diff options
author | ovillellas <oscar.villellas@continuum.io> | 2013-04-05 12:19:03 +0200 |
---|---|---|
committer | Pauli Virtanen <pav@iki.fi> | 2013-04-10 22:47:44 +0300 |
commit | 0afe2765c8bee728e00d47c4db5c7d2da88f61af (patch) | |
tree | 10ea341e53fe92b716a06ab110caa7265bb7eae1 | |
parent | 5dc27acdafa572e12d693ca926498c7a5681f548 (diff) | |
download | numpy-0afe2765c8bee728e00d47c4db5c7d2da88f61af.tar.gz |
DOC: changed <NDIMS> to … in shape descriptions in docstrings
-rw-r--r-- | numpy/core/src/umath/gufuncs_linalg.py | 131 |
1 files changed, 66 insertions, 65 deletions
diff --git a/numpy/core/src/umath/gufuncs_linalg.py b/numpy/core/src/umath/gufuncs_linalg.py index 80e7ab275..14641bb7c 100644 --- a/numpy/core/src/umath/gufuncs_linalg.py +++ b/numpy/core/src/umath/gufuncs_linalg.py @@ -41,14 +41,14 @@ def inner1d(a, b, **kwargs): Parameters ---------- - a : (<NDIMS>, N) array + a : (..., N) array Input array - b : (<NDIMS>, N) array + b : (..., N) array Input array Returns ------- - inner : (<NDIM>) array + inner : (...) array dot product over the inner dimension. Notes @@ -88,14 +88,14 @@ def dotc1d(a, b, **kwargs): Parameters ---------- - a : (<NDIMS>, N) array + a : (..., N) array Input array - b : (<NDIMS>, N) array + b : (..., N) array Input array Returns ------- - dotc : (<NDIM>) array + dotc : (...) array dot product conjugating the first vector over the inner dimension. @@ -136,12 +136,12 @@ def innerwt(a, b, c, **kwargs): Parameters ---------- - a, b, c : (<NDIMS>, N) array + a, b, c : (..., N) array Input arrays Returns ------- - inner : (<NDIMS>) array + inner : (...) array The weighted (i.e. triple) inner product. Notes @@ -177,16 +177,15 @@ def matrix_multiply(a,b,**kwargs): Parameters ---------- - a : (<NDIMS>, M, N) array + a : (..., M, N) array Input array. - b : (<NDIMS>, N, P) array + b : (..., N, P) array Input array. Returns ------- - r : (<NDIMS>, M, P) array - matrix multiplication of a and b over <NDIMS>. - <NDIMS> can be any number of dimensions. + r : (..., M, P) array matrix multiplication of a and b over any number of + outer dimensions Notes ----- @@ -272,17 +271,17 @@ def slogdet(a, **kwargs): Parameters ---------- - a : (<NDIMS>, M, M) array + a : (..., M, M) array Input array. Its inner dimensions must be those of a square 2-D array. Returns ------- - sign : (<NDIMS>) array + sign : (...) array An array of numbers representing the sign of the determinants. For real matrices, this is 1, 0, or -1. For complex matrices, this is a complex number with absolute value 1 (i.e., it is on the unit circle), or else 0. - logdet : (<NDIMS>) array + logdet : (...) array The natural log of the absolute value of the determinant. This is always a real type. @@ -339,12 +338,12 @@ def inv(a, **kwargs): Parameters ---------- - a : (<NDIMS>, M, M) array + a : (..., M, M) array Matrices to be inverted Returns ------- - ainv : (<NDIMS>, M, M) array + ainv : (..., M, M) array (Multiplicative) inverse of the `a` matrices. Notes @@ -388,14 +387,15 @@ def cholesky(a, UPLO='L', **kwargs): Parameters ---------- - a : (<NDIMS>, M, M) array + a : (..., M, M) array Matrices for which compute the cholesky decomposition Returns ------- - l : (<NDIMS>, M, M) array - <NDIMS> matrices where each entry is the lower triangular matrix with - strictly positive diagonal entries such that a = ll* for all <NDIMS>. + l : (..., M, M) array + Matrices for each element where each entry is the lower triangular + matrix with strictly positive diagonal entries such that a = ll* for + all outer dimensions See Also -------- @@ -443,20 +443,20 @@ def eig(a, **kwargs): Parameters ---------- - a : (<NDIMS>, M, M) array + a : (..., M, M) array Matrices for which the eigenvalues and right eigenvectors will be computed Returns ------- - w : (<NDIMS>, M) array + w : (..., M) array The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered. The resulting array will be always be of complex type. When `a` is real the resulting eigenvalues will be real (0 imaginary part) or occur in conjugate pairs - v : (<NDIMS>, M, M) array + v : (..., M, M) array The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. @@ -535,12 +535,12 @@ def eigvals(a, **kwargs): Parameters ---------- - a : (<NDIMS>, M, M) array + a : (..., M, M) array Matrices whose eigenvalues will be computed Returns ------- - w : (<NDIMS>, M) array + w : (..., M) array The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered. The resulting array will be always be of complex type. When `a` is real @@ -601,18 +601,18 @@ def quadratic_form(u,Q,v, **kwargs): Parameters ---------- - u : (<NDIMS>, M) array + u : (..., M) array The u vectors of the quadratic form uQv - Q : (<NDIMS>, M, N) array + Q : (..., M, N) array The Q matrices of the quadratic form uQv - v : (<NDIMS>, N) array + v : (..., N) array The v vectors of the quadratic form uQv Returns ------- - qf : (<NDIMS>) array + qf : (...) array The result of the quadratic forms Notes @@ -652,12 +652,12 @@ def add3(a, b, c, **kwargs): Parameters ---------- - a, b, c : (<NDIMS>) array + a, b, c : (...) array arrays with the addends Returns ------- - add3 : (<NDIMS>) array + add3 : (...) array resulting element-wise addition. Notes @@ -692,12 +692,12 @@ def multiply3(a, b, c, **kwargs): Parameters ---------- - a, b, c : (<NDIMS>) array + a, b, c : (...) array arrays with the factors Returns ------- - m3 : (<NDIMS>) array + m3 : (...) array resulting element-wise product Notes @@ -734,15 +734,15 @@ def multiply3_add(a, b, c, d, **kwargs): Parameters ---------- - a, b, c : (<NDIMS>) array + a, b, c : (...) array arrays with the factors - d : (<NDIMS>) array + d : (...) array array with the addend Returns ------- - m3a : (<NDIMS>) array + m3a : (...) array resulting element-wise addition Notes @@ -779,12 +779,12 @@ def multiply_add(a, b, c, **kwargs): Parameters ---------- - a, b, c : (<NDIMS>) array + a, b, c : (...) array arrays with the addends Returns ------- - add3 : (<NDIMS>) array + add3 : (...) array resulting element-wise addition Notes @@ -821,12 +821,12 @@ def multiply_add2(a, b, c, d, **kwargs): Parameters ---------- - a, b, c : (<NDIMS>) array + a, b, c : (...) array arrays with the addends Returns ------- - add3 : (<NDIMS>) array + add3 : (...) array resulting element-wise addition Notes @@ -863,12 +863,12 @@ def multiply4(a, b, c, d, **kwargs): Parameters ---------- - a, b, c : (<NDIMS>) array + a, b, c : (...) array arrays with the addends Returns ------- - add3 : (<NDIMS>) array + add3 : (...) array resulting element-wise addition Notes @@ -905,12 +905,12 @@ def multiply4_add(a, b, c, d, e, **kwargs): Parameters ---------- - a, b, c : (<NDIMS>) array + a, b, c : (...) array arrays with the addends Returns ------- - add3 : (<NDIMS>) array + add3 : (...) array resulting element-wise addition Notes @@ -949,7 +949,7 @@ def eigh(A, UPLO='L', **kw_args): Parameters ---------- - A : (<NDIMS>, M, M) array + A : (..., M, M) array Hermitian/Symmetric matrices whose eigenvalues and eigenvectors are to be computed. UPLO : {'L', 'U'}, optional @@ -959,9 +959,9 @@ def eigh(A, UPLO='L', **kw_args): Returns ------- - w : (<NDIMS>, M) array + w : (..., M) array The eigenvalues, not necessarily ordered. - v : (<NDIMS>, M, M) array + v : (..., M, M) array The inner dimensions contain matrices with the normalized eigenvectors as columns. The column-numbers are coherent with the associated eigenvalue. @@ -1027,7 +1027,7 @@ def eigvalsh(A, UPLO='L', **kw_args): Parameters ---------- - A : (<NDIMS>, M, M) array + A : (..., M, M) array Hermitian/Symmetric matrices whose eigenvalues and eigenvectors are to be computed. UPLO : {'L', 'U'}, optional @@ -1037,7 +1037,7 @@ def eigvalsh(A, UPLO='L', **kw_args): Returns ------- - w : (<NDIMS>, M) array + w : (..., M) array The eigenvalues, not necessarily ordered. Notes @@ -1093,15 +1093,15 @@ def solve(A,B,**kw_args): Parameters ---------- - A : (<NDIMS>, M, M) array + A : (..., M, M) array Coefficient matrices. - B : (<NDIMS>, M, N) array + B : (..., M, N) array Ordinate or "dependent variable" values. Returns ------- - X : (<NDIMS>, M, N) array - Solutions to the system A X = B for all elements in <NDIMS> + X : (..., M, N) array + Solutions to the system A X = B for all the outer dimensions Notes ----- @@ -1154,7 +1154,7 @@ def svd(a, full_matrices=1, compute_uv=1 ,**kw_args): Parameters ---------- - a : (<NDIMS>, M, N) array + a : (..., M, N) array The array of matrices to decompose. full_matrices : bool, optional If True (default), `u` and `v` have the shapes (`M`, `M`) and @@ -1166,12 +1166,12 @@ def svd(a, full_matrices=1, compute_uv=1 ,**kw_args): Returns ------- - u : { (<NDIMS>, M, M), (<NDIMS>, M, K) } array + u : { (..., M, M), (..., M, K) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. - s : (<NDIMS>, K) array + s : (..., K) array The singular values for every matrix, sorted in descending order. - v : { (<NDIMS>, N, N), (<NDIMS>, K, N) } array + v : { (..., N, N), (..., K, N) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. @@ -1243,9 +1243,9 @@ def chosolve(A, B, UPLO='L', **kw_args): Parameters ---------- - A : (<NDIMS>, M, M) array + A : (..., M, M) array Coefficient symmetric/hermitian positive-definite matrices. - B : (<NDIMS>, M, N) array + B : (..., M, N) array Ordinate or "dependent variable" values. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower @@ -1254,8 +1254,9 @@ def chosolve(A, B, UPLO='L', **kw_args): Returns ------- - X : (<NDIMS>, M, N) array - Solutions to the system A X = B for all elements in <NDIMS> + X : (..., M, N) array + Solutions to the system A X = B for all elements in the outer + dimensions Notes ----- @@ -1316,12 +1317,12 @@ def poinv(A, UPLO='L', **kw_args): Parameters ---------- - a : (<NDIMS>, M, M) array + a : (..., M, M) array Symmetric/hermitian postive definite matrices to be inverted. Returns ------- - ainv : (<NDIMS>, M, M) array + ainv : (..., M, M) array (Multiplicative) inverse of the `a` matrices. Notes |