highlevelconsumerapi

Multiprocess consumer
---------------------

.. code:: python

    from kafka import KafkaClient, MultiProcessConsumer

    kafka = KafkaClient("localhost:9092")

    # This will split the number of partitions among two processes
    consumer = MultiProcessConsumer(kafka, "my-group", "my-topic", num_procs=2)

    # This will spawn processes such that each handles 2 partitions max
    consumer = MultiProcessConsumer(kafka, "my-group", "my-topic",
                                    partitions_per_proc=2)

    for message in consumer:
        print(message)

    for message in consumer.get_messages(count=5, block=True, timeout=4):
        print(message)

Low level
---------

.. code:: python

    from kafka import KafkaClient, create_message
    from kafka.protocol import KafkaProtocol
    from kafka.common import ProduceRequest

    kafka = KafkaClient("localhost:9092")

    req = ProduceRequest(topic="my-topic", partition=1,
        messages=[create_message("some message")])
    resps = kafka.send_produce_request(payloads=[req], fail_on_error=True)
    kafka.close()

    resps[0].topic      # "my-topic"
    resps[0].partition  # 1
    resps[0].error      # 0 (hopefully)
    resps[0].offset     # offset of the first message sent in this request