summaryrefslogtreecommitdiff
path: root/kafka/producer/simple.py
blob: ded6eb6e49d143da65e36e2e0f6a099a3beb6269 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from __future__ import absolute_import

import logging
import random
import six

from itertools import cycle

from six.moves import xrange

from .base import (
    Producer, BATCH_SEND_DEFAULT_INTERVAL,
    BATCH_SEND_MSG_COUNT, ASYNC_QUEUE_MAXSIZE, ASYNC_QUEUE_PUT_TIMEOUT,
    ASYNC_RETRY_LIMIT, ASYNC_RETRY_BACKOFF_MS, ASYNC_RETRY_ON_TIMEOUTS
)

log = logging.getLogger("kafka")


class SimpleProducer(Producer):
    """
    A simple, round-robin producer. Each message goes to exactly one partition

    Arguments:
        client: The Kafka client instance to use

    Keyword Arguments:
        async: If True, the messages are sent asynchronously via another
            thread (process). We will not wait for a response to these
        req_acks: A value indicating the acknowledgements that the server must
            receive before responding to the request
        ack_timeout: Value (in milliseconds) indicating a timeout for waiting
            for an acknowledgement
        batch_send: If True, messages are send in batches
        batch_send_every_n: If set, messages are send in batches of this size
        batch_send_every_t: If set, messages are send after this timeout
        random_start: If true, randomize the initial partition which the
            the first message block will be published to, otherwise
            if false, the first message block will always publish
            to partition 0 before cycling through each partition
    """
    def __init__(self, client, async=False,
                 req_acks=Producer.ACK_AFTER_LOCAL_WRITE,
                 ack_timeout=Producer.DEFAULT_ACK_TIMEOUT,
                 codec=None,
                 batch_send=False,
                 batch_send_every_n=BATCH_SEND_MSG_COUNT,
                 batch_send_every_t=BATCH_SEND_DEFAULT_INTERVAL,
                 random_start=True,
                 async_retry_limit=ASYNC_RETRY_LIMIT,
                 async_retry_backoff_ms=ASYNC_RETRY_BACKOFF_MS,
                 async_retry_on_timeouts=ASYNC_RETRY_ON_TIMEOUTS,
                 async_queue_maxsize=ASYNC_QUEUE_MAXSIZE,
                 async_queue_put_timeout=ASYNC_QUEUE_PUT_TIMEOUT):
        self.partition_cycles = {}
        self.random_start = random_start
        super(SimpleProducer, self).__init__(client, async, req_acks,
                                             ack_timeout, codec, batch_send,
                                             batch_send_every_n,
                                             batch_send_every_t,
                                             async_retry_limit,
                                             async_retry_backoff_ms,
                                             async_retry_on_timeouts,
                                             async_queue_maxsize,
                                             async_queue_put_timeout)

    def _next_partition(self, topic):
        if topic not in self.partition_cycles:
            if not self.client.has_metadata_for_topic(topic):
                self.client.load_metadata_for_topics(topic)

            self.partition_cycles[topic] = cycle(self.client.get_partition_ids_for_topic(topic))

            # Randomize the initial partition that is returned
            if self.random_start:
                num_partitions = len(self.client.get_partition_ids_for_topic(topic))
                for _ in xrange(random.randint(0, num_partitions-1)):
                    next(self.partition_cycles[topic])

        return next(self.partition_cycles[topic])

    def send_messages(self, topic, *msg):
        if not isinstance(topic, six.binary_type):
            topic = topic.encode('utf-8')

        partition = self._next_partition(topic)
        return super(SimpleProducer, self).send_messages(
            topic, partition, *msg
        )

    def __repr__(self):
        return '<SimpleProducer batch=%s>' % self.async