summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPauli Virtanen <pav@iki.fi>2013-04-10 19:35:13 +0300
committerPauli Virtanen <pav@iki.fi>2013-04-10 22:48:12 +0300
commit9c00887ba60c0c3c4ae7ad349c6f43831c3ae353 (patch)
tree9ef486fffb47a605e09edfb84ced7f17c63bdd3e
parent9bfa19b11f38b5fe710d872db6a8628fc6a72359 (diff)
downloadnumpy-9c00887ba60c0c3c4ae7ad349c6f43831c3ae353.tar.gz
MAINT: move umath_linalg under numpy/linalg and use the same lapack_lite
Also, link umath_linalg against the system BLAS/LAPACK if available.
-rw-r--r--numpy/core/bento.info3
-rw-r--r--numpy/core/bscript1
-rw-r--r--numpy/core/setup.py32
-rw-r--r--numpy/linalg/_gufuncs_linalg.py (renamed from numpy/core/src/umath/_gufuncs_linalg.py)4
-rw-r--r--numpy/linalg/bento.info21
-rw-r--r--numpy/linalg/blas_lite.c10660
-rw-r--r--numpy/linalg/bscript5
-rw-r--r--numpy/linalg/dlamch.c951
-rw-r--r--numpy/linalg/dlapack_lite.c36008
-rw-r--r--numpy/linalg/f2c.h217
-rw-r--r--numpy/linalg/f2c_lite.c492
-rw-r--r--numpy/linalg/gufuncs_linalg_contents.rst (renamed from numpy/core/src/umath/gufuncs_linalg_contents.rst)0
-rw-r--r--numpy/linalg/lapack_lite/blas_lite.c (renamed from numpy/core/src/umath/lapack_lite/blas_lite.c)0
-rw-r--r--numpy/linalg/lapack_lite/dlamch.c (renamed from numpy/core/src/umath/lapack_lite/dlamch.c)0
-rw-r--r--numpy/linalg/lapack_lite/dlapack_lite.c (renamed from numpy/core/src/umath/lapack_lite/dlapack_lite.c)0
-rw-r--r--numpy/linalg/lapack_lite/f2c.h (renamed from numpy/core/src/umath/lapack_lite/f2c.h)0
-rw-r--r--numpy/linalg/lapack_lite/f2c_lite.c (renamed from numpy/core/src/umath/lapack_lite/f2c_lite.c)0
-rw-r--r--numpy/linalg/lapack_lite/python_xerbla.c (renamed from numpy/core/src/umath/lapack_lite/python_xerbla.c)0
-rw-r--r--numpy/linalg/lapack_lite/zlapack_lite.c (renamed from numpy/core/src/umath/lapack_lite/zlapack_lite.c)0
-rw-r--r--numpy/linalg/linalg.py4
-rw-r--r--numpy/linalg/python_xerbla.c37
-rw-r--r--numpy/linalg/setup.py28
-rw-r--r--numpy/linalg/tests/test_gufuncs_linalg.py (renamed from numpy/core/tests/test_gufuncs_linalg.py)2
-rw-r--r--numpy/linalg/umath_linalg.c.src (renamed from numpy/core/src/umath/umath_linalg.c.src)0
-rw-r--r--numpy/linalg/zlapack_lite.c26018
25 files changed, 46 insertions, 74437 deletions
diff --git a/numpy/core/bento.info b/numpy/core/bento.info
index 356535a9f..9c8476eee 100644
--- a/numpy/core/bento.info
+++ b/numpy/core/bento.info
@@ -25,9 +25,6 @@ Library:
Extension: umath_tests
Sources:
src/umath/umath_tests.c.src
- Extension: umath_linalg
- Sources:
- src/umath/umath_linalg.c.src
Extension: scalarmath
Sources:
src/scalarmathmodule.c.src
diff --git a/numpy/core/bscript b/numpy/core/bscript
index 8a5f26371..3a2bb2340 100644
--- a/numpy/core/bscript
+++ b/numpy/core/bscript
@@ -542,7 +542,6 @@ def pre_build(context):
context.tweak_extension("scalarmath", use="npymath", includes=["src/private"])
context.tweak_extension("multiarray_tests", use="npymath", includes=["src/private"])
context.tweak_extension("umath_tests", use="npymath", includes=["src/private"])
- context.tweak_extension("umath_linalg", use="npymath", includes=["src/private"])
def build_dotblas(extension):
if bld.env.HAS_CBLAS:
diff --git a/numpy/core/setup.py b/numpy/core/setup.py
index a3c61b482..4e4630eb0 100644
--- a/numpy/core/setup.py
+++ b/numpy/core/setup.py
@@ -926,38 +926,6 @@ def configuration(parent_package='',top_path=None):
sources = [join('src','umath', 'umath_tests.c.src')])
#######################################################################
- # umath_linalg module #
- #######################################################################
-
- lapack_info = get_info('lapack_opt', 0)
- def get_lapack_lite_sources(ext, build_dir):
- if not lapack_info:
- print("### Warning: Using unoptimized lapack ###")
- return ext.depends[:-1]
- else:
- if sys.platform=='win32':
- print("### Warning: python_xerbla.c is disabled ###")
- return ext.depends[:1]
- return ext.depends[:2]
-
- config.add_extension('_umath_linalg',
- sources = [get_lapack_lite_sources,
- join('src', 'umath', 'umath_linalg.c.src'),
- join('src', 'umath', 'lapack_lite', 'python_xerbla.c'),
- join('src', 'umath', 'lapack_lite', 'zlapack_lite.c'),
- join('src', 'umath', 'lapack_lite', 'dlapack_lite.c'),
- join('src', 'umath', 'lapack_lite', 'blas_lite.c'),
- join('src', 'umath', 'lapack_lite', 'dlamch.c'),
- join('src', 'umath', 'lapack_lite', 'f2c_lite.c')
- ],
- depends = [join('src', 'umath', '_gufuncs_linalg.py'),
- join('src', 'umath', 'lapack_lite', 'f2c.h'),
- ],
- extra_info = lapack_info,
- libraries = ['npymath'],
- )
-
- #######################################################################
# multiarray_tests module #
#######################################################################
diff --git a/numpy/core/src/umath/_gufuncs_linalg.py b/numpy/linalg/_gufuncs_linalg.py
index 49e6c95e3..3da399b1f 100644
--- a/numpy/core/src/umath/_gufuncs_linalg.py
+++ b/numpy/linalg/_gufuncs_linalg.py
@@ -35,10 +35,10 @@ __all__ = ['inner1d', 'dotc1d', 'innerwt', 'matrix_multiply', 'det', 'slogdet',
'multiply4_add', 'eig', 'eigvals', 'eigh', 'eigvalsh', 'solve',
'svd', 'chosolve', 'poinv']
-
-import numpy.core._umath_linalg as _impl
import numpy as np
+from . import _umath_linalg as _impl
+
def inner1d(a, b, **kwargs):
"""
diff --git a/numpy/linalg/bento.info b/numpy/linalg/bento.info
index 1e367e314..1c2c180da 100644
--- a/numpy/linalg/bento.info
+++ b/numpy/linalg/bento.info
@@ -1,12 +1,21 @@
HookFile: bscript
Library:
+ Extension: umath_linalg
+ Sources:
+ umath_linalg.c.src,
+ lapack_lite/blas_lite.c,
+ lapack_lite/dlamch.c,
+ lapack_lite/dlapack_lite.c,
+ lapack_lite/f2c_lite.c,
+ lapack_lite/python_xerbla.c,
+ lapack_lite/zlapack_lite.c
Extension: lapack_lite
Sources:
- blas_lite.c,
- dlamch.c,
- dlapack_lite.c,
- f2c_lite.c,
+ lapack_lite/blas_lite.c,
+ lapack_lite/dlamch.c,
+ lapack_lite/dlapack_lite.c,
+ lapack_lite/f2c_lite.c,
lapack_litemodule.c,
- python_xerbla.c,
- zlapack_lite.c
+ lapack_lite/python_xerbla.c,
+ lapack_lite/zlapack_lite.c
diff --git a/numpy/linalg/blas_lite.c b/numpy/linalg/blas_lite.c
deleted file mode 100644
index d0de43478..000000000
--- a/numpy/linalg/blas_lite.c
+++ /dev/null
@@ -1,10660 +0,0 @@
-/*
-NOTE: This is generated code. Look in Misc/lapack_lite for information on
- remaking this file.
-*/
-#include "f2c.h"
-
-#ifdef HAVE_CONFIG
-#include "config.h"
-#else
-extern doublereal dlamch_(char *);
-#define EPSILON dlamch_("Epsilon")
-#define SAFEMINIMUM dlamch_("Safe minimum")
-#define PRECISION dlamch_("Precision")
-#define BASE dlamch_("Base")
-#endif
-
-extern doublereal dlapy2_(doublereal *x, doublereal *y);
-
-
-
-/* Table of constant values */
-
-static integer c__1 = 1;
-static doublecomplex c_b359 = {1.,0.};
-
-/* Subroutine */ int daxpy_(integer *n, doublereal *da, doublereal *dx,
- integer *incx, doublereal *dy, integer *incy)
-{
- /* System generated locals */
- integer i__1;
-
- /* Local variables */
- static integer i__, m, ix, iy, mp1;
-
-
-/*
- constant times a vector plus a vector.
- uses unrolled loops for increments equal to one.
- jack dongarra, linpack, 3/11/78.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --dy;
- --dx;
-
- /* Function Body */
- if (*n <= 0) {
- return 0;
- }
- if (*da == 0.) {
- return 0;
- }
- if ((*incx == 1 && *incy == 1)) {
- goto L20;
- }
-
-/*
- code for unequal increments or equal increments
- not equal to 1
-*/
-
- ix = 1;
- iy = 1;
- if (*incx < 0) {
- ix = (-(*n) + 1) * *incx + 1;
- }
- if (*incy < 0) {
- iy = (-(*n) + 1) * *incy + 1;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dy[iy] += *da * dx[ix];
- ix += *incx;
- iy += *incy;
-/* L10: */
- }
- return 0;
-
-/*
- code for both increments equal to 1
-
-
- clean-up loop
-*/
-
-L20:
- m = *n % 4;
- if (m == 0) {
- goto L40;
- }
- i__1 = m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dy[i__] += *da * dx[i__];
-/* L30: */
- }
- if (*n < 4) {
- return 0;
- }
-L40:
- mp1 = m + 1;
- i__1 = *n;
- for (i__ = mp1; i__ <= i__1; i__ += 4) {
- dy[i__] += *da * dx[i__];
- dy[i__ + 1] += *da * dx[i__ + 1];
- dy[i__ + 2] += *da * dx[i__ + 2];
- dy[i__ + 3] += *da * dx[i__ + 3];
-/* L50: */
- }
- return 0;
-} /* daxpy_ */
-
-doublereal dcabs1_(doublecomplex *z__)
-{
- /* System generated locals */
- doublereal ret_val;
- static doublecomplex equiv_0[1];
-
- /* Local variables */
-#define t ((doublereal *)equiv_0)
-#define zz (equiv_0)
-
- zz->r = z__->r, zz->i = z__->i;
- ret_val = abs(t[0]) + abs(t[1]);
- return ret_val;
-} /* dcabs1_ */
-
-#undef zz
-#undef t
-
-
-/* Subroutine */ int dcopy_(integer *n, doublereal *dx, integer *incx,
- doublereal *dy, integer *incy)
-{
- /* System generated locals */
- integer i__1;
-
- /* Local variables */
- static integer i__, m, ix, iy, mp1;
-
-
-/*
- copies a vector, x, to a vector, y.
- uses unrolled loops for increments equal to one.
- jack dongarra, linpack, 3/11/78.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --dy;
- --dx;
-
- /* Function Body */
- if (*n <= 0) {
- return 0;
- }
- if ((*incx == 1 && *incy == 1)) {
- goto L20;
- }
-
-/*
- code for unequal increments or equal increments
- not equal to 1
-*/
-
- ix = 1;
- iy = 1;
- if (*incx < 0) {
- ix = (-(*n) + 1) * *incx + 1;
- }
- if (*incy < 0) {
- iy = (-(*n) + 1) * *incy + 1;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dy[iy] = dx[ix];
- ix += *incx;
- iy += *incy;
-/* L10: */
- }
- return 0;
-
-/*
- code for both increments equal to 1
-
-
- clean-up loop
-*/
-
-L20:
- m = *n % 7;
- if (m == 0) {
- goto L40;
- }
- i__1 = m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dy[i__] = dx[i__];
-/* L30: */
- }
- if (*n < 7) {
- return 0;
- }
-L40:
- mp1 = m + 1;
- i__1 = *n;
- for (i__ = mp1; i__ <= i__1; i__ += 7) {
- dy[i__] = dx[i__];
- dy[i__ + 1] = dx[i__ + 1];
- dy[i__ + 2] = dx[i__ + 2];
- dy[i__ + 3] = dx[i__ + 3];
- dy[i__ + 4] = dx[i__ + 4];
- dy[i__ + 5] = dx[i__ + 5];
- dy[i__ + 6] = dx[i__ + 6];
-/* L50: */
- }
- return 0;
-} /* dcopy_ */
-
-doublereal ddot_(integer *n, doublereal *dx, integer *incx, doublereal *dy,
- integer *incy)
-{
- /* System generated locals */
- integer i__1;
- doublereal ret_val;
-
- /* Local variables */
- static integer i__, m, ix, iy, mp1;
- static doublereal dtemp;
-
-
-/*
- forms the dot product of two vectors.
- uses unrolled loops for increments equal to one.
- jack dongarra, linpack, 3/11/78.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --dy;
- --dx;
-
- /* Function Body */
- ret_val = 0.;
- dtemp = 0.;
- if (*n <= 0) {
- return ret_val;
- }
- if ((*incx == 1 && *incy == 1)) {
- goto L20;
- }
-
-/*
- code for unequal increments or equal increments
- not equal to 1
-*/
-
- ix = 1;
- iy = 1;
- if (*incx < 0) {
- ix = (-(*n) + 1) * *incx + 1;
- }
- if (*incy < 0) {
- iy = (-(*n) + 1) * *incy + 1;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dtemp += dx[ix] * dy[iy];
- ix += *incx;
- iy += *incy;
-/* L10: */
- }
- ret_val = dtemp;
- return ret_val;
-
-/*
- code for both increments equal to 1
-
-
- clean-up loop
-*/
-
-L20:
- m = *n % 5;
- if (m == 0) {
- goto L40;
- }
- i__1 = m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dtemp += dx[i__] * dy[i__];
-/* L30: */
- }
- if (*n < 5) {
- goto L60;
- }
-L40:
- mp1 = m + 1;
- i__1 = *n;
- for (i__ = mp1; i__ <= i__1; i__ += 5) {
- dtemp = dtemp + dx[i__] * dy[i__] + dx[i__ + 1] * dy[i__ + 1] + dx[
- i__ + 2] * dy[i__ + 2] + dx[i__ + 3] * dy[i__ + 3] + dx[i__ +
- 4] * dy[i__ + 4];
-/* L50: */
- }
-L60:
- ret_val = dtemp;
- return ret_val;
-} /* ddot_ */
-
-/* Subroutine */ int dgemm_(char *transa, char *transb, integer *m, integer *
- n, integer *k, doublereal *alpha, doublereal *a, integer *lda,
- doublereal *b, integer *ldb, doublereal *beta, doublereal *c__,
- integer *ldc)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
- i__3;
-
- /* Local variables */
- static integer i__, j, l, info;
- static logical nota, notb;
- static doublereal temp;
- static integer ncola;
- extern logical lsame_(char *, char *);
- static integer nrowa, nrowb;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- DGEMM performs one of the matrix-matrix operations
-
- C := alpha*op( A )*op( B ) + beta*C,
-
- where op( X ) is one of
-
- op( X ) = X or op( X ) = X',
-
- alpha and beta are scalars, and A, B and C are matrices, with op( A )
- an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
-
- Parameters
- ==========
-
- TRANSA - CHARACTER*1.
- On entry, TRANSA specifies the form of op( A ) to be used in
- the matrix multiplication as follows:
-
- TRANSA = 'N' or 'n', op( A ) = A.
-
- TRANSA = 'T' or 't', op( A ) = A'.
-
- TRANSA = 'C' or 'c', op( A ) = A'.
-
- Unchanged on exit.
-
- TRANSB - CHARACTER*1.
- On entry, TRANSB specifies the form of op( B ) to be used in
- the matrix multiplication as follows:
-
- TRANSB = 'N' or 'n', op( B ) = B.
-
- TRANSB = 'T' or 't', op( B ) = B'.
-
- TRANSB = 'C' or 'c', op( B ) = B'.
-
- Unchanged on exit.
-
- M - INTEGER.
- On entry, M specifies the number of rows of the matrix
- op( A ) and of the matrix C. M must be at least zero.
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the number of columns of the matrix
- op( B ) and the number of columns of the matrix C. N must be
- at least zero.
- Unchanged on exit.
-
- K - INTEGER.
- On entry, K specifies the number of columns of the matrix
- op( A ) and the number of rows of the matrix op( B ). K must
- be at least zero.
- Unchanged on exit.
-
- ALPHA - DOUBLE PRECISION.
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
- k when TRANSA = 'N' or 'n', and is m otherwise.
- Before entry with TRANSA = 'N' or 'n', the leading m by k
- part of the array A must contain the matrix A, otherwise
- the leading k by m part of the array A must contain the
- matrix A.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. When TRANSA = 'N' or 'n' then
- LDA must be at least max( 1, m ), otherwise LDA must be at
- least max( 1, k ).
- Unchanged on exit.
-
- B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
- n when TRANSB = 'N' or 'n', and is k otherwise.
- Before entry with TRANSB = 'N' or 'n', the leading k by n
- part of the array B must contain the matrix B, otherwise
- the leading n by k part of the array B must contain the
- matrix B.
- Unchanged on exit.
-
- LDB - INTEGER.
- On entry, LDB specifies the first dimension of B as declared
- in the calling (sub) program. When TRANSB = 'N' or 'n' then
- LDB must be at least max( 1, k ), otherwise LDB must be at
- least max( 1, n ).
- Unchanged on exit.
-
- BETA - DOUBLE PRECISION.
- On entry, BETA specifies the scalar beta. When BETA is
- supplied as zero then C need not be set on input.
- Unchanged on exit.
-
- C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
- Before entry, the leading m by n part of the array C must
- contain the matrix C, except when beta is zero, in which
- case C need not be set on entry.
- On exit, the array C is overwritten by the m by n matrix
- ( alpha*op( A )*op( B ) + beta*C ).
-
- LDC - INTEGER.
- On entry, LDC specifies the first dimension of C as declared
- in the calling (sub) program. LDC must be at least
- max( 1, m ).
- Unchanged on exit.
-
-
- Level 3 Blas routine.
-
- -- Written on 8-February-1989.
- Jack Dongarra, Argonne National Laboratory.
- Iain Duff, AERE Harwell.
- Jeremy Du Croz, Numerical Algorithms Group Ltd.
- Sven Hammarling, Numerical Algorithms Group Ltd.
-
-
- Set NOTA and NOTB as true if A and B respectively are not
- transposed and set NROWA, NCOLA and NROWB as the number of rows
- and columns of A and the number of rows of B respectively.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
-
- /* Function Body */
- nota = lsame_(transa, "N");
- notb = lsame_(transb, "N");
- if (nota) {
- nrowa = *m;
- ncola = *k;
- } else {
- nrowa = *k;
- ncola = *m;
- }
- if (notb) {
- nrowb = *k;
- } else {
- nrowb = *n;
- }
-
-/* Test the input parameters. */
-
- info = 0;
- if (((! nota && ! lsame_(transa, "C")) && ! lsame_(
- transa, "T"))) {
- info = 1;
- } else if (((! notb && ! lsame_(transb, "C")) && !
- lsame_(transb, "T"))) {
- info = 2;
- } else if (*m < 0) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*k < 0) {
- info = 5;
- } else if (*lda < max(1,nrowa)) {
- info = 8;
- } else if (*ldb < max(1,nrowb)) {
- info = 10;
- } else if (*ldc < max(1,*m)) {
- info = 13;
- }
- if (info != 0) {
- xerbla_("DGEMM ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*m == 0 || *n == 0 || ((*alpha == 0. || *k == 0) && *beta == 1.)) {
- return 0;
- }
-
-/* And if alpha.eq.zero. */
-
- if (*alpha == 0.) {
- if (*beta == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.;
-/* L10: */
- }
-/* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
-/* L30: */
- }
-/* L40: */
- }
- }
- return 0;
- }
-
-/* Start the operations. */
-
- if (notb) {
- if (nota) {
-
-/* Form C := alpha*A*B + beta*C. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.;
-/* L50: */
- }
- } else if (*beta != 1.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
-/* L60: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- if (b[l + j * b_dim1] != 0.) {
- temp = *alpha * b[l + j * b_dim1];
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- c__[i__ + j * c_dim1] += temp * a[i__ + l *
- a_dim1];
-/* L70: */
- }
- }
-/* L80: */
- }
-/* L90: */
- }
- } else {
-
-/* Form C := alpha*A'*B + beta*C */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- temp += a[l + i__ * a_dim1] * b[l + j * b_dim1];
-/* L100: */
- }
- if (*beta == 0.) {
- c__[i__ + j * c_dim1] = *alpha * temp;
- } else {
- c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
- i__ + j * c_dim1];
- }
-/* L110: */
- }
-/* L120: */
- }
- }
- } else {
- if (nota) {
-
-/* Form C := alpha*A*B' + beta*C */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.;
-/* L130: */
- }
- } else if (*beta != 1.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
-/* L140: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- if (b[j + l * b_dim1] != 0.) {
- temp = *alpha * b[j + l * b_dim1];
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- c__[i__ + j * c_dim1] += temp * a[i__ + l *
- a_dim1];
-/* L150: */
- }
- }
-/* L160: */
- }
-/* L170: */
- }
- } else {
-
-/* Form C := alpha*A'*B' + beta*C */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- temp += a[l + i__ * a_dim1] * b[j + l * b_dim1];
-/* L180: */
- }
- if (*beta == 0.) {
- c__[i__ + j * c_dim1] = *alpha * temp;
- } else {
- c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
- i__ + j * c_dim1];
- }
-/* L190: */
- }
-/* L200: */
- }
- }
- }
-
- return 0;
-
-/* End of DGEMM . */
-
-} /* dgemm_ */
-
-/* Subroutine */ int dgemv_(char *trans, integer *m, integer *n, doublereal *
- alpha, doublereal *a, integer *lda, doublereal *x, integer *incx,
- doublereal *beta, doublereal *y, integer *incy)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, j, ix, iy, jx, jy, kx, ky, info;
- static doublereal temp;
- static integer lenx, leny;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- DGEMV performs one of the matrix-vector operations
-
- y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
-
- where alpha and beta are scalars, x and y are vectors and A is an
- m by n matrix.
-
- Parameters
- ==========
-
- TRANS - CHARACTER*1.
- On entry, TRANS specifies the operation to be performed as
- follows:
-
- TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
-
- TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
-
- TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
-
- Unchanged on exit.
-
- M - INTEGER.
- On entry, M specifies the number of rows of the matrix A.
- M must be at least zero.
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the number of columns of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- ALPHA - DOUBLE PRECISION.
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
- Before entry, the leading m by n part of the array A must
- contain the matrix of coefficients.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, m ).
- Unchanged on exit.
-
- X - DOUBLE PRECISION array of DIMENSION at least
- ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
- and at least
- ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
- Before entry, the incremented array X must contain the
- vector x.
- Unchanged on exit.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
- BETA - DOUBLE PRECISION.
- On entry, BETA specifies the scalar beta. When BETA is
- supplied as zero then Y need not be set on input.
- Unchanged on exit.
-
- Y - DOUBLE PRECISION array of DIMENSION at least
- ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
- and at least
- ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
- Before entry with BETA non-zero, the incremented array Y
- must contain the vector y. On exit, Y is overwritten by the
- updated vector y.
-
- INCY - INTEGER.
- On entry, INCY specifies the increment for the elements of
- Y. INCY must not be zero.
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --x;
- --y;
-
- /* Function Body */
- info = 0;
- if (((! lsame_(trans, "N") && ! lsame_(trans, "T")) && ! lsame_(trans, "C"))) {
- info = 1;
- } else if (*m < 0) {
- info = 2;
- } else if (*n < 0) {
- info = 3;
- } else if (*lda < max(1,*m)) {
- info = 6;
- } else if (*incx == 0) {
- info = 8;
- } else if (*incy == 0) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("DGEMV ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*m == 0 || *n == 0 || (*alpha == 0. && *beta == 1.)) {
- return 0;
- }
-
-/*
- Set LENX and LENY, the lengths of the vectors x and y, and set
- up the start points in X and Y.
-*/
-
- if (lsame_(trans, "N")) {
- lenx = *n;
- leny = *m;
- } else {
- lenx = *m;
- leny = *n;
- }
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (lenx - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (leny - 1) * *incy;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through A.
-
- First form y := beta*y.
-*/
-
- if (*beta != 1.) {
- if (*incy == 1) {
- if (*beta == 0.) {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = 0.;
-/* L10: */
- }
- } else {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = *beta * y[i__];
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if (*beta == 0.) {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = 0.;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = *beta * y[iy];
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if (*alpha == 0.) {
- return 0;
- }
- if (lsame_(trans, "N")) {
-
-/* Form y := alpha*A*x + y. */
-
- jx = kx;
- if (*incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[jx] != 0.) {
- temp = *alpha * x[jx];
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- y[i__] += temp * a[i__ + j * a_dim1];
-/* L50: */
- }
- }
- jx += *incx;
-/* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[jx] != 0.) {
- temp = *alpha * x[jx];
- iy = ky;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- y[iy] += temp * a[i__ + j * a_dim1];
- iy += *incy;
-/* L70: */
- }
- }
- jx += *incx;
-/* L80: */
- }
- }
- } else {
-
-/* Form y := alpha*A'*x + y. */
-
- jy = ky;
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp = 0.;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp += a[i__ + j * a_dim1] * x[i__];
-/* L90: */
- }
- y[jy] += *alpha * temp;
- jy += *incy;
-/* L100: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp = 0.;
- ix = kx;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp += a[i__ + j * a_dim1] * x[ix];
- ix += *incx;
-/* L110: */
- }
- y[jy] += *alpha * temp;
- jy += *incy;
-/* L120: */
- }
- }
- }
-
- return 0;
-
-/* End of DGEMV . */
-
-} /* dgemv_ */
-
-/* Subroutine */ int dger_(integer *m, integer *n, doublereal *alpha,
- doublereal *x, integer *incx, doublereal *y, integer *incy,
- doublereal *a, integer *lda)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, j, ix, jy, kx, info;
- static doublereal temp;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- DGER performs the rank 1 operation
-
- A := alpha*x*y' + A,
-
- where alpha is a scalar, x is an m element vector, y is an n element
- vector and A is an m by n matrix.
-
- Parameters
- ==========
-
- M - INTEGER.
- On entry, M specifies the number of rows of the matrix A.
- M must be at least zero.
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the number of columns of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- ALPHA - DOUBLE PRECISION.
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- X - DOUBLE PRECISION array of dimension at least
- ( 1 + ( m - 1 )*abs( INCX ) ).
- Before entry, the incremented array X must contain the m
- element vector x.
- Unchanged on exit.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
- Y - DOUBLE PRECISION array of dimension at least
- ( 1 + ( n - 1 )*abs( INCY ) ).
- Before entry, the incremented array Y must contain the n
- element vector y.
- Unchanged on exit.
-
- INCY - INTEGER.
- On entry, INCY specifies the increment for the elements of
- Y. INCY must not be zero.
- Unchanged on exit.
-
- A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
- Before entry, the leading m by n part of the array A must
- contain the matrix of coefficients. On exit, A is
- overwritten by the updated matrix.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, m ).
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --x;
- --y;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- info = 0;
- if (*m < 0) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 5;
- } else if (*incy == 0) {
- info = 7;
- } else if (*lda < max(1,*m)) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("DGER ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*m == 0 || *n == 0 || *alpha == 0.) {
- return 0;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through A.
-*/
-
- if (*incy > 0) {
- jy = 1;
- } else {
- jy = 1 - (*n - 1) * *incy;
- }
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (y[jy] != 0.) {
- temp = *alpha * y[jy];
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] += x[i__] * temp;
-/* L10: */
- }
- }
- jy += *incy;
-/* L20: */
- }
- } else {
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*m - 1) * *incx;
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (y[jy] != 0.) {
- temp = *alpha * y[jy];
- ix = kx;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] += x[ix] * temp;
- ix += *incx;
-/* L30: */
- }
- }
- jy += *incy;
-/* L40: */
- }
- }
-
- return 0;
-
-/* End of DGER . */
-
-} /* dger_ */
-
-doublereal dnrm2_(integer *n, doublereal *x, integer *incx)
-{
- /* System generated locals */
- integer i__1, i__2;
- doublereal ret_val, d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer ix;
- static doublereal ssq, norm, scale, absxi;
-
-
-/*
- DNRM2 returns the euclidean norm of a vector via the function
- name, so that
-
- DNRM2 := sqrt( x'*x )
-
-
- -- This version written on 25-October-1982.
- Modified on 14-October-1993 to inline the call to DLASSQ.
- Sven Hammarling, Nag Ltd.
-*/
-
-
- /* Parameter adjustments */
- --x;
-
- /* Function Body */
- if (*n < 1 || *incx < 1) {
- norm = 0.;
- } else if (*n == 1) {
- norm = abs(x[1]);
- } else {
- scale = 0.;
- ssq = 1.;
-/*
- The following loop is equivalent to this call to the LAPACK
- auxiliary routine:
- CALL DLASSQ( N, X, INCX, SCALE, SSQ )
-*/
-
- i__1 = (*n - 1) * *incx + 1;
- i__2 = *incx;
- for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
- if (x[ix] != 0.) {
- absxi = (d__1 = x[ix], abs(d__1));
- if (scale < absxi) {
-/* Computing 2nd power */
- d__1 = scale / absxi;
- ssq = ssq * (d__1 * d__1) + 1.;
- scale = absxi;
- } else {
-/* Computing 2nd power */
- d__1 = absxi / scale;
- ssq += d__1 * d__1;
- }
- }
-/* L10: */
- }
- norm = scale * sqrt(ssq);
- }
-
- ret_val = norm;
- return ret_val;
-
-/* End of DNRM2. */
-
-} /* dnrm2_ */
-
-/* Subroutine */ int drot_(integer *n, doublereal *dx, integer *incx,
- doublereal *dy, integer *incy, doublereal *c__, doublereal *s)
-{
- /* System generated locals */
- integer i__1;
-
- /* Local variables */
- static integer i__, ix, iy;
- static doublereal dtemp;
-
-
-/*
- applies a plane rotation.
- jack dongarra, linpack, 3/11/78.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --dy;
- --dx;
-
- /* Function Body */
- if (*n <= 0) {
- return 0;
- }
- if ((*incx == 1 && *incy == 1)) {
- goto L20;
- }
-
-/*
- code for unequal increments or equal increments not equal
- to 1
-*/
-
- ix = 1;
- iy = 1;
- if (*incx < 0) {
- ix = (-(*n) + 1) * *incx + 1;
- }
- if (*incy < 0) {
- iy = (-(*n) + 1) * *incy + 1;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dtemp = *c__ * dx[ix] + *s * dy[iy];
- dy[iy] = *c__ * dy[iy] - *s * dx[ix];
- dx[ix] = dtemp;
- ix += *incx;
- iy += *incy;
-/* L10: */
- }
- return 0;
-
-/* code for both increments equal to 1 */
-
-L20:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dtemp = *c__ * dx[i__] + *s * dy[i__];
- dy[i__] = *c__ * dy[i__] - *s * dx[i__];
- dx[i__] = dtemp;
-/* L30: */
- }
- return 0;
-} /* drot_ */
-
-/* Subroutine */ int dscal_(integer *n, doublereal *da, doublereal *dx,
- integer *incx)
-{
- /* System generated locals */
- integer i__1, i__2;
-
- /* Local variables */
- static integer i__, m, mp1, nincx;
-
-
-/*
- scales a vector by a constant.
- uses unrolled loops for increment equal to one.
- jack dongarra, linpack, 3/11/78.
- modified 3/93 to return if incx .le. 0.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --dx;
-
- /* Function Body */
- if (*n <= 0 || *incx <= 0) {
- return 0;
- }
- if (*incx == 1) {
- goto L20;
- }
-
-/* code for increment not equal to 1 */
-
- nincx = *n * *incx;
- i__1 = nincx;
- i__2 = *incx;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- dx[i__] = *da * dx[i__];
-/* L10: */
- }
- return 0;
-
-/*
- code for increment equal to 1
-
-
- clean-up loop
-*/
-
-L20:
- m = *n % 5;
- if (m == 0) {
- goto L40;
- }
- i__2 = m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- dx[i__] = *da * dx[i__];
-/* L30: */
- }
- if (*n < 5) {
- return 0;
- }
-L40:
- mp1 = m + 1;
- i__2 = *n;
- for (i__ = mp1; i__ <= i__2; i__ += 5) {
- dx[i__] = *da * dx[i__];
- dx[i__ + 1] = *da * dx[i__ + 1];
- dx[i__ + 2] = *da * dx[i__ + 2];
- dx[i__ + 3] = *da * dx[i__ + 3];
- dx[i__ + 4] = *da * dx[i__ + 4];
-/* L50: */
- }
- return 0;
-} /* dscal_ */
-
-/* Subroutine */ int dswap_(integer *n, doublereal *dx, integer *incx,
- doublereal *dy, integer *incy)
-{
- /* System generated locals */
- integer i__1;
-
- /* Local variables */
- static integer i__, m, ix, iy, mp1;
- static doublereal dtemp;
-
-
-/*
- interchanges two vectors.
- uses unrolled loops for increments equal one.
- jack dongarra, linpack, 3/11/78.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --dy;
- --dx;
-
- /* Function Body */
- if (*n <= 0) {
- return 0;
- }
- if ((*incx == 1 && *incy == 1)) {
- goto L20;
- }
-
-/*
- code for unequal increments or equal increments not equal
- to 1
-*/
-
- ix = 1;
- iy = 1;
- if (*incx < 0) {
- ix = (-(*n) + 1) * *incx + 1;
- }
- if (*incy < 0) {
- iy = (-(*n) + 1) * *incy + 1;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dtemp = dx[ix];
- dx[ix] = dy[iy];
- dy[iy] = dtemp;
- ix += *incx;
- iy += *incy;
-/* L10: */
- }
- return 0;
-
-/*
- code for both increments equal to 1
-
-
- clean-up loop
-*/
-
-L20:
- m = *n % 3;
- if (m == 0) {
- goto L40;
- }
- i__1 = m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dtemp = dx[i__];
- dx[i__] = dy[i__];
- dy[i__] = dtemp;
-/* L30: */
- }
- if (*n < 3) {
- return 0;
- }
-L40:
- mp1 = m + 1;
- i__1 = *n;
- for (i__ = mp1; i__ <= i__1; i__ += 3) {
- dtemp = dx[i__];
- dx[i__] = dy[i__];
- dy[i__] = dtemp;
- dtemp = dx[i__ + 1];
- dx[i__ + 1] = dy[i__ + 1];
- dy[i__ + 1] = dtemp;
- dtemp = dx[i__ + 2];
- dx[i__ + 2] = dy[i__ + 2];
- dy[i__ + 2] = dtemp;
-/* L50: */
- }
- return 0;
-} /* dswap_ */
-
-/* Subroutine */ int dsymv_(char *uplo, integer *n, doublereal *alpha,
- doublereal *a, integer *lda, doublereal *x, integer *incx, doublereal
- *beta, doublereal *y, integer *incy)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, j, ix, iy, jx, jy, kx, ky, info;
- static doublereal temp1, temp2;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- DSYMV performs the matrix-vector operation
-
- y := alpha*A*x + beta*y,
-
- where alpha and beta are scalars, x and y are n element vectors and
- A is an n by n symmetric matrix.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the upper or lower
- triangular part of the array A is to be referenced as
- follows:
-
- UPLO = 'U' or 'u' Only the upper triangular part of A
- is to be referenced.
-
- UPLO = 'L' or 'l' Only the lower triangular part of A
- is to be referenced.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- ALPHA - DOUBLE PRECISION.
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array A must contain the upper
- triangular part of the symmetric matrix and the strictly
- lower triangular part of A is not referenced.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array A must contain the lower
- triangular part of the symmetric matrix and the strictly
- upper triangular part of A is not referenced.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, n ).
- Unchanged on exit.
-
- X - DOUBLE PRECISION array of dimension at least
- ( 1 + ( n - 1 )*abs( INCX ) ).
- Before entry, the incremented array X must contain the n
- element vector x.
- Unchanged on exit.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
- BETA - DOUBLE PRECISION.
- On entry, BETA specifies the scalar beta. When BETA is
- supplied as zero then Y need not be set on input.
- Unchanged on exit.
-
- Y - DOUBLE PRECISION array of dimension at least
- ( 1 + ( n - 1 )*abs( INCY ) ).
- Before entry, the incremented array Y must contain the n
- element vector y. On exit, Y is overwritten by the updated
- vector y.
-
- INCY - INTEGER.
- On entry, INCY specifies the increment for the elements of
- Y. INCY must not be zero.
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --x;
- --y;
-
- /* Function Body */
- info = 0;
- if ((! lsame_(uplo, "U") && ! lsame_(uplo, "L"))) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*lda < max(1,*n)) {
- info = 5;
- } else if (*incx == 0) {
- info = 7;
- } else if (*incy == 0) {
- info = 10;
- }
- if (info != 0) {
- xerbla_("DSYMV ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
- return 0;
- }
-
-/* Set up the start points in X and Y. */
-
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through the triangular part
- of A.
-
- First form y := beta*y.
-*/
-
- if (*beta != 1.) {
- if (*incy == 1) {
- if (*beta == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = 0.;
-/* L10: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = *beta * y[i__];
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if (*beta == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = 0.;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = *beta * y[iy];
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if (*alpha == 0.) {
- return 0;
- }
- if (lsame_(uplo, "U")) {
-
-/* Form y when A is stored in upper triangle. */
-
- if ((*incx == 1 && *incy == 1)) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[j];
- temp2 = 0.;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- y[i__] += temp1 * a[i__ + j * a_dim1];
- temp2 += a[i__ + j * a_dim1] * x[i__];
-/* L50: */
- }
- y[j] = y[j] + temp1 * a[j + j * a_dim1] + *alpha * temp2;
-/* L60: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[jx];
- temp2 = 0.;
- ix = kx;
- iy = ky;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- y[iy] += temp1 * a[i__ + j * a_dim1];
- temp2 += a[i__ + j * a_dim1] * x[ix];
- ix += *incx;
- iy += *incy;
-/* L70: */
- }
- y[jy] = y[jy] + temp1 * a[j + j * a_dim1] + *alpha * temp2;
- jx += *incx;
- jy += *incy;
-/* L80: */
- }
- }
- } else {
-
-/* Form y when A is stored in lower triangle. */
-
- if ((*incx == 1 && *incy == 1)) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[j];
- temp2 = 0.;
- y[j] += temp1 * a[j + j * a_dim1];
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- y[i__] += temp1 * a[i__ + j * a_dim1];
- temp2 += a[i__ + j * a_dim1] * x[i__];
-/* L90: */
- }
- y[j] += *alpha * temp2;
-/* L100: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[jx];
- temp2 = 0.;
- y[jy] += temp1 * a[j + j * a_dim1];
- ix = jx;
- iy = jy;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- ix += *incx;
- iy += *incy;
- y[iy] += temp1 * a[i__ + j * a_dim1];
- temp2 += a[i__ + j * a_dim1] * x[ix];
-/* L110: */
- }
- y[jy] += *alpha * temp2;
- jx += *incx;
- jy += *incy;
-/* L120: */
- }
- }
- }
-
- return 0;
-
-/* End of DSYMV . */
-
-} /* dsymv_ */
-
-/* Subroutine */ int dsyr2_(char *uplo, integer *n, doublereal *alpha,
- doublereal *x, integer *incx, doublereal *y, integer *incy,
- doublereal *a, integer *lda)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, j, ix, iy, jx, jy, kx, ky, info;
- static doublereal temp1, temp2;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- DSYR2 performs the symmetric rank 2 operation
-
- A := alpha*x*y' + alpha*y*x' + A,
-
- where alpha is a scalar, x and y are n element vectors and A is an n
- by n symmetric matrix.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the upper or lower
- triangular part of the array A is to be referenced as
- follows:
-
- UPLO = 'U' or 'u' Only the upper triangular part of A
- is to be referenced.
-
- UPLO = 'L' or 'l' Only the lower triangular part of A
- is to be referenced.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- ALPHA - DOUBLE PRECISION.
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- X - DOUBLE PRECISION array of dimension at least
- ( 1 + ( n - 1 )*abs( INCX ) ).
- Before entry, the incremented array X must contain the n
- element vector x.
- Unchanged on exit.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
- Y - DOUBLE PRECISION array of dimension at least
- ( 1 + ( n - 1 )*abs( INCY ) ).
- Before entry, the incremented array Y must contain the n
- element vector y.
- Unchanged on exit.
-
- INCY - INTEGER.
- On entry, INCY specifies the increment for the elements of
- Y. INCY must not be zero.
- Unchanged on exit.
-
- A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array A must contain the upper
- triangular part of the symmetric matrix and the strictly
- lower triangular part of A is not referenced. On exit, the
- upper triangular part of the array A is overwritten by the
- upper triangular part of the updated matrix.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array A must contain the lower
- triangular part of the symmetric matrix and the strictly
- upper triangular part of A is not referenced. On exit, the
- lower triangular part of the array A is overwritten by the
- lower triangular part of the updated matrix.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, n ).
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --x;
- --y;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- info = 0;
- if ((! lsame_(uplo, "U") && ! lsame_(uplo, "L"))) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 5;
- } else if (*incy == 0) {
- info = 7;
- } else if (*lda < max(1,*n)) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("DSYR2 ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || *alpha == 0.) {
- return 0;
- }
-
-/*
- Set up the start points in X and Y if the increments are not both
- unity.
-*/
-
- if (*incx != 1 || *incy != 1) {
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
- jx = kx;
- jy = ky;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through the triangular part
- of A.
-*/
-
- if (lsame_(uplo, "U")) {
-
-/* Form A when A is stored in the upper triangle. */
-
- if ((*incx == 1 && *incy == 1)) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[j] != 0. || y[j] != 0.) {
- temp1 = *alpha * y[j];
- temp2 = *alpha * x[j];
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] *
- temp1 + y[i__] * temp2;
-/* L10: */
- }
- }
-/* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[jx] != 0. || y[jy] != 0.) {
- temp1 = *alpha * y[jy];
- temp2 = *alpha * x[jx];
- ix = kx;
- iy = ky;
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] *
- temp1 + y[iy] * temp2;
- ix += *incx;
- iy += *incy;
-/* L30: */
- }
- }
- jx += *incx;
- jy += *incy;
-/* L40: */
- }
- }
- } else {
-
-/* Form A when A is stored in the lower triangle. */
-
- if ((*incx == 1 && *incy == 1)) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[j] != 0. || y[j] != 0.) {
- temp1 = *alpha * y[j];
- temp2 = *alpha * x[j];
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] *
- temp1 + y[i__] * temp2;
-/* L50: */
- }
- }
-/* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[jx] != 0. || y[jy] != 0.) {
- temp1 = *alpha * y[jy];
- temp2 = *alpha * x[jx];
- ix = jx;
- iy = jy;
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] *
- temp1 + y[iy] * temp2;
- ix += *incx;
- iy += *incy;
-/* L70: */
- }
- }
- jx += *incx;
- jy += *incy;
-/* L80: */
- }
- }
- }
-
- return 0;
-
-/* End of DSYR2 . */
-
-} /* dsyr2_ */
-
-/* Subroutine */ int dsyr2k_(char *uplo, char *trans, integer *n, integer *k,
- doublereal *alpha, doublereal *a, integer *lda, doublereal *b,
- integer *ldb, doublereal *beta, doublereal *c__, integer *ldc)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
- i__3;
-
- /* Local variables */
- static integer i__, j, l, info;
- static doublereal temp1, temp2;
- extern logical lsame_(char *, char *);
- static integer nrowa;
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- DSYR2K performs one of the symmetric rank 2k operations
-
- C := alpha*A*B' + alpha*B*A' + beta*C,
-
- or
-
- C := alpha*A'*B + alpha*B'*A + beta*C,
-
- where alpha and beta are scalars, C is an n by n symmetric matrix
- and A and B are n by k matrices in the first case and k by n
- matrices in the second case.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the upper or lower
- triangular part of the array C is to be referenced as
- follows:
-
- UPLO = 'U' or 'u' Only the upper triangular part of C
- is to be referenced.
-
- UPLO = 'L' or 'l' Only the lower triangular part of C
- is to be referenced.
-
- Unchanged on exit.
-
- TRANS - CHARACTER*1.
- On entry, TRANS specifies the operation to be performed as
- follows:
-
- TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
- beta*C.
-
- TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
- beta*C.
-
- TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A +
- beta*C.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix C. N must be
- at least zero.
- Unchanged on exit.
-
- K - INTEGER.
- On entry with TRANS = 'N' or 'n', K specifies the number
- of columns of the matrices A and B, and on entry with
- TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
- of rows of the matrices A and B. K must be at least zero.
- Unchanged on exit.
-
- ALPHA - DOUBLE PRECISION.
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
- k when TRANS = 'N' or 'n', and is n otherwise.
- Before entry with TRANS = 'N' or 'n', the leading n by k
- part of the array A must contain the matrix A, otherwise
- the leading k by n part of the array A must contain the
- matrix A.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. When TRANS = 'N' or 'n'
- then LDA must be at least max( 1, n ), otherwise LDA must
- be at least max( 1, k ).
- Unchanged on exit.
-
- B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
- k when TRANS = 'N' or 'n', and is n otherwise.
- Before entry with TRANS = 'N' or 'n', the leading n by k
- part of the array B must contain the matrix B, otherwise
- the leading k by n part of the array B must contain the
- matrix B.
- Unchanged on exit.
-
- LDB - INTEGER.
- On entry, LDB specifies the first dimension of B as declared
- in the calling (sub) program. When TRANS = 'N' or 'n'
- then LDB must be at least max( 1, n ), otherwise LDB must
- be at least max( 1, k ).
- Unchanged on exit.
-
- BETA - DOUBLE PRECISION.
- On entry, BETA specifies the scalar beta.
- Unchanged on exit.
-
- C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array C must contain the upper
- triangular part of the symmetric matrix and the strictly
- lower triangular part of C is not referenced. On exit, the
- upper triangular part of the array C is overwritten by the
- upper triangular part of the updated matrix.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array C must contain the lower
- triangular part of the symmetric matrix and the strictly
- upper triangular part of C is not referenced. On exit, the
- lower triangular part of the array C is overwritten by the
- lower triangular part of the updated matrix.
-
- LDC - INTEGER.
- On entry, LDC specifies the first dimension of C as declared
- in the calling (sub) program. LDC must be at least
- max( 1, n ).
- Unchanged on exit.
-
-
- Level 3 Blas routine.
-
-
- -- Written on 8-February-1989.
- Jack Dongarra, Argonne National Laboratory.
- Iain Duff, AERE Harwell.
- Jeremy Du Croz, Numerical Algorithms Group Ltd.
- Sven Hammarling, Numerical Algorithms Group Ltd.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
-
- /* Function Body */
- if (lsame_(trans, "N")) {
- nrowa = *n;
- } else {
- nrowa = *k;
- }
- upper = lsame_(uplo, "U");
-
- info = 0;
- if ((! upper && ! lsame_(uplo, "L"))) {
- info = 1;
- } else if (((! lsame_(trans, "N") && ! lsame_(trans,
- "T")) && ! lsame_(trans, "C"))) {
- info = 2;
- } else if (*n < 0) {
- info = 3;
- } else if (*k < 0) {
- info = 4;
- } else if (*lda < max(1,nrowa)) {
- info = 7;
- } else if (*ldb < max(1,nrowa)) {
- info = 9;
- } else if (*ldc < max(1,*n)) {
- info = 12;
- }
- if (info != 0) {
- xerbla_("DSYR2K", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || ((*alpha == 0. || *k == 0) && *beta == 1.)) {
- return 0;
- }
-
-/* And when alpha.eq.zero. */
-
- if (*alpha == 0.) {
- if (upper) {
- if (*beta == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.;
-/* L10: */
- }
-/* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
-/* L30: */
- }
-/* L40: */
- }
- }
- } else {
- if (*beta == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.;
-/* L50: */
- }
-/* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
-/* L70: */
- }
-/* L80: */
- }
- }
- }
- return 0;
- }
-
-/* Start the operations. */
-
- if (lsame_(trans, "N")) {
-
-/* Form C := alpha*A*B' + alpha*B*A' + C. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.;
-/* L90: */
- }
- } else if (*beta != 1.) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
-/* L100: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- if (a[j + l * a_dim1] != 0. || b[j + l * b_dim1] != 0.) {
- temp1 = *alpha * b[j + l * b_dim1];
- temp2 = *alpha * a[j + l * a_dim1];
- i__3 = j;
- for (i__ = 1; i__ <= i__3; ++i__) {
- c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[
- i__ + l * a_dim1] * temp1 + b[i__ + l *
- b_dim1] * temp2;
-/* L110: */
- }
- }
-/* L120: */
- }
-/* L130: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.;
-/* L140: */
- }
- } else if (*beta != 1.) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
-/* L150: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- if (a[j + l * a_dim1] != 0. || b[j + l * b_dim1] != 0.) {
- temp1 = *alpha * b[j + l * b_dim1];
- temp2 = *alpha * a[j + l * a_dim1];
- i__3 = *n;
- for (i__ = j; i__ <= i__3; ++i__) {
- c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[
- i__ + l * a_dim1] * temp1 + b[i__ + l *
- b_dim1] * temp2;
-/* L160: */
- }
- }
-/* L170: */
- }
-/* L180: */
- }
- }
- } else {
-
-/* Form C := alpha*A'*B + alpha*B'*A + C. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp1 = 0.;
- temp2 = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1];
- temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1];
-/* L190: */
- }
- if (*beta == 0.) {
- c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha *
- temp2;
- } else {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]
- + *alpha * temp1 + *alpha * temp2;
- }
-/* L200: */
- }
-/* L210: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- temp1 = 0.;
- temp2 = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1];
- temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1];
-/* L220: */
- }
- if (*beta == 0.) {
- c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha *
- temp2;
- } else {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]
- + *alpha * temp1 + *alpha * temp2;
- }
-/* L230: */
- }
-/* L240: */
- }
- }
- }
-
- return 0;
-
-/* End of DSYR2K. */
-
-} /* dsyr2k_ */
-
-/* Subroutine */ int dsyrk_(char *uplo, char *trans, integer *n, integer *k,
- doublereal *alpha, doublereal *a, integer *lda, doublereal *beta,
- doublereal *c__, integer *ldc)
-{
- /* System generated locals */
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, j, l, info;
- static doublereal temp;
- extern logical lsame_(char *, char *);
- static integer nrowa;
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- DSYRK performs one of the symmetric rank k operations
-
- C := alpha*A*A' + beta*C,
-
- or
-
- C := alpha*A'*A + beta*C,
-
- where alpha and beta are scalars, C is an n by n symmetric matrix
- and A is an n by k matrix in the first case and a k by n matrix
- in the second case.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the upper or lower
- triangular part of the array C is to be referenced as
- follows:
-
- UPLO = 'U' or 'u' Only the upper triangular part of C
- is to be referenced.
-
- UPLO = 'L' or 'l' Only the lower triangular part of C
- is to be referenced.
-
- Unchanged on exit.
-
- TRANS - CHARACTER*1.
- On entry, TRANS specifies the operation to be performed as
- follows:
-
- TRANS = 'N' or 'n' C := alpha*A*A' + beta*C.
-
- TRANS = 'T' or 't' C := alpha*A'*A + beta*C.
-
- TRANS = 'C' or 'c' C := alpha*A'*A + beta*C.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix C. N must be
- at least zero.
- Unchanged on exit.
-
- K - INTEGER.
- On entry with TRANS = 'N' or 'n', K specifies the number
- of columns of the matrix A, and on entry with
- TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
- of rows of the matrix A. K must be at least zero.
- Unchanged on exit.
-
- ALPHA - DOUBLE PRECISION.
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
- k when TRANS = 'N' or 'n', and is n otherwise.
- Before entry with TRANS = 'N' or 'n', the leading n by k
- part of the array A must contain the matrix A, otherwise
- the leading k by n part of the array A must contain the
- matrix A.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. When TRANS = 'N' or 'n'
- then LDA must be at least max( 1, n ), otherwise LDA must
- be at least max( 1, k ).
- Unchanged on exit.
-
- BETA - DOUBLE PRECISION.
- On entry, BETA specifies the scalar beta.
- Unchanged on exit.
-
- C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array C must contain the upper
- triangular part of the symmetric matrix and the strictly
- lower triangular part of C is not referenced. On exit, the
- upper triangular part of the array C is overwritten by the
- upper triangular part of the updated matrix.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array C must contain the lower
- triangular part of the symmetric matrix and the strictly
- upper triangular part of C is not referenced. On exit, the
- lower triangular part of the array C is overwritten by the
- lower triangular part of the updated matrix.
-
- LDC - INTEGER.
- On entry, LDC specifies the first dimension of C as declared
- in the calling (sub) program. LDC must be at least
- max( 1, n ).
- Unchanged on exit.
-
-
- Level 3 Blas routine.
-
- -- Written on 8-February-1989.
- Jack Dongarra, Argonne National Laboratory.
- Iain Duff, AERE Harwell.
- Jeremy Du Croz, Numerical Algorithms Group Ltd.
- Sven Hammarling, Numerical Algorithms Group Ltd.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
-
- /* Function Body */
- if (lsame_(trans, "N")) {
- nrowa = *n;
- } else {
- nrowa = *k;
- }
- upper = lsame_(uplo, "U");
-
- info = 0;
- if ((! upper && ! lsame_(uplo, "L"))) {
- info = 1;
- } else if (((! lsame_(trans, "N") && ! lsame_(trans,
- "T")) && ! lsame_(trans, "C"))) {
- info = 2;
- } else if (*n < 0) {
- info = 3;
- } else if (*k < 0) {
- info = 4;
- } else if (*lda < max(1,nrowa)) {
- info = 7;
- } else if (*ldc < max(1,*n)) {
- info = 10;
- }
- if (info != 0) {
- xerbla_("DSYRK ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || ((*alpha == 0. || *k == 0) && *beta == 1.)) {
- return 0;
- }
-
-/* And when alpha.eq.zero. */
-
- if (*alpha == 0.) {
- if (upper) {
- if (*beta == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.;
-/* L10: */
- }
-/* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
-/* L30: */
- }
-/* L40: */
- }
- }
- } else {
- if (*beta == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.;
-/* L50: */
- }
-/* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
-/* L70: */
- }
-/* L80: */
- }
- }
- }
- return 0;
- }
-
-/* Start the operations. */
-
- if (lsame_(trans, "N")) {
-
-/* Form C := alpha*A*A' + beta*C. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.;
-/* L90: */
- }
- } else if (*beta != 1.) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
-/* L100: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- if (a[j + l * a_dim1] != 0.) {
- temp = *alpha * a[j + l * a_dim1];
- i__3 = j;
- for (i__ = 1; i__ <= i__3; ++i__) {
- c__[i__ + j * c_dim1] += temp * a[i__ + l *
- a_dim1];
-/* L110: */
- }
- }
-/* L120: */
- }
-/* L130: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.;
-/* L140: */
- }
- } else if (*beta != 1.) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
-/* L150: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- if (a[j + l * a_dim1] != 0.) {
- temp = *alpha * a[j + l * a_dim1];
- i__3 = *n;
- for (i__ = j; i__ <= i__3; ++i__) {
- c__[i__ + j * c_dim1] += temp * a[i__ + l *
- a_dim1];
-/* L160: */
- }
- }
-/* L170: */
- }
-/* L180: */
- }
- }
- } else {
-
-/* Form C := alpha*A'*A + beta*C. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
-/* L190: */
- }
- if (*beta == 0.) {
- c__[i__ + j * c_dim1] = *alpha * temp;
- } else {
- c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
- i__ + j * c_dim1];
- }
-/* L200: */
- }
-/* L210: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- temp = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
-/* L220: */
- }
- if (*beta == 0.) {
- c__[i__ + j * c_dim1] = *alpha * temp;
- } else {
- c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
- i__ + j * c_dim1];
- }
-/* L230: */
- }
-/* L240: */
- }
- }
- }
-
- return 0;
-
-/* End of DSYRK . */
-
-} /* dsyrk_ */
-
-/* Subroutine */ int dtrmm_(char *side, char *uplo, char *transa, char *diag,
- integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
- lda, doublereal *b, integer *ldb)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, j, k, info;
- static doublereal temp;
- static logical lside;
- extern logical lsame_(char *, char *);
- static integer nrowa;
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical nounit;
-
-
-/*
- Purpose
- =======
-
- DTRMM performs one of the matrix-matrix operations
-
- B := alpha*op( A )*B, or B := alpha*B*op( A ),
-
- where alpha is a scalar, B is an m by n matrix, A is a unit, or
- non-unit, upper or lower triangular matrix and op( A ) is one of
-
- op( A ) = A or op( A ) = A'.
-
- Parameters
- ==========
-
- SIDE - CHARACTER*1.
- On entry, SIDE specifies whether op( A ) multiplies B from
- the left or right as follows:
-
- SIDE = 'L' or 'l' B := alpha*op( A )*B.
-
- SIDE = 'R' or 'r' B := alpha*B*op( A ).
-
- Unchanged on exit.
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the matrix A is an upper or
- lower triangular matrix as follows:
-
- UPLO = 'U' or 'u' A is an upper triangular matrix.
-
- UPLO = 'L' or 'l' A is a lower triangular matrix.
-
- Unchanged on exit.
-
- TRANSA - CHARACTER*1.
- On entry, TRANSA specifies the form of op( A ) to be used in
- the matrix multiplication as follows:
-
- TRANSA = 'N' or 'n' op( A ) = A.
-
- TRANSA = 'T' or 't' op( A ) = A'.
-
- TRANSA = 'C' or 'c' op( A ) = A'.
-
- Unchanged on exit.
-
- DIAG - CHARACTER*1.
- On entry, DIAG specifies whether or not A is unit triangular
- as follows:
-
- DIAG = 'U' or 'u' A is assumed to be unit triangular.
-
- DIAG = 'N' or 'n' A is not assumed to be unit
- triangular.
-
- Unchanged on exit.
-
- M - INTEGER.
- On entry, M specifies the number of rows of B. M must be at
- least zero.
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the number of columns of B. N must be
- at least zero.
- Unchanged on exit.
-
- ALPHA - DOUBLE PRECISION.
- On entry, ALPHA specifies the scalar alpha. When alpha is
- zero then A is not referenced and B need not be set before
- entry.
- Unchanged on exit.
-
- A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
- when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
- Before entry with UPLO = 'U' or 'u', the leading k by k
- upper triangular part of the array A must contain the upper
- triangular matrix and the strictly lower triangular part of
- A is not referenced.
- Before entry with UPLO = 'L' or 'l', the leading k by k
- lower triangular part of the array A must contain the lower
- triangular matrix and the strictly upper triangular part of
- A is not referenced.
- Note that when DIAG = 'U' or 'u', the diagonal elements of
- A are not referenced either, but are assumed to be unity.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. When SIDE = 'L' or 'l' then
- LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
- then LDA must be at least max( 1, n ).
- Unchanged on exit.
-
- B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
- Before entry, the leading m by n part of the array B must
- contain the matrix B, and on exit is overwritten by the
- transformed matrix.
-
- LDB - INTEGER.
- On entry, LDB specifies the first dimension of B as declared
- in the calling (sub) program. LDB must be at least
- max( 1, m ).
- Unchanged on exit.
-
-
- Level 3 Blas routine.
-
- -- Written on 8-February-1989.
- Jack Dongarra, Argonne National Laboratory.
- Iain Duff, AERE Harwell.
- Jeremy Du Croz, Numerical Algorithms Group Ltd.
- Sven Hammarling, Numerical Algorithms Group Ltd.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- lside = lsame_(side, "L");
- if (lside) {
- nrowa = *m;
- } else {
- nrowa = *n;
- }
- nounit = lsame_(diag, "N");
- upper = lsame_(uplo, "U");
-
- info = 0;
- if ((! lside && ! lsame_(side, "R"))) {
- info = 1;
- } else if ((! upper && ! lsame_(uplo, "L"))) {
- info = 2;
- } else if (((! lsame_(transa, "N") && ! lsame_(
- transa, "T")) && ! lsame_(transa, "C"))) {
- info = 3;
- } else if ((! lsame_(diag, "U") && ! lsame_(diag,
- "N"))) {
- info = 4;
- } else if (*m < 0) {
- info = 5;
- } else if (*n < 0) {
- info = 6;
- } else if (*lda < max(1,nrowa)) {
- info = 9;
- } else if (*ldb < max(1,*m)) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("DTRMM ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
-/* And when alpha.eq.zero. */
-
- if (*alpha == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = 0.;
-/* L10: */
- }
-/* L20: */
- }
- return 0;
- }
-
-/* Start the operations. */
-
- if (lside) {
- if (lsame_(transa, "N")) {
-
-/* Form B := alpha*A*B. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (k = 1; k <= i__2; ++k) {
- if (b[k + j * b_dim1] != 0.) {
- temp = *alpha * b[k + j * b_dim1];
- i__3 = k - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- b[i__ + j * b_dim1] += temp * a[i__ + k *
- a_dim1];
-/* L30: */
- }
- if (nounit) {
- temp *= a[k + k * a_dim1];
- }
- b[k + j * b_dim1] = temp;
- }
-/* L40: */
- }
-/* L50: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (k = *m; k >= 1; --k) {
- if (b[k + j * b_dim1] != 0.) {
- temp = *alpha * b[k + j * b_dim1];
- b[k + j * b_dim1] = temp;
- if (nounit) {
- b[k + j * b_dim1] *= a[k + k * a_dim1];
- }
- i__2 = *m;
- for (i__ = k + 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] += temp * a[i__ + k *
- a_dim1];
-/* L60: */
- }
- }
-/* L70: */
- }
-/* L80: */
- }
- }
- } else {
-
-/* Form B := alpha*A'*B. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (i__ = *m; i__ >= 1; --i__) {
- temp = b[i__ + j * b_dim1];
- if (nounit) {
- temp *= a[i__ + i__ * a_dim1];
- }
- i__2 = i__ - 1;
- for (k = 1; k <= i__2; ++k) {
- temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
-/* L90: */
- }
- b[i__ + j * b_dim1] = *alpha * temp;
-/* L100: */
- }
-/* L110: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = b[i__ + j * b_dim1];
- if (nounit) {
- temp *= a[i__ + i__ * a_dim1];
- }
- i__3 = *m;
- for (k = i__ + 1; k <= i__3; ++k) {
- temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
-/* L120: */
- }
- b[i__ + j * b_dim1] = *alpha * temp;
-/* L130: */
- }
-/* L140: */
- }
- }
- }
- } else {
- if (lsame_(transa, "N")) {
-
-/* Form B := alpha*B*A. */
-
- if (upper) {
- for (j = *n; j >= 1; --j) {
- temp = *alpha;
- if (nounit) {
- temp *= a[j + j * a_dim1];
- }
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
-/* L150: */
- }
- i__1 = j - 1;
- for (k = 1; k <= i__1; ++k) {
- if (a[k + j * a_dim1] != 0.) {
- temp = *alpha * a[k + j * a_dim1];
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] += temp * b[i__ + k *
- b_dim1];
-/* L160: */
- }
- }
-/* L170: */
- }
-/* L180: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp = *alpha;
- if (nounit) {
- temp *= a[j + j * a_dim1];
- }
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
-/* L190: */
- }
- i__2 = *n;
- for (k = j + 1; k <= i__2; ++k) {
- if (a[k + j * a_dim1] != 0.) {
- temp = *alpha * a[k + j * a_dim1];
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- b[i__ + j * b_dim1] += temp * b[i__ + k *
- b_dim1];
-/* L200: */
- }
- }
-/* L210: */
- }
-/* L220: */
- }
- }
- } else {
-
-/* Form B := alpha*B*A'. */
-
- if (upper) {
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- i__2 = k - 1;
- for (j = 1; j <= i__2; ++j) {
- if (a[j + k * a_dim1] != 0.) {
- temp = *alpha * a[j + k * a_dim1];
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- b[i__ + j * b_dim1] += temp * b[i__ + k *
- b_dim1];
-/* L230: */
- }
- }
-/* L240: */
- }
- temp = *alpha;
- if (nounit) {
- temp *= a[k + k * a_dim1];
- }
- if (temp != 1.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
-/* L250: */
- }
- }
-/* L260: */
- }
- } else {
- for (k = *n; k >= 1; --k) {
- i__1 = *n;
- for (j = k + 1; j <= i__1; ++j) {
- if (a[j + k * a_dim1] != 0.) {
- temp = *alpha * a[j + k * a_dim1];
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] += temp * b[i__ + k *
- b_dim1];
-/* L270: */
- }
- }
-/* L280: */
- }
- temp = *alpha;
- if (nounit) {
- temp *= a[k + k * a_dim1];
- }
- if (temp != 1.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
-/* L290: */
- }
- }
-/* L300: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of DTRMM . */
-
-} /* dtrmm_ */
-
-/* Subroutine */ int dtrmv_(char *uplo, char *trans, char *diag, integer *n,
- doublereal *a, integer *lda, doublereal *x, integer *incx)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, j, ix, jx, kx, info;
- static doublereal temp;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical nounit;
-
-
-/*
- Purpose
- =======
-
- DTRMV performs one of the matrix-vector operations
-
- x := A*x, or x := A'*x,
-
- where x is an n element vector and A is an n by n unit, or non-unit,
- upper or lower triangular matrix.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the matrix is an upper or
- lower triangular matrix as follows:
-
- UPLO = 'U' or 'u' A is an upper triangular matrix.
-
- UPLO = 'L' or 'l' A is a lower triangular matrix.
-
- Unchanged on exit.
-
- TRANS - CHARACTER*1.
- On entry, TRANS specifies the operation to be performed as
- follows:
-
- TRANS = 'N' or 'n' x := A*x.
-
- TRANS = 'T' or 't' x := A'*x.
-
- TRANS = 'C' or 'c' x := A'*x.
-
- Unchanged on exit.
-
- DIAG - CHARACTER*1.
- On entry, DIAG specifies whether or not A is unit
- triangular as follows:
-
- DIAG = 'U' or 'u' A is assumed to be unit triangular.
-
- DIAG = 'N' or 'n' A is not assumed to be unit
- triangular.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array A must contain the upper
- triangular matrix and the strictly lower triangular part of
- A is not referenced.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array A must contain the lower
- triangular matrix and the strictly upper triangular part of
- A is not referenced.
- Note that when DIAG = 'U' or 'u', the diagonal elements of
- A are not referenced either, but are assumed to be unity.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, n ).
- Unchanged on exit.
-
- X - DOUBLE PRECISION array of dimension at least
- ( 1 + ( n - 1 )*abs( INCX ) ).
- Before entry, the incremented array X must contain the n
- element vector x. On exit, X is overwritten with the
- tranformed vector x.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --x;
-
- /* Function Body */
- info = 0;
- if ((! lsame_(uplo, "U") && ! lsame_(uplo, "L"))) {
- info = 1;
- } else if (((! lsame_(trans, "N") && ! lsame_(trans,
- "T")) && ! lsame_(trans, "C"))) {
- info = 2;
- } else if ((! lsame_(diag, "U") && ! lsame_(diag,
- "N"))) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*lda < max(1,*n)) {
- info = 6;
- } else if (*incx == 0) {
- info = 8;
- }
- if (info != 0) {
- xerbla_("DTRMV ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
- nounit = lsame_(diag, "N");
-
-/*
- Set up the start point in X if the increment is not unity. This
- will be ( N - 1 )*INCX too small for descending loops.
-*/
-
- if (*incx <= 0) {
- kx = 1 - (*n - 1) * *incx;
- } else if (*incx != 1) {
- kx = 1;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through A.
-*/
-
- if (lsame_(trans, "N")) {
-
-/* Form x := A*x. */
-
- if (lsame_(uplo, "U")) {
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[j] != 0.) {
- temp = x[j];
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- x[i__] += temp * a[i__ + j * a_dim1];
-/* L10: */
- }
- if (nounit) {
- x[j] *= a[j + j * a_dim1];
- }
- }
-/* L20: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[jx] != 0.) {
- temp = x[jx];
- ix = kx;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- x[ix] += temp * a[i__ + j * a_dim1];
- ix += *incx;
-/* L30: */
- }
- if (nounit) {
- x[jx] *= a[j + j * a_dim1];
- }
- }
- jx += *incx;
-/* L40: */
- }
- }
- } else {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- if (x[j] != 0.) {
- temp = x[j];
- i__1 = j + 1;
- for (i__ = *n; i__ >= i__1; --i__) {
- x[i__] += temp * a[i__ + j * a_dim1];
-/* L50: */
- }
- if (nounit) {
- x[j] *= a[j + j * a_dim1];
- }
- }
-/* L60: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- if (x[jx] != 0.) {
- temp = x[jx];
- ix = kx;
- i__1 = j + 1;
- for (i__ = *n; i__ >= i__1; --i__) {
- x[ix] += temp * a[i__ + j * a_dim1];
- ix -= *incx;
-/* L70: */
- }
- if (nounit) {
- x[jx] *= a[j + j * a_dim1];
- }
- }
- jx -= *incx;
-/* L80: */
- }
- }
- }
- } else {
-
-/* Form x := A'*x. */
-
- if (lsame_(uplo, "U")) {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- temp = x[j];
- if (nounit) {
- temp *= a[j + j * a_dim1];
- }
- for (i__ = j - 1; i__ >= 1; --i__) {
- temp += a[i__ + j * a_dim1] * x[i__];
-/* L90: */
- }
- x[j] = temp;
-/* L100: */
- }
- } else {
- jx = kx + (*n - 1) * *incx;
- for (j = *n; j >= 1; --j) {
- temp = x[jx];
- ix = jx;
- if (nounit) {
- temp *= a[j + j * a_dim1];
- }
- for (i__ = j - 1; i__ >= 1; --i__) {
- ix -= *incx;
- temp += a[i__ + j * a_dim1] * x[ix];
-/* L110: */
- }
- x[jx] = temp;
- jx -= *incx;
-/* L120: */
- }
- }
- } else {
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp = x[j];
- if (nounit) {
- temp *= a[j + j * a_dim1];
- }
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- temp += a[i__ + j * a_dim1] * x[i__];
-/* L130: */
- }
- x[j] = temp;
-/* L140: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp = x[jx];
- ix = jx;
- if (nounit) {
- temp *= a[j + j * a_dim1];
- }
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- ix += *incx;
- temp += a[i__ + j * a_dim1] * x[ix];
-/* L150: */
- }
- x[jx] = temp;
- jx += *incx;
-/* L160: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of DTRMV . */
-
-} /* dtrmv_ */
-
-/* Subroutine */ int dtrsm_(char *side, char *uplo, char *transa, char *diag,
- integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
- lda, doublereal *b, integer *ldb)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, j, k, info;
- static doublereal temp;
- static logical lside;
- extern logical lsame_(char *, char *);
- static integer nrowa;
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical nounit;
-
-
-/*
- Purpose
- =======
-
- DTRSM solves one of the matrix equations
-
- op( A )*X = alpha*B, or X*op( A ) = alpha*B,
-
- where alpha is a scalar, X and B are m by n matrices, A is a unit, or
- non-unit, upper or lower triangular matrix and op( A ) is one of
-
- op( A ) = A or op( A ) = A'.
-
- The matrix X is overwritten on B.
-
- Parameters
- ==========
-
- SIDE - CHARACTER*1.
- On entry, SIDE specifies whether op( A ) appears on the left
- or right of X as follows:
-
- SIDE = 'L' or 'l' op( A )*X = alpha*B.
-
- SIDE = 'R' or 'r' X*op( A ) = alpha*B.
-
- Unchanged on exit.
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the matrix A is an upper or
- lower triangular matrix as follows:
-
- UPLO = 'U' or 'u' A is an upper triangular matrix.
-
- UPLO = 'L' or 'l' A is a lower triangular matrix.
-
- Unchanged on exit.
-
- TRANSA - CHARACTER*1.
- On entry, TRANSA specifies the form of op( A ) to be used in
- the matrix multiplication as follows:
-
- TRANSA = 'N' or 'n' op( A ) = A.
-
- TRANSA = 'T' or 't' op( A ) = A'.
-
- TRANSA = 'C' or 'c' op( A ) = A'.
-
- Unchanged on exit.
-
- DIAG - CHARACTER*1.
- On entry, DIAG specifies whether or not A is unit triangular
- as follows:
-
- DIAG = 'U' or 'u' A is assumed to be unit triangular.
-
- DIAG = 'N' or 'n' A is not assumed to be unit
- triangular.
-
- Unchanged on exit.
-
- M - INTEGER.
- On entry, M specifies the number of rows of B. M must be at
- least zero.
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the number of columns of B. N must be
- at least zero.
- Unchanged on exit.
-
- ALPHA - DOUBLE PRECISION.
- On entry, ALPHA specifies the scalar alpha. When alpha is
- zero then A is not referenced and B need not be set before
- entry.
- Unchanged on exit.
-
- A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
- when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
- Before entry with UPLO = 'U' or 'u', the leading k by k
- upper triangular part of the array A must contain the upper
- triangular matrix and the strictly lower triangular part of
- A is not referenced.
- Before entry with UPLO = 'L' or 'l', the leading k by k
- lower triangular part of the array A must contain the lower
- triangular matrix and the strictly upper triangular part of
- A is not referenced.
- Note that when DIAG = 'U' or 'u', the diagonal elements of
- A are not referenced either, but are assumed to be unity.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. When SIDE = 'L' or 'l' then
- LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
- then LDA must be at least max( 1, n ).
- Unchanged on exit.
-
- B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
- Before entry, the leading m by n part of the array B must
- contain the right-hand side matrix B, and on exit is
- overwritten by the solution matrix X.
-
- LDB - INTEGER.
- On entry, LDB specifies the first dimension of B as declared
- in the calling (sub) program. LDB must be at least
- max( 1, m ).
- Unchanged on exit.
-
-
- Level 3 Blas routine.
-
-
- -- Written on 8-February-1989.
- Jack Dongarra, Argonne National Laboratory.
- Iain Duff, AERE Harwell.
- Jeremy Du Croz, Numerical Algorithms Group Ltd.
- Sven Hammarling, Numerical Algorithms Group Ltd.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- lside = lsame_(side, "L");
- if (lside) {
- nrowa = *m;
- } else {
- nrowa = *n;
- }
- nounit = lsame_(diag, "N");
- upper = lsame_(uplo, "U");
-
- info = 0;
- if ((! lside && ! lsame_(side, "R"))) {
- info = 1;
- } else if ((! upper && ! lsame_(uplo, "L"))) {
- info = 2;
- } else if (((! lsame_(transa, "N") && ! lsame_(
- transa, "T")) && ! lsame_(transa, "C"))) {
- info = 3;
- } else if ((! lsame_(diag, "U") && ! lsame_(diag,
- "N"))) {
- info = 4;
- } else if (*m < 0) {
- info = 5;
- } else if (*n < 0) {
- info = 6;
- } else if (*lda < max(1,nrowa)) {
- info = 9;
- } else if (*ldb < max(1,*m)) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("DTRSM ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
-/* And when alpha.eq.zero. */
-
- if (*alpha == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = 0.;
-/* L10: */
- }
-/* L20: */
- }
- return 0;
- }
-
-/* Start the operations. */
-
- if (lside) {
- if (lsame_(transa, "N")) {
-
-/* Form B := alpha*inv( A )*B. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*alpha != 1.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
- ;
-/* L30: */
- }
- }
- for (k = *m; k >= 1; --k) {
- if (b[k + j * b_dim1] != 0.) {
- if (nounit) {
- b[k + j * b_dim1] /= a[k + k * a_dim1];
- }
- i__2 = k - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
- i__ + k * a_dim1];
-/* L40: */
- }
- }
-/* L50: */
- }
-/* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*alpha != 1.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
- ;
-/* L70: */
- }
- }
- i__2 = *m;
- for (k = 1; k <= i__2; ++k) {
- if (b[k + j * b_dim1] != 0.) {
- if (nounit) {
- b[k + j * b_dim1] /= a[k + k * a_dim1];
- }
- i__3 = *m;
- for (i__ = k + 1; i__ <= i__3; ++i__) {
- b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
- i__ + k * a_dim1];
-/* L80: */
- }
- }
-/* L90: */
- }
-/* L100: */
- }
- }
- } else {
-
-/* Form B := alpha*inv( A' )*B. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = *alpha * b[i__ + j * b_dim1];
- i__3 = i__ - 1;
- for (k = 1; k <= i__3; ++k) {
- temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
-/* L110: */
- }
- if (nounit) {
- temp /= a[i__ + i__ * a_dim1];
- }
- b[i__ + j * b_dim1] = temp;
-/* L120: */
- }
-/* L130: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (i__ = *m; i__ >= 1; --i__) {
- temp = *alpha * b[i__ + j * b_dim1];
- i__2 = *m;
- for (k = i__ + 1; k <= i__2; ++k) {
- temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
-/* L140: */
- }
- if (nounit) {
- temp /= a[i__ + i__ * a_dim1];
- }
- b[i__ + j * b_dim1] = temp;
-/* L150: */
- }
-/* L160: */
- }
- }
- }
- } else {
- if (lsame_(transa, "N")) {
-
-/* Form B := alpha*B*inv( A ). */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*alpha != 1.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
- ;
-/* L170: */
- }
- }
- i__2 = j - 1;
- for (k = 1; k <= i__2; ++k) {
- if (a[k + j * a_dim1] != 0.) {
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
- i__ + k * b_dim1];
-/* L180: */
- }
- }
-/* L190: */
- }
- if (nounit) {
- temp = 1. / a[j + j * a_dim1];
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
-/* L200: */
- }
- }
-/* L210: */
- }
- } else {
- for (j = *n; j >= 1; --j) {
- if (*alpha != 1.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
- ;
-/* L220: */
- }
- }
- i__1 = *n;
- for (k = j + 1; k <= i__1; ++k) {
- if (a[k + j * a_dim1] != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
- i__ + k * b_dim1];
-/* L230: */
- }
- }
-/* L240: */
- }
- if (nounit) {
- temp = 1. / a[j + j * a_dim1];
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
-/* L250: */
- }
- }
-/* L260: */
- }
- }
- } else {
-
-/* Form B := alpha*B*inv( A' ). */
-
- if (upper) {
- for (k = *n; k >= 1; --k) {
- if (nounit) {
- temp = 1. / a[k + k * a_dim1];
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
-/* L270: */
- }
- }
- i__1 = k - 1;
- for (j = 1; j <= i__1; ++j) {
- if (a[j + k * a_dim1] != 0.) {
- temp = a[j + k * a_dim1];
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] -= temp * b[i__ + k *
- b_dim1];
-/* L280: */
- }
- }
-/* L290: */
- }
- if (*alpha != 1.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
- ;
-/* L300: */
- }
- }
-/* L310: */
- }
- } else {
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (nounit) {
- temp = 1. / a[k + k * a_dim1];
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
-/* L320: */
- }
- }
- i__2 = *n;
- for (j = k + 1; j <= i__2; ++j) {
- if (a[j + k * a_dim1] != 0.) {
- temp = a[j + k * a_dim1];
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- b[i__ + j * b_dim1] -= temp * b[i__ + k *
- b_dim1];
-/* L330: */
- }
- }
-/* L340: */
- }
- if (*alpha != 1.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
- ;
-/* L350: */
- }
- }
-/* L360: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of DTRSM . */
-
-} /* dtrsm_ */
-
-doublereal dzasum_(integer *n, doublecomplex *zx, integer *incx)
-{
- /* System generated locals */
- integer i__1;
- doublereal ret_val;
-
- /* Local variables */
- static integer i__, ix;
- static doublereal stemp;
- extern doublereal dcabs1_(doublecomplex *);
-
-
-/*
- takes the sum of the absolute values.
- jack dongarra, 3/11/78.
- modified 3/93 to return if incx .le. 0.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --zx;
-
- /* Function Body */
- ret_val = 0.;
- stemp = 0.;
- if (*n <= 0 || *incx <= 0) {
- return ret_val;
- }
- if (*incx == 1) {
- goto L20;
- }
-
-/* code for increment not equal to 1 */
-
- ix = 1;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- stemp += dcabs1_(&zx[ix]);
- ix += *incx;
-/* L10: */
- }
- ret_val = stemp;
- return ret_val;
-
-/* code for increment equal to 1 */
-
-L20:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- stemp += dcabs1_(&zx[i__]);
-/* L30: */
- }
- ret_val = stemp;
- return ret_val;
-} /* dzasum_ */
-
-doublereal dznrm2_(integer *n, doublecomplex *x, integer *incx)
-{
- /* System generated locals */
- integer i__1, i__2, i__3;
- doublereal ret_val, d__1;
-
- /* Builtin functions */
- double d_imag(doublecomplex *), sqrt(doublereal);
-
- /* Local variables */
- static integer ix;
- static doublereal ssq, temp, norm, scale;
-
-
-/*
- DZNRM2 returns the euclidean norm of a vector via the function
- name, so that
-
- DZNRM2 := sqrt( conjg( x' )*x )
-
-
- -- This version written on 25-October-1982.
- Modified on 14-October-1993 to inline the call to ZLASSQ.
- Sven Hammarling, Nag Ltd.
-*/
-
-
- /* Parameter adjustments */
- --x;
-
- /* Function Body */
- if (*n < 1 || *incx < 1) {
- norm = 0.;
- } else {
- scale = 0.;
- ssq = 1.;
-/*
- The following loop is equivalent to this call to the LAPACK
- auxiliary routine:
- CALL ZLASSQ( N, X, INCX, SCALE, SSQ )
-*/
-
- i__1 = (*n - 1) * *incx + 1;
- i__2 = *incx;
- for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
- i__3 = ix;
- if (x[i__3].r != 0.) {
- i__3 = ix;
- temp = (d__1 = x[i__3].r, abs(d__1));
- if (scale < temp) {
-/* Computing 2nd power */
- d__1 = scale / temp;
- ssq = ssq * (d__1 * d__1) + 1.;
- scale = temp;
- } else {
-/* Computing 2nd power */
- d__1 = temp / scale;
- ssq += d__1 * d__1;
- }
- }
- if (d_imag(&x[ix]) != 0.) {
- temp = (d__1 = d_imag(&x[ix]), abs(d__1));
- if (scale < temp) {
-/* Computing 2nd power */
- d__1 = scale / temp;
- ssq = ssq * (d__1 * d__1) + 1.;
- scale = temp;
- } else {
-/* Computing 2nd power */
- d__1 = temp / scale;
- ssq += d__1 * d__1;
- }
- }
-/* L10: */
- }
- norm = scale * sqrt(ssq);
- }
-
- ret_val = norm;
- return ret_val;
-
-/* End of DZNRM2. */
-
-} /* dznrm2_ */
-
-integer idamax_(integer *n, doublereal *dx, integer *incx)
-{
- /* System generated locals */
- integer ret_val, i__1;
- doublereal d__1;
-
- /* Local variables */
- static integer i__, ix;
- static doublereal dmax__;
-
-
-/*
- finds the index of element having max. absolute value.
- jack dongarra, linpack, 3/11/78.
- modified 3/93 to return if incx .le. 0.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --dx;
-
- /* Function Body */
- ret_val = 0;
- if (*n < 1 || *incx <= 0) {
- return ret_val;
- }
- ret_val = 1;
- if (*n == 1) {
- return ret_val;
- }
- if (*incx == 1) {
- goto L20;
- }
-
-/* code for increment not equal to 1 */
-
- ix = 1;
- dmax__ = abs(dx[1]);
- ix += *incx;
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- if ((d__1 = dx[ix], abs(d__1)) <= dmax__) {
- goto L5;
- }
- ret_val = i__;
- dmax__ = (d__1 = dx[ix], abs(d__1));
-L5:
- ix += *incx;
-/* L10: */
- }
- return ret_val;
-
-/* code for increment equal to 1 */
-
-L20:
- dmax__ = abs(dx[1]);
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- if ((d__1 = dx[i__], abs(d__1)) <= dmax__) {
- goto L30;
- }
- ret_val = i__;
- dmax__ = (d__1 = dx[i__], abs(d__1));
-L30:
- ;
- }
- return ret_val;
-} /* idamax_ */
-
-integer izamax_(integer *n, doublecomplex *zx, integer *incx)
-{
- /* System generated locals */
- integer ret_val, i__1;
-
- /* Local variables */
- static integer i__, ix;
- static doublereal smax;
- extern doublereal dcabs1_(doublecomplex *);
-
-
-/*
- finds the index of element having max. absolute value.
- jack dongarra, 1/15/85.
- modified 3/93 to return if incx .le. 0.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --zx;
-
- /* Function Body */
- ret_val = 0;
- if (*n < 1 || *incx <= 0) {
- return ret_val;
- }
- ret_val = 1;
- if (*n == 1) {
- return ret_val;
- }
- if (*incx == 1) {
- goto L20;
- }
-
-/* code for increment not equal to 1 */
-
- ix = 1;
- smax = dcabs1_(&zx[1]);
- ix += *incx;
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- if (dcabs1_(&zx[ix]) <= smax) {
- goto L5;
- }
- ret_val = i__;
- smax = dcabs1_(&zx[ix]);
-L5:
- ix += *incx;
-/* L10: */
- }
- return ret_val;
-
-/* code for increment equal to 1 */
-
-L20:
- smax = dcabs1_(&zx[1]);
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- if (dcabs1_(&zx[i__]) <= smax) {
- goto L30;
- }
- ret_val = i__;
- smax = dcabs1_(&zx[i__]);
-L30:
- ;
- }
- return ret_val;
-} /* izamax_ */
-
-logical lsame_(char *ca, char *cb)
-{
- /* System generated locals */
- logical ret_val;
-
- /* Local variables */
- static integer inta, intb, zcode;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- LSAME returns .TRUE. if CA is the same letter as CB regardless of
- case.
-
- Arguments
- =========
-
- CA (input) CHARACTER*1
- CB (input) CHARACTER*1
- CA and CB specify the single characters to be compared.
-
- =====================================================================
-
-
- Test if the characters are equal
-*/
-
- ret_val = *(unsigned char *)ca == *(unsigned char *)cb;
- if (ret_val) {
- return ret_val;
- }
-
-/* Now test for equivalence if both characters are alphabetic. */
-
- zcode = 'Z';
-
-/*
- Use 'Z' rather than 'A' so that ASCII can be detected on Prime
- machines, on which ICHAR returns a value with bit 8 set.
- ICHAR('A') on Prime machines returns 193 which is the same as
- ICHAR('A') on an EBCDIC machine.
-*/
-
- inta = *(unsigned char *)ca;
- intb = *(unsigned char *)cb;
-
- if (zcode == 90 || zcode == 122) {
-
-/*
- ASCII is assumed - ZCODE is the ASCII code of either lower or
- upper case 'Z'.
-*/
-
- if ((inta >= 97 && inta <= 122)) {
- inta += -32;
- }
- if ((intb >= 97 && intb <= 122)) {
- intb += -32;
- }
-
- } else if (zcode == 233 || zcode == 169) {
-
-/*
- EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
- upper case 'Z'.
-*/
-
- if ((inta >= 129 && inta <= 137) || (inta >= 145 && inta <= 153) || (
- inta >= 162 && inta <= 169)) {
- inta += 64;
- }
- if ((intb >= 129 && intb <= 137) || (intb >= 145 && intb <= 153) || (
- intb >= 162 && intb <= 169)) {
- intb += 64;
- }
-
- } else if (zcode == 218 || zcode == 250) {
-
-/*
- ASCII is assumed, on Prime machines - ZCODE is the ASCII code
- plus 128 of either lower or upper case 'Z'.
-*/
-
- if ((inta >= 225 && inta <= 250)) {
- inta += -32;
- }
- if ((intb >= 225 && intb <= 250)) {
- intb += -32;
- }
- }
- ret_val = inta == intb;
-
-/*
- RETURN
-
- End of LSAME
-*/
-
- return ret_val;
-} /* lsame_ */
-
-/* Using xerbla_ from pythonxerbla.c */
-/* Subroutine */ int xerbla_DISABLE(char *srname, integer *info)
-{
- /* Format strings */
- static char fmt_9999[] = "(\002 ** On entry to \002,a6,\002 parameter nu"
- "mber \002,i2,\002 had \002,\002an illegal value\002)";
-
- /* Builtin functions */
- integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
- /* Subroutine */ int s_stop(char *, ftnlen);
-
- /* Fortran I/O blocks */
- static cilist io___147 = { 0, 6, 0, fmt_9999, 0 };
-
-
-/*
- -- LAPACK auxiliary routine (preliminary version) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- XERBLA is an error handler for the LAPACK routines.
- It is called by an LAPACK routine if an input parameter has an
- invalid value. A message is printed and execution stops.
-
- Installers may consider modifying the STOP statement in order to
- call system-specific exception-handling facilities.
-
- Arguments
- =========
-
- SRNAME (input) CHARACTER*6
- The name of the routine which called XERBLA.
-
- INFO (input) INTEGER
- The position of the invalid parameter in the parameter list
- of the calling routine.
-*/
-
-
- s_wsfe(&io___147);
- do_fio(&c__1, srname, (ftnlen)6);
- do_fio(&c__1, (char *)&(*info), (ftnlen)sizeof(integer));
- e_wsfe();
-
- s_stop("", (ftnlen)0);
-
-
-/* End of XERBLA */
-
- return 0;
-} /* xerbla_ */
-
-/* Subroutine */ int zaxpy_(integer *n, doublecomplex *za, doublecomplex *zx,
- integer *incx, doublecomplex *zy, integer *incy)
-{
- /* System generated locals */
- integer i__1, i__2, i__3, i__4;
- doublecomplex z__1, z__2;
-
- /* Local variables */
- static integer i__, ix, iy;
- extern doublereal dcabs1_(doublecomplex *);
-
-
-/*
- constant times a vector plus a vector.
- jack dongarra, 3/11/78.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
- /* Parameter adjustments */
- --zy;
- --zx;
-
- /* Function Body */
- if (*n <= 0) {
- return 0;
- }
- if (dcabs1_(za) == 0.) {
- return 0;
- }
- if ((*incx == 1 && *incy == 1)) {
- goto L20;
- }
-
-/*
- code for unequal increments or equal increments
- not equal to 1
-*/
-
- ix = 1;
- iy = 1;
- if (*incx < 0) {
- ix = (-(*n) + 1) * *incx + 1;
- }
- if (*incy < 0) {
- iy = (-(*n) + 1) * *incy + 1;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- i__3 = iy;
- i__4 = ix;
- z__2.r = za->r * zx[i__4].r - za->i * zx[i__4].i, z__2.i = za->r * zx[
- i__4].i + za->i * zx[i__4].r;
- z__1.r = zy[i__3].r + z__2.r, z__1.i = zy[i__3].i + z__2.i;
- zy[i__2].r = z__1.r, zy[i__2].i = z__1.i;
- ix += *incx;
- iy += *incy;
-/* L10: */
- }
- return 0;
-
-/* code for both increments equal to 1 */
-
-L20:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- i__4 = i__;
- z__2.r = za->r * zx[i__4].r - za->i * zx[i__4].i, z__2.i = za->r * zx[
- i__4].i + za->i * zx[i__4].r;
- z__1.r = zy[i__3].r + z__2.r, z__1.i = zy[i__3].i + z__2.i;
- zy[i__2].r = z__1.r, zy[i__2].i = z__1.i;
-/* L30: */
- }
- return 0;
-} /* zaxpy_ */
-
-/* Subroutine */ int zcopy_(integer *n, doublecomplex *zx, integer *incx,
- doublecomplex *zy, integer *incy)
-{
- /* System generated locals */
- integer i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, ix, iy;
-
-
-/*
- copies a vector, x, to a vector, y.
- jack dongarra, linpack, 4/11/78.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --zy;
- --zx;
-
- /* Function Body */
- if (*n <= 0) {
- return 0;
- }
- if ((*incx == 1 && *incy == 1)) {
- goto L20;
- }
-
-/*
- code for unequal increments or equal increments
- not equal to 1
-*/
-
- ix = 1;
- iy = 1;
- if (*incx < 0) {
- ix = (-(*n) + 1) * *incx + 1;
- }
- if (*incy < 0) {
- iy = (-(*n) + 1) * *incy + 1;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- i__3 = ix;
- zy[i__2].r = zx[i__3].r, zy[i__2].i = zx[i__3].i;
- ix += *incx;
- iy += *incy;
-/* L10: */
- }
- return 0;
-
-/* code for both increments equal to 1 */
-
-L20:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- zy[i__2].r = zx[i__3].r, zy[i__2].i = zx[i__3].i;
-/* L30: */
- }
- return 0;
-} /* zcopy_ */
-
-/* Double Complex */ VOID zdotc_(doublecomplex * ret_val, integer *n,
- doublecomplex *zx, integer *incx, doublecomplex *zy, integer *incy)
-{
- /* System generated locals */
- integer i__1, i__2;
- doublecomplex z__1, z__2, z__3;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, ix, iy;
- static doublecomplex ztemp;
-
-
-/*
- forms the dot product of a vector.
- jack dongarra, 3/11/78.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
- /* Parameter adjustments */
- --zy;
- --zx;
-
- /* Function Body */
- ztemp.r = 0., ztemp.i = 0.;
- ret_val->r = 0., ret_val->i = 0.;
- if (*n <= 0) {
- return ;
- }
- if ((*incx == 1 && *incy == 1)) {
- goto L20;
- }
-
-/*
- code for unequal increments or equal increments
- not equal to 1
-*/
-
- ix = 1;
- iy = 1;
- if (*incx < 0) {
- ix = (-(*n) + 1) * *incx + 1;
- }
- if (*incy < 0) {
- iy = (-(*n) + 1) * *incy + 1;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d_cnjg(&z__3, &zx[ix]);
- i__2 = iy;
- z__2.r = z__3.r * zy[i__2].r - z__3.i * zy[i__2].i, z__2.i = z__3.r *
- zy[i__2].i + z__3.i * zy[i__2].r;
- z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i;
- ztemp.r = z__1.r, ztemp.i = z__1.i;
- ix += *incx;
- iy += *incy;
-/* L10: */
- }
- ret_val->r = ztemp.r, ret_val->i = ztemp.i;
- return ;
-
-/* code for both increments equal to 1 */
-
-L20:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d_cnjg(&z__3, &zx[i__]);
- i__2 = i__;
- z__2.r = z__3.r * zy[i__2].r - z__3.i * zy[i__2].i, z__2.i = z__3.r *
- zy[i__2].i + z__3.i * zy[i__2].r;
- z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i;
- ztemp.r = z__1.r, ztemp.i = z__1.i;
-/* L30: */
- }
- ret_val->r = ztemp.r, ret_val->i = ztemp.i;
- return ;
-} /* zdotc_ */
-
-/* Double Complex */ VOID zdotu_(doublecomplex * ret_val, integer *n,
- doublecomplex *zx, integer *incx, doublecomplex *zy, integer *incy)
-{
- /* System generated locals */
- integer i__1, i__2, i__3;
- doublecomplex z__1, z__2;
-
- /* Local variables */
- static integer i__, ix, iy;
- static doublecomplex ztemp;
-
-
-/*
- forms the dot product of two vectors.
- jack dongarra, 3/11/78.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
- /* Parameter adjustments */
- --zy;
- --zx;
-
- /* Function Body */
- ztemp.r = 0., ztemp.i = 0.;
- ret_val->r = 0., ret_val->i = 0.;
- if (*n <= 0) {
- return ;
- }
- if ((*incx == 1 && *incy == 1)) {
- goto L20;
- }
-
-/*
- code for unequal increments or equal increments
- not equal to 1
-*/
-
- ix = 1;
- iy = 1;
- if (*incx < 0) {
- ix = (-(*n) + 1) * *incx + 1;
- }
- if (*incy < 0) {
- iy = (-(*n) + 1) * *incy + 1;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = ix;
- i__3 = iy;
- z__2.r = zx[i__2].r * zy[i__3].r - zx[i__2].i * zy[i__3].i, z__2.i =
- zx[i__2].r * zy[i__3].i + zx[i__2].i * zy[i__3].r;
- z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i;
- ztemp.r = z__1.r, ztemp.i = z__1.i;
- ix += *incx;
- iy += *incy;
-/* L10: */
- }
- ret_val->r = ztemp.r, ret_val->i = ztemp.i;
- return ;
-
-/* code for both increments equal to 1 */
-
-L20:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- z__2.r = zx[i__2].r * zy[i__3].r - zx[i__2].i * zy[i__3].i, z__2.i =
- zx[i__2].r * zy[i__3].i + zx[i__2].i * zy[i__3].r;
- z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i;
- ztemp.r = z__1.r, ztemp.i = z__1.i;
-/* L30: */
- }
- ret_val->r = ztemp.r, ret_val->i = ztemp.i;
- return ;
-} /* zdotu_ */
-
-/* Subroutine */ int zdscal_(integer *n, doublereal *da, doublecomplex *zx,
- integer *incx)
-{
- /* System generated locals */
- integer i__1, i__2, i__3;
- doublecomplex z__1, z__2;
-
- /* Local variables */
- static integer i__, ix;
-
-
-/*
- scales a vector by a constant.
- jack dongarra, 3/11/78.
- modified 3/93 to return if incx .le. 0.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --zx;
-
- /* Function Body */
- if (*n <= 0 || *incx <= 0) {
- return 0;
- }
- if (*incx == 1) {
- goto L20;
- }
-
-/* code for increment not equal to 1 */
-
- ix = 1;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = ix;
- z__2.r = *da, z__2.i = 0.;
- i__3 = ix;
- z__1.r = z__2.r * zx[i__3].r - z__2.i * zx[i__3].i, z__1.i = z__2.r *
- zx[i__3].i + z__2.i * zx[i__3].r;
- zx[i__2].r = z__1.r, zx[i__2].i = z__1.i;
- ix += *incx;
-/* L10: */
- }
- return 0;
-
-/* code for increment equal to 1 */
-
-L20:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- z__2.r = *da, z__2.i = 0.;
- i__3 = i__;
- z__1.r = z__2.r * zx[i__3].r - z__2.i * zx[i__3].i, z__1.i = z__2.r *
- zx[i__3].i + z__2.i * zx[i__3].r;
- zx[i__2].r = z__1.r, zx[i__2].i = z__1.i;
-/* L30: */
- }
- return 0;
-} /* zdscal_ */
-
-/* Subroutine */ int zgemm_(char *transa, char *transb, integer *m, integer *
- n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda,
- doublecomplex *b, integer *ldb, doublecomplex *beta, doublecomplex *
- c__, integer *ldc)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
- i__3, i__4, i__5, i__6;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, l, info;
- static logical nota, notb;
- static doublecomplex temp;
- static logical conja, conjb;
- static integer ncola;
- extern logical lsame_(char *, char *);
- static integer nrowa, nrowb;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- ZGEMM performs one of the matrix-matrix operations
-
- C := alpha*op( A )*op( B ) + beta*C,
-
- where op( X ) is one of
-
- op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
-
- alpha and beta are scalars, and A, B and C are matrices, with op( A )
- an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
-
- Parameters
- ==========
-
- TRANSA - CHARACTER*1.
- On entry, TRANSA specifies the form of op( A ) to be used in
- the matrix multiplication as follows:
-
- TRANSA = 'N' or 'n', op( A ) = A.
-
- TRANSA = 'T' or 't', op( A ) = A'.
-
- TRANSA = 'C' or 'c', op( A ) = conjg( A' ).
-
- Unchanged on exit.
-
- TRANSB - CHARACTER*1.
- On entry, TRANSB specifies the form of op( B ) to be used in
- the matrix multiplication as follows:
-
- TRANSB = 'N' or 'n', op( B ) = B.
-
- TRANSB = 'T' or 't', op( B ) = B'.
-
- TRANSB = 'C' or 'c', op( B ) = conjg( B' ).
-
- Unchanged on exit.
-
- M - INTEGER.
- On entry, M specifies the number of rows of the matrix
- op( A ) and of the matrix C. M must be at least zero.
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the number of columns of the matrix
- op( B ) and the number of columns of the matrix C. N must be
- at least zero.
- Unchanged on exit.
-
- K - INTEGER.
- On entry, K specifies the number of columns of the matrix
- op( A ) and the number of rows of the matrix op( B ). K must
- be at least zero.
- Unchanged on exit.
-
- ALPHA - COMPLEX*16 .
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
- k when TRANSA = 'N' or 'n', and is m otherwise.
- Before entry with TRANSA = 'N' or 'n', the leading m by k
- part of the array A must contain the matrix A, otherwise
- the leading k by m part of the array A must contain the
- matrix A.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. When TRANSA = 'N' or 'n' then
- LDA must be at least max( 1, m ), otherwise LDA must be at
- least max( 1, k ).
- Unchanged on exit.
-
- B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is
- n when TRANSB = 'N' or 'n', and is k otherwise.
- Before entry with TRANSB = 'N' or 'n', the leading k by n
- part of the array B must contain the matrix B, otherwise
- the leading n by k part of the array B must contain the
- matrix B.
- Unchanged on exit.
-
- LDB - INTEGER.
- On entry, LDB specifies the first dimension of B as declared
- in the calling (sub) program. When TRANSB = 'N' or 'n' then
- LDB must be at least max( 1, k ), otherwise LDB must be at
- least max( 1, n ).
- Unchanged on exit.
-
- BETA - COMPLEX*16 .
- On entry, BETA specifies the scalar beta. When BETA is
- supplied as zero then C need not be set on input.
- Unchanged on exit.
-
- C - COMPLEX*16 array of DIMENSION ( LDC, n ).
- Before entry, the leading m by n part of the array C must
- contain the matrix C, except when beta is zero, in which
- case C need not be set on entry.
- On exit, the array C is overwritten by the m by n matrix
- ( alpha*op( A )*op( B ) + beta*C ).
-
- LDC - INTEGER.
- On entry, LDC specifies the first dimension of C as declared
- in the calling (sub) program. LDC must be at least
- max( 1, m ).
- Unchanged on exit.
-
-
- Level 3 Blas routine.
-
- -- Written on 8-February-1989.
- Jack Dongarra, Argonne National Laboratory.
- Iain Duff, AERE Harwell.
- Jeremy Du Croz, Numerical Algorithms Group Ltd.
- Sven Hammarling, Numerical Algorithms Group Ltd.
-
-
- Set NOTA and NOTB as true if A and B respectively are not
- conjugated or transposed, set CONJA and CONJB as true if A and
- B respectively are to be transposed but not conjugated and set
- NROWA, NCOLA and NROWB as the number of rows and columns of A
- and the number of rows of B respectively.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
-
- /* Function Body */
- nota = lsame_(transa, "N");
- notb = lsame_(transb, "N");
- conja = lsame_(transa, "C");
- conjb = lsame_(transb, "C");
- if (nota) {
- nrowa = *m;
- ncola = *k;
- } else {
- nrowa = *k;
- ncola = *m;
- }
- if (notb) {
- nrowb = *k;
- } else {
- nrowb = *n;
- }
-
-/* Test the input parameters. */
-
- info = 0;
- if (((! nota && ! conja) && ! lsame_(transa, "T")))
- {
- info = 1;
- } else if (((! notb && ! conjb) && ! lsame_(transb, "T"))) {
- info = 2;
- } else if (*m < 0) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*k < 0) {
- info = 5;
- } else if (*lda < max(1,nrowa)) {
- info = 8;
- } else if (*ldb < max(1,nrowb)) {
- info = 10;
- } else if (*ldc < max(1,*m)) {
- info = 13;
- }
- if (info != 0) {
- xerbla_("ZGEMM ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*m == 0 || *n == 0 || (((alpha->r == 0. && alpha->i == 0.) || *k == 0)
- && ((beta->r == 1. && beta->i == 0.)))) {
- return 0;
- }
-
-/* And when alpha.eq.zero. */
-
- if ((alpha->r == 0. && alpha->i == 0.)) {
- if ((beta->r == 0. && beta->i == 0.)) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L10: */
- }
-/* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
- z__1.i = beta->r * c__[i__4].i + beta->i * c__[
- i__4].r;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L30: */
- }
-/* L40: */
- }
- }
- return 0;
- }
-
-/* Start the operations. */
-
- if (notb) {
- if (nota) {
-
-/* Form C := alpha*A*B + beta*C. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if ((beta->r == 0. && beta->i == 0.)) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L50: */
- }
- } else if (beta->r != 1. || beta->i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, z__1.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L60: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- i__3 = l + j * b_dim1;
- if (b[i__3].r != 0. || b[i__3].i != 0.) {
- i__3 = l + j * b_dim1;
- z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
- z__1.i = alpha->r * b[i__3].i + alpha->i * b[
- i__3].r;
- temp.r = z__1.r, temp.i = z__1.i;
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + l * a_dim1;
- z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
- z__2.i = temp.r * a[i__6].i + temp.i * a[
- i__6].r;
- z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
- .i + z__2.i;
- c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
-/* L70: */
- }
- }
-/* L80: */
- }
-/* L90: */
- }
- } else if (conja) {
-
-/* Form C := alpha*conjg( A' )*B + beta*C. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0., temp.i = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- d_cnjg(&z__3, &a[l + i__ * a_dim1]);
- i__4 = l + j * b_dim1;
- z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
- z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
- .r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L100: */
- }
- if ((beta->r == 0. && beta->i == 0.)) {
- i__3 = i__ + j * c_dim1;
- z__1.r = alpha->r * temp.r - alpha->i * temp.i,
- z__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- z__2.r = alpha->r * temp.r - alpha->i * temp.i,
- z__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, z__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- }
-/* L110: */
- }
-/* L120: */
- }
- } else {
-
-/* Form C := alpha*A'*B + beta*C */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0., temp.i = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- i__4 = l + i__ * a_dim1;
- i__5 = l + j * b_dim1;
- z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
- .i, z__2.i = a[i__4].r * b[i__5].i + a[i__4]
- .i * b[i__5].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L130: */
- }
- if ((beta->r == 0. && beta->i == 0.)) {
- i__3 = i__ + j * c_dim1;
- z__1.r = alpha->r * temp.r - alpha->i * temp.i,
- z__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- z__2.r = alpha->r * temp.r - alpha->i * temp.i,
- z__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, z__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- }
-/* L140: */
- }
-/* L150: */
- }
- }
- } else if (nota) {
- if (conjb) {
-
-/* Form C := alpha*A*conjg( B' ) + beta*C. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if ((beta->r == 0. && beta->i == 0.)) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L160: */
- }
- } else if (beta->r != 1. || beta->i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, z__1.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L170: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- i__3 = j + l * b_dim1;
- if (b[i__3].r != 0. || b[i__3].i != 0.) {
- d_cnjg(&z__2, &b[j + l * b_dim1]);
- z__1.r = alpha->r * z__2.r - alpha->i * z__2.i,
- z__1.i = alpha->r * z__2.i + alpha->i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + l * a_dim1;
- z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
- z__2.i = temp.r * a[i__6].i + temp.i * a[
- i__6].r;
- z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
- .i + z__2.i;
- c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
-/* L180: */
- }
- }
-/* L190: */
- }
-/* L200: */
- }
- } else {
-
-/* Form C := alpha*A*B' + beta*C */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if ((beta->r == 0. && beta->i == 0.)) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L210: */
- }
- } else if (beta->r != 1. || beta->i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, z__1.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L220: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- i__3 = j + l * b_dim1;
- if (b[i__3].r != 0. || b[i__3].i != 0.) {
- i__3 = j + l * b_dim1;
- z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
- z__1.i = alpha->r * b[i__3].i + alpha->i * b[
- i__3].r;
- temp.r = z__1.r, temp.i = z__1.i;
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + l * a_dim1;
- z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
- z__2.i = temp.r * a[i__6].i + temp.i * a[
- i__6].r;
- z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
- .i + z__2.i;
- c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
-/* L230: */
- }
- }
-/* L240: */
- }
-/* L250: */
- }
- }
- } else if (conja) {
- if (conjb) {
-
-/* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0., temp.i = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- d_cnjg(&z__3, &a[l + i__ * a_dim1]);
- d_cnjg(&z__4, &b[j + l * b_dim1]);
- z__2.r = z__3.r * z__4.r - z__3.i * z__4.i, z__2.i =
- z__3.r * z__4.i + z__3.i * z__4.r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L260: */
- }
- if ((beta->r == 0. && beta->i == 0.)) {
- i__3 = i__ + j * c_dim1;
- z__1.r = alpha->r * temp.r - alpha->i * temp.i,
- z__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- z__2.r = alpha->r * temp.r - alpha->i * temp.i,
- z__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, z__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- }
-/* L270: */
- }
-/* L280: */
- }
- } else {
-
-/* Form C := alpha*conjg( A' )*B' + beta*C */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0., temp.i = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- d_cnjg(&z__3, &a[l + i__ * a_dim1]);
- i__4 = j + l * b_dim1;
- z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
- z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
- .r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L290: */
- }
- if ((beta->r == 0. && beta->i == 0.)) {
- i__3 = i__ + j * c_dim1;
- z__1.r = alpha->r * temp.r - alpha->i * temp.i,
- z__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- z__2.r = alpha->r * temp.r - alpha->i * temp.i,
- z__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, z__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- }
-/* L300: */
- }
-/* L310: */
- }
- }
- } else {
- if (conjb) {
-
-/* Form C := alpha*A'*conjg( B' ) + beta*C */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0., temp.i = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- i__4 = l + i__ * a_dim1;
- d_cnjg(&z__3, &b[j + l * b_dim1]);
- z__2.r = a[i__4].r * z__3.r - a[i__4].i * z__3.i,
- z__2.i = a[i__4].r * z__3.i + a[i__4].i *
- z__3.r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L320: */
- }
- if ((beta->r == 0. && beta->i == 0.)) {
- i__3 = i__ + j * c_dim1;
- z__1.r = alpha->r * temp.r - alpha->i * temp.i,
- z__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- z__2.r = alpha->r * temp.r - alpha->i * temp.i,
- z__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, z__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- }
-/* L330: */
- }
-/* L340: */
- }
- } else {
-
-/* Form C := alpha*A'*B' + beta*C */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0., temp.i = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- i__4 = l + i__ * a_dim1;
- i__5 = j + l * b_dim1;
- z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
- .i, z__2.i = a[i__4].r * b[i__5].i + a[i__4]
- .i * b[i__5].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L350: */
- }
- if ((beta->r == 0. && beta->i == 0.)) {
- i__3 = i__ + j * c_dim1;
- z__1.r = alpha->r * temp.r - alpha->i * temp.i,
- z__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- z__2.r = alpha->r * temp.r - alpha->i * temp.i,
- z__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, z__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- }
-/* L360: */
- }
-/* L370: */
- }
- }
- }
-
- return 0;
-
-/* End of ZGEMM . */
-
-} /* zgemm_ */
-
-/* Subroutine */ int zgemv_(char *trans, integer *m, integer *n,
- doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *
- x, integer *incx, doublecomplex *beta, doublecomplex *y, integer *
- incy)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1, z__2, z__3;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, ix, iy, jx, jy, kx, ky, info;
- static doublecomplex temp;
- static integer lenx, leny;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical noconj;
-
-
-/*
- Purpose
- =======
-
- ZGEMV performs one of the matrix-vector operations
-
- y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
-
- y := alpha*conjg( A' )*x + beta*y,
-
- where alpha and beta are scalars, x and y are vectors and A is an
- m by n matrix.
-
- Parameters
- ==========
-
- TRANS - CHARACTER*1.
- On entry, TRANS specifies the operation to be performed as
- follows:
-
- TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
-
- TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
-
- TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
-
- Unchanged on exit.
-
- M - INTEGER.
- On entry, M specifies the number of rows of the matrix A.
- M must be at least zero.
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the number of columns of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- ALPHA - COMPLEX*16 .
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, n ).
- Before entry, the leading m by n part of the array A must
- contain the matrix of coefficients.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, m ).
- Unchanged on exit.
-
- X - COMPLEX*16 array of DIMENSION at least
- ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
- and at least
- ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
- Before entry, the incremented array X must contain the
- vector x.
- Unchanged on exit.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
- BETA - COMPLEX*16 .
- On entry, BETA specifies the scalar beta. When BETA is
- supplied as zero then Y need not be set on input.
- Unchanged on exit.
-
- Y - COMPLEX*16 array of DIMENSION at least
- ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
- and at least
- ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
- Before entry with BETA non-zero, the incremented array Y
- must contain the vector y. On exit, Y is overwritten by the
- updated vector y.
-
- INCY - INTEGER.
- On entry, INCY specifies the increment for the elements of
- Y. INCY must not be zero.
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --x;
- --y;
-
- /* Function Body */
- info = 0;
- if (((! lsame_(trans, "N") && ! lsame_(trans, "T")) && ! lsame_(trans, "C"))) {
- info = 1;
- } else if (*m < 0) {
- info = 2;
- } else if (*n < 0) {
- info = 3;
- } else if (*lda < max(1,*m)) {
- info = 6;
- } else if (*incx == 0) {
- info = 8;
- } else if (*incy == 0) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("ZGEMV ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*m == 0 || *n == 0 || ((alpha->r == 0. && alpha->i == 0.) && ((
- beta->r == 1. && beta->i == 0.)))) {
- return 0;
- }
-
- noconj = lsame_(trans, "T");
-
-/*
- Set LENX and LENY, the lengths of the vectors x and y, and set
- up the start points in X and Y.
-*/
-
- if (lsame_(trans, "N")) {
- lenx = *n;
- leny = *m;
- } else {
- lenx = *m;
- leny = *n;
- }
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (lenx - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (leny - 1) * *incy;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through A.
-
- First form y := beta*y.
-*/
-
- if (beta->r != 1. || beta->i != 0.) {
- if (*incy == 1) {
- if ((beta->r == 0. && beta->i == 0.)) {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- y[i__2].r = 0., y[i__2].i = 0.;
-/* L10: */
- }
- } else {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if ((beta->r == 0. && beta->i == 0.)) {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- y[i__2].r = 0., y[i__2].i = 0.;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- i__3 = iy;
- z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if ((alpha->r == 0. && alpha->i == 0.)) {
- return 0;
- }
- if (lsame_(trans, "N")) {
-
-/* Form y := alpha*A*x + y. */
-
- jx = kx;
- if (*incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- i__2 = jx;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
- z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
- .r;
- temp.r = z__1.r, temp.i = z__1.i;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = i__ + j * a_dim1;
- z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__2.i = temp.r * a[i__5].i + temp.i * a[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i +
- z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
-/* L50: */
- }
- }
- jx += *incx;
-/* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- i__2 = jx;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
- z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
- .r;
- temp.r = z__1.r, temp.i = z__1.i;
- iy = ky;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = iy;
- i__4 = iy;
- i__5 = i__ + j * a_dim1;
- z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__2.i = temp.r * a[i__5].i + temp.i * a[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i +
- z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- iy += *incy;
-/* L70: */
- }
- }
- jx += *incx;
-/* L80: */
- }
- }
- } else {
-
-/* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. */
-
- jy = ky;
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp.r = 0., temp.i = 0.;
- if (noconj) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__;
- z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4]
- .i, z__2.i = a[i__3].r * x[i__4].i + a[i__3]
- .i * x[i__4].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L90: */
- }
- } else {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__3 = i__;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
- z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3]
- .r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L100: */
- }
- }
- i__2 = jy;
- i__3 = jy;
- z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i =
- alpha->r * temp.i + alpha->i * temp.r;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- jy += *incy;
-/* L110: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp.r = 0., temp.i = 0.;
- ix = kx;
- if (noconj) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = ix;
- z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4]
- .i, z__2.i = a[i__3].r * x[i__4].i + a[i__3]
- .i * x[i__4].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix += *incx;
-/* L120: */
- }
- } else {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__3 = ix;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
- z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3]
- .r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix += *incx;
-/* L130: */
- }
- }
- i__2 = jy;
- i__3 = jy;
- z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i =
- alpha->r * temp.i + alpha->i * temp.r;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- jy += *incy;
-/* L140: */
- }
- }
- }
-
- return 0;
-
-/* End of ZGEMV . */
-
-} /* zgemv_ */
-
-/* Subroutine */ int zgerc_(integer *m, integer *n, doublecomplex *alpha,
- doublecomplex *x, integer *incx, doublecomplex *y, integer *incy,
- doublecomplex *a, integer *lda)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1, z__2;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, ix, jy, kx, info;
- static doublecomplex temp;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- ZGERC performs the rank 1 operation
-
- A := alpha*x*conjg( y' ) + A,
-
- where alpha is a scalar, x is an m element vector, y is an n element
- vector and A is an m by n matrix.
-
- Parameters
- ==========
-
- M - INTEGER.
- On entry, M specifies the number of rows of the matrix A.
- M must be at least zero.
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the number of columns of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- ALPHA - COMPLEX*16 .
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- X - COMPLEX*16 array of dimension at least
- ( 1 + ( m - 1 )*abs( INCX ) ).
- Before entry, the incremented array X must contain the m
- element vector x.
- Unchanged on exit.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
- Y - COMPLEX*16 array of dimension at least
- ( 1 + ( n - 1 )*abs( INCY ) ).
- Before entry, the incremented array Y must contain the n
- element vector y.
- Unchanged on exit.
-
- INCY - INTEGER.
- On entry, INCY specifies the increment for the elements of
- Y. INCY must not be zero.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, n ).
- Before entry, the leading m by n part of the array A must
- contain the matrix of coefficients. On exit, A is
- overwritten by the updated matrix.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, m ).
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --x;
- --y;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- info = 0;
- if (*m < 0) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 5;
- } else if (*incy == 0) {
- info = 7;
- } else if (*lda < max(1,*m)) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("ZGERC ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*m == 0 || *n == 0 || (alpha->r == 0. && alpha->i == 0.)) {
- return 0;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through A.
-*/
-
- if (*incy > 0) {
- jy = 1;
- } else {
- jy = 1 - (*n - 1) * *incy;
- }
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jy;
- if (y[i__2].r != 0. || y[i__2].i != 0.) {
- d_cnjg(&z__2, &y[jy]);
- z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
- alpha->r * z__2.i + alpha->i * z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = i__;
- z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i =
- x[i__5].r * temp.i + x[i__5].i * temp.r;
- z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L10: */
- }
- }
- jy += *incy;
-/* L20: */
- }
- } else {
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*m - 1) * *incx;
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jy;
- if (y[i__2].r != 0. || y[i__2].i != 0.) {
- d_cnjg(&z__2, &y[jy]);
- z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
- alpha->r * z__2.i + alpha->i * z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- ix = kx;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = ix;
- z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i =
- x[i__5].r * temp.i + x[i__5].i * temp.r;
- z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- ix += *incx;
-/* L30: */
- }
- }
- jy += *incy;
-/* L40: */
- }
- }
-
- return 0;
-
-/* End of ZGERC . */
-
-} /* zgerc_ */
-
-/* Subroutine */ int zgeru_(integer *m, integer *n, doublecomplex *alpha,
- doublecomplex *x, integer *incx, doublecomplex *y, integer *incy,
- doublecomplex *a, integer *lda)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1, z__2;
-
- /* Local variables */
- static integer i__, j, ix, jy, kx, info;
- static doublecomplex temp;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- ZGERU performs the rank 1 operation
-
- A := alpha*x*y' + A,
-
- where alpha is a scalar, x is an m element vector, y is an n element
- vector and A is an m by n matrix.
-
- Parameters
- ==========
-
- M - INTEGER.
- On entry, M specifies the number of rows of the matrix A.
- M must be at least zero.
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the number of columns of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- ALPHA - COMPLEX*16 .
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- X - COMPLEX*16 array of dimension at least
- ( 1 + ( m - 1 )*abs( INCX ) ).
- Before entry, the incremented array X must contain the m
- element vector x.
- Unchanged on exit.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
- Y - COMPLEX*16 array of dimension at least
- ( 1 + ( n - 1 )*abs( INCY ) ).
- Before entry, the incremented array Y must contain the n
- element vector y.
- Unchanged on exit.
-
- INCY - INTEGER.
- On entry, INCY specifies the increment for the elements of
- Y. INCY must not be zero.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, n ).
- Before entry, the leading m by n part of the array A must
- contain the matrix of coefficients. On exit, A is
- overwritten by the updated matrix.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, m ).
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --x;
- --y;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- info = 0;
- if (*m < 0) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 5;
- } else if (*incy == 0) {
- info = 7;
- } else if (*lda < max(1,*m)) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("ZGERU ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*m == 0 || *n == 0 || (alpha->r == 0. && alpha->i == 0.)) {
- return 0;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through A.
-*/
-
- if (*incy > 0) {
- jy = 1;
- } else {
- jy = 1 - (*n - 1) * *incy;
- }
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jy;
- if (y[i__2].r != 0. || y[i__2].i != 0.) {
- i__2 = jy;
- z__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, z__1.i =
- alpha->r * y[i__2].i + alpha->i * y[i__2].r;
- temp.r = z__1.r, temp.i = z__1.i;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = i__;
- z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i =
- x[i__5].r * temp.i + x[i__5].i * temp.r;
- z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L10: */
- }
- }
- jy += *incy;
-/* L20: */
- }
- } else {
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*m - 1) * *incx;
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jy;
- if (y[i__2].r != 0. || y[i__2].i != 0.) {
- i__2 = jy;
- z__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, z__1.i =
- alpha->r * y[i__2].i + alpha->i * y[i__2].r;
- temp.r = z__1.r, temp.i = z__1.i;
- ix = kx;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = ix;
- z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i =
- x[i__5].r * temp.i + x[i__5].i * temp.r;
- z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- ix += *incx;
-/* L30: */
- }
- }
- jy += *incy;
-/* L40: */
- }
- }
-
- return 0;
-
-/* End of ZGERU . */
-
-} /* zgeru_ */
-
-/* Subroutine */ int zhemv_(char *uplo, integer *n, doublecomplex *alpha,
- doublecomplex *a, integer *lda, doublecomplex *x, integer *incx,
- doublecomplex *beta, doublecomplex *y, integer *incy)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, ix, iy, jx, jy, kx, ky, info;
- static doublecomplex temp1, temp2;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- ZHEMV performs the matrix-vector operation
-
- y := alpha*A*x + beta*y,
-
- where alpha and beta are scalars, x and y are n element vectors and
- A is an n by n hermitian matrix.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the upper or lower
- triangular part of the array A is to be referenced as
- follows:
-
- UPLO = 'U' or 'u' Only the upper triangular part of A
- is to be referenced.
-
- UPLO = 'L' or 'l' Only the lower triangular part of A
- is to be referenced.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- ALPHA - COMPLEX*16 .
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array A must contain the upper
- triangular part of the hermitian matrix and the strictly
- lower triangular part of A is not referenced.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array A must contain the lower
- triangular part of the hermitian matrix and the strictly
- upper triangular part of A is not referenced.
- Note that the imaginary parts of the diagonal elements need
- not be set and are assumed to be zero.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, n ).
- Unchanged on exit.
-
- X - COMPLEX*16 array of dimension at least
- ( 1 + ( n - 1 )*abs( INCX ) ).
- Before entry, the incremented array X must contain the n
- element vector x.
- Unchanged on exit.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
- BETA - COMPLEX*16 .
- On entry, BETA specifies the scalar beta. When BETA is
- supplied as zero then Y need not be set on input.
- Unchanged on exit.
-
- Y - COMPLEX*16 array of dimension at least
- ( 1 + ( n - 1 )*abs( INCY ) ).
- Before entry, the incremented array Y must contain the n
- element vector y. On exit, Y is overwritten by the updated
- vector y.
-
- INCY - INTEGER.
- On entry, INCY specifies the increment for the elements of
- Y. INCY must not be zero.
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --x;
- --y;
-
- /* Function Body */
- info = 0;
- if ((! lsame_(uplo, "U") && ! lsame_(uplo, "L"))) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*lda < max(1,*n)) {
- info = 5;
- } else if (*incx == 0) {
- info = 7;
- } else if (*incy == 0) {
- info = 10;
- }
- if (info != 0) {
- xerbla_("ZHEMV ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || ((alpha->r == 0. && alpha->i == 0.) && ((beta->r == 1. &&
- beta->i == 0.)))) {
- return 0;
- }
-
-/* Set up the start points in X and Y. */
-
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through the triangular part
- of A.
-
- First form y := beta*y.
-*/
-
- if (beta->r != 1. || beta->i != 0.) {
- if (*incy == 1) {
- if ((beta->r == 0. && beta->i == 0.)) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- y[i__2].r = 0., y[i__2].i = 0.;
-/* L10: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if ((beta->r == 0. && beta->i == 0.)) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- y[i__2].r = 0., y[i__2].i = 0.;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- i__3 = iy;
- z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if ((alpha->r == 0. && alpha->i == 0.)) {
- return 0;
- }
- if (lsame_(uplo, "U")) {
-
-/* Form y when A is stored in upper triangle. */
-
- if ((*incx == 1 && *incy == 1)) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = i__ + j * a_dim1;
- z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__3 = i__;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
- z__3.r * x[i__3].i + z__3.i * x[i__3].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
-/* L50: */
- }
- i__2 = j;
- i__3 = j;
- i__4 = j + j * a_dim1;
- d__1 = a[i__4].r;
- z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
- z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
- z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
-/* L60: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- ix = kx;
- iy = ky;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = iy;
- i__4 = iy;
- i__5 = i__ + j * a_dim1;
- z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__3 = ix;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
- z__3.r * x[i__3].i + z__3.i * x[i__3].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
- ix += *incx;
- iy += *incy;
-/* L70: */
- }
- i__2 = jy;
- i__3 = jy;
- i__4 = j + j * a_dim1;
- d__1 = a[i__4].r;
- z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
- z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
- z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- jx += *incx;
- jy += *incy;
-/* L80: */
- }
- }
- } else {
-
-/* Form y when A is stored in lower triangle. */
-
- if ((*incx == 1 && *incy == 1)) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- i__2 = j;
- i__3 = j;
- i__4 = j + j * a_dim1;
- d__1 = a[i__4].r;
- z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = i__ + j * a_dim1;
- z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__3 = i__;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
- z__3.r * x[i__3].i + z__3.i * x[i__3].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
-/* L90: */
- }
- i__2 = j;
- i__3 = j;
- z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
-/* L100: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- i__2 = jy;
- i__3 = jy;
- i__4 = j + j * a_dim1;
- d__1 = a[i__4].r;
- z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- ix = jx;
- iy = jy;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- ix += *incx;
- iy += *incy;
- i__3 = iy;
- i__4 = iy;
- i__5 = i__ + j * a_dim1;
- z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__3 = ix;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
- z__3.r * x[i__3].i + z__3.i * x[i__3].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
-/* L110: */
- }
- i__2 = jy;
- i__3 = jy;
- z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- jx += *incx;
- jy += *incy;
-/* L120: */
- }
- }
- }
-
- return 0;
-
-/* End of ZHEMV . */
-
-} /* zhemv_ */
-
-/* Subroutine */ int zher2_(char *uplo, integer *n, doublecomplex *alpha,
- doublecomplex *x, integer *incx, doublecomplex *y, integer *incy,
- doublecomplex *a, integer *lda)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, ix, iy, jx, jy, kx, ky, info;
- static doublecomplex temp1, temp2;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- ZHER2 performs the hermitian rank 2 operation
-
- A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
-
- where alpha is a scalar, x and y are n element vectors and A is an n
- by n hermitian matrix.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the upper or lower
- triangular part of the array A is to be referenced as
- follows:
-
- UPLO = 'U' or 'u' Only the upper triangular part of A
- is to be referenced.
-
- UPLO = 'L' or 'l' Only the lower triangular part of A
- is to be referenced.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- ALPHA - COMPLEX*16 .
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- X - COMPLEX*16 array of dimension at least
- ( 1 + ( n - 1 )*abs( INCX ) ).
- Before entry, the incremented array X must contain the n
- element vector x.
- Unchanged on exit.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
- Y - COMPLEX*16 array of dimension at least
- ( 1 + ( n - 1 )*abs( INCY ) ).
- Before entry, the incremented array Y must contain the n
- element vector y.
- Unchanged on exit.
-
- INCY - INTEGER.
- On entry, INCY specifies the increment for the elements of
- Y. INCY must not be zero.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array A must contain the upper
- triangular part of the hermitian matrix and the strictly
- lower triangular part of A is not referenced. On exit, the
- upper triangular part of the array A is overwritten by the
- upper triangular part of the updated matrix.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array A must contain the lower
- triangular part of the hermitian matrix and the strictly
- upper triangular part of A is not referenced. On exit, the
- lower triangular part of the array A is overwritten by the
- lower triangular part of the updated matrix.
- Note that the imaginary parts of the diagonal elements need
- not be set, they are assumed to be zero, and on exit they
- are set to zero.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, n ).
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --x;
- --y;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- info = 0;
- if ((! lsame_(uplo, "U") && ! lsame_(uplo, "L"))) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 5;
- } else if (*incy == 0) {
- info = 7;
- } else if (*lda < max(1,*n)) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("ZHER2 ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || (alpha->r == 0. && alpha->i == 0.)) {
- return 0;
- }
-
-/*
- Set up the start points in X and Y if the increments are not both
- unity.
-*/
-
- if (*incx != 1 || *incy != 1) {
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
- jx = kx;
- jy = ky;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through the triangular part
- of A.
-*/
-
- if (lsame_(uplo, "U")) {
-
-/* Form A when A is stored in the upper triangle. */
-
- if ((*incx == 1 && *incy == 1)) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- i__3 = j;
- if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. ||
- y[i__3].i != 0.)) {
- d_cnjg(&z__2, &y[j]);
- z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
- alpha->r * z__2.i + alpha->i * z__2.r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- i__2 = j;
- z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
- z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
- .r;
- d_cnjg(&z__1, &z__2);
- temp2.r = z__1.r, temp2.i = z__1.i;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = i__;
- z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
- z__3.i = x[i__5].r * temp1.i + x[i__5].i *
- temp1.r;
- z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
- z__3.i;
- i__6 = i__;
- z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
- z__4.i = y[i__6].r * temp2.i + y[i__6].i *
- temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L10: */
- }
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- i__4 = j;
- z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
- z__2.i = x[i__4].r * temp1.i + x[i__4].i *
- temp1.r;
- i__5 = j;
- z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
- z__3.i = y[i__5].r * temp2.i + y[i__5].i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- d__1 = a[i__3].r + z__1.r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- } else {
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- }
-/* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- i__3 = jy;
- if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. ||
- y[i__3].i != 0.)) {
- d_cnjg(&z__2, &y[jy]);
- z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
- alpha->r * z__2.i + alpha->i * z__2.r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- i__2 = jx;
- z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
- z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
- .r;
- d_cnjg(&z__1, &z__2);
- temp2.r = z__1.r, temp2.i = z__1.i;
- ix = kx;
- iy = ky;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = ix;
- z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
- z__3.i = x[i__5].r * temp1.i + x[i__5].i *
- temp1.r;
- z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
- z__3.i;
- i__6 = iy;
- z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
- z__4.i = y[i__6].r * temp2.i + y[i__6].i *
- temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- ix += *incx;
- iy += *incy;
-/* L30: */
- }
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- i__4 = jx;
- z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
- z__2.i = x[i__4].r * temp1.i + x[i__4].i *
- temp1.r;
- i__5 = jy;
- z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
- z__3.i = y[i__5].r * temp2.i + y[i__5].i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- d__1 = a[i__3].r + z__1.r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- } else {
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- }
- jx += *incx;
- jy += *incy;
-/* L40: */
- }
- }
- } else {
-
-/* Form A when A is stored in the lower triangle. */
-
- if ((*incx == 1 && *incy == 1)) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- i__3 = j;
- if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. ||
- y[i__3].i != 0.)) {
- d_cnjg(&z__2, &y[j]);
- z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
- alpha->r * z__2.i + alpha->i * z__2.r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- i__2 = j;
- z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
- z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
- .r;
- d_cnjg(&z__1, &z__2);
- temp2.r = z__1.r, temp2.i = z__1.i;
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- i__4 = j;
- z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
- z__2.i = x[i__4].r * temp1.i + x[i__4].i *
- temp1.r;
- i__5 = j;
- z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
- z__3.i = y[i__5].r * temp2.i + y[i__5].i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- d__1 = a[i__3].r + z__1.r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = i__;
- z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
- z__3.i = x[i__5].r * temp1.i + x[i__5].i *
- temp1.r;
- z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
- z__3.i;
- i__6 = i__;
- z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
- z__4.i = y[i__6].r * temp2.i + y[i__6].i *
- temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L50: */
- }
- } else {
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- }
-/* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- i__3 = jy;
- if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. ||
- y[i__3].i != 0.)) {
- d_cnjg(&z__2, &y[jy]);
- z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
- alpha->r * z__2.i + alpha->i * z__2.r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- i__2 = jx;
- z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
- z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
- .r;
- d_cnjg(&z__1, &z__2);
- temp2.r = z__1.r, temp2.i = z__1.i;
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- i__4 = jx;
- z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
- z__2.i = x[i__4].r * temp1.i + x[i__4].i *
- temp1.r;
- i__5 = jy;
- z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
- z__3.i = y[i__5].r * temp2.i + y[i__5].i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- d__1 = a[i__3].r + z__1.r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- ix = jx;
- iy = jy;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- ix += *incx;
- iy += *incy;
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = ix;
- z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
- z__3.i = x[i__5].r * temp1.i + x[i__5].i *
- temp1.r;
- z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
- z__3.i;
- i__6 = iy;
- z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
- z__4.i = y[i__6].r * temp2.i + y[i__6].i *
- temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L70: */
- }
- } else {
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- }
- jx += *incx;
- jy += *incy;
-/* L80: */
- }
- }
- }
-
- return 0;
-
-/* End of ZHER2 . */
-
-} /* zher2_ */
-
-/* Subroutine */ int zher2k_(char *uplo, char *trans, integer *n, integer *k,
- doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *
- b, integer *ldb, doublereal *beta, doublecomplex *c__, integer *ldc)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
- i__3, i__4, i__5, i__6, i__7;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, l, info;
- static doublecomplex temp1, temp2;
- extern logical lsame_(char *, char *);
- static integer nrowa;
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- ZHER2K performs one of the hermitian rank 2k operations
-
- C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C,
-
- or
-
- C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C,
-
- where alpha and beta are scalars with beta real, C is an n by n
- hermitian matrix and A and B are n by k matrices in the first case
- and k by n matrices in the second case.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the upper or lower
- triangular part of the array C is to be referenced as
- follows:
-
- UPLO = 'U' or 'u' Only the upper triangular part of C
- is to be referenced.
-
- UPLO = 'L' or 'l' Only the lower triangular part of C
- is to be referenced.
-
- Unchanged on exit.
-
- TRANS - CHARACTER*1.
- On entry, TRANS specifies the operation to be performed as
- follows:
-
- TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) +
- conjg( alpha )*B*conjg( A' ) +
- beta*C.
-
- TRANS = 'C' or 'c' C := alpha*conjg( A' )*B +
- conjg( alpha )*conjg( B' )*A +
- beta*C.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix C. N must be
- at least zero.
- Unchanged on exit.
-
- K - INTEGER.
- On entry with TRANS = 'N' or 'n', K specifies the number
- of columns of the matrices A and B, and on entry with
- TRANS = 'C' or 'c', K specifies the number of rows of the
- matrices A and B. K must be at least zero.
- Unchanged on exit.
-
- ALPHA - COMPLEX*16 .
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
- k when TRANS = 'N' or 'n', and is n otherwise.
- Before entry with TRANS = 'N' or 'n', the leading n by k
- part of the array A must contain the matrix A, otherwise
- the leading k by n part of the array A must contain the
- matrix A.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. When TRANS = 'N' or 'n'
- then LDA must be at least max( 1, n ), otherwise LDA must
- be at least max( 1, k ).
- Unchanged on exit.
-
- B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is
- k when TRANS = 'N' or 'n', and is n otherwise.
- Before entry with TRANS = 'N' or 'n', the leading n by k
- part of the array B must contain the matrix B, otherwise
- the leading k by n part of the array B must contain the
- matrix B.
- Unchanged on exit.
-
- LDB - INTEGER.
- On entry, LDB specifies the first dimension of B as declared
- in the calling (sub) program. When TRANS = 'N' or 'n'
- then LDB must be at least max( 1, n ), otherwise LDB must
- be at least max( 1, k ).
- Unchanged on exit.
-
- BETA - DOUBLE PRECISION .
- On entry, BETA specifies the scalar beta.
- Unchanged on exit.
-
- C - COMPLEX*16 array of DIMENSION ( LDC, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array C must contain the upper
- triangular part of the hermitian matrix and the strictly
- lower triangular part of C is not referenced. On exit, the
- upper triangular part of the array C is overwritten by the
- upper triangular part of the updated matrix.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array C must contain the lower
- triangular part of the hermitian matrix and the strictly
- upper triangular part of C is not referenced. On exit, the
- lower triangular part of the array C is overwritten by the
- lower triangular part of the updated matrix.
- Note that the imaginary parts of the diagonal elements need
- not be set, they are assumed to be zero, and on exit they
- are set to zero.
-
- LDC - INTEGER.
- On entry, LDC specifies the first dimension of C as declared
- in the calling (sub) program. LDC must be at least
- max( 1, n ).
- Unchanged on exit.
-
-
- Level 3 Blas routine.
-
- -- Written on 8-February-1989.
- Jack Dongarra, Argonne National Laboratory.
- Iain Duff, AERE Harwell.
- Jeremy Du Croz, Numerical Algorithms Group Ltd.
- Sven Hammarling, Numerical Algorithms Group Ltd.
-
- -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
- Ed Anderson, Cray Research Inc.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
-
- /* Function Body */
- if (lsame_(trans, "N")) {
- nrowa = *n;
- } else {
- nrowa = *k;
- }
- upper = lsame_(uplo, "U");
-
- info = 0;
- if ((! upper && ! lsame_(uplo, "L"))) {
- info = 1;
- } else if ((! lsame_(trans, "N") && ! lsame_(trans,
- "C"))) {
- info = 2;
- } else if (*n < 0) {
- info = 3;
- } else if (*k < 0) {
- info = 4;
- } else if (*lda < max(1,nrowa)) {
- info = 7;
- } else if (*ldb < max(1,nrowa)) {
- info = 9;
- } else if (*ldc < max(1,*n)) {
- info = 12;
- }
- if (info != 0) {
- xerbla_("ZHER2K", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || (((alpha->r == 0. && alpha->i == 0.) || *k == 0) && *beta
- == 1.)) {
- return 0;
- }
-
-/* And when alpha.eq.zero. */
-
- if ((alpha->r == 0. && alpha->i == 0.)) {
- if (upper) {
- if (*beta == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L10: */
- }
-/* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
- i__4].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L30: */
- }
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = *beta * c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
-/* L40: */
- }
- }
- } else {
- if (*beta == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L50: */
- }
-/* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = *beta * c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
- i__4].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L70: */
- }
-/* L80: */
- }
- }
- }
- return 0;
- }
-
-/* Start the operations. */
-
- if (lsame_(trans, "N")) {
-
-/*
- Form C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) +
- C.
-*/
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L90: */
- }
- } else if (*beta != 1.) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
- i__4].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L100: */
- }
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = *beta * c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- } else {
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- i__3 = j + l * a_dim1;
- i__4 = j + l * b_dim1;
- if (a[i__3].r != 0. || a[i__3].i != 0. || (b[i__4].r !=
- 0. || b[i__4].i != 0.)) {
- d_cnjg(&z__2, &b[j + l * b_dim1]);
- z__1.r = alpha->r * z__2.r - alpha->i * z__2.i,
- z__1.i = alpha->r * z__2.i + alpha->i *
- z__2.r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- i__3 = j + l * a_dim1;
- z__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
- z__2.i = alpha->r * a[i__3].i + alpha->i * a[
- i__3].r;
- d_cnjg(&z__1, &z__2);
- temp2.r = z__1.r, temp2.i = z__1.i;
- i__3 = j - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + l * a_dim1;
- z__3.r = a[i__6].r * temp1.r - a[i__6].i *
- temp1.i, z__3.i = a[i__6].r * temp1.i + a[
- i__6].i * temp1.r;
- z__2.r = c__[i__5].r + z__3.r, z__2.i = c__[i__5]
- .i + z__3.i;
- i__7 = i__ + l * b_dim1;
- z__4.r = b[i__7].r * temp2.r - b[i__7].i *
- temp2.i, z__4.i = b[i__7].r * temp2.i + b[
- i__7].i * temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i +
- z__4.i;
- c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
-/* L110: */
- }
- i__3 = j + j * c_dim1;
- i__4 = j + j * c_dim1;
- i__5 = j + l * a_dim1;
- z__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i,
- z__2.i = a[i__5].r * temp1.i + a[i__5].i *
- temp1.r;
- i__6 = j + l * b_dim1;
- z__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i,
- z__3.i = b[i__6].r * temp2.i + b[i__6].i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- d__1 = c__[i__4].r + z__1.r;
- c__[i__3].r = d__1, c__[i__3].i = 0.;
- }
-/* L120: */
- }
-/* L130: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L140: */
- }
- } else if (*beta != 1.) {
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
- i__4].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L150: */
- }
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = *beta * c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- } else {
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- i__3 = j + l * a_dim1;
- i__4 = j + l * b_dim1;
- if (a[i__3].r != 0. || a[i__3].i != 0. || (b[i__4].r !=
- 0. || b[i__4].i != 0.)) {
- d_cnjg(&z__2, &b[j + l * b_dim1]);
- z__1.r = alpha->r * z__2.r - alpha->i * z__2.i,
- z__1.i = alpha->r * z__2.i + alpha->i *
- z__2.r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- i__3 = j + l * a_dim1;
- z__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
- z__2.i = alpha->r * a[i__3].i + alpha->i * a[
- i__3].r;
- d_cnjg(&z__1, &z__2);
- temp2.r = z__1.r, temp2.i = z__1.i;
- i__3 = *n;
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + l * a_dim1;
- z__3.r = a[i__6].r * temp1.r - a[i__6].i *
- temp1.i, z__3.i = a[i__6].r * temp1.i + a[
- i__6].i * temp1.r;
- z__2.r = c__[i__5].r + z__3.r, z__2.i = c__[i__5]
- .i + z__3.i;
- i__7 = i__ + l * b_dim1;
- z__4.r = b[i__7].r * temp2.r - b[i__7].i *
- temp2.i, z__4.i = b[i__7].r * temp2.i + b[
- i__7].i * temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i +
- z__4.i;
- c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
-/* L160: */
- }
- i__3 = j + j * c_dim1;
- i__4 = j + j * c_dim1;
- i__5 = j + l * a_dim1;
- z__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i,
- z__2.i = a[i__5].r * temp1.i + a[i__5].i *
- temp1.r;
- i__6 = j + l * b_dim1;
- z__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i,
- z__3.i = b[i__6].r * temp2.i + b[i__6].i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- d__1 = c__[i__4].r + z__1.r;
- c__[i__3].r = d__1, c__[i__3].i = 0.;
- }
-/* L170: */
- }
-/* L180: */
- }
- }
- } else {
-
-/*
- Form C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A +
- C.
-*/
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp1.r = 0., temp1.i = 0.;
- temp2.r = 0., temp2.i = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- d_cnjg(&z__3, &a[l + i__ * a_dim1]);
- i__4 = l + j * b_dim1;
- z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
- z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
- .r;
- z__1.r = temp1.r + z__2.r, z__1.i = temp1.i + z__2.i;
- temp1.r = z__1.r, temp1.i = z__1.i;
- d_cnjg(&z__3, &b[l + i__ * b_dim1]);
- i__4 = l + j * a_dim1;
- z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i,
- z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4]
- .r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
-/* L190: */
- }
- if (i__ == j) {
- if (*beta == 0.) {
- i__3 = j + j * c_dim1;
- z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
- z__2.i = alpha->r * temp1.i + alpha->i *
- temp1.r;
- d_cnjg(&z__4, alpha);
- z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
- z__3.i = z__4.r * temp2.i + z__4.i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- d__1 = z__1.r;
- c__[i__3].r = d__1, c__[i__3].i = 0.;
- } else {
- i__3 = j + j * c_dim1;
- i__4 = j + j * c_dim1;
- z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
- z__2.i = alpha->r * temp1.i + alpha->i *
- temp1.r;
- d_cnjg(&z__4, alpha);
- z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
- z__3.i = z__4.r * temp2.i + z__4.i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- d__1 = *beta * c__[i__4].r + z__1.r;
- c__[i__3].r = d__1, c__[i__3].i = 0.;
- }
- } else {
- if (*beta == 0.) {
- i__3 = i__ + j * c_dim1;
- z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
- z__2.i = alpha->r * temp1.i + alpha->i *
- temp1.r;
- d_cnjg(&z__4, alpha);
- z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
- z__3.i = z__4.r * temp2.i + z__4.i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__3.r = *beta * c__[i__4].r, z__3.i = *beta *
- c__[i__4].i;
- z__4.r = alpha->r * temp1.r - alpha->i * temp1.i,
- z__4.i = alpha->r * temp1.i + alpha->i *
- temp1.r;
- z__2.r = z__3.r + z__4.r, z__2.i = z__3.i +
- z__4.i;
- d_cnjg(&z__6, alpha);
- z__5.r = z__6.r * temp2.r - z__6.i * temp2.i,
- z__5.i = z__6.r * temp2.i + z__6.i *
- temp2.r;
- z__1.r = z__2.r + z__5.r, z__1.i = z__2.i +
- z__5.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- }
- }
-/* L200: */
- }
-/* L210: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- temp1.r = 0., temp1.i = 0.;
- temp2.r = 0., temp2.i = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- d_cnjg(&z__3, &a[l + i__ * a_dim1]);
- i__4 = l + j * b_dim1;
- z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
- z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
- .r;
- z__1.r = temp1.r + z__2.r, z__1.i = temp1.i + z__2.i;
- temp1.r = z__1.r, temp1.i = z__1.i;
- d_cnjg(&z__3, &b[l + i__ * b_dim1]);
- i__4 = l + j * a_dim1;
- z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i,
- z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4]
- .r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
-/* L220: */
- }
- if (i__ == j) {
- if (*beta == 0.) {
- i__3 = j + j * c_dim1;
- z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
- z__2.i = alpha->r * temp1.i + alpha->i *
- temp1.r;
- d_cnjg(&z__4, alpha);
- z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
- z__3.i = z__4.r * temp2.i + z__4.i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- d__1 = z__1.r;
- c__[i__3].r = d__1, c__[i__3].i = 0.;
- } else {
- i__3 = j + j * c_dim1;
- i__4 = j + j * c_dim1;
- z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
- z__2.i = alpha->r * temp1.i + alpha->i *
- temp1.r;
- d_cnjg(&z__4, alpha);
- z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
- z__3.i = z__4.r * temp2.i + z__4.i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- d__1 = *beta * c__[i__4].r + z__1.r;
- c__[i__3].r = d__1, c__[i__3].i = 0.;
- }
- } else {
- if (*beta == 0.) {
- i__3 = i__ + j * c_dim1;
- z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
- z__2.i = alpha->r * temp1.i + alpha->i *
- temp1.r;
- d_cnjg(&z__4, alpha);
- z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
- z__3.i = z__4.r * temp2.i + z__4.i *
- temp2.r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__3.r = *beta * c__[i__4].r, z__3.i = *beta *
- c__[i__4].i;
- z__4.r = alpha->r * temp1.r - alpha->i * temp1.i,
- z__4.i = alpha->r * temp1.i + alpha->i *
- temp1.r;
- z__2.r = z__3.r + z__4.r, z__2.i = z__3.i +
- z__4.i;
- d_cnjg(&z__6, alpha);
- z__5.r = z__6.r * temp2.r - z__6.i * temp2.i,
- z__5.i = z__6.r * temp2.i + z__6.i *
- temp2.r;
- z__1.r = z__2.r + z__5.r, z__1.i = z__2.i +
- z__5.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- }
- }
-/* L230: */
- }
-/* L240: */
- }
- }
- }
-
- return 0;
-
-/* End of ZHER2K. */
-
-} /* zher2k_ */
-
-/* Subroutine */ int zherk_(char *uplo, char *trans, integer *n, integer *k,
- doublereal *alpha, doublecomplex *a, integer *lda, doublereal *beta,
- doublecomplex *c__, integer *ldc)
-{
- /* System generated locals */
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5,
- i__6;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, l, info;
- static doublecomplex temp;
- extern logical lsame_(char *, char *);
- static integer nrowa;
- static doublereal rtemp;
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- Purpose
- =======
-
- ZHERK performs one of the hermitian rank k operations
-
- C := alpha*A*conjg( A' ) + beta*C,
-
- or
-
- C := alpha*conjg( A' )*A + beta*C,
-
- where alpha and beta are real scalars, C is an n by n hermitian
- matrix and A is an n by k matrix in the first case and a k by n
- matrix in the second case.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the upper or lower
- triangular part of the array C is to be referenced as
- follows:
-
- UPLO = 'U' or 'u' Only the upper triangular part of C
- is to be referenced.
-
- UPLO = 'L' or 'l' Only the lower triangular part of C
- is to be referenced.
-
- Unchanged on exit.
-
- TRANS - CHARACTER*1.
- On entry, TRANS specifies the operation to be performed as
- follows:
-
- TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C.
-
- TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix C. N must be
- at least zero.
- Unchanged on exit.
-
- K - INTEGER.
- On entry with TRANS = 'N' or 'n', K specifies the number
- of columns of the matrix A, and on entry with
- TRANS = 'C' or 'c', K specifies the number of rows of the
- matrix A. K must be at least zero.
- Unchanged on exit.
-
- ALPHA - DOUBLE PRECISION .
- On entry, ALPHA specifies the scalar alpha.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
- k when TRANS = 'N' or 'n', and is n otherwise.
- Before entry with TRANS = 'N' or 'n', the leading n by k
- part of the array A must contain the matrix A, otherwise
- the leading k by n part of the array A must contain the
- matrix A.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. When TRANS = 'N' or 'n'
- then LDA must be at least max( 1, n ), otherwise LDA must
- be at least max( 1, k ).
- Unchanged on exit.
-
- BETA - DOUBLE PRECISION.
- On entry, BETA specifies the scalar beta.
- Unchanged on exit.
-
- C - COMPLEX*16 array of DIMENSION ( LDC, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array C must contain the upper
- triangular part of the hermitian matrix and the strictly
- lower triangular part of C is not referenced. On exit, the
- upper triangular part of the array C is overwritten by the
- upper triangular part of the updated matrix.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array C must contain the lower
- triangular part of the hermitian matrix and the strictly
- upper triangular part of C is not referenced. On exit, the
- lower triangular part of the array C is overwritten by the
- lower triangular part of the updated matrix.
- Note that the imaginary parts of the diagonal elements need
- not be set, they are assumed to be zero, and on exit they
- are set to zero.
-
- LDC - INTEGER.
- On entry, LDC specifies the first dimension of C as declared
- in the calling (sub) program. LDC must be at least
- max( 1, n ).
- Unchanged on exit.
-
-
- Level 3 Blas routine.
-
- -- Written on 8-February-1989.
- Jack Dongarra, Argonne National Laboratory.
- Iain Duff, AERE Harwell.
- Jeremy Du Croz, Numerical Algorithms Group Ltd.
- Sven Hammarling, Numerical Algorithms Group Ltd.
-
- -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
- Ed Anderson, Cray Research Inc.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
-
- /* Function Body */
- if (lsame_(trans, "N")) {
- nrowa = *n;
- } else {
- nrowa = *k;
- }
- upper = lsame_(uplo, "U");
-
- info = 0;
- if ((! upper && ! lsame_(uplo, "L"))) {
- info = 1;
- } else if ((! lsame_(trans, "N") && ! lsame_(trans,
- "C"))) {
- info = 2;
- } else if (*n < 0) {
- info = 3;
- } else if (*k < 0) {
- info = 4;
- } else if (*lda < max(1,nrowa)) {
- info = 7;
- } else if (*ldc < max(1,*n)) {
- info = 10;
- }
- if (info != 0) {
- xerbla_("ZHERK ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || ((*alpha == 0. || *k == 0) && *beta == 1.)) {
- return 0;
- }
-
-/* And when alpha.eq.zero. */
-
- if (*alpha == 0.) {
- if (upper) {
- if (*beta == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L10: */
- }
-/* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
- i__4].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L30: */
- }
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = *beta * c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
-/* L40: */
- }
- }
- } else {
- if (*beta == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L50: */
- }
-/* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = *beta * c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
- i__4].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L70: */
- }
-/* L80: */
- }
- }
- }
- return 0;
- }
-
-/* Start the operations. */
-
- if (lsame_(trans, "N")) {
-
-/* Form C := alpha*A*conjg( A' ) + beta*C. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L90: */
- }
- } else if (*beta != 1.) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
- i__4].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L100: */
- }
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = *beta * c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- } else {
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- i__3 = j + l * a_dim1;
- if (a[i__3].r != 0. || a[i__3].i != 0.) {
- d_cnjg(&z__2, &a[j + l * a_dim1]);
- z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- i__3 = j - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + l * a_dim1;
- z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
- z__2.i = temp.r * a[i__6].i + temp.i * a[
- i__6].r;
- z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
- .i + z__2.i;
- c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
-/* L110: */
- }
- i__3 = j + j * c_dim1;
- i__4 = j + j * c_dim1;
- i__5 = i__ + l * a_dim1;
- z__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__1.i = temp.r * a[i__5].i + temp.i * a[i__5]
- .r;
- d__1 = c__[i__4].r + z__1.r;
- c__[i__3].r = d__1, c__[i__3].i = 0.;
- }
-/* L120: */
- }
-/* L130: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0., c__[i__3].i = 0.;
-/* L140: */
- }
- } else if (*beta != 1.) {
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = *beta * c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
- i__4].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L150: */
- }
- } else {
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- i__3 = j + l * a_dim1;
- if (a[i__3].r != 0. || a[i__3].i != 0.) {
- d_cnjg(&z__2, &a[j + l * a_dim1]);
- z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- i__3 = j + j * c_dim1;
- i__4 = j + j * c_dim1;
- i__5 = j + l * a_dim1;
- z__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__1.i = temp.r * a[i__5].i + temp.i * a[i__5]
- .r;
- d__1 = c__[i__4].r + z__1.r;
- c__[i__3].r = d__1, c__[i__3].i = 0.;
- i__3 = *n;
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + l * a_dim1;
- z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
- z__2.i = temp.r * a[i__6].i + temp.i * a[
- i__6].r;
- z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
- .i + z__2.i;
- c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
-/* L160: */
- }
- }
-/* L170: */
- }
-/* L180: */
- }
- }
- } else {
-
-/* Form C := alpha*conjg( A' )*A + beta*C. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0., temp.i = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- d_cnjg(&z__3, &a[l + i__ * a_dim1]);
- i__4 = l + j * a_dim1;
- z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i,
- z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4]
- .r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L190: */
- }
- if (*beta == 0.) {
- i__3 = i__ + j * c_dim1;
- z__1.r = *alpha * temp.r, z__1.i = *alpha * temp.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- z__2.r = *alpha * temp.r, z__2.i = *alpha * temp.i;
- i__4 = i__ + j * c_dim1;
- z__3.r = *beta * c__[i__4].r, z__3.i = *beta * c__[
- i__4].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- }
-/* L200: */
- }
- rtemp = 0.;
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- d_cnjg(&z__3, &a[l + j * a_dim1]);
- i__3 = l + j * a_dim1;
- z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i =
- z__3.r * a[i__3].i + z__3.i * a[i__3].r;
- z__1.r = rtemp + z__2.r, z__1.i = z__2.i;
- rtemp = z__1.r;
-/* L210: */
- }
- if (*beta == 0.) {
- i__2 = j + j * c_dim1;
- d__1 = *alpha * rtemp;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- } else {
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = *alpha * rtemp + *beta * c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- }
-/* L220: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- rtemp = 0.;
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- d_cnjg(&z__3, &a[l + j * a_dim1]);
- i__3 = l + j * a_dim1;
- z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i =
- z__3.r * a[i__3].i + z__3.i * a[i__3].r;
- z__1.r = rtemp + z__2.r, z__1.i = z__2.i;
- rtemp = z__1.r;
-/* L230: */
- }
- if (*beta == 0.) {
- i__2 = j + j * c_dim1;
- d__1 = *alpha * rtemp;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- } else {
- i__2 = j + j * c_dim1;
- i__3 = j + j * c_dim1;
- d__1 = *alpha * rtemp + *beta * c__[i__3].r;
- c__[i__2].r = d__1, c__[i__2].i = 0.;
- }
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- temp.r = 0., temp.i = 0.;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- d_cnjg(&z__3, &a[l + i__ * a_dim1]);
- i__4 = l + j * a_dim1;
- z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i,
- z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4]
- .r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L240: */
- }
- if (*beta == 0.) {
- i__3 = i__ + j * c_dim1;
- z__1.r = *alpha * temp.r, z__1.i = *alpha * temp.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- z__2.r = *alpha * temp.r, z__2.i = *alpha * temp.i;
- i__4 = i__ + j * c_dim1;
- z__3.r = *beta * c__[i__4].r, z__3.i = *beta * c__[
- i__4].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- }
-/* L250: */
- }
-/* L260: */
- }
- }
- }
-
- return 0;
-
-/* End of ZHERK . */
-
-} /* zherk_ */
-
-/* Subroutine */ int zscal_(integer *n, doublecomplex *za, doublecomplex *zx,
- integer *incx)
-{
- /* System generated locals */
- integer i__1, i__2, i__3;
- doublecomplex z__1;
-
- /* Local variables */
- static integer i__, ix;
-
-
-/*
- scales a vector by a constant.
- jack dongarra, 3/11/78.
- modified 3/93 to return if incx .le. 0.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --zx;
-
- /* Function Body */
- if (*n <= 0 || *incx <= 0) {
- return 0;
- }
- if (*incx == 1) {
- goto L20;
- }
-
-/* code for increment not equal to 1 */
-
- ix = 1;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = ix;
- i__3 = ix;
- z__1.r = za->r * zx[i__3].r - za->i * zx[i__3].i, z__1.i = za->r * zx[
- i__3].i + za->i * zx[i__3].r;
- zx[i__2].r = z__1.r, zx[i__2].i = z__1.i;
- ix += *incx;
-/* L10: */
- }
- return 0;
-
-/* code for increment equal to 1 */
-
-L20:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- z__1.r = za->r * zx[i__3].r - za->i * zx[i__3].i, z__1.i = za->r * zx[
- i__3].i + za->i * zx[i__3].r;
- zx[i__2].r = z__1.r, zx[i__2].i = z__1.i;
-/* L30: */
- }
- return 0;
-} /* zscal_ */
-
-/* Subroutine */ int zswap_(integer *n, doublecomplex *zx, integer *incx,
- doublecomplex *zy, integer *incy)
-{
- /* System generated locals */
- integer i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, ix, iy;
- static doublecomplex ztemp;
-
-
-/*
- interchanges two vectors.
- jack dongarra, 3/11/78.
- modified 12/3/93, array(1) declarations changed to array(*)
-*/
-
-
- /* Parameter adjustments */
- --zy;
- --zx;
-
- /* Function Body */
- if (*n <= 0) {
- return 0;
- }
- if ((*incx == 1 && *incy == 1)) {
- goto L20;
- }
-
-/*
- code for unequal increments or equal increments not equal
- to 1
-*/
-
- ix = 1;
- iy = 1;
- if (*incx < 0) {
- ix = (-(*n) + 1) * *incx + 1;
- }
- if (*incy < 0) {
- iy = (-(*n) + 1) * *incy + 1;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = ix;
- ztemp.r = zx[i__2].r, ztemp.i = zx[i__2].i;
- i__2 = ix;
- i__3 = iy;
- zx[i__2].r = zy[i__3].r, zx[i__2].i = zy[i__3].i;
- i__2 = iy;
- zy[i__2].r = ztemp.r, zy[i__2].i = ztemp.i;
- ix += *incx;
- iy += *incy;
-/* L10: */
- }
- return 0;
-
-/* code for both increments equal to 1 */
-L20:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- ztemp.r = zx[i__2].r, ztemp.i = zx[i__2].i;
- i__2 = i__;
- i__3 = i__;
- zx[i__2].r = zy[i__3].r, zx[i__2].i = zy[i__3].i;
- i__2 = i__;
- zy[i__2].r = ztemp.r, zy[i__2].i = ztemp.i;
-/* L30: */
- }
- return 0;
-} /* zswap_ */
-
-/* Subroutine */ int ztrmm_(char *side, char *uplo, char *transa, char *diag,
- integer *m, integer *n, doublecomplex *alpha, doublecomplex *a,
- integer *lda, doublecomplex *b, integer *ldb)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5,
- i__6;
- doublecomplex z__1, z__2, z__3;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, k, info;
- static doublecomplex temp;
- static logical lside;
- extern logical lsame_(char *, char *);
- static integer nrowa;
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical noconj, nounit;
-
-
-/*
- Purpose
- =======
-
- ZTRMM performs one of the matrix-matrix operations
-
- B := alpha*op( A )*B, or B := alpha*B*op( A )
-
- where alpha is a scalar, B is an m by n matrix, A is a unit, or
- non-unit, upper or lower triangular matrix and op( A ) is one of
-
- op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
-
- Parameters
- ==========
-
- SIDE - CHARACTER*1.
- On entry, SIDE specifies whether op( A ) multiplies B from
- the left or right as follows:
-
- SIDE = 'L' or 'l' B := alpha*op( A )*B.
-
- SIDE = 'R' or 'r' B := alpha*B*op( A ).
-
- Unchanged on exit.
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the matrix A is an upper or
- lower triangular matrix as follows:
-
- UPLO = 'U' or 'u' A is an upper triangular matrix.
-
- UPLO = 'L' or 'l' A is a lower triangular matrix.
-
- Unchanged on exit.
-
- TRANSA - CHARACTER*1.
- On entry, TRANSA specifies the form of op( A ) to be used in
- the matrix multiplication as follows:
-
- TRANSA = 'N' or 'n' op( A ) = A.
-
- TRANSA = 'T' or 't' op( A ) = A'.
-
- TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
-
- Unchanged on exit.
-
- DIAG - CHARACTER*1.
- On entry, DIAG specifies whether or not A is unit triangular
- as follows:
-
- DIAG = 'U' or 'u' A is assumed to be unit triangular.
-
- DIAG = 'N' or 'n' A is not assumed to be unit
- triangular.
-
- Unchanged on exit.
-
- M - INTEGER.
- On entry, M specifies the number of rows of B. M must be at
- least zero.
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the number of columns of B. N must be
- at least zero.
- Unchanged on exit.
-
- ALPHA - COMPLEX*16 .
- On entry, ALPHA specifies the scalar alpha. When alpha is
- zero then A is not referenced and B need not be set before
- entry.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m
- when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
- Before entry with UPLO = 'U' or 'u', the leading k by k
- upper triangular part of the array A must contain the upper
- triangular matrix and the strictly lower triangular part of
- A is not referenced.
- Before entry with UPLO = 'L' or 'l', the leading k by k
- lower triangular part of the array A must contain the lower
- triangular matrix and the strictly upper triangular part of
- A is not referenced.
- Note that when DIAG = 'U' or 'u', the diagonal elements of
- A are not referenced either, but are assumed to be unity.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. When SIDE = 'L' or 'l' then
- LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
- then LDA must be at least max( 1, n ).
- Unchanged on exit.
-
- B - COMPLEX*16 array of DIMENSION ( LDB, n ).
- Before entry, the leading m by n part of the array B must
- contain the matrix B, and on exit is overwritten by the
- transformed matrix.
-
- LDB - INTEGER.
- On entry, LDB specifies the first dimension of B as declared
- in the calling (sub) program. LDB must be at least
- max( 1, m ).
- Unchanged on exit.
-
-
- Level 3 Blas routine.
-
- -- Written on 8-February-1989.
- Jack Dongarra, Argonne National Laboratory.
- Iain Duff, AERE Harwell.
- Jeremy Du Croz, Numerical Algorithms Group Ltd.
- Sven Hammarling, Numerical Algorithms Group Ltd.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- lside = lsame_(side, "L");
- if (lside) {
- nrowa = *m;
- } else {
- nrowa = *n;
- }
- noconj = lsame_(transa, "T");
- nounit = lsame_(diag, "N");
- upper = lsame_(uplo, "U");
-
- info = 0;
- if ((! lside && ! lsame_(side, "R"))) {
- info = 1;
- } else if ((! upper && ! lsame_(uplo, "L"))) {
- info = 2;
- } else if (((! lsame_(transa, "N") && ! lsame_(
- transa, "T")) && ! lsame_(transa, "C"))) {
- info = 3;
- } else if ((! lsame_(diag, "U") && ! lsame_(diag,
- "N"))) {
- info = 4;
- } else if (*m < 0) {
- info = 5;
- } else if (*n < 0) {
- info = 6;
- } else if (*lda < max(1,nrowa)) {
- info = 9;
- } else if (*ldb < max(1,*m)) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("ZTRMM ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
-/* And when alpha.eq.zero. */
-
- if ((alpha->r == 0. && alpha->i == 0.)) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- b[i__3].r = 0., b[i__3].i = 0.;
-/* L10: */
- }
-/* L20: */
- }
- return 0;
- }
-
-/* Start the operations. */
-
- if (lside) {
- if (lsame_(transa, "N")) {
-
-/* Form B := alpha*A*B. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (k = 1; k <= i__2; ++k) {
- i__3 = k + j * b_dim1;
- if (b[i__3].r != 0. || b[i__3].i != 0.) {
- i__3 = k + j * b_dim1;
- z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3]
- .i, z__1.i = alpha->r * b[i__3].i +
- alpha->i * b[i__3].r;
- temp.r = z__1.r, temp.i = z__1.i;
- i__3 = k - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + j * b_dim1;
- i__6 = i__ + k * a_dim1;
- z__2.r = temp.r * a[i__6].r - temp.i * a[i__6]
- .i, z__2.i = temp.r * a[i__6].i +
- temp.i * a[i__6].r;
- z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5]
- .i + z__2.i;
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
-/* L30: */
- }
- if (nounit) {
- i__3 = k + k * a_dim1;
- z__1.r = temp.r * a[i__3].r - temp.i * a[i__3]
- .i, z__1.i = temp.r * a[i__3].i +
- temp.i * a[i__3].r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__3 = k + j * b_dim1;
- b[i__3].r = temp.r, b[i__3].i = temp.i;
- }
-/* L40: */
- }
-/* L50: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (k = *m; k >= 1; --k) {
- i__2 = k + j * b_dim1;
- if (b[i__2].r != 0. || b[i__2].i != 0.) {
- i__2 = k + j * b_dim1;
- z__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2]
- .i, z__1.i = alpha->r * b[i__2].i +
- alpha->i * b[i__2].r;
- temp.r = z__1.r, temp.i = z__1.i;
- i__2 = k + j * b_dim1;
- b[i__2].r = temp.r, b[i__2].i = temp.i;
- if (nounit) {
- i__2 = k + j * b_dim1;
- i__3 = k + j * b_dim1;
- i__4 = k + k * a_dim1;
- z__1.r = b[i__3].r * a[i__4].r - b[i__3].i *
- a[i__4].i, z__1.i = b[i__3].r * a[
- i__4].i + b[i__3].i * a[i__4].r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- }
- i__2 = *m;
- for (i__ = k + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + k * a_dim1;
- z__2.r = temp.r * a[i__5].r - temp.i * a[i__5]
- .i, z__2.i = temp.r * a[i__5].i +
- temp.i * a[i__5].r;
- z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4]
- .i + z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L60: */
- }
- }
-/* L70: */
- }
-/* L80: */
- }
- }
- } else {
-
-/* Form B := alpha*A'*B or B := alpha*conjg( A' )*B. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (i__ = *m; i__ >= 1; --i__) {
- i__2 = i__ + j * b_dim1;
- temp.r = b[i__2].r, temp.i = b[i__2].i;
- if (noconj) {
- if (nounit) {
- i__2 = i__ + i__ * a_dim1;
- z__1.r = temp.r * a[i__2].r - temp.i * a[i__2]
- .i, z__1.i = temp.r * a[i__2].i +
- temp.i * a[i__2].r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = i__ - 1;
- for (k = 1; k <= i__2; ++k) {
- i__3 = k + i__ * a_dim1;
- i__4 = k + j * b_dim1;
- z__2.r = a[i__3].r * b[i__4].r - a[i__3].i *
- b[i__4].i, z__2.i = a[i__3].r * b[
- i__4].i + a[i__3].i * b[i__4].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L90: */
- }
- } else {
- if (nounit) {
- d_cnjg(&z__2, &a[i__ + i__ * a_dim1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = i__ - 1;
- for (k = 1; k <= i__2; ++k) {
- d_cnjg(&z__3, &a[k + i__ * a_dim1]);
- i__3 = k + j * b_dim1;
- z__2.r = z__3.r * b[i__3].r - z__3.i * b[i__3]
- .i, z__2.i = z__3.r * b[i__3].i +
- z__3.i * b[i__3].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L100: */
- }
- }
- i__2 = i__ + j * b_dim1;
- z__1.r = alpha->r * temp.r - alpha->i * temp.i,
- z__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
-/* L110: */
- }
-/* L120: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- temp.r = b[i__3].r, temp.i = b[i__3].i;
- if (noconj) {
- if (nounit) {
- i__3 = i__ + i__ * a_dim1;
- z__1.r = temp.r * a[i__3].r - temp.i * a[i__3]
- .i, z__1.i = temp.r * a[i__3].i +
- temp.i * a[i__3].r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__3 = *m;
- for (k = i__ + 1; k <= i__3; ++k) {
- i__4 = k + i__ * a_dim1;
- i__5 = k + j * b_dim1;
- z__2.r = a[i__4].r * b[i__5].r - a[i__4].i *
- b[i__5].i, z__2.i = a[i__4].r * b[
- i__5].i + a[i__4].i * b[i__5].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L130: */
- }
- } else {
- if (nounit) {
- d_cnjg(&z__2, &a[i__ + i__ * a_dim1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__3 = *m;
- for (k = i__ + 1; k <= i__3; ++k) {
- d_cnjg(&z__3, &a[k + i__ * a_dim1]);
- i__4 = k + j * b_dim1;
- z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4]
- .i, z__2.i = z__3.r * b[i__4].i +
- z__3.i * b[i__4].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L140: */
- }
- }
- i__3 = i__ + j * b_dim1;
- z__1.r = alpha->r * temp.r - alpha->i * temp.i,
- z__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L150: */
- }
-/* L160: */
- }
- }
- }
- } else {
- if (lsame_(transa, "N")) {
-
-/* Form B := alpha*B*A. */
-
- if (upper) {
- for (j = *n; j >= 1; --j) {
- temp.r = alpha->r, temp.i = alpha->i;
- if (nounit) {
- i__1 = j + j * a_dim1;
- z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
- z__1.i = temp.r * a[i__1].i + temp.i * a[i__1]
- .r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + j * b_dim1;
- z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
- z__1.i = temp.r * b[i__3].i + temp.i * b[i__3]
- .r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
-/* L170: */
- }
- i__1 = j - 1;
- for (k = 1; k <= i__1; ++k) {
- i__2 = k + j * a_dim1;
- if (a[i__2].r != 0. || a[i__2].i != 0.) {
- i__2 = k + j * a_dim1;
- z__1.r = alpha->r * a[i__2].r - alpha->i * a[i__2]
- .i, z__1.i = alpha->r * a[i__2].i +
- alpha->i * a[i__2].r;
- temp.r = z__1.r, temp.i = z__1.i;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + k * b_dim1;
- z__2.r = temp.r * b[i__5].r - temp.i * b[i__5]
- .i, z__2.i = temp.r * b[i__5].i +
- temp.i * b[i__5].r;
- z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4]
- .i + z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L180: */
- }
- }
-/* L190: */
- }
-/* L200: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp.r = alpha->r, temp.i = alpha->i;
- if (nounit) {
- i__2 = j + j * a_dim1;
- z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
- z__1.i = temp.r * a[i__2].i + temp.i * a[i__2]
- .r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
- z__1.i = temp.r * b[i__4].i + temp.i * b[i__4]
- .r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L210: */
- }
- i__2 = *n;
- for (k = j + 1; k <= i__2; ++k) {
- i__3 = k + j * a_dim1;
- if (a[i__3].r != 0. || a[i__3].i != 0.) {
- i__3 = k + j * a_dim1;
- z__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3]
- .i, z__1.i = alpha->r * a[i__3].i +
- alpha->i * a[i__3].r;
- temp.r = z__1.r, temp.i = z__1.i;
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + j * b_dim1;
- i__6 = i__ + k * b_dim1;
- z__2.r = temp.r * b[i__6].r - temp.i * b[i__6]
- .i, z__2.i = temp.r * b[i__6].i +
- temp.i * b[i__6].r;
- z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5]
- .i + z__2.i;
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
-/* L220: */
- }
- }
-/* L230: */
- }
-/* L240: */
- }
- }
- } else {
-
-/* Form B := alpha*B*A' or B := alpha*B*conjg( A' ). */
-
- if (upper) {
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- i__2 = k - 1;
- for (j = 1; j <= i__2; ++j) {
- i__3 = j + k * a_dim1;
- if (a[i__3].r != 0. || a[i__3].i != 0.) {
- if (noconj) {
- i__3 = j + k * a_dim1;
- z__1.r = alpha->r * a[i__3].r - alpha->i * a[
- i__3].i, z__1.i = alpha->r * a[i__3]
- .i + alpha->i * a[i__3].r;
- temp.r = z__1.r, temp.i = z__1.i;
- } else {
- d_cnjg(&z__2, &a[j + k * a_dim1]);
- z__1.r = alpha->r * z__2.r - alpha->i *
- z__2.i, z__1.i = alpha->r * z__2.i +
- alpha->i * z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + j * b_dim1;
- i__6 = i__ + k * b_dim1;
- z__2.r = temp.r * b[i__6].r - temp.i * b[i__6]
- .i, z__2.i = temp.r * b[i__6].i +
- temp.i * b[i__6].r;
- z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5]
- .i + z__2.i;
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
-/* L250: */
- }
- }
-/* L260: */
- }
- temp.r = alpha->r, temp.i = alpha->i;
- if (nounit) {
- if (noconj) {
- i__2 = k + k * a_dim1;
- z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
- z__1.i = temp.r * a[i__2].i + temp.i * a[
- i__2].r;
- temp.r = z__1.r, temp.i = z__1.i;
- } else {
- d_cnjg(&z__2, &a[k + k * a_dim1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- if (temp.r != 1. || temp.i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + k * b_dim1;
- i__4 = i__ + k * b_dim1;
- z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
- z__1.i = temp.r * b[i__4].i + temp.i * b[
- i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L270: */
- }
- }
-/* L280: */
- }
- } else {
- for (k = *n; k >= 1; --k) {
- i__1 = *n;
- for (j = k + 1; j <= i__1; ++j) {
- i__2 = j + k * a_dim1;
- if (a[i__2].r != 0. || a[i__2].i != 0.) {
- if (noconj) {
- i__2 = j + k * a_dim1;
- z__1.r = alpha->r * a[i__2].r - alpha->i * a[
- i__2].i, z__1.i = alpha->r * a[i__2]
- .i + alpha->i * a[i__2].r;
- temp.r = z__1.r, temp.i = z__1.i;
- } else {
- d_cnjg(&z__2, &a[j + k * a_dim1]);
- z__1.r = alpha->r * z__2.r - alpha->i *
- z__2.i, z__1.i = alpha->r * z__2.i +
- alpha->i * z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + k * b_dim1;
- z__2.r = temp.r * b[i__5].r - temp.i * b[i__5]
- .i, z__2.i = temp.r * b[i__5].i +
- temp.i * b[i__5].r;
- z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4]
- .i + z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L290: */
- }
- }
-/* L300: */
- }
- temp.r = alpha->r, temp.i = alpha->i;
- if (nounit) {
- if (noconj) {
- i__1 = k + k * a_dim1;
- z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
- z__1.i = temp.r * a[i__1].i + temp.i * a[
- i__1].r;
- temp.r = z__1.r, temp.i = z__1.i;
- } else {
- d_cnjg(&z__2, &a[k + k * a_dim1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- if (temp.r != 1. || temp.i != 0.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + k * b_dim1;
- i__3 = i__ + k * b_dim1;
- z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
- z__1.i = temp.r * b[i__3].i + temp.i * b[
- i__3].r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
-/* L310: */
- }
- }
-/* L320: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of ZTRMM . */
-
-} /* ztrmm_ */
-
-/* Subroutine */ int ztrmv_(char *uplo, char *trans, char *diag, integer *n,
- doublecomplex *a, integer *lda, doublecomplex *x, integer *incx)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1, z__2, z__3;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, ix, jx, kx, info;
- static doublecomplex temp;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical noconj, nounit;
-
-
-/*
- Purpose
- =======
-
- ZTRMV performs one of the matrix-vector operations
-
- x := A*x, or x := A'*x, or x := conjg( A' )*x,
-
- where x is an n element vector and A is an n by n unit, or non-unit,
- upper or lower triangular matrix.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the matrix is an upper or
- lower triangular matrix as follows:
-
- UPLO = 'U' or 'u' A is an upper triangular matrix.
-
- UPLO = 'L' or 'l' A is a lower triangular matrix.
-
- Unchanged on exit.
-
- TRANS - CHARACTER*1.
- On entry, TRANS specifies the operation to be performed as
- follows:
-
- TRANS = 'N' or 'n' x := A*x.
-
- TRANS = 'T' or 't' x := A'*x.
-
- TRANS = 'C' or 'c' x := conjg( A' )*x.
-
- Unchanged on exit.
-
- DIAG - CHARACTER*1.
- On entry, DIAG specifies whether or not A is unit
- triangular as follows:
-
- DIAG = 'U' or 'u' A is assumed to be unit triangular.
-
- DIAG = 'N' or 'n' A is not assumed to be unit
- triangular.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array A must contain the upper
- triangular matrix and the strictly lower triangular part of
- A is not referenced.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array A must contain the lower
- triangular matrix and the strictly upper triangular part of
- A is not referenced.
- Note that when DIAG = 'U' or 'u', the diagonal elements of
- A are not referenced either, but are assumed to be unity.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, n ).
- Unchanged on exit.
-
- X - COMPLEX*16 array of dimension at least
- ( 1 + ( n - 1 )*abs( INCX ) ).
- Before entry, the incremented array X must contain the n
- element vector x. On exit, X is overwritten with the
- tranformed vector x.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --x;
-
- /* Function Body */
- info = 0;
- if ((! lsame_(uplo, "U") && ! lsame_(uplo, "L"))) {
- info = 1;
- } else if (((! lsame_(trans, "N") && ! lsame_(trans,
- "T")) && ! lsame_(trans, "C"))) {
- info = 2;
- } else if ((! lsame_(diag, "U") && ! lsame_(diag,
- "N"))) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*lda < max(1,*n)) {
- info = 6;
- } else if (*incx == 0) {
- info = 8;
- }
- if (info != 0) {
- xerbla_("ZTRMV ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
- noconj = lsame_(trans, "T");
- nounit = lsame_(diag, "N");
-
-/*
- Set up the start point in X if the increment is not unity. This
- will be ( N - 1 )*INCX too small for descending loops.
-*/
-
- if (*incx <= 0) {
- kx = 1 - (*n - 1) * *incx;
- } else if (*incx != 1) {
- kx = 1;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through A.
-*/
-
- if (lsame_(trans, "N")) {
-
-/* Form x := A*x. */
-
- if (lsame_(uplo, "U")) {
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- i__2 = j;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = i__ + j * a_dim1;
- z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__2.i = temp.r * a[i__5].i + temp.i * a[
- i__5].r;
- z__1.r = x[i__4].r + z__2.r, z__1.i = x[i__4].i +
- z__2.i;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
-/* L10: */
- }
- if (nounit) {
- i__2 = j;
- i__3 = j;
- i__4 = j + j * a_dim1;
- z__1.r = x[i__3].r * a[i__4].r - x[i__3].i * a[
- i__4].i, z__1.i = x[i__3].r * a[i__4].i +
- x[i__3].i * a[i__4].r;
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
- }
- }
-/* L20: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- i__2 = jx;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- ix = kx;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = ix;
- i__4 = ix;
- i__5 = i__ + j * a_dim1;
- z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__2.i = temp.r * a[i__5].i + temp.i * a[
- i__5].r;
- z__1.r = x[i__4].r + z__2.r, z__1.i = x[i__4].i +
- z__2.i;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- ix += *incx;
-/* L30: */
- }
- if (nounit) {
- i__2 = jx;
- i__3 = jx;
- i__4 = j + j * a_dim1;
- z__1.r = x[i__3].r * a[i__4].r - x[i__3].i * a[
- i__4].i, z__1.i = x[i__3].r * a[i__4].i +
- x[i__3].i * a[i__4].r;
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
- }
- }
- jx += *incx;
-/* L40: */
- }
- }
- } else {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- i__1 = j;
- if (x[i__1].r != 0. || x[i__1].i != 0.) {
- i__1 = j;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- i__1 = j + 1;
- for (i__ = *n; i__ >= i__1; --i__) {
- i__2 = i__;
- i__3 = i__;
- i__4 = i__ + j * a_dim1;
- z__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
- z__2.i = temp.r * a[i__4].i + temp.i * a[
- i__4].r;
- z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
- z__2.i;
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
-/* L50: */
- }
- if (nounit) {
- i__1 = j;
- i__2 = j;
- i__3 = j + j * a_dim1;
- z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
- i__3].i, z__1.i = x[i__2].r * a[i__3].i +
- x[i__2].i * a[i__3].r;
- x[i__1].r = z__1.r, x[i__1].i = z__1.i;
- }
- }
-/* L60: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- i__1 = jx;
- if (x[i__1].r != 0. || x[i__1].i != 0.) {
- i__1 = jx;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- ix = kx;
- i__1 = j + 1;
- for (i__ = *n; i__ >= i__1; --i__) {
- i__2 = ix;
- i__3 = ix;
- i__4 = i__ + j * a_dim1;
- z__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
- z__2.i = temp.r * a[i__4].i + temp.i * a[
- i__4].r;
- z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
- z__2.i;
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
- ix -= *incx;
-/* L70: */
- }
- if (nounit) {
- i__1 = jx;
- i__2 = jx;
- i__3 = j + j * a_dim1;
- z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
- i__3].i, z__1.i = x[i__2].r * a[i__3].i +
- x[i__2].i * a[i__3].r;
- x[i__1].r = z__1.r, x[i__1].i = z__1.i;
- }
- }
- jx -= *incx;
-/* L80: */
- }
- }
- }
- } else {
-
-/* Form x := A'*x or x := conjg( A' )*x. */
-
- if (lsame_(uplo, "U")) {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- i__1 = j;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- if (noconj) {
- if (nounit) {
- i__1 = j + j * a_dim1;
- z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
- z__1.i = temp.r * a[i__1].i + temp.i * a[
- i__1].r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- for (i__ = j - 1; i__ >= 1; --i__) {
- i__1 = i__ + j * a_dim1;
- i__2 = i__;
- z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
- i__2].i, z__2.i = a[i__1].r * x[i__2].i +
- a[i__1].i * x[i__2].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L90: */
- }
- } else {
- if (nounit) {
- d_cnjg(&z__2, &a[j + j * a_dim1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- for (i__ = j - 1; i__ >= 1; --i__) {
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__1 = i__;
- z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
- z__2.i = z__3.r * x[i__1].i + z__3.i * x[
- i__1].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L100: */
- }
- }
- i__1 = j;
- x[i__1].r = temp.r, x[i__1].i = temp.i;
-/* L110: */
- }
- } else {
- jx = kx + (*n - 1) * *incx;
- for (j = *n; j >= 1; --j) {
- i__1 = jx;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- ix = jx;
- if (noconj) {
- if (nounit) {
- i__1 = j + j * a_dim1;
- z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
- z__1.i = temp.r * a[i__1].i + temp.i * a[
- i__1].r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- for (i__ = j - 1; i__ >= 1; --i__) {
- ix -= *incx;
- i__1 = i__ + j * a_dim1;
- i__2 = ix;
- z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
- i__2].i, z__2.i = a[i__1].r * x[i__2].i +
- a[i__1].i * x[i__2].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L120: */
- }
- } else {
- if (nounit) {
- d_cnjg(&z__2, &a[j + j * a_dim1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- for (i__ = j - 1; i__ >= 1; --i__) {
- ix -= *incx;
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__1 = ix;
- z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
- z__2.i = z__3.r * x[i__1].i + z__3.i * x[
- i__1].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L130: */
- }
- }
- i__1 = jx;
- x[i__1].r = temp.r, x[i__1].i = temp.i;
- jx -= *incx;
-/* L140: */
- }
- }
- } else {
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- if (noconj) {
- if (nounit) {
- i__2 = j + j * a_dim1;
- z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
- z__1.i = temp.r * a[i__2].i + temp.i * a[
- i__2].r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__;
- z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
- i__4].i, z__2.i = a[i__3].r * x[i__4].i +
- a[i__3].i * x[i__4].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L150: */
- }
- } else {
- if (nounit) {
- d_cnjg(&z__2, &a[j + j * a_dim1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__3 = i__;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
- z__2.i = z__3.r * x[i__3].i + z__3.i * x[
- i__3].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L160: */
- }
- }
- i__2 = j;
- x[i__2].r = temp.r, x[i__2].i = temp.i;
-/* L170: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- ix = jx;
- if (noconj) {
- if (nounit) {
- i__2 = j + j * a_dim1;
- z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
- z__1.i = temp.r * a[i__2].i + temp.i * a[
- i__2].r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- ix += *incx;
- i__3 = i__ + j * a_dim1;
- i__4 = ix;
- z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
- i__4].i, z__2.i = a[i__3].r * x[i__4].i +
- a[i__3].i * x[i__4].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L180: */
- }
- } else {
- if (nounit) {
- d_cnjg(&z__2, &a[j + j * a_dim1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- ix += *incx;
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__3 = ix;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
- z__2.i = z__3.r * x[i__3].i + z__3.i * x[
- i__3].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L190: */
- }
- }
- i__2 = jx;
- x[i__2].r = temp.r, x[i__2].i = temp.i;
- jx += *incx;
-/* L200: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of ZTRMV . */
-
-} /* ztrmv_ */
-
-/* Subroutine */ int ztrsm_(char *side, char *uplo, char *transa, char *diag,
- integer *m, integer *n, doublecomplex *alpha, doublecomplex *a,
- integer *lda, doublecomplex *b, integer *ldb)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5,
- i__6, i__7;
- doublecomplex z__1, z__2, z__3;
-
- /* Builtin functions */
- void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(
- doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, k, info;
- static doublecomplex temp;
- static logical lside;
- extern logical lsame_(char *, char *);
- static integer nrowa;
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical noconj, nounit;
-
-
-/*
- Purpose
- =======
-
- ZTRSM solves one of the matrix equations
-
- op( A )*X = alpha*B, or X*op( A ) = alpha*B,
-
- where alpha is a scalar, X and B are m by n matrices, A is a unit, or
- non-unit, upper or lower triangular matrix and op( A ) is one of
-
- op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
-
- The matrix X is overwritten on B.
-
- Parameters
- ==========
-
- SIDE - CHARACTER*1.
- On entry, SIDE specifies whether op( A ) appears on the left
- or right of X as follows:
-
- SIDE = 'L' or 'l' op( A )*X = alpha*B.
-
- SIDE = 'R' or 'r' X*op( A ) = alpha*B.
-
- Unchanged on exit.
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the matrix A is an upper or
- lower triangular matrix as follows:
-
- UPLO = 'U' or 'u' A is an upper triangular matrix.
-
- UPLO = 'L' or 'l' A is a lower triangular matrix.
-
- Unchanged on exit.
-
- TRANSA - CHARACTER*1.
- On entry, TRANSA specifies the form of op( A ) to be used in
- the matrix multiplication as follows:
-
- TRANSA = 'N' or 'n' op( A ) = A.
-
- TRANSA = 'T' or 't' op( A ) = A'.
-
- TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
-
- Unchanged on exit.
-
- DIAG - CHARACTER*1.
- On entry, DIAG specifies whether or not A is unit triangular
- as follows:
-
- DIAG = 'U' or 'u' A is assumed to be unit triangular.
-
- DIAG = 'N' or 'n' A is not assumed to be unit
- triangular.
-
- Unchanged on exit.
-
- M - INTEGER.
- On entry, M specifies the number of rows of B. M must be at
- least zero.
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the number of columns of B. N must be
- at least zero.
- Unchanged on exit.
-
- ALPHA - COMPLEX*16 .
- On entry, ALPHA specifies the scalar alpha. When alpha is
- zero then A is not referenced and B need not be set before
- entry.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m
- when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
- Before entry with UPLO = 'U' or 'u', the leading k by k
- upper triangular part of the array A must contain the upper
- triangular matrix and the strictly lower triangular part of
- A is not referenced.
- Before entry with UPLO = 'L' or 'l', the leading k by k
- lower triangular part of the array A must contain the lower
- triangular matrix and the strictly upper triangular part of
- A is not referenced.
- Note that when DIAG = 'U' or 'u', the diagonal elements of
- A are not referenced either, but are assumed to be unity.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. When SIDE = 'L' or 'l' then
- LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
- then LDA must be at least max( 1, n ).
- Unchanged on exit.
-
- B - COMPLEX*16 array of DIMENSION ( LDB, n ).
- Before entry, the leading m by n part of the array B must
- contain the right-hand side matrix B, and on exit is
- overwritten by the solution matrix X.
-
- LDB - INTEGER.
- On entry, LDB specifies the first dimension of B as declared
- in the calling (sub) program. LDB must be at least
- max( 1, m ).
- Unchanged on exit.
-
-
- Level 3 Blas routine.
-
- -- Written on 8-February-1989.
- Jack Dongarra, Argonne National Laboratory.
- Iain Duff, AERE Harwell.
- Jeremy Du Croz, Numerical Algorithms Group Ltd.
- Sven Hammarling, Numerical Algorithms Group Ltd.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- lside = lsame_(side, "L");
- if (lside) {
- nrowa = *m;
- } else {
- nrowa = *n;
- }
- noconj = lsame_(transa, "T");
- nounit = lsame_(diag, "N");
- upper = lsame_(uplo, "U");
-
- info = 0;
- if ((! lside && ! lsame_(side, "R"))) {
- info = 1;
- } else if ((! upper && ! lsame_(uplo, "L"))) {
- info = 2;
- } else if (((! lsame_(transa, "N") && ! lsame_(
- transa, "T")) && ! lsame_(transa, "C"))) {
- info = 3;
- } else if ((! lsame_(diag, "U") && ! lsame_(diag,
- "N"))) {
- info = 4;
- } else if (*m < 0) {
- info = 5;
- } else if (*n < 0) {
- info = 6;
- } else if (*lda < max(1,nrowa)) {
- info = 9;
- } else if (*ldb < max(1,*m)) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("ZTRSM ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
-/* And when alpha.eq.zero. */
-
- if ((alpha->r == 0. && alpha->i == 0.)) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- b[i__3].r = 0., b[i__3].i = 0.;
-/* L10: */
- }
-/* L20: */
- }
- return 0;
- }
-
-/* Start the operations. */
-
- if (lside) {
- if (lsame_(transa, "N")) {
-
-/* Form B := alpha*inv( A )*B. */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (alpha->r != 1. || alpha->i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
- .i, z__1.i = alpha->r * b[i__4].i +
- alpha->i * b[i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L30: */
- }
- }
- for (k = *m; k >= 1; --k) {
- i__2 = k + j * b_dim1;
- if (b[i__2].r != 0. || b[i__2].i != 0.) {
- if (nounit) {
- i__2 = k + j * b_dim1;
- z_div(&z__1, &b[k + j * b_dim1], &a[k + k *
- a_dim1]);
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- }
- i__2 = k - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- i__5 = k + j * b_dim1;
- i__6 = i__ + k * a_dim1;
- z__2.r = b[i__5].r * a[i__6].r - b[i__5].i *
- a[i__6].i, z__2.i = b[i__5].r * a[
- i__6].i + b[i__5].i * a[i__6].r;
- z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4]
- .i - z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L40: */
- }
- }
-/* L50: */
- }
-/* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (alpha->r != 1. || alpha->i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
- .i, z__1.i = alpha->r * b[i__4].i +
- alpha->i * b[i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L70: */
- }
- }
- i__2 = *m;
- for (k = 1; k <= i__2; ++k) {
- i__3 = k + j * b_dim1;
- if (b[i__3].r != 0. || b[i__3].i != 0.) {
- if (nounit) {
- i__3 = k + j * b_dim1;
- z_div(&z__1, &b[k + j * b_dim1], &a[k + k *
- a_dim1]);
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- }
- i__3 = *m;
- for (i__ = k + 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + j * b_dim1;
- i__6 = k + j * b_dim1;
- i__7 = i__ + k * a_dim1;
- z__2.r = b[i__6].r * a[i__7].r - b[i__6].i *
- a[i__7].i, z__2.i = b[i__6].r * a[
- i__7].i + b[i__6].i * a[i__7].r;
- z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5]
- .i - z__2.i;
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
-/* L80: */
- }
- }
-/* L90: */
- }
-/* L100: */
- }
- }
- } else {
-
-/*
- Form B := alpha*inv( A' )*B
- or B := alpha*inv( conjg( A' ) )*B.
-*/
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
- z__1.i = alpha->r * b[i__3].i + alpha->i * b[
- i__3].r;
- temp.r = z__1.r, temp.i = z__1.i;
- if (noconj) {
- i__3 = i__ - 1;
- for (k = 1; k <= i__3; ++k) {
- i__4 = k + i__ * a_dim1;
- i__5 = k + j * b_dim1;
- z__2.r = a[i__4].r * b[i__5].r - a[i__4].i *
- b[i__5].i, z__2.i = a[i__4].r * b[
- i__5].i + a[i__4].i * b[i__5].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L110: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[i__ + i__ * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- i__3 = i__ - 1;
- for (k = 1; k <= i__3; ++k) {
- d_cnjg(&z__3, &a[k + i__ * a_dim1]);
- i__4 = k + j * b_dim1;
- z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4]
- .i, z__2.i = z__3.r * b[i__4].i +
- z__3.i * b[i__4].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L120: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[i__ + i__ * a_dim1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__3 = i__ + j * b_dim1;
- b[i__3].r = temp.r, b[i__3].i = temp.i;
-/* L130: */
- }
-/* L140: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (i__ = *m; i__ >= 1; --i__) {
- i__2 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2].i,
- z__1.i = alpha->r * b[i__2].i + alpha->i * b[
- i__2].r;
- temp.r = z__1.r, temp.i = z__1.i;
- if (noconj) {
- i__2 = *m;
- for (k = i__ + 1; k <= i__2; ++k) {
- i__3 = k + i__ * a_dim1;
- i__4 = k + j * b_dim1;
- z__2.r = a[i__3].r * b[i__4].r - a[i__3].i *
- b[i__4].i, z__2.i = a[i__3].r * b[
- i__4].i + a[i__3].i * b[i__4].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L150: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[i__ + i__ * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- i__2 = *m;
- for (k = i__ + 1; k <= i__2; ++k) {
- d_cnjg(&z__3, &a[k + i__ * a_dim1]);
- i__3 = k + j * b_dim1;
- z__2.r = z__3.r * b[i__3].r - z__3.i * b[i__3]
- .i, z__2.i = z__3.r * b[i__3].i +
- z__3.i * b[i__3].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L160: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[i__ + i__ * a_dim1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__2 = i__ + j * b_dim1;
- b[i__2].r = temp.r, b[i__2].i = temp.i;
-/* L170: */
- }
-/* L180: */
- }
- }
- }
- } else {
- if (lsame_(transa, "N")) {
-
-/* Form B := alpha*B*inv( A ). */
-
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (alpha->r != 1. || alpha->i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
- .i, z__1.i = alpha->r * b[i__4].i +
- alpha->i * b[i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L190: */
- }
- }
- i__2 = j - 1;
- for (k = 1; k <= i__2; ++k) {
- i__3 = k + j * a_dim1;
- if (a[i__3].r != 0. || a[i__3].i != 0.) {
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + j * b_dim1;
- i__6 = k + j * a_dim1;
- i__7 = i__ + k * b_dim1;
- z__2.r = a[i__6].r * b[i__7].r - a[i__6].i *
- b[i__7].i, z__2.i = a[i__6].r * b[
- i__7].i + a[i__6].i * b[i__7].r;
- z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5]
- .i - z__2.i;
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
-/* L200: */
- }
- }
-/* L210: */
- }
- if (nounit) {
- z_div(&z__1, &c_b359, &a[j + j * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
- z__1.i = temp.r * b[i__4].i + temp.i * b[
- i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L220: */
- }
- }
-/* L230: */
- }
- } else {
- for (j = *n; j >= 1; --j) {
- if (alpha->r != 1. || alpha->i != 0.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3]
- .i, z__1.i = alpha->r * b[i__3].i +
- alpha->i * b[i__3].r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
-/* L240: */
- }
- }
- i__1 = *n;
- for (k = j + 1; k <= i__1; ++k) {
- i__2 = k + j * a_dim1;
- if (a[i__2].r != 0. || a[i__2].i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- i__5 = k + j * a_dim1;
- i__6 = i__ + k * b_dim1;
- z__2.r = a[i__5].r * b[i__6].r - a[i__5].i *
- b[i__6].i, z__2.i = a[i__5].r * b[
- i__6].i + a[i__5].i * b[i__6].r;
- z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4]
- .i - z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L250: */
- }
- }
-/* L260: */
- }
- if (nounit) {
- z_div(&z__1, &c_b359, &a[j + j * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + j * b_dim1;
- z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
- z__1.i = temp.r * b[i__3].i + temp.i * b[
- i__3].r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
-/* L270: */
- }
- }
-/* L280: */
- }
- }
- } else {
-
-/*
- Form B := alpha*B*inv( A' )
- or B := alpha*B*inv( conjg( A' ) ).
-*/
-
- if (upper) {
- for (k = *n; k >= 1; --k) {
- if (nounit) {
- if (noconj) {
- z_div(&z__1, &c_b359, &a[k + k * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- } else {
- d_cnjg(&z__2, &a[k + k * a_dim1]);
- z_div(&z__1, &c_b359, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + k * b_dim1;
- i__3 = i__ + k * b_dim1;
- z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
- z__1.i = temp.r * b[i__3].i + temp.i * b[
- i__3].r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
-/* L290: */
- }
- }
- i__1 = k - 1;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + k * a_dim1;
- if (a[i__2].r != 0. || a[i__2].i != 0.) {
- if (noconj) {
- i__2 = j + k * a_dim1;
- temp.r = a[i__2].r, temp.i = a[i__2].i;
- } else {
- d_cnjg(&z__1, &a[j + k * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + k * b_dim1;
- z__2.r = temp.r * b[i__5].r - temp.i * b[i__5]
- .i, z__2.i = temp.r * b[i__5].i +
- temp.i * b[i__5].r;
- z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4]
- .i - z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L300: */
- }
- }
-/* L310: */
- }
- if (alpha->r != 1. || alpha->i != 0.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + k * b_dim1;
- i__3 = i__ + k * b_dim1;
- z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3]
- .i, z__1.i = alpha->r * b[i__3].i +
- alpha->i * b[i__3].r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
-/* L320: */
- }
- }
-/* L330: */
- }
- } else {
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (nounit) {
- if (noconj) {
- z_div(&z__1, &c_b359, &a[k + k * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- } else {
- d_cnjg(&z__2, &a[k + k * a_dim1]);
- z_div(&z__1, &c_b359, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + k * b_dim1;
- i__4 = i__ + k * b_dim1;
- z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
- z__1.i = temp.r * b[i__4].i + temp.i * b[
- i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L340: */
- }
- }
- i__2 = *n;
- for (j = k + 1; j <= i__2; ++j) {
- i__3 = j + k * a_dim1;
- if (a[i__3].r != 0. || a[i__3].i != 0.) {
- if (noconj) {
- i__3 = j + k * a_dim1;
- temp.r = a[i__3].r, temp.i = a[i__3].i;
- } else {
- d_cnjg(&z__1, &a[j + k * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + j * b_dim1;
- i__6 = i__ + k * b_dim1;
- z__2.r = temp.r * b[i__6].r - temp.i * b[i__6]
- .i, z__2.i = temp.r * b[i__6].i +
- temp.i * b[i__6].r;
- z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5]
- .i - z__2.i;
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
-/* L350: */
- }
- }
-/* L360: */
- }
- if (alpha->r != 1. || alpha->i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + k * b_dim1;
- i__4 = i__ + k * b_dim1;
- z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
- .i, z__1.i = alpha->r * b[i__4].i +
- alpha->i * b[i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L370: */
- }
- }
-/* L380: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of ZTRSM . */
-
-} /* ztrsm_ */
-
-/* Subroutine */ int ztrsv_(char *uplo, char *trans, char *diag, integer *n,
- doublecomplex *a, integer *lda, doublecomplex *x, integer *incx)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1, z__2, z__3;
-
- /* Builtin functions */
- void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(
- doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, ix, jx, kx, info;
- static doublecomplex temp;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical noconj, nounit;
-
-
-/*
- Purpose
- =======
-
- ZTRSV solves one of the systems of equations
-
- A*x = b, or A'*x = b, or conjg( A' )*x = b,
-
- where b and x are n element vectors and A is an n by n unit, or
- non-unit, upper or lower triangular matrix.
-
- No test for singularity or near-singularity is included in this
- routine. Such tests must be performed before calling this routine.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the matrix is an upper or
- lower triangular matrix as follows:
-
- UPLO = 'U' or 'u' A is an upper triangular matrix.
-
- UPLO = 'L' or 'l' A is a lower triangular matrix.
-
- Unchanged on exit.
-
- TRANS - CHARACTER*1.
- On entry, TRANS specifies the equations to be solved as
- follows:
-
- TRANS = 'N' or 'n' A*x = b.
-
- TRANS = 'T' or 't' A'*x = b.
-
- TRANS = 'C' or 'c' conjg( A' )*x = b.
-
- Unchanged on exit.
-
- DIAG - CHARACTER*1.
- On entry, DIAG specifies whether or not A is unit
- triangular as follows:
-
- DIAG = 'U' or 'u' A is assumed to be unit triangular.
-
- DIAG = 'N' or 'n' A is not assumed to be unit
- triangular.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- A - COMPLEX*16 array of DIMENSION ( LDA, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array A must contain the upper
- triangular matrix and the strictly lower triangular part of
- A is not referenced.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array A must contain the lower
- triangular matrix and the strictly upper triangular part of
- A is not referenced.
- Note that when DIAG = 'U' or 'u', the diagonal elements of
- A are not referenced either, but are assumed to be unity.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
- in the calling (sub) program. LDA must be at least
- max( 1, n ).
- Unchanged on exit.
-
- X - COMPLEX*16 array of dimension at least
- ( 1 + ( n - 1 )*abs( INCX ) ).
- Before entry, the incremented array X must contain the n
- element right-hand side vector b. On exit, X is overwritten
- with the solution vector x.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --x;
-
- /* Function Body */
- info = 0;
- if ((! lsame_(uplo, "U") && ! lsame_(uplo, "L"))) {
- info = 1;
- } else if (((! lsame_(trans, "N") && ! lsame_(trans,
- "T")) && ! lsame_(trans, "C"))) {
- info = 2;
- } else if ((! lsame_(diag, "U") && ! lsame_(diag,
- "N"))) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*lda < max(1,*n)) {
- info = 6;
- } else if (*incx == 0) {
- info = 8;
- }
- if (info != 0) {
- xerbla_("ZTRSV ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
- noconj = lsame_(trans, "T");
- nounit = lsame_(diag, "N");
-
-/*
- Set up the start point in X if the increment is not unity. This
- will be ( N - 1 )*INCX too small for descending loops.
-*/
-
- if (*incx <= 0) {
- kx = 1 - (*n - 1) * *incx;
- } else if (*incx != 1) {
- kx = 1;
- }
-
-/*
- Start the operations. In this version the elements of A are
- accessed sequentially with one pass through A.
-*/
-
- if (lsame_(trans, "N")) {
-
-/* Form x := inv( A )*x. */
-
- if (lsame_(uplo, "U")) {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- i__1 = j;
- if (x[i__1].r != 0. || x[i__1].i != 0.) {
- if (nounit) {
- i__1 = j;
- z_div(&z__1, &x[j], &a[j + j * a_dim1]);
- x[i__1].r = z__1.r, x[i__1].i = z__1.i;
- }
- i__1 = j;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- for (i__ = j - 1; i__ >= 1; --i__) {
- i__1 = i__;
- i__2 = i__;
- i__3 = i__ + j * a_dim1;
- z__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
- z__2.i = temp.r * a[i__3].i + temp.i * a[
- i__3].r;
- z__1.r = x[i__2].r - z__2.r, z__1.i = x[i__2].i -
- z__2.i;
- x[i__1].r = z__1.r, x[i__1].i = z__1.i;
-/* L10: */
- }
- }
-/* L20: */
- }
- } else {
- jx = kx + (*n - 1) * *incx;
- for (j = *n; j >= 1; --j) {
- i__1 = jx;
- if (x[i__1].r != 0. || x[i__1].i != 0.) {
- if (nounit) {
- i__1 = jx;
- z_div(&z__1, &x[jx], &a[j + j * a_dim1]);
- x[i__1].r = z__1.r, x[i__1].i = z__1.i;
- }
- i__1 = jx;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- ix = jx;
- for (i__ = j - 1; i__ >= 1; --i__) {
- ix -= *incx;
- i__1 = ix;
- i__2 = ix;
- i__3 = i__ + j * a_dim1;
- z__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
- z__2.i = temp.r * a[i__3].i + temp.i * a[
- i__3].r;
- z__1.r = x[i__2].r - z__2.r, z__1.i = x[i__2].i -
- z__2.i;
- x[i__1].r = z__1.r, x[i__1].i = z__1.i;
-/* L30: */
- }
- }
- jx -= *incx;
-/* L40: */
- }
- }
- } else {
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- if (nounit) {
- i__2 = j;
- z_div(&z__1, &x[j], &a[j + j * a_dim1]);
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
- }
- i__2 = j;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = i__ + j * a_dim1;
- z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__2.i = temp.r * a[i__5].i + temp.i * a[
- i__5].r;
- z__1.r = x[i__4].r - z__2.r, z__1.i = x[i__4].i -
- z__2.i;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
-/* L50: */
- }
- }
-/* L60: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- if (nounit) {
- i__2 = jx;
- z_div(&z__1, &x[jx], &a[j + j * a_dim1]);
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
- }
- i__2 = jx;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- ix = jx;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- ix += *incx;
- i__3 = ix;
- i__4 = ix;
- i__5 = i__ + j * a_dim1;
- z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__2.i = temp.r * a[i__5].i + temp.i * a[
- i__5].r;
- z__1.r = x[i__4].r - z__2.r, z__1.i = x[i__4].i -
- z__2.i;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
-/* L70: */
- }
- }
- jx += *incx;
-/* L80: */
- }
- }
- }
- } else {
-
-/* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. */
-
- if (lsame_(uplo, "U")) {
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- if (noconj) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__;
- z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
- i__4].i, z__2.i = a[i__3].r * x[i__4].i +
- a[i__3].i * x[i__4].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L90: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[j + j * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__3 = i__;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
- z__2.i = z__3.r * x[i__3].i + z__3.i * x[
- i__3].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L100: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[j + j * a_dim1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__2 = j;
- x[i__2].r = temp.r, x[i__2].i = temp.i;
-/* L110: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- ix = kx;
- i__2 = jx;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- if (noconj) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = ix;
- z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
- i__4].i, z__2.i = a[i__3].r * x[i__4].i +
- a[i__3].i * x[i__4].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix += *incx;
-/* L120: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[j + j * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__3 = ix;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
- z__2.i = z__3.r * x[i__3].i + z__3.i * x[
- i__3].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix += *incx;
-/* L130: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[j + j * a_dim1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__2 = jx;
- x[i__2].r = temp.r, x[i__2].i = temp.i;
- jx += *incx;
-/* L140: */
- }
- }
- } else {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- i__1 = j;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- if (noconj) {
- i__1 = j + 1;
- for (i__ = *n; i__ >= i__1; --i__) {
- i__2 = i__ + j * a_dim1;
- i__3 = i__;
- z__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[
- i__3].i, z__2.i = a[i__2].r * x[i__3].i +
- a[i__2].i * x[i__3].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L150: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[j + j * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- i__1 = j + 1;
- for (i__ = *n; i__ >= i__1; --i__) {
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__2 = i__;
- z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i,
- z__2.i = z__3.r * x[i__2].i + z__3.i * x[
- i__2].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L160: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[j + j * a_dim1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__1 = j;
- x[i__1].r = temp.r, x[i__1].i = temp.i;
-/* L170: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- ix = kx;
- i__1 = jx;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- if (noconj) {
- i__1 = j + 1;
- for (i__ = *n; i__ >= i__1; --i__) {
- i__2 = i__ + j * a_dim1;
- i__3 = ix;
- z__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[
- i__3].i, z__2.i = a[i__2].r * x[i__3].i +
- a[i__2].i * x[i__3].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix -= *incx;
-/* L180: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[j + j * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- i__1 = j + 1;
- for (i__ = *n; i__ >= i__1; --i__) {
- d_cnjg(&z__3, &a[i__ + j * a_dim1]);
- i__2 = ix;
- z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i,
- z__2.i = z__3.r * x[i__2].i + z__3.i * x[
- i__2].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix -= *incx;
-/* L190: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[j + j * a_dim1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__1 = jx;
- x[i__1].r = temp.r, x[i__1].i = temp.i;
- jx -= *incx;
-/* L200: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of ZTRSV . */
-
-} /* ztrsv_ */
-
diff --git a/numpy/linalg/bscript b/numpy/linalg/bscript
index 9905a81d3..dc275f085 100644
--- a/numpy/linalg/bscript
+++ b/numpy/linalg/bscript
@@ -10,11 +10,12 @@ def pbuild(context):
def build_lapack_lite(extension):
kw = {}
+ kw["uselib"] = "npymath"
if bld.env.HAS_LAPACK:
for s in ['python_xerbla.c', 'zlapack_lite.c', 'dlapack_lite.c',
'blas_lite.c', 'dlamch.c', 'f2c_lite.c']:
extension.sources.pop(extension.sources.index(s))
- kw["uselib"] = "LAPACK"
+ kw["uselib"] = "npymath LAPACK"
includes = ["../core/include", "../core/include/numpy", "../core",
"../core/src/private"]
@@ -22,3 +23,5 @@ def pbuild(context):
includes=includes,
**kw)
context.register_builder("lapack_lite", build_lapack_lite)
+ context.register_builder("umath_linalg", build_lapack_lite)
+
diff --git a/numpy/linalg/dlamch.c b/numpy/linalg/dlamch.c
deleted file mode 100644
index bf1dfdb05..000000000
--- a/numpy/linalg/dlamch.c
+++ /dev/null
@@ -1,951 +0,0 @@
-#include <stdio.h>
-#include "f2c.h"
-
-/* If config.h is available, we only need dlamc3 */
-#ifndef HAVE_CONFIG
-doublereal dlamch_(char *cmach)
-{
-/* -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLAMCH determines double precision machine parameters.
-
- Arguments
- =========
-
- CMACH (input) CHARACTER*1
- Specifies the value to be returned by DLAMCH:
- = 'E' or 'e', DLAMCH := eps
- = 'S' or 's , DLAMCH := sfmin
- = 'B' or 'b', DLAMCH := base
- = 'P' or 'p', DLAMCH := eps*base
- = 'N' or 'n', DLAMCH := t
- = 'R' or 'r', DLAMCH := rnd
- = 'M' or 'm', DLAMCH := emin
- = 'U' or 'u', DLAMCH := rmin
- = 'L' or 'l', DLAMCH := emax
- = 'O' or 'o', DLAMCH := rmax
-
- where
-
- eps = relative machine precision
- sfmin = safe minimum, such that 1/sfmin does not overflow
- base = base of the machine
- prec = eps*base
- t = number of (base) digits in the mantissa
- rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
- emin = minimum exponent before (gradual) underflow
- rmin = underflow threshold - base**(emin-1)
- emax = largest exponent before overflow
- rmax = overflow threshold - (base**emax)*(1-eps)
-
- =====================================================================
-*/
-/* >>Start of File<<
- Initialized data */
- static logical first = TRUE_;
- /* System generated locals */
- integer i__1;
- doublereal ret_val;
- /* Builtin functions */
- double pow_di(doublereal *, integer *);
- /* Local variables */
- static doublereal base;
- static integer beta;
- static doublereal emin, prec, emax;
- static integer imin, imax;
- static logical lrnd;
- static doublereal rmin, rmax, t, rmach;
- extern logical lsame_(char *, char *);
- static doublereal small, sfmin;
- extern /* Subroutine */ int dlamc2_(integer *, integer *, logical *,
- doublereal *, integer *, doublereal *, integer *, doublereal *);
- static integer it;
- static doublereal rnd, eps;
-
-
-
- if (first) {
- first = FALSE_;
- dlamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);
- base = (doublereal) beta;
- t = (doublereal) it;
- if (lrnd) {
- rnd = 1.;
- i__1 = 1 - it;
- eps = pow_di(&base, &i__1) / 2;
- } else {
- rnd = 0.;
- i__1 = 1 - it;
- eps = pow_di(&base, &i__1);
- }
- prec = eps * base;
- emin = (doublereal) imin;
- emax = (doublereal) imax;
- sfmin = rmin;
- small = 1. / rmax;
- if (small >= sfmin) {
-
-/* Use SMALL plus a bit, to avoid the possibility of rou
-nding
- causing overflow when computing 1/sfmin. */
-
- sfmin = small * (eps + 1.);
- }
- }
-
- if (lsame_(cmach, "E")) {
- rmach = eps;
- } else if (lsame_(cmach, "S")) {
- rmach = sfmin;
- } else if (lsame_(cmach, "B")) {
- rmach = base;
- } else if (lsame_(cmach, "P")) {
- rmach = prec;
- } else if (lsame_(cmach, "N")) {
- rmach = t;
- } else if (lsame_(cmach, "R")) {
- rmach = rnd;
- } else if (lsame_(cmach, "M")) {
- rmach = emin;
- } else if (lsame_(cmach, "U")) {
- rmach = rmin;
- } else if (lsame_(cmach, "L")) {
- rmach = emax;
- } else if (lsame_(cmach, "O")) {
- rmach = rmax;
- }
-
- ret_val = rmach;
- return ret_val;
-
-/* End of DLAMCH */
-
-} /* dlamch_ */
-
-
-/* Subroutine */ int dlamc1_(integer *beta, integer *t, logical *rnd, logical
- *ieee1)
-{
-/* -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLAMC1 determines the machine parameters given by BETA, T, RND, and
- IEEE1.
-
- Arguments
- =========
-
- BETA (output) INTEGER
- The base of the machine.
-
- T (output) INTEGER
- The number of ( BETA ) digits in the mantissa.
-
- RND (output) LOGICAL
- Specifies whether proper rounding ( RND = .TRUE. ) or
- chopping ( RND = .FALSE. ) occurs in addition. This may not
-
- be a reliable guide to the way in which the machine performs
-
- its arithmetic.
-
- IEEE1 (output) LOGICAL
- Specifies whether rounding appears to be done in the IEEE
- 'round to nearest' style.
-
- Further Details
- ===============
-
- The routine is based on the routine ENVRON by Malcolm and
- incorporates suggestions by Gentleman and Marovich. See
-
- Malcolm M. A. (1972) Algorithms to reveal properties of
- floating-point arithmetic. Comms. of the ACM, 15, 949-951.
-
- Gentleman W. M. and Marovich S. B. (1974) More on algorithms
- that reveal properties of floating point arithmetic units.
- Comms. of the ACM, 17, 276-277.
-
- =====================================================================
-*/
- /* Initialized data */
- static logical first = TRUE_;
- /* System generated locals */
- doublereal d__1, d__2;
- /* Local variables */
- static logical lrnd;
- static doublereal a, b, c, f;
- static integer lbeta;
- static doublereal savec;
- extern doublereal dlamc3_(doublereal *, doublereal *);
- static logical lieee1;
- static doublereal t1, t2;
- static integer lt;
- static doublereal one, qtr;
-
-
-
- if (first) {
- first = FALSE_;
- one = 1.;
-
-/* LBETA, LIEEE1, LT and LRND are the local values of BE
-TA,
- IEEE1, T and RND.
-
- Throughout this routine we use the function DLAMC3 to ens
-ure
- that relevant values are stored and not held in registers,
- or
- are not affected by optimizers.
-
- Compute a = 2.0**m with the smallest positive integer m s
-uch
- that
-
- fl( a + 1.0 ) = a. */
-
- a = 1.;
- c = 1.;
-
-/* + WHILE( C.EQ.ONE )LOOP */
-L10:
- if (c == one) {
- a *= 2;
- c = dlamc3_(&a, &one);
- d__1 = -a;
- c = dlamc3_(&c, &d__1);
- goto L10;
- }
-/* + END WHILE
-
- Now compute b = 2.0**m with the smallest positive integer
-m
- such that
-
- fl( a + b ) .gt. a. */
-
- b = 1.;
- c = dlamc3_(&a, &b);
-
-/* + WHILE( C.EQ.A )LOOP */
-L20:
- if (c == a) {
- b *= 2;
- c = dlamc3_(&a, &b);
- goto L20;
- }
-/* + END WHILE
-
- Now compute the base. a and c are neighbouring floating po
-int
- numbers in the interval ( beta**t, beta**( t + 1 ) ) and
- so
- their difference is beta. Adding 0.25 to c is to ensure that
- it
- is truncated to beta and not ( beta - 1 ). */
-
- qtr = one / 4;
- savec = c;
- d__1 = -a;
- c = dlamc3_(&c, &d__1);
- lbeta = (integer) (c + qtr);
-
-/* Now determine whether rounding or chopping occurs, by addin
-g a
- bit less than beta/2 and a bit more than beta/2 to
- a. */
-
- b = (doublereal) lbeta;
- d__1 = b / 2;
- d__2 = -b / 100;
- f = dlamc3_(&d__1, &d__2);
- c = dlamc3_(&f, &a);
- if (c == a) {
- lrnd = TRUE_;
- } else {
- lrnd = FALSE_;
- }
- d__1 = b / 2;
- d__2 = b / 100;
- f = dlamc3_(&d__1, &d__2);
- c = dlamc3_(&f, &a);
- if (lrnd && c == a) {
- lrnd = FALSE_;
- }
-
-/* Try and decide whether rounding is done in the IEEE 'round
- to
- nearest' style. B/2 is half a unit in the last place of the
-two
- numbers A and SAVEC. Furthermore, A is even, i.e. has last
-bit
- zero, and SAVEC is odd. Thus adding B/2 to A should not cha
-nge
- A, but adding B/2 to SAVEC should change SAVEC. */
-
- d__1 = b / 2;
- t1 = dlamc3_(&d__1, &a);
- d__1 = b / 2;
- t2 = dlamc3_(&d__1, &savec);
- lieee1 = t1 == a && t2 > savec && lrnd;
-
-/* Now find the mantissa, t. It should be the integer part
- of
- log to the base beta of a, however it is safer to determine
- t
- by powering. So we find t as the smallest positive integer
-for
- which
-
- fl( beta**t + 1.0 ) = 1.0. */
-
- lt = 0;
- a = 1.;
- c = 1.;
-
-/* + WHILE( C.EQ.ONE )LOOP */
-L30:
- if (c == one) {
- ++lt;
- a *= lbeta;
- c = dlamc3_(&a, &one);
- d__1 = -a;
- c = dlamc3_(&c, &d__1);
- goto L30;
- }
-/* + END WHILE */
-
- }
-
- *beta = lbeta;
- *t = lt;
- *rnd = lrnd;
- *ieee1 = lieee1;
- return 0;
-
-/* End of DLAMC1 */
-
-} /* dlamc1_ */
-
-
-/* Subroutine */ int dlamc2_(integer *beta, integer *t, logical *rnd,
- doublereal *eps, integer *emin, doublereal *rmin, integer *emax,
- doublereal *rmax)
-{
-/* -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLAMC2 determines the machine parameters specified in its argument
- list.
-
- Arguments
- =========
-
- BETA (output) INTEGER
- The base of the machine.
-
- T (output) INTEGER
- The number of ( BETA ) digits in the mantissa.
-
- RND (output) LOGICAL
- Specifies whether proper rounding ( RND = .TRUE. ) or
- chopping ( RND = .FALSE. ) occurs in addition. This may not
-
- be a reliable guide to the way in which the machine performs
-
- its arithmetic.
-
- EPS (output) DOUBLE PRECISION
- The smallest positive number such that
-
- fl( 1.0 - EPS ) .LT. 1.0,
-
- where fl denotes the computed value.
-
- EMIN (output) INTEGER
- The minimum exponent before (gradual) underflow occurs.
-
- RMIN (output) DOUBLE PRECISION
- The smallest normalized number for the machine, given by
- BASE**( EMIN - 1 ), where BASE is the floating point value
-
- of BETA.
-
- EMAX (output) INTEGER
- The maximum exponent before overflow occurs.
-
- RMAX (output) DOUBLE PRECISION
- The largest positive number for the machine, given by
- BASE**EMAX * ( 1 - EPS ), where BASE is the floating point
-
- value of BETA.
-
- Further Details
- ===============
-
- The computation of EPS is based on a routine PARANOIA by
- W. Kahan of the University of California at Berkeley.
-
- =====================================================================
-*/
-
- /* Initialized data */
- static logical first = TRUE_;
- static logical iwarn = FALSE_;
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2, d__3, d__4, d__5;
- /* Builtin functions */
- double pow_di(doublereal *, integer *);
- /* Local variables */
- static logical ieee;
- static doublereal half;
- static logical lrnd;
- static doublereal leps, zero, a, b, c;
- static integer i, lbeta;
- static doublereal rbase;
- static integer lemin, lemax, gnmin;
- static doublereal small;
- static integer gpmin;
- static doublereal third, lrmin, lrmax, sixth;
- extern /* Subroutine */ int dlamc1_(integer *, integer *, logical *,
- logical *);
- extern doublereal dlamc3_(doublereal *, doublereal *);
- static logical lieee1;
- extern /* Subroutine */ int dlamc4_(integer *, doublereal *, integer *),
- dlamc5_(integer *, integer *, integer *, logical *, integer *,
- doublereal *);
- static integer lt, ngnmin, ngpmin;
- static doublereal one, two;
-
-
-
- if (first) {
- first = FALSE_;
- zero = 0.;
- one = 1.;
- two = 2.;
-
-/* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values
- of
- BETA, T, RND, EPS, EMIN and RMIN.
-
- Throughout this routine we use the function DLAMC3 to ens
-ure
- that relevant values are stored and not held in registers,
- or
- are not affected by optimizers.
-
- DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1.
-*/
-
- dlamc1_(&lbeta, &lt, &lrnd, &lieee1);
-
-/* Start to find EPS. */
-
- b = (doublereal) lbeta;
- i__1 = -lt;
- a = pow_di(&b, &i__1);
- leps = a;
-
-/* Try some tricks to see whether or not this is the correct E
-PS. */
-
- b = two / 3;
- half = one / 2;
- d__1 = -half;
- sixth = dlamc3_(&b, &d__1);
- third = dlamc3_(&sixth, &sixth);
- d__1 = -half;
- b = dlamc3_(&third, &d__1);
- b = dlamc3_(&b, &sixth);
- b = abs(b);
- if (b < leps) {
- b = leps;
- }
-
- leps = 1.;
-
-/* + WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */
-L10:
- if (leps > b && b > zero) {
- leps = b;
- d__1 = half * leps;
-/* Computing 5th power */
- d__3 = two, d__4 = d__3, d__3 *= d__3;
-/* Computing 2nd power */
- d__5 = leps;
- d__2 = d__4 * (d__3 * d__3) * (d__5 * d__5);
- c = dlamc3_(&d__1, &d__2);
- d__1 = -c;
- c = dlamc3_(&half, &d__1);
- b = dlamc3_(&half, &c);
- d__1 = -b;
- c = dlamc3_(&half, &d__1);
- b = dlamc3_(&half, &c);
- goto L10;
- }
-/* + END WHILE */
-
- if (a < leps) {
- leps = a;
- }
-
-/* Computation of EPS complete.
-
- Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3
-)).
- Keep dividing A by BETA until (gradual) underflow occurs. T
-his
- is detected when we cannot recover the previous A. */
-
- rbase = one / lbeta;
- small = one;
- for (i = 1; i <= 3; ++i) {
- d__1 = small * rbase;
- small = dlamc3_(&d__1, &zero);
-/* L20: */
- }
- a = dlamc3_(&one, &small);
- dlamc4_(&ngpmin, &one, &lbeta);
- d__1 = -one;
- dlamc4_(&ngnmin, &d__1, &lbeta);
- dlamc4_(&gpmin, &a, &lbeta);
- d__1 = -a;
- dlamc4_(&gnmin, &d__1, &lbeta);
- ieee = FALSE_;
-
- if (ngpmin == ngnmin && gpmin == gnmin) {
- if (ngpmin == gpmin) {
- lemin = ngpmin;
-/* ( Non twos-complement machines, no gradual under
-flow;
- e.g., VAX ) */
- } else if (gpmin - ngpmin == 3) {
- lemin = ngpmin - 1 + lt;
- ieee = TRUE_;
-/* ( Non twos-complement machines, with gradual und
-erflow;
- e.g., IEEE standard followers ) */
- } else {
- lemin = min(ngpmin,gpmin);
-/* ( A guess; no known machine ) */
- iwarn = TRUE_;
- }
-
- } else if (ngpmin == gpmin && ngnmin == gnmin) {
- if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) {
- lemin = max(ngpmin,ngnmin);
-/* ( Twos-complement machines, no gradual underflow
-;
- e.g., CYBER 205 ) */
- } else {
- lemin = min(ngpmin,ngnmin);
-/* ( A guess; no known machine ) */
- iwarn = TRUE_;
- }
-
- } else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin)
- {
- if (gpmin - min(ngpmin,ngnmin) == 3) {
- lemin = max(ngpmin,ngnmin) - 1 + lt;
-/* ( Twos-complement machines with gradual underflo
-w;
- no known machine ) */
- } else {
- lemin = min(ngpmin,ngnmin);
-/* ( A guess; no known machine ) */
- iwarn = TRUE_;
- }
-
- } else {
-/* Computing MIN */
- i__1 = min(ngpmin,ngnmin), i__1 = min(i__1,gpmin);
- lemin = min(i__1,gnmin);
-/* ( A guess; no known machine ) */
- iwarn = TRUE_;
- }
-/* **
- Comment out this if block if EMIN is ok */
- if (iwarn) {
- first = TRUE_;
- printf("\n\n WARNING. The value EMIN may be incorrect:- ");
- printf("EMIN = %8i\n",lemin);
- printf("If, after inspection, the value EMIN looks acceptable");
- printf("please comment out \n the IF block as marked within the");
- printf("code of routine DLAMC2, \n otherwise supply EMIN");
- printf("explicitly.\n");
- }
-/* **
-
- Assume IEEE arithmetic if we found denormalised numbers abo
-ve,
- or if arithmetic seems to round in the IEEE style, determi
-ned
- in routine DLAMC1. A true IEEE machine should have both thi
-ngs
- true; however, faulty machines may have one or the other. */
-
- ieee = ieee || lieee1;
-
-/* Compute RMIN by successive division by BETA. We could comp
-ute
- RMIN as BASE**( EMIN - 1 ), but some machines underflow dur
-ing
- this computation. */
-
- lrmin = 1.;
- i__1 = 1 - lemin;
- for (i = 1; i <= 1-lemin; ++i) {
- d__1 = lrmin * rbase;
- lrmin = dlamc3_(&d__1, &zero);
-/* L30: */
- }
-
-/* Finally, call DLAMC5 to compute EMAX and RMAX. */
-
- dlamc5_(&lbeta, &lt, &lemin, &ieee, &lemax, &lrmax);
- }
-
- *beta = lbeta;
- *t = lt;
- *rnd = lrnd;
- *eps = leps;
- *emin = lemin;
- *rmin = lrmin;
- *emax = lemax;
- *rmax = lrmax;
-
- return 0;
-
-
-/* End of DLAMC2 */
-
-} /* dlamc2_ */
-#endif
-
-
-doublereal dlamc3_(doublereal *a, doublereal *b)
-{
-/* -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLAMC3 is intended to force A and B to be stored prior to doing
-
- the addition of A and B , for use in situations where optimizers
-
- might hold one of these in a register.
-
- Arguments
- =========
-
- A, B (input) DOUBLE PRECISION
- The values A and B.
-
- =====================================================================
-*/
-/* >>Start of File<<
- System generated locals */
- volatile doublereal ret_val;
-
-
-
- ret_val = *a + *b;
-
- return ret_val;
-
-/* End of DLAMC3 */
-
-} /* dlamc3_ */
-
-
-#ifndef HAVE_CONFIG
-/* Subroutine */ int dlamc4_(integer *emin, doublereal *start, integer *base)
-{
-/* -- LAPACK auxiliary routine (version 2.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLAMC4 is a service routine for DLAMC2.
-
- Arguments
- =========
-
- EMIN (output) EMIN
- The minimum exponent before (gradual) underflow, computed by
-
- setting A = START and dividing by BASE until the previous A
- can not be recovered.
-
- START (input) DOUBLE PRECISION
- The starting point for determining EMIN.
-
- BASE (input) INTEGER
- The base of the machine.
-
- =====================================================================
-*/
- /* System generated locals */
- integer i__1;
- doublereal d__1;
- /* Local variables */
- static doublereal zero, a;
- static integer i;
- static doublereal rbase, b1, b2, c1, c2, d1, d2;
- extern doublereal dlamc3_(doublereal *, doublereal *);
- static doublereal one;
-
-
-
- a = *start;
- one = 1.;
- rbase = one / *base;
- zero = 0.;
- *emin = 1;
- d__1 = a * rbase;
- b1 = dlamc3_(&d__1, &zero);
- c1 = a;
- c2 = a;
- d1 = a;
- d2 = a;
-/* + WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND.
- $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP */
-L10:
- if (c1 == a && c2 == a && d1 == a && d2 == a) {
- --(*emin);
- a = b1;
- d__1 = a / *base;
- b1 = dlamc3_(&d__1, &zero);
- d__1 = b1 * *base;
- c1 = dlamc3_(&d__1, &zero);
- d1 = zero;
- i__1 = *base;
- for (i = 1; i <= *base; ++i) {
- d1 += b1;
-/* L20: */
- }
- d__1 = a * rbase;
- b2 = dlamc3_(&d__1, &zero);
- d__1 = b2 / rbase;
- c2 = dlamc3_(&d__1, &zero);
- d2 = zero;
- i__1 = *base;
- for (i = 1; i <= *base; ++i) {
- d2 += b2;
-/* L30: */
- }
- goto L10;
- }
-/* + END WHILE */
-
- return 0;
-
-/* End of DLAMC4 */
-
-} /* dlamc4_ */
-
-
-/* Subroutine */ int dlamc5_(integer *beta, integer *p, integer *emin,
- logical *ieee, integer *emax, doublereal *rmax)
-{
-/* -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLAMC5 attempts to compute RMAX, the largest machine floating-point
- number, without overflow. It assumes that EMAX + abs(EMIN) sum
- approximately to a power of 2. It will fail on machines where this
- assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
-
- EMAX = 28718). It will also fail if the value supplied for EMIN is
- too large (i.e. too close to zero), probably with overflow.
-
- Arguments
- =========
-
- BETA (input) INTEGER
- The base of floating-point arithmetic.
-
- P (input) INTEGER
- The number of base BETA digits in the mantissa of a
- floating-point value.
-
- EMIN (input) INTEGER
- The minimum exponent before (gradual) underflow.
-
- IEEE (input) LOGICAL
- A logical flag specifying whether or not the arithmetic
- system is thought to comply with the IEEE standard.
-
- EMAX (output) INTEGER
- The largest exponent before overflow
-
- RMAX (output) DOUBLE PRECISION
- The largest machine floating-point number.
-
- =====================================================================
-
-
-
- First compute LEXP and UEXP, two powers of 2 that bound
- abs(EMIN). We then assume that EMAX + abs(EMIN) will sum
- approximately to the bound that is closest to abs(EMIN).
- (EMAX is the exponent of the required number RMAX). */
- /* Table of constant values */
- static doublereal c_b5 = 0.;
-
- /* System generated locals */
- integer i__1;
- doublereal d__1;
- /* Local variables */
- static integer lexp;
- static doublereal oldy;
- static integer uexp, i;
- static doublereal y, z;
- static integer nbits;
- extern doublereal dlamc3_(doublereal *, doublereal *);
- static doublereal recbas;
- static integer exbits, expsum, try__;
-
-
-
- lexp = 1;
- exbits = 1;
-L10:
- try__ = lexp << 1;
- if (try__ <= -(*emin)) {
- lexp = try__;
- ++exbits;
- goto L10;
- }
- if (lexp == -(*emin)) {
- uexp = lexp;
- } else {
- uexp = try__;
- ++exbits;
- }
-
-/* Now -LEXP is less than or equal to EMIN, and -UEXP is greater
- than or equal to EMIN. EXBITS is the number of bits needed to
- store the exponent. */
-
- if (uexp + *emin > -lexp - *emin) {
- expsum = lexp << 1;
- } else {
- expsum = uexp << 1;
- }
-
-/* EXPSUM is the exponent range, approximately equal to
- EMAX - EMIN + 1 . */
-
- *emax = expsum + *emin - 1;
- nbits = exbits + 1 + *p;
-
-/* NBITS is the total number of bits needed to store a
- floating-point number. */
-
- if (nbits % 2 == 1 && *beta == 2) {
-
-/* Either there are an odd number of bits used to store a
- floating-point number, which is unlikely, or some bits are
-
- not used in the representation of numbers, which is possible
-,
- (e.g. Cray machines) or the mantissa has an implicit bit,
- (e.g. IEEE machines, Dec Vax machines), which is perhaps the
-
- most likely. We have to assume the last alternative.
- If this is true, then we need to reduce EMAX by one because
-
- there must be some way of representing zero in an implicit-b
-it
- system. On machines like Cray, we are reducing EMAX by one
-
- unnecessarily. */
-
- --(*emax);
- }
-
- if (*ieee) {
-
-/* Assume we are on an IEEE machine which reserves one exponent
-
- for infinity and NaN. */
-
- --(*emax);
- }
-
-/* Now create RMAX, the largest machine number, which should
- be equal to (1.0 - BETA**(-P)) * BETA**EMAX .
-
- First compute 1.0 - BETA**(-P), being careful that the
- result is less than 1.0 . */
-
- recbas = 1. / *beta;
- z = *beta - 1.;
- y = 0.;
- i__1 = *p;
- for (i = 1; i <= *p; ++i) {
- z *= recbas;
- if (y < 1.) {
- oldy = y;
- }
- y = dlamc3_(&y, &z);
-/* L20: */
- }
- if (y >= 1.) {
- y = oldy;
- }
-
-/* Now multiply by BETA**EMAX to get RMAX. */
-
- i__1 = *emax;
- for (i = 1; i <= *emax; ++i) {
- d__1 = y * *beta;
- y = dlamc3_(&d__1, &c_b5);
-/* L30: */
- }
-
- *rmax = y;
- return 0;
-
-/* End of DLAMC5 */
-
-} /* dlamc5_ */
-#endif
diff --git a/numpy/linalg/dlapack_lite.c b/numpy/linalg/dlapack_lite.c
deleted file mode 100644
index d2c1d8129..000000000
--- a/numpy/linalg/dlapack_lite.c
+++ /dev/null
@@ -1,36008 +0,0 @@
-#define MAXITERLOOPS 100
-
-/*
-NOTE: This is generated code. Look in Misc/lapack_lite for information on
- remaking this file.
-*/
-#include "f2c.h"
-
-#ifdef HAVE_CONFIG
-#include "config.h"
-#else
-extern doublereal dlamch_(char *);
-#define EPSILON dlamch_("Epsilon")
-#define SAFEMINIMUM dlamch_("Safe minimum")
-#define PRECISION dlamch_("Precision")
-#define BASE dlamch_("Base")
-#endif
-
-extern doublereal dlapy2_(doublereal *x, doublereal *y);
-
-
-
-/* Table of constant values */
-
-static integer c__9 = 9;
-static integer c__0 = 0;
-static doublereal c_b15 = 1.;
-static integer c__1 = 1;
-static doublereal c_b29 = 0.;
-static doublereal c_b94 = -.125;
-static doublereal c_b151 = -1.;
-static integer c_n1 = -1;
-static integer c__3 = 3;
-static integer c__2 = 2;
-static integer c__8 = 8;
-static integer c__4 = 4;
-static integer c__65 = 65;
-static integer c__6 = 6;
-static integer c__15 = 15;
-static logical c_false = FALSE_;
-static integer c__10 = 10;
-static integer c__11 = 11;
-static doublereal c_b2804 = 2.;
-static logical c_true = TRUE_;
-static real c_b3825 = 0.f;
-static real c_b3826 = 1.f;
-
-/* Subroutine */ int dbdsdc_(char *uplo, char *compq, integer *n, doublereal *
- d__, doublereal *e, doublereal *u, integer *ldu, doublereal *vt,
- integer *ldvt, doublereal *q, integer *iq, doublereal *work, integer *
- iwork, integer *info)
-{
- /* System generated locals */
- integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
- doublereal d__1;
-
- /* Builtin functions */
- double d_sign(doublereal *, doublereal *), log(doublereal);
-
- /* Local variables */
- static integer i__, j, k;
- static doublereal p, r__;
- static integer z__, ic, ii, kk;
- static doublereal cs;
- static integer is, iu;
- static doublereal sn;
- static integer nm1;
- static doublereal eps;
- static integer ivt, difl, difr, ierr, perm, mlvl, sqre;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *
- , doublereal *, integer *), dswap_(integer *, doublereal *,
- integer *, doublereal *, integer *);
- static integer poles, iuplo, nsize, start;
- extern /* Subroutine */ int dlasd0_(integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- integer *, integer *, doublereal *, integer *);
-
- extern /* Subroutine */ int dlasda_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *), dlascl_(char *, integer *, integer *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *), dlasdq_(char *, integer *, integer *, integer
- *, integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *), dlaset_(char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *), dlartg_(doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static integer givcol;
- extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
- static integer icompq;
- static doublereal orgnrm;
- static integer givnum, givptr, qstart, smlsiz, wstart, smlszp;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- December 1, 1999
-
-
- Purpose
- =======
-
- DBDSDC computes the singular value decomposition (SVD) of a real
- N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,
- using a divide and conquer method, where S is a diagonal matrix
- with non-negative diagonal elements (the singular values of B), and
- U and VT are orthogonal matrices of left and right singular vectors,
- respectively. DBDSDC can be used to compute all singular values,
- and optionally, singular vectors or singular vectors in compact form.
-
- This code makes very mild assumptions about floating point
- arithmetic. It will work on machines with a guard digit in
- add/subtract, or on those binary machines without guard digits
- which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
- It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none. See DLASD3 for details.
-
- The code currently call DLASDQ if singular values only are desired.
- However, it can be slightly modified to compute singular values
- using the divide and conquer method.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- = 'U': B is upper bidiagonal.
- = 'L': B is lower bidiagonal.
-
- COMPQ (input) CHARACTER*1
- Specifies whether singular vectors are to be computed
- as follows:
- = 'N': Compute singular values only;
- = 'P': Compute singular values and compute singular
- vectors in compact form;
- = 'I': Compute singular values and singular vectors.
-
- N (input) INTEGER
- The order of the matrix B. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the n diagonal elements of the bidiagonal matrix B.
- On exit, if INFO=0, the singular values of B.
-
- E (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the elements of E contain the offdiagonal
- elements of the bidiagonal matrix whose SVD is desired.
- On exit, E has been destroyed.
-
- U (output) DOUBLE PRECISION array, dimension (LDU,N)
- If COMPQ = 'I', then:
- On exit, if INFO = 0, U contains the left singular vectors
- of the bidiagonal matrix.
- For other values of COMPQ, U is not referenced.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= 1.
- If singular vectors are desired, then LDU >= max( 1, N ).
-
- VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
- If COMPQ = 'I', then:
- On exit, if INFO = 0, VT' contains the right singular
- vectors of the bidiagonal matrix.
- For other values of COMPQ, VT is not referenced.
-
- LDVT (input) INTEGER
- The leading dimension of the array VT. LDVT >= 1.
- If singular vectors are desired, then LDVT >= max( 1, N ).
-
- Q (output) DOUBLE PRECISION array, dimension (LDQ)
- If COMPQ = 'P', then:
- On exit, if INFO = 0, Q and IQ contain the left
- and right singular vectors in a compact form,
- requiring O(N log N) space instead of 2*N**2.
- In particular, Q contains all the DOUBLE PRECISION data in
- LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
- words of memory, where SMLSIZ is returned by ILAENV and
- is equal to the maximum size of the subproblems at the
- bottom of the computation tree (usually about 25).
- For other values of COMPQ, Q is not referenced.
-
- IQ (output) INTEGER array, dimension (LDIQ)
- If COMPQ = 'P', then:
- On exit, if INFO = 0, Q and IQ contain the left
- and right singular vectors in a compact form,
- requiring O(N log N) space instead of 2*N**2.
- In particular, IQ contains all INTEGER data in
- LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
- words of memory, where SMLSIZ is returned by ILAENV and
- is equal to the maximum size of the subproblems at the
- bottom of the computation tree (usually about 25).
- For other values of COMPQ, IQ is not referenced.
-
- WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
- If COMPQ = 'N' then LWORK >= (4 * N).
- If COMPQ = 'P' then LWORK >= (6 * N).
- If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
-
- IWORK (workspace) INTEGER array, dimension (8*N)
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The algorithm failed to compute an singular value.
- The update process of divide and conquer failed.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- --q;
- --iq;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- iuplo = 0;
- if (lsame_(uplo, "U")) {
- iuplo = 1;
- }
- if (lsame_(uplo, "L")) {
- iuplo = 2;
- }
- if (lsame_(compq, "N")) {
- icompq = 0;
- } else if (lsame_(compq, "P")) {
- icompq = 1;
- } else if (lsame_(compq, "I")) {
- icompq = 2;
- } else {
- icompq = -1;
- }
- if (iuplo == 0) {
- *info = -1;
- } else if (icompq < 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ldu < 1 || (icompq == 2 && *ldu < *n)) {
- *info = -7;
- } else if (*ldvt < 1 || (icompq == 2 && *ldvt < *n)) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DBDSDC", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
- smlsiz = ilaenv_(&c__9, "DBDSDC", " ", &c__0, &c__0, &c__0, &c__0, (
- ftnlen)6, (ftnlen)1);
- if (*n == 1) {
- if (icompq == 1) {
- q[1] = d_sign(&c_b15, &d__[1]);
- q[smlsiz * *n + 1] = 1.;
- } else if (icompq == 2) {
- u[u_dim1 + 1] = d_sign(&c_b15, &d__[1]);
- vt[vt_dim1 + 1] = 1.;
- }
- d__[1] = abs(d__[1]);
- return 0;
- }
- nm1 = *n - 1;
-
-/*
- If matrix lower bidiagonal, rotate to be upper bidiagonal
- by applying Givens rotations on the left
-*/
-
- wstart = 1;
- qstart = 3;
- if (icompq == 1) {
- dcopy_(n, &d__[1], &c__1, &q[1], &c__1);
- i__1 = *n - 1;
- dcopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);
- }
- if (iuplo == 2) {
- qstart = 5;
- wstart = ((*n) << (1)) - 1;
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- if (icompq == 1) {
- q[i__ + ((*n) << (1))] = cs;
- q[i__ + *n * 3] = sn;
- } else if (icompq == 2) {
- work[i__] = cs;
- work[nm1 + i__] = -sn;
- }
-/* L10: */
- }
- }
-
-/* If ICOMPQ = 0, use DLASDQ to compute the singular values. */
-
- if (icompq == 0) {
- dlasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
- vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
- wstart], info);
- goto L40;
- }
-
-/*
- If N is smaller than the minimum divide size SMLSIZ, then solve
- the problem with another solver.
-*/
-
- if (*n <= smlsiz) {
- if (icompq == 2) {
- dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
- dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
- dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
- , ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
- wstart], info);
- } else if (icompq == 1) {
- iu = 1;
- ivt = iu + *n;
- dlaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);
- dlaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);
- dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (
- qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[
- iu + (qstart - 1) * *n], n, &work[wstart], info);
- }
- goto L40;
- }
-
- if (icompq == 2) {
- dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
- dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
- }
-
-/* Scale. */
-
- orgnrm = dlanst_("M", n, &d__[1], &e[1]);
- if (orgnrm == 0.) {
- return 0;
- }
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &
- ierr);
-
- eps = EPSILON;
-
- mlvl = (integer) (log((doublereal) (*n) / (doublereal) (smlsiz + 1)) /
- log(2.)) + 1;
- smlszp = smlsiz + 1;
-
- if (icompq == 1) {
- iu = 1;
- ivt = smlsiz + 1;
- difl = ivt + smlszp;
- difr = difl + mlvl;
- z__ = difr + ((mlvl) << (1));
- ic = z__ + mlvl;
- is = ic + 1;
- poles = is + 1;
- givnum = poles + ((mlvl) << (1));
-
- k = 1;
- givptr = 2;
- perm = 3;
- givcol = perm + mlvl;
- }
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) < eps) {
- d__[i__] = d_sign(&eps, &d__[i__]);
- }
-/* L20: */
- }
-
- start = 1;
- sqre = 0;
-
- i__1 = nm1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
-
-/*
- Subproblem found. First determine its size and then
- apply divide and conquer on it.
-*/
-
- if (i__ < nm1) {
-
-/* A subproblem with E(I) small for I < NM1. */
-
- nsize = i__ - start + 1;
- } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
-
-/* A subproblem with E(NM1) not too small but I = NM1. */
-
- nsize = *n - start + 1;
- } else {
-
-/*
- A subproblem with E(NM1) small. This implies an
- 1-by-1 subproblem at D(N). Solve this 1-by-1 problem
- first.
-*/
-
- nsize = i__ - start + 1;
- if (icompq == 2) {
- u[*n + *n * u_dim1] = d_sign(&c_b15, &d__[*n]);
- vt[*n + *n * vt_dim1] = 1.;
- } else if (icompq == 1) {
- q[*n + (qstart - 1) * *n] = d_sign(&c_b15, &d__[*n]);
- q[*n + (smlsiz + qstart - 1) * *n] = 1.;
- }
- d__[*n] = (d__1 = d__[*n], abs(d__1));
- }
- if (icompq == 2) {
- dlasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start +
- start * u_dim1], ldu, &vt[start + start * vt_dim1],
- ldvt, &smlsiz, &iwork[1], &work[wstart], info);
- } else {
- dlasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[
- start], &q[start + (iu + qstart - 2) * *n], n, &q[
- start + (ivt + qstart - 2) * *n], &iq[start + k * *n],
- &q[start + (difl + qstart - 2) * *n], &q[start + (
- difr + qstart - 2) * *n], &q[start + (z__ + qstart -
- 2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[
- start + givptr * *n], &iq[start + givcol * *n], n, &
- iq[start + perm * *n], &q[start + (givnum + qstart -
- 2) * *n], &q[start + (ic + qstart - 2) * *n], &q[
- start + (is + qstart - 2) * *n], &work[wstart], &
- iwork[1], info);
- if (*info != 0) {
- return 0;
- }
- }
- start = i__ + 1;
- }
-/* L30: */
- }
-
-/* Unscale */
-
- dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);
-L40:
-
-/* Use Selection Sort to minimize swaps of singular vectors */
-
- i__1 = *n;
- for (ii = 2; ii <= i__1; ++ii) {
- i__ = ii - 1;
- kk = i__;
- p = d__[i__];
- i__2 = *n;
- for (j = ii; j <= i__2; ++j) {
- if (d__[j] > p) {
- kk = j;
- p = d__[j];
- }
-/* L50: */
- }
- if (kk != i__) {
- d__[kk] = d__[i__];
- d__[i__] = p;
- if (icompq == 1) {
- iq[i__] = kk;
- } else if (icompq == 2) {
- dswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &
- c__1);
- dswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);
- }
- } else if (icompq == 1) {
- iq[i__] = i__;
- }
-/* L60: */
- }
-
-/* If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */
-
- if (icompq == 1) {
- if (iuplo == 1) {
- iq[*n] = 1;
- } else {
- iq[*n] = 0;
- }
- }
-
-/*
- If B is lower bidiagonal, update U by those Givens rotations
- which rotated B to be upper bidiagonal
-*/
-
- if ((iuplo == 2 && icompq == 2)) {
- dlasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);
- }
-
- return 0;
-
-/* End of DBDSDC */
-
-} /* dbdsdc_ */
-
-/* Subroutine */ int dbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
- nru, integer *ncc, doublereal *d__, doublereal *e, doublereal *vt,
- integer *ldvt, doublereal *u, integer *ldu, doublereal *c__, integer *
- ldc, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
- i__2;
- doublereal d__1, d__2, d__3, d__4;
-
- /* Builtin functions */
- double pow_dd(doublereal *, doublereal *), sqrt(doublereal), d_sign(
- doublereal *, doublereal *);
-
- /* Local variables */
- static doublereal f, g, h__;
- static integer i__, j, m;
- static doublereal r__, cs;
- static integer ll;
- static doublereal sn, mu;
- static integer nm1, nm12, nm13, lll;
- static doublereal eps, sll, tol, abse;
- static integer idir;
- static doublereal abss;
- static integer oldm;
- static doublereal cosl;
- static integer isub, iter;
- static doublereal unfl, sinl, cosr, smin, smax, sinr;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *), dlas2_(
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *), dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- static doublereal oldcs;
- extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *);
- static integer oldll;
- static doublereal shift, sigmn, oldsn;
- extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static integer maxit;
- static doublereal sminl, sigmx;
- static logical lower;
- extern /* Subroutine */ int dlasq1_(integer *, doublereal *, doublereal *,
- doublereal *, integer *), dlasv2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
-
- extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *), xerbla_(char *,
- integer *);
- static doublereal sminoa, thresh;
- static logical rotate;
- static doublereal sminlo, tolmul;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DBDSQR computes the singular value decomposition (SVD) of a real
- N-by-N (upper or lower) bidiagonal matrix B: B = Q * S * P' (P'
- denotes the transpose of P), where S is a diagonal matrix with
- non-negative diagonal elements (the singular values of B), and Q
- and P are orthogonal matrices.
-
- The routine computes S, and optionally computes U * Q, P' * VT,
- or Q' * C, for given real input matrices U, VT, and C.
-
- See "Computing Small Singular Values of Bidiagonal Matrices With
- Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
- LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
- no. 5, pp. 873-912, Sept 1990) and
- "Accurate singular values and differential qd algorithms," by
- B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
- Department, University of California at Berkeley, July 1992
- for a detailed description of the algorithm.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- = 'U': B is upper bidiagonal;
- = 'L': B is lower bidiagonal.
-
- N (input) INTEGER
- The order of the matrix B. N >= 0.
-
- NCVT (input) INTEGER
- The number of columns of the matrix VT. NCVT >= 0.
-
- NRU (input) INTEGER
- The number of rows of the matrix U. NRU >= 0.
-
- NCC (input) INTEGER
- The number of columns of the matrix C. NCC >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the n diagonal elements of the bidiagonal matrix B.
- On exit, if INFO=0, the singular values of B in decreasing
- order.
-
- E (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the elements of E contain the
- offdiagonal elements of the bidiagonal matrix whose SVD
- is desired. On normal exit (INFO = 0), E is destroyed.
- If the algorithm does not converge (INFO > 0), D and E
- will contain the diagonal and superdiagonal elements of a
- bidiagonal matrix orthogonally equivalent to the one given
- as input. E(N) is used for workspace.
-
- VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
- On entry, an N-by-NCVT matrix VT.
- On exit, VT is overwritten by P' * VT.
- VT is not referenced if NCVT = 0.
-
- LDVT (input) INTEGER
- The leading dimension of the array VT.
- LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
-
- U (input/output) DOUBLE PRECISION array, dimension (LDU, N)
- On entry, an NRU-by-N matrix U.
- On exit, U is overwritten by U * Q.
- U is not referenced if NRU = 0.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= max(1,NRU).
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
- On entry, an N-by-NCC matrix C.
- On exit, C is overwritten by Q' * C.
- C is not referenced if NCC = 0.
-
- LDC (input) INTEGER
- The leading dimension of the array C.
- LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
-
- WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: If INFO = -i, the i-th argument had an illegal value
- > 0: the algorithm did not converge; D and E contain the
- elements of a bidiagonal matrix which is orthogonally
- similar to the input matrix B; if INFO = i, i
- elements of E have not converged to zero.
-
- Internal Parameters
- ===================
-
- TOLMUL DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
- TOLMUL controls the convergence criterion of the QR loop.
- If it is positive, TOLMUL*EPS is the desired relative
- precision in the computed singular values.
- If it is negative, abs(TOLMUL*EPS*sigma_max) is the
- desired absolute accuracy in the computed singular
- values (corresponds to relative accuracy
- abs(TOLMUL*EPS) in the largest singular value.
- abs(TOLMUL) should be between 1 and 1/EPS, and preferably
- between 10 (for fast convergence) and .1/EPS
- (for there to be some accuracy in the results).
- Default is to lose at either one eighth or 2 of the
- available decimal digits in each computed singular value
- (whichever is smaller).
-
- MAXITR INTEGER, default = 6
- MAXITR controls the maximum number of passes of the
- algorithm through its inner loop. The algorithms stops
- (and so fails to converge) if the number of passes
- through the inner loop exceeds MAXITR*N**2.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- lower = lsame_(uplo, "L");
- if ((! lsame_(uplo, "U") && ! lower)) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*ncvt < 0) {
- *info = -3;
- } else if (*nru < 0) {
- *info = -4;
- } else if (*ncc < 0) {
- *info = -5;
- } else if ((*ncvt == 0 && *ldvt < 1) || (*ncvt > 0 && *ldvt < max(1,*n)))
- {
- *info = -9;
- } else if (*ldu < max(1,*nru)) {
- *info = -11;
- } else if ((*ncc == 0 && *ldc < 1) || (*ncc > 0 && *ldc < max(1,*n))) {
- *info = -13;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DBDSQR", &i__1);
- return 0;
- }
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- goto L160;
- }
-
-/* ROTATE is true if any singular vectors desired, false otherwise */
-
- rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
-
-/* If no singular vectors desired, use qd algorithm */
-
- if (! rotate) {
- dlasq1_(n, &d__[1], &e[1], &work[1], info);
- return 0;
- }
-
- nm1 = *n - 1;
- nm12 = nm1 + nm1;
- nm13 = nm12 + nm1;
- idir = 0;
-
-/* Get machine constants */
-
- eps = EPSILON;
- unfl = SAFEMINIMUM;
-
-/*
- If matrix lower bidiagonal, rotate to be upper bidiagonal
- by applying Givens rotations on the left
-*/
-
- if (lower) {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- work[i__] = cs;
- work[nm1 + i__] = sn;
-/* L10: */
- }
-
-/* Update singular vectors if desired */
-
- if (*nru > 0) {
- dlasr_("R", "V", "F", nru, n, &work[1], &work[*n], &u[u_offset],
- ldu);
- }
- if (*ncc > 0) {
- dlasr_("L", "V", "F", n, ncc, &work[1], &work[*n], &c__[c_offset],
- ldc);
- }
- }
-
-/*
- Compute singular values to relative accuracy TOL
- (By setting TOL to be negative, algorithm will compute
- singular values to absolute accuracy ABS(TOL)*norm(input matrix))
-
- Computing MAX
- Computing MIN
-*/
- d__3 = 100., d__4 = pow_dd(&eps, &c_b94);
- d__1 = 10., d__2 = min(d__3,d__4);
- tolmul = max(d__1,d__2);
- tol = tolmul * eps;
-
-/* Compute approximate maximum, minimum singular values */
-
- smax = 0.;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-/* Computing MAX */
- d__2 = smax, d__3 = (d__1 = d__[i__], abs(d__1));
- smax = max(d__2,d__3);
-/* L20: */
- }
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
-/* Computing MAX */
- d__2 = smax, d__3 = (d__1 = e[i__], abs(d__1));
- smax = max(d__2,d__3);
-/* L30: */
- }
- sminl = 0.;
- if (tol >= 0.) {
-
-/* Relative accuracy desired */
-
- sminoa = abs(d__[1]);
- if (sminoa == 0.) {
- goto L50;
- }
- mu = sminoa;
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- mu = (d__2 = d__[i__], abs(d__2)) * (mu / (mu + (d__1 = e[i__ - 1]
- , abs(d__1))));
- sminoa = min(sminoa,mu);
- if (sminoa == 0.) {
- goto L50;
- }
-/* L40: */
- }
-L50:
- sminoa /= sqrt((doublereal) (*n));
-/* Computing MAX */
- d__1 = tol * sminoa, d__2 = *n * 6 * *n * unfl;
- thresh = max(d__1,d__2);
- } else {
-
-/*
- Absolute accuracy desired
-
- Computing MAX
-*/
- d__1 = abs(tol) * smax, d__2 = *n * 6 * *n * unfl;
- thresh = max(d__1,d__2);
- }
-
-/*
- Prepare for main iteration loop for the singular values
- (MAXIT is the maximum number of passes through the inner
- loop permitted before nonconvergence signalled.)
-*/
-
- maxit = *n * 6 * *n;
- iter = 0;
- oldll = -1;
- oldm = -1;
-
-/* M points to last element of unconverged part of matrix */
-
- m = *n;
-
-/* Begin main iteration loop */
-
-L60:
-
-/* Check for convergence or exceeding iteration count */
-
- if (m <= 1) {
- goto L160;
- }
- if (iter > maxit) {
- goto L200;
- }
-
-/* Find diagonal block of matrix to work on */
-
- if ((tol < 0. && (d__1 = d__[m], abs(d__1)) <= thresh)) {
- d__[m] = 0.;
- }
- smax = (d__1 = d__[m], abs(d__1));
- smin = smax;
- i__1 = m - 1;
- for (lll = 1; lll <= i__1; ++lll) {
- ll = m - lll;
- abss = (d__1 = d__[ll], abs(d__1));
- abse = (d__1 = e[ll], abs(d__1));
- if ((tol < 0. && abss <= thresh)) {
- d__[ll] = 0.;
- }
- if (abse <= thresh) {
- goto L80;
- }
- smin = min(smin,abss);
-/* Computing MAX */
- d__1 = max(smax,abss);
- smax = max(d__1,abse);
-/* L70: */
- }
- ll = 0;
- goto L90;
-L80:
- e[ll] = 0.;
-
-/* Matrix splits since E(LL) = 0 */
-
- if (ll == m - 1) {
-
-/* Convergence of bottom singular value, return to top of loop */
-
- --m;
- goto L60;
- }
-L90:
- ++ll;
-
-/* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
-
- if (ll == m - 1) {
-
-/* 2 by 2 block, handle separately */
-
- dlasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
- &sinl, &cosl);
- d__[m - 1] = sigmx;
- e[m - 1] = 0.;
- d__[m] = sigmn;
-
-/* Compute singular vectors, if desired */
-
- if (*ncvt > 0) {
- drot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
- cosr, &sinr);
- }
- if (*nru > 0) {
- drot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
- c__1, &cosl, &sinl);
- }
- if (*ncc > 0) {
- drot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
- cosl, &sinl);
- }
- m += -2;
- goto L60;
- }
-
-/*
- If working on new submatrix, choose shift direction
- (from larger end diagonal element towards smaller)
-*/
-
- if (ll > oldm || m < oldll) {
- if ((d__1 = d__[ll], abs(d__1)) >= (d__2 = d__[m], abs(d__2))) {
-
-/* Chase bulge from top (big end) to bottom (small end) */
-
- idir = 1;
- } else {
-
-/* Chase bulge from bottom (big end) to top (small end) */
-
- idir = 2;
- }
- }
-
-/* Apply convergence tests */
-
- if (idir == 1) {
-
-/*
- Run convergence test in forward direction
- First apply standard test to bottom of matrix
-*/
-
- if ((d__2 = e[m - 1], abs(d__2)) <= abs(tol) * (d__1 = d__[m], abs(
- d__1)) || (tol < 0. && (d__3 = e[m - 1], abs(d__3)) <= thresh)
- ) {
- e[m - 1] = 0.;
- goto L60;
- }
-
- if (tol >= 0.) {
-
-/*
- If relative accuracy desired,
- apply convergence criterion forward
-*/
-
- mu = (d__1 = d__[ll], abs(d__1));
- sminl = mu;
- i__1 = m - 1;
- for (lll = ll; lll <= i__1; ++lll) {
- if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
- e[lll] = 0.;
- goto L60;
- }
- sminlo = sminl;
- mu = (d__2 = d__[lll + 1], abs(d__2)) * (mu / (mu + (d__1 = e[
- lll], abs(d__1))));
- sminl = min(sminl,mu);
-/* L100: */
- }
- }
-
- } else {
-
-/*
- Run convergence test in backward direction
- First apply standard test to top of matrix
-*/
-
- if ((d__2 = e[ll], abs(d__2)) <= abs(tol) * (d__1 = d__[ll], abs(d__1)
- ) || (tol < 0. && (d__3 = e[ll], abs(d__3)) <= thresh)) {
- e[ll] = 0.;
- goto L60;
- }
-
- if (tol >= 0.) {
-
-/*
- If relative accuracy desired,
- apply convergence criterion backward
-*/
-
- mu = (d__1 = d__[m], abs(d__1));
- sminl = mu;
- i__1 = ll;
- for (lll = m - 1; lll >= i__1; --lll) {
- if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
- e[lll] = 0.;
- goto L60;
- }
- sminlo = sminl;
- mu = (d__2 = d__[lll], abs(d__2)) * (mu / (mu + (d__1 = e[lll]
- , abs(d__1))));
- sminl = min(sminl,mu);
-/* L110: */
- }
- }
- }
- oldll = ll;
- oldm = m;
-
-/*
- Compute shift. First, test if shifting would ruin relative
- accuracy, and if so set the shift to zero.
-
- Computing MAX
-*/
- d__1 = eps, d__2 = tol * .01;
- if ((tol >= 0. && *n * tol * (sminl / smax) <= max(d__1,d__2))) {
-
-/* Use a zero shift to avoid loss of relative accuracy */
-
- shift = 0.;
- } else {
-
-/* Compute the shift from 2-by-2 block at end of matrix */
-
- if (idir == 1) {
- sll = (d__1 = d__[ll], abs(d__1));
- dlas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
- } else {
- sll = (d__1 = d__[m], abs(d__1));
- dlas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
- }
-
-/* Test if shift negligible, and if so set to zero */
-
- if (sll > 0.) {
-/* Computing 2nd power */
- d__1 = shift / sll;
- if (d__1 * d__1 < eps) {
- shift = 0.;
- }
- }
- }
-
-/* Increment iteration count */
-
- iter = iter + m - ll;
-
-/* If SHIFT = 0, do simplified QR iteration */
-
- if (shift == 0.) {
- if (idir == 1) {
-
-/*
- Chase bulge from top to bottom
- Save cosines and sines for later singular vector updates
-*/
-
- cs = 1.;
- oldcs = 1.;
- i__1 = m - 1;
- for (i__ = ll; i__ <= i__1; ++i__) {
- d__1 = d__[i__] * cs;
- dlartg_(&d__1, &e[i__], &cs, &sn, &r__);
- if (i__ > ll) {
- e[i__ - 1] = oldsn * r__;
- }
- d__1 = oldcs * r__;
- d__2 = d__[i__ + 1] * sn;
- dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
- work[i__ - ll + 1] = cs;
- work[i__ - ll + 1 + nm1] = sn;
- work[i__ - ll + 1 + nm12] = oldcs;
- work[i__ - ll + 1 + nm13] = oldsn;
-/* L120: */
- }
- h__ = d__[m] * cs;
- d__[m] = h__ * oldcs;
- e[m - 1] = h__ * oldsn;
-
-/* Update singular vectors */
-
- if (*ncvt > 0) {
- i__1 = m - ll + 1;
- dlasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
- ll + vt_dim1], ldvt);
- }
- if (*nru > 0) {
- i__1 = m - ll + 1;
- dlasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
- + 1], &u[ll * u_dim1 + 1], ldu);
- }
- if (*ncc > 0) {
- i__1 = m - ll + 1;
- dlasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
- + 1], &c__[ll + c_dim1], ldc);
- }
-
-/* Test convergence */
-
- if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
- e[m - 1] = 0.;
- }
-
- } else {
-
-/*
- Chase bulge from bottom to top
- Save cosines and sines for later singular vector updates
-*/
-
- cs = 1.;
- oldcs = 1.;
- i__1 = ll + 1;
- for (i__ = m; i__ >= i__1; --i__) {
- d__1 = d__[i__] * cs;
- dlartg_(&d__1, &e[i__ - 1], &cs, &sn, &r__);
- if (i__ < m) {
- e[i__] = oldsn * r__;
- }
- d__1 = oldcs * r__;
- d__2 = d__[i__ - 1] * sn;
- dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
- work[i__ - ll] = cs;
- work[i__ - ll + nm1] = -sn;
- work[i__ - ll + nm12] = oldcs;
- work[i__ - ll + nm13] = -oldsn;
-/* L130: */
- }
- h__ = d__[ll] * cs;
- d__[ll] = h__ * oldcs;
- e[ll] = h__ * oldsn;
-
-/* Update singular vectors */
-
- if (*ncvt > 0) {
- i__1 = m - ll + 1;
- dlasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
- nm13 + 1], &vt[ll + vt_dim1], ldvt);
- }
- if (*nru > 0) {
- i__1 = m - ll + 1;
- dlasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
- u_dim1 + 1], ldu);
- }
- if (*ncc > 0) {
- i__1 = m - ll + 1;
- dlasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
- ll + c_dim1], ldc);
- }
-
-/* Test convergence */
-
- if ((d__1 = e[ll], abs(d__1)) <= thresh) {
- e[ll] = 0.;
- }
- }
- } else {
-
-/* Use nonzero shift */
-
- if (idir == 1) {
-
-/*
- Chase bulge from top to bottom
- Save cosines and sines for later singular vector updates
-*/
-
- f = ((d__1 = d__[ll], abs(d__1)) - shift) * (d_sign(&c_b15, &d__[
- ll]) + shift / d__[ll]);
- g = e[ll];
- i__1 = m - 1;
- for (i__ = ll; i__ <= i__1; ++i__) {
- dlartg_(&f, &g, &cosr, &sinr, &r__);
- if (i__ > ll) {
- e[i__ - 1] = r__;
- }
- f = cosr * d__[i__] + sinr * e[i__];
- e[i__] = cosr * e[i__] - sinr * d__[i__];
- g = sinr * d__[i__ + 1];
- d__[i__ + 1] = cosr * d__[i__ + 1];
- dlartg_(&f, &g, &cosl, &sinl, &r__);
- d__[i__] = r__;
- f = cosl * e[i__] + sinl * d__[i__ + 1];
- d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
- if (i__ < m - 1) {
- g = sinl * e[i__ + 1];
- e[i__ + 1] = cosl * e[i__ + 1];
- }
- work[i__ - ll + 1] = cosr;
- work[i__ - ll + 1 + nm1] = sinr;
- work[i__ - ll + 1 + nm12] = cosl;
- work[i__ - ll + 1 + nm13] = sinl;
-/* L140: */
- }
- e[m - 1] = f;
-
-/* Update singular vectors */
-
- if (*ncvt > 0) {
- i__1 = m - ll + 1;
- dlasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
- ll + vt_dim1], ldvt);
- }
- if (*nru > 0) {
- i__1 = m - ll + 1;
- dlasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
- + 1], &u[ll * u_dim1 + 1], ldu);
- }
- if (*ncc > 0) {
- i__1 = m - ll + 1;
- dlasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
- + 1], &c__[ll + c_dim1], ldc);
- }
-
-/* Test convergence */
-
- if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
- e[m - 1] = 0.;
- }
-
- } else {
-
-/*
- Chase bulge from bottom to top
- Save cosines and sines for later singular vector updates
-*/
-
- f = ((d__1 = d__[m], abs(d__1)) - shift) * (d_sign(&c_b15, &d__[m]
- ) + shift / d__[m]);
- g = e[m - 1];
- i__1 = ll + 1;
- for (i__ = m; i__ >= i__1; --i__) {
- dlartg_(&f, &g, &cosr, &sinr, &r__);
- if (i__ < m) {
- e[i__] = r__;
- }
- f = cosr * d__[i__] + sinr * e[i__ - 1];
- e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
- g = sinr * d__[i__ - 1];
- d__[i__ - 1] = cosr * d__[i__ - 1];
- dlartg_(&f, &g, &cosl, &sinl, &r__);
- d__[i__] = r__;
- f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
- d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
- if (i__ > ll + 1) {
- g = sinl * e[i__ - 2];
- e[i__ - 2] = cosl * e[i__ - 2];
- }
- work[i__ - ll] = cosr;
- work[i__ - ll + nm1] = -sinr;
- work[i__ - ll + nm12] = cosl;
- work[i__ - ll + nm13] = -sinl;
-/* L150: */
- }
- e[ll] = f;
-
-/* Test convergence */
-
- if ((d__1 = e[ll], abs(d__1)) <= thresh) {
- e[ll] = 0.;
- }
-
-/* Update singular vectors if desired */
-
- if (*ncvt > 0) {
- i__1 = m - ll + 1;
- dlasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
- nm13 + 1], &vt[ll + vt_dim1], ldvt);
- }
- if (*nru > 0) {
- i__1 = m - ll + 1;
- dlasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
- u_dim1 + 1], ldu);
- }
- if (*ncc > 0) {
- i__1 = m - ll + 1;
- dlasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
- ll + c_dim1], ldc);
- }
- }
- }
-
-/* QR iteration finished, go back and check convergence */
-
- goto L60;
-
-/* All singular values converged, so make them positive */
-
-L160:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (d__[i__] < 0.) {
- d__[i__] = -d__[i__];
-
-/* Change sign of singular vectors, if desired */
-
- if (*ncvt > 0) {
- dscal_(ncvt, &c_b151, &vt[i__ + vt_dim1], ldvt);
- }
- }
-/* L170: */
- }
-
-/*
- Sort the singular values into decreasing order (insertion sort on
- singular values, but only one transposition per singular vector)
-*/
-
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Scan for smallest D(I) */
-
- isub = 1;
- smin = d__[1];
- i__2 = *n + 1 - i__;
- for (j = 2; j <= i__2; ++j) {
- if (d__[j] <= smin) {
- isub = j;
- smin = d__[j];
- }
-/* L180: */
- }
- if (isub != *n + 1 - i__) {
-
-/* Swap singular values and vectors */
-
- d__[isub] = d__[*n + 1 - i__];
- d__[*n + 1 - i__] = smin;
- if (*ncvt > 0) {
- dswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ +
- vt_dim1], ldvt);
- }
- if (*nru > 0) {
- dswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) *
- u_dim1 + 1], &c__1);
- }
- if (*ncc > 0) {
- dswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ +
- c_dim1], ldc);
- }
- }
-/* L190: */
- }
- goto L220;
-
-/* Maximum number of iterations exceeded, failure to converge */
-
-L200:
- *info = 0;
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (e[i__] != 0.) {
- ++(*info);
- }
-/* L210: */
- }
-L220:
- return 0;
-
-/* End of DBDSQR */
-
-} /* dbdsqr_ */
-
-/* Subroutine */ int dgebak_(char *job, char *side, integer *n, integer *ilo,
- integer *ihi, doublereal *scale, integer *m, doublereal *v, integer *
- ldv, integer *info)
-{
- /* System generated locals */
- integer v_dim1, v_offset, i__1;
-
- /* Local variables */
- static integer i__, k;
- static doublereal s;
- static integer ii;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static logical leftv;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical rightv;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- DGEBAK forms the right or left eigenvectors of a real general matrix
- by backward transformation on the computed eigenvectors of the
- balanced matrix output by DGEBAL.
-
- Arguments
- =========
-
- JOB (input) CHARACTER*1
- Specifies the type of backward transformation required:
- = 'N', do nothing, return immediately;
- = 'P', do backward transformation for permutation only;
- = 'S', do backward transformation for scaling only;
- = 'B', do backward transformations for both permutation and
- scaling.
- JOB must be the same as the argument JOB supplied to DGEBAL.
-
- SIDE (input) CHARACTER*1
- = 'R': V contains right eigenvectors;
- = 'L': V contains left eigenvectors.
-
- N (input) INTEGER
- The number of rows of the matrix V. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- The integers ILO and IHI determined by DGEBAL.
- 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
-
- SCALE (input) DOUBLE PRECISION array, dimension (N)
- Details of the permutation and scaling factors, as returned
- by DGEBAL.
-
- M (input) INTEGER
- The number of columns of the matrix V. M >= 0.
-
- V (input/output) DOUBLE PRECISION array, dimension (LDV,M)
- On entry, the matrix of right or left eigenvectors to be
- transformed, as returned by DHSEIN or DTREVC.
- On exit, V is overwritten by the transformed eigenvectors.
-
- LDV (input) INTEGER
- The leading dimension of the array V. LDV >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- =====================================================================
-
-
- Decode and Test the input parameters
-*/
-
- /* Parameter adjustments */
- --scale;
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
-
- /* Function Body */
- rightv = lsame_(side, "R");
- leftv = lsame_(side, "L");
-
- *info = 0;
- if ((((! lsame_(job, "N") && ! lsame_(job, "P")) && ! lsame_(job, "S"))
- && ! lsame_(job, "B"))) {
- *info = -1;
- } else if ((! rightv && ! leftv)) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -4;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -5;
- } else if (*m < 0) {
- *info = -7;
- } else if (*ldv < max(1,*n)) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGEBAK", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
- if (*m == 0) {
- return 0;
- }
- if (lsame_(job, "N")) {
- return 0;
- }
-
- if (*ilo == *ihi) {
- goto L30;
- }
-
-/* Backward balance */
-
- if (lsame_(job, "S") || lsame_(job, "B")) {
-
- if (rightv) {
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- s = scale[i__];
- dscal_(m, &s, &v[i__ + v_dim1], ldv);
-/* L10: */
- }
- }
-
- if (leftv) {
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- s = 1. / scale[i__];
- dscal_(m, &s, &v[i__ + v_dim1], ldv);
-/* L20: */
- }
- }
-
- }
-
-/*
- Backward permutation
-
- For I = ILO-1 step -1 until 1,
- IHI+1 step 1 until N do --
-*/
-
-L30:
- if (lsame_(job, "P") || lsame_(job, "B")) {
- if (rightv) {
- i__1 = *n;
- for (ii = 1; ii <= i__1; ++ii) {
- i__ = ii;
- if ((i__ >= *ilo && i__ <= *ihi)) {
- goto L40;
- }
- if (i__ < *ilo) {
- i__ = *ilo - ii;
- }
- k = (integer) scale[i__];
- if (k == i__) {
- goto L40;
- }
- dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
-L40:
- ;
- }
- }
-
- if (leftv) {
- i__1 = *n;
- for (ii = 1; ii <= i__1; ++ii) {
- i__ = ii;
- if ((i__ >= *ilo && i__ <= *ihi)) {
- goto L50;
- }
- if (i__ < *ilo) {
- i__ = *ilo - ii;
- }
- k = (integer) scale[i__];
- if (k == i__) {
- goto L50;
- }
- dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
-L50:
- ;
- }
- }
- }
-
- return 0;
-
-/* End of DGEBAK */
-
-} /* dgebak_ */
-
-/* Subroutine */ int dgebal_(char *job, integer *n, doublereal *a, integer *
- lda, integer *ilo, integer *ihi, doublereal *scale, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal d__1, d__2;
-
- /* Local variables */
- static doublereal c__, f, g;
- static integer i__, j, k, l, m;
- static doublereal r__, s, ca, ra;
- static integer ica, ira, iexc;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static doublereal sfmin1, sfmin2, sfmax1, sfmax2;
-
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical noconv;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DGEBAL balances a general real matrix A. This involves, first,
- permuting A by a similarity transformation to isolate eigenvalues
- in the first 1 to ILO-1 and last IHI+1 to N elements on the
- diagonal; and second, applying a diagonal similarity transformation
- to rows and columns ILO to IHI to make the rows and columns as
- close in norm as possible. Both steps are optional.
-
- Balancing may reduce the 1-norm of the matrix, and improve the
- accuracy of the computed eigenvalues and/or eigenvectors.
-
- Arguments
- =========
-
- JOB (input) CHARACTER*1
- Specifies the operations to be performed on A:
- = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
- for i = 1,...,N;
- = 'P': permute only;
- = 'S': scale only;
- = 'B': both permute and scale.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the input matrix A.
- On exit, A is overwritten by the balanced matrix.
- If JOB = 'N', A is not referenced.
- See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- ILO (output) INTEGER
- IHI (output) INTEGER
- ILO and IHI are set to integers such that on exit
- A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
- If JOB = 'N' or 'S', ILO = 1 and IHI = N.
-
- SCALE (output) DOUBLE PRECISION array, dimension (N)
- Details of the permutations and scaling factors applied to
- A. If P(j) is the index of the row and column interchanged
- with row and column j and D(j) is the scaling factor
- applied to row and column j, then
- SCALE(j) = P(j) for j = 1,...,ILO-1
- = D(j) for j = ILO,...,IHI
- = P(j) for j = IHI+1,...,N.
- The order in which the interchanges are made is N to IHI+1,
- then 1 to ILO-1.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- The permutations consist of row and column interchanges which put
- the matrix in the form
-
- ( T1 X Y )
- P A P = ( 0 B Z )
- ( 0 0 T2 )
-
- where T1 and T2 are upper triangular matrices whose eigenvalues lie
- along the diagonal. The column indices ILO and IHI mark the starting
- and ending columns of the submatrix B. Balancing consists of applying
- a diagonal similarity transformation inv(D) * B * D to make the
- 1-norms of each row of B and its corresponding column nearly equal.
- The output matrix is
-
- ( T1 X*D Y )
- ( 0 inv(D)*B*D inv(D)*Z ).
- ( 0 0 T2 )
-
- Information about the permutations P and the diagonal matrix D is
- returned in the vector SCALE.
-
- This subroutine is based on the EISPACK routine BALANC.
-
- Modified by Tzu-Yi Chen, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --scale;
-
- /* Function Body */
- *info = 0;
- if ((((! lsame_(job, "N") && ! lsame_(job, "P")) && ! lsame_(job, "S"))
- && ! lsame_(job, "B"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGEBAL", &i__1);
- return 0;
- }
-
- k = 1;
- l = *n;
-
- if (*n == 0) {
- goto L210;
- }
-
- if (lsame_(job, "N")) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- scale[i__] = 1.;
-/* L10: */
- }
- goto L210;
- }
-
- if (lsame_(job, "S")) {
- goto L120;
- }
-
-/* Permutation to isolate eigenvalues if possible */
-
- goto L50;
-
-/* Row and column exchange. */
-
-L20:
- scale[m] = (doublereal) j;
- if (j == m) {
- goto L30;
- }
-
- dswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
- i__1 = *n - k + 1;
- dswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);
-
-L30:
- switch (iexc) {
- case 1: goto L40;
- case 2: goto L80;
- }
-
-/* Search for rows isolating an eigenvalue and push them down. */
-
-L40:
- if (l == 1) {
- goto L210;
- }
- --l;
-
-L50:
- for (j = l; j >= 1; --j) {
-
- i__1 = l;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (i__ == j) {
- goto L60;
- }
- if (a[j + i__ * a_dim1] != 0.) {
- goto L70;
- }
-L60:
- ;
- }
-
- m = l;
- iexc = 1;
- goto L20;
-L70:
- ;
- }
-
- goto L90;
-
-/* Search for columns isolating an eigenvalue and push them left. */
-
-L80:
- ++k;
-
-L90:
- i__1 = l;
- for (j = k; j <= i__1; ++j) {
-
- i__2 = l;
- for (i__ = k; i__ <= i__2; ++i__) {
- if (i__ == j) {
- goto L100;
- }
- if (a[i__ + j * a_dim1] != 0.) {
- goto L110;
- }
-L100:
- ;
- }
-
- m = k;
- iexc = 2;
- goto L20;
-L110:
- ;
- }
-
-L120:
- i__1 = l;
- for (i__ = k; i__ <= i__1; ++i__) {
- scale[i__] = 1.;
-/* L130: */
- }
-
- if (lsame_(job, "P")) {
- goto L210;
- }
-
-/*
- Balance the submatrix in rows K to L.
-
- Iterative loop for norm reduction
-*/
-
- sfmin1 = SAFEMINIMUM / PRECISION;
- sfmax1 = 1. / sfmin1;
- sfmin2 = sfmin1 * 8.;
- sfmax2 = 1. / sfmin2;
-L140:
- noconv = FALSE_;
-
- i__1 = l;
- for (i__ = k; i__ <= i__1; ++i__) {
- c__ = 0.;
- r__ = 0.;
-
- i__2 = l;
- for (j = k; j <= i__2; ++j) {
- if (j == i__) {
- goto L150;
- }
- c__ += (d__1 = a[j + i__ * a_dim1], abs(d__1));
- r__ += (d__1 = a[i__ + j * a_dim1], abs(d__1));
-L150:
- ;
- }
- ica = idamax_(&l, &a[i__ * a_dim1 + 1], &c__1);
- ca = (d__1 = a[ica + i__ * a_dim1], abs(d__1));
- i__2 = *n - k + 1;
- ira = idamax_(&i__2, &a[i__ + k * a_dim1], lda);
- ra = (d__1 = a[i__ + (ira + k - 1) * a_dim1], abs(d__1));
-
-/* Guard against zero C or R due to underflow. */
-
- if (c__ == 0. || r__ == 0.) {
- goto L200;
- }
- g = r__ / 8.;
- f = 1.;
- s = c__ + r__;
-L160:
-/* Computing MAX */
- d__1 = max(f,c__);
-/* Computing MIN */
- d__2 = min(r__,g);
- if (c__ >= g || max(d__1,ca) >= sfmax2 || min(d__2,ra) <= sfmin2) {
- goto L170;
- }
- f *= 8.;
- c__ *= 8.;
- ca *= 8.;
- r__ /= 8.;
- g /= 8.;
- ra /= 8.;
- goto L160;
-
-L170:
- g = c__ / 8.;
-L180:
-/* Computing MIN */
- d__1 = min(f,c__), d__1 = min(d__1,g);
- if (g < r__ || max(r__,ra) >= sfmax2 || min(d__1,ca) <= sfmin2) {
- goto L190;
- }
- f /= 8.;
- c__ /= 8.;
- g /= 8.;
- ca /= 8.;
- r__ *= 8.;
- ra *= 8.;
- goto L180;
-
-/* Now balance. */
-
-L190:
- if (c__ + r__ >= s * .95) {
- goto L200;
- }
- if ((f < 1. && scale[i__] < 1.)) {
- if (f * scale[i__] <= sfmin1) {
- goto L200;
- }
- }
- if ((f > 1. && scale[i__] > 1.)) {
- if (scale[i__] >= sfmax1 / f) {
- goto L200;
- }
- }
- g = 1. / f;
- scale[i__] *= f;
- noconv = TRUE_;
-
- i__2 = *n - k + 1;
- dscal_(&i__2, &g, &a[i__ + k * a_dim1], lda);
- dscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1);
-
-L200:
- ;
- }
-
- if (noconv) {
- goto L140;
- }
-
-L210:
- *ilo = k;
- *ihi = l;
-
- return 0;
-
-/* End of DGEBAL */
-
-} /* dgebal_ */
-
-/* Subroutine */ int dgebd2_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *
- taup, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__;
- extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *), dlarfg_(integer *, doublereal *,
- doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DGEBD2 reduces a real general m by n matrix A to upper or lower
- bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
-
- If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows in the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns in the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the m by n general matrix to be reduced.
- On exit,
- if m >= n, the diagonal and the first superdiagonal are
- overwritten with the upper bidiagonal matrix B; the
- elements below the diagonal, with the array TAUQ, represent
- the orthogonal matrix Q as a product of elementary
- reflectors, and the elements above the first superdiagonal,
- with the array TAUP, represent the orthogonal matrix P as
- a product of elementary reflectors;
- if m < n, the diagonal and the first subdiagonal are
- overwritten with the lower bidiagonal matrix B; the
- elements below the first subdiagonal, with the array TAUQ,
- represent the orthogonal matrix Q as a product of
- elementary reflectors, and the elements above the diagonal,
- with the array TAUP, represent the orthogonal matrix P as
- a product of elementary reflectors.
- See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- D (output) DOUBLE PRECISION array, dimension (min(M,N))
- The diagonal elements of the bidiagonal matrix B:
- D(i) = A(i,i).
-
- E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
- The off-diagonal elements of the bidiagonal matrix B:
- if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
- if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
-
- TAUQ (output) DOUBLE PRECISION array dimension (min(M,N))
- The scalar factors of the elementary reflectors which
- represent the orthogonal matrix Q. See Further Details.
-
- TAUP (output) DOUBLE PRECISION array, dimension (min(M,N))
- The scalar factors of the elementary reflectors which
- represent the orthogonal matrix P. See Further Details.
-
- WORK (workspace) DOUBLE PRECISION array, dimension (max(M,N))
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- The matrices Q and P are represented as products of elementary
- reflectors:
-
- If m >= n,
-
- Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
-
- Each H(i) and G(i) has the form:
-
- H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-
- where tauq and taup are real scalars, and v and u are real vectors;
- v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
- u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
- tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- If m < n,
-
- Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
-
- Each H(i) and G(i) has the form:
-
- H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-
- where tauq and taup are real scalars, and v and u are real vectors;
- v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
- u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
- tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- The contents of A on exit are illustrated by the following examples:
-
- m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
-
- ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
- ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
- ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
- ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
- ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
- ( v1 v2 v3 v4 v5 )
-
- where d and e denote diagonal and off-diagonal elements of B, vi
- denotes an element of the vector defining H(i), and ui an element of
- the vector defining G(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tauq;
- --taup;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info < 0) {
- i__1 = -(*info);
- xerbla_("DGEBD2", &i__1);
- return 0;
- }
-
- if (*m >= *n) {
-
-/* Reduce to upper bidiagonal form */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
-
- i__2 = *m - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ *
- a_dim1], &c__1, &tauq[i__]);
- d__[i__] = a[i__ + i__ * a_dim1];
- a[i__ + i__ * a_dim1] = 1.;
-
-/* Apply H(i) to A(i:m,i+1:n) from the left */
-
- i__2 = *m - i__ + 1;
- i__3 = *n - i__;
- dlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tauq[
- i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
- a[i__ + i__ * a_dim1] = d__[i__];
-
- if (i__ < *n) {
-
-/*
- Generate elementary reflector G(i) to annihilate
- A(i,i+2:n)
-*/
-
- i__2 = *n - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(
- i__3,*n) * a_dim1], lda, &taup[i__]);
- e[i__] = a[i__ + (i__ + 1) * a_dim1];
- a[i__ + (i__ + 1) * a_dim1] = 1.;
-
-/* Apply G(i) to A(i+1:m,i+1:n) from the right */
-
- i__2 = *m - i__;
- i__3 = *n - i__;
- dlarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1],
- lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1],
- lda, &work[1]);
- a[i__ + (i__ + 1) * a_dim1] = e[i__];
- } else {
- taup[i__] = 0.;
- }
-/* L10: */
- }
- } else {
-
-/* Reduce to lower bidiagonal form */
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Generate elementary reflector G(i) to annihilate A(i,i+1:n) */
-
- i__2 = *n - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3,*n) *
- a_dim1], lda, &taup[i__]);
- d__[i__] = a[i__ + i__ * a_dim1];
- a[i__ + i__ * a_dim1] = 1.;
-
-/* Apply G(i) to A(i+1:m,i:n) from the right */
-
- i__2 = *m - i__;
- i__3 = *n - i__ + 1;
-/* Computing MIN */
- i__4 = i__ + 1;
- dlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &taup[
- i__], &a[min(i__4,*m) + i__ * a_dim1], lda, &work[1]);
- a[i__ + i__ * a_dim1] = d__[i__];
-
- if (i__ < *m) {
-
-/*
- Generate elementary reflector H(i) to annihilate
- A(i+2:m,i)
-*/
-
- i__2 = *m - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*m) +
- i__ * a_dim1], &c__1, &tauq[i__]);
- e[i__] = a[i__ + 1 + i__ * a_dim1];
- a[i__ + 1 + i__ * a_dim1] = 1.;
-
-/* Apply H(i) to A(i+1:m,i+1:n) from the left */
-
- i__2 = *m - i__;
- i__3 = *n - i__;
- dlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &
- c__1, &tauq[i__], &a[i__ + 1 + (i__ + 1) * a_dim1],
- lda, &work[1]);
- a[i__ + 1 + i__ * a_dim1] = e[i__];
- } else {
- tauq[i__] = 0.;
- }
-/* L20: */
- }
- }
- return 0;
-
-/* End of DGEBD2 */
-
-} /* dgebd2_ */
-
-/* Subroutine */ int dgebrd_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *
- taup, doublereal *work, integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__, j, nb, nx;
- static doublereal ws;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- static integer nbmin, iinfo, minmn;
- extern /* Subroutine */ int dgebd2_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *), dlabrd_(integer *, integer *, integer *
- , doublereal *, integer *, doublereal *, doublereal *, doublereal
- *, doublereal *, doublereal *, integer *, doublereal *, integer *)
- , xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer ldwrkx, ldwrky, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DGEBRD reduces a general real M-by-N matrix A to upper or lower
- bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
-
- If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows in the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns in the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the M-by-N general matrix to be reduced.
- On exit,
- if m >= n, the diagonal and the first superdiagonal are
- overwritten with the upper bidiagonal matrix B; the
- elements below the diagonal, with the array TAUQ, represent
- the orthogonal matrix Q as a product of elementary
- reflectors, and the elements above the first superdiagonal,
- with the array TAUP, represent the orthogonal matrix P as
- a product of elementary reflectors;
- if m < n, the diagonal and the first subdiagonal are
- overwritten with the lower bidiagonal matrix B; the
- elements below the first subdiagonal, with the array TAUQ,
- represent the orthogonal matrix Q as a product of
- elementary reflectors, and the elements above the diagonal,
- with the array TAUP, represent the orthogonal matrix P as
- a product of elementary reflectors.
- See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- D (output) DOUBLE PRECISION array, dimension (min(M,N))
- The diagonal elements of the bidiagonal matrix B:
- D(i) = A(i,i).
-
- E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
- The off-diagonal elements of the bidiagonal matrix B:
- if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
- if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
-
- TAUQ (output) DOUBLE PRECISION array dimension (min(M,N))
- The scalar factors of the elementary reflectors which
- represent the orthogonal matrix Q. See Further Details.
-
- TAUP (output) DOUBLE PRECISION array, dimension (min(M,N))
- The scalar factors of the elementary reflectors which
- represent the orthogonal matrix P. See Further Details.
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The length of the array WORK. LWORK >= max(1,M,N).
- For optimum performance LWORK >= (M+N)*NB, where NB
- is the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- The matrices Q and P are represented as products of elementary
- reflectors:
-
- If m >= n,
-
- Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
-
- Each H(i) and G(i) has the form:
-
- H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-
- where tauq and taup are real scalars, and v and u are real vectors;
- v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
- u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
- tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- If m < n,
-
- Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
-
- Each H(i) and G(i) has the form:
-
- H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-
- where tauq and taup are real scalars, and v and u are real vectors;
- v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
- u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
- tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- The contents of A on exit are illustrated by the following examples:
-
- m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
-
- ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
- ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
- ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
- ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
- ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
- ( v1 v2 v3 v4 v5 )
-
- where d and e denote diagonal and off-diagonal elements of B, vi
- denotes an element of the vector defining H(i), and ui an element of
- the vector defining G(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tauq;
- --taup;
- --work;
-
- /* Function Body */
- *info = 0;
-/* Computing MAX */
- i__1 = 1, i__2 = ilaenv_(&c__1, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nb = max(i__1,i__2);
- lwkopt = (*m + *n) * nb;
- work[1] = (doublereal) lwkopt;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- } else /* if(complicated condition) */ {
-/* Computing MAX */
- i__1 = max(1,*m);
- if ((*lwork < max(i__1,*n) && ! lquery)) {
- *info = -10;
- }
- }
- if (*info < 0) {
- i__1 = -(*info);
- xerbla_("DGEBRD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- minmn = min(*m,*n);
- if (minmn == 0) {
- work[1] = 1.;
- return 0;
- }
-
- ws = (doublereal) max(*m,*n);
- ldwrkx = *m;
- ldwrky = *n;
-
- if ((nb > 1 && nb < minmn)) {
-
-/*
- Set the crossover point NX.
-
- Computing MAX
-*/
- i__1 = nb, i__2 = ilaenv_(&c__3, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
-
-/* Determine when to switch from blocked to unblocked code. */
-
- if (nx < minmn) {
- ws = (doublereal) ((*m + *n) * nb);
- if ((doublereal) (*lwork) < ws) {
-
-/*
- Not enough work space for the optimal NB, consider using
- a smaller block size.
-*/
-
- nbmin = ilaenv_(&c__2, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- if (*lwork >= (*m + *n) * nbmin) {
- nb = *lwork / (*m + *n);
- } else {
- nb = 1;
- nx = minmn;
- }
- }
- }
- } else {
- nx = minmn;
- }
-
- i__1 = minmn - nx;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-
-/*
- Reduce rows and columns i:i+nb-1 to bidiagonal form and return
- the matrices X and Y which are needed to update the unreduced
- part of the matrix
-*/
-
- i__3 = *m - i__ + 1;
- i__4 = *n - i__ + 1;
- dlabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[
- i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx
- * nb + 1], &ldwrky);
-
-/*
- Update the trailing submatrix A(i+nb:m,i+nb:n), using an update
- of the form A := A - V*Y' - X*U'
-*/
-
- i__3 = *m - i__ - nb + 1;
- i__4 = *n - i__ - nb + 1;
- dgemm_("No transpose", "Transpose", &i__3, &i__4, &nb, &c_b151, &a[
- i__ + nb + i__ * a_dim1], lda, &work[ldwrkx * nb + nb + 1], &
- ldwrky, &c_b15, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
- i__3 = *m - i__ - nb + 1;
- i__4 = *n - i__ - nb + 1;
- dgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &c_b151, &
- work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, &
- c_b15, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
-
-/* Copy diagonal and off-diagonal elements of B back into A */
-
- if (*m >= *n) {
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- a[j + j * a_dim1] = d__[j];
- a[j + (j + 1) * a_dim1] = e[j];
-/* L10: */
- }
- } else {
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- a[j + j * a_dim1] = d__[j];
- a[j + 1 + j * a_dim1] = e[j];
-/* L20: */
- }
- }
-/* L30: */
- }
-
-/* Use unblocked code to reduce the remainder of the matrix */
-
- i__2 = *m - i__ + 1;
- i__1 = *n - i__ + 1;
- dgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &
- tauq[i__], &taup[i__], &work[1], &iinfo);
- work[1] = ws;
- return 0;
-
-/* End of DGEBRD */
-
-} /* dgebrd_ */
-
-/* Subroutine */ int dgeev_(char *jobvl, char *jobvr, integer *n, doublereal *
- a, integer *lda, doublereal *wr, doublereal *wi, doublereal *vl,
- integer *ldvl, doublereal *vr, integer *ldvr, doublereal *work,
- integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
- i__2, i__3, i__4;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__, k;
- static doublereal r__, cs, sn;
- static integer ihi;
- static doublereal scl;
- static integer ilo;
- static doublereal dum[1], eps;
- static integer ibal;
- static char side[1];
- static integer maxb;
- static doublereal anrm;
- static integer ierr, itau;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- static integer iwrk, nout;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- extern doublereal dlapy2_(doublereal *, doublereal *);
- extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dgebak_(
- char *, char *, integer *, integer *, integer *, doublereal *,
- integer *, doublereal *, integer *, integer *),
- dgebal_(char *, integer *, doublereal *, integer *, integer *,
- integer *, doublereal *, integer *);
- static logical scalea;
-
- static doublereal cscale;
- extern doublereal dlange_(char *, integer *, integer *, doublereal *,
- integer *, doublereal *);
- extern /* Subroutine */ int dgehrd_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *), dlascl_(char *, integer *, integer *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *);
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *), xerbla_(char *, integer *);
- static logical select[1];
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static doublereal bignum;
- extern /* Subroutine */ int dorghr_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *), dhseqr_(char *, char *, integer *, integer *, integer
- *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, integer *), dtrevc_(char *, char *, logical *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, integer *, integer *, doublereal *, integer *);
- static integer minwrk, maxwrk;
- static logical wantvl;
- static doublereal smlnum;
- static integer hswork;
- static logical lquery, wantvr;
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- December 8, 1999
-
-
- Purpose
- =======
-
- DGEEV computes for an N-by-N real nonsymmetric matrix A, the
- eigenvalues and, optionally, the left and/or right eigenvectors.
-
- The right eigenvector v(j) of A satisfies
- A * v(j) = lambda(j) * v(j)
- where lambda(j) is its eigenvalue.
- The left eigenvector u(j) of A satisfies
- u(j)**H * A = lambda(j) * u(j)**H
- where u(j)**H denotes the conjugate transpose of u(j).
-
- The computed eigenvectors are normalized to have Euclidean norm
- equal to 1 and largest component real.
-
- Arguments
- =========
-
- JOBVL (input) CHARACTER*1
- = 'N': left eigenvectors of A are not computed;
- = 'V': left eigenvectors of A are computed.
-
- JOBVR (input) CHARACTER*1
- = 'N': right eigenvectors of A are not computed;
- = 'V': right eigenvectors of A are computed.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the N-by-N matrix A.
- On exit, A has been overwritten.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- WR (output) DOUBLE PRECISION array, dimension (N)
- WI (output) DOUBLE PRECISION array, dimension (N)
- WR and WI contain the real and imaginary parts,
- respectively, of the computed eigenvalues. Complex
- conjugate pairs of eigenvalues appear consecutively
- with the eigenvalue having the positive imaginary part
- first.
-
- VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
- If JOBVL = 'V', the left eigenvectors u(j) are stored one
- after another in the columns of VL, in the same order
- as their eigenvalues.
- If JOBVL = 'N', VL is not referenced.
- If the j-th eigenvalue is real, then u(j) = VL(:,j),
- the j-th column of VL.
- If the j-th and (j+1)-st eigenvalues form a complex
- conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
- u(j+1) = VL(:,j) - i*VL(:,j+1).
-
- LDVL (input) INTEGER
- The leading dimension of the array VL. LDVL >= 1; if
- JOBVL = 'V', LDVL >= N.
-
- VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
- If JOBVR = 'V', the right eigenvectors v(j) are stored one
- after another in the columns of VR, in the same order
- as their eigenvalues.
- If JOBVR = 'N', VR is not referenced.
- If the j-th eigenvalue is real, then v(j) = VR(:,j),
- the j-th column of VR.
- If the j-th and (j+1)-st eigenvalues form a complex
- conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
- v(j+1) = VR(:,j) - i*VR(:,j+1).
-
- LDVR (input) INTEGER
- The leading dimension of the array VR. LDVR >= 1; if
- JOBVR = 'V', LDVR >= N.
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,3*N), and
- if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
- performance, LWORK must generally be larger.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = i, the QR algorithm failed to compute all the
- eigenvalues, and no eigenvectors have been computed;
- elements i+1:N of WR and WI contain eigenvalues which
- have converged.
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --wr;
- --wi;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1;
- wantvl = lsame_(jobvl, "V");
- wantvr = lsame_(jobvr, "V");
- if ((! wantvl && ! lsame_(jobvl, "N"))) {
- *info = -1;
- } else if ((! wantvr && ! lsame_(jobvr, "N"))) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if (*ldvl < 1 || (wantvl && *ldvl < *n)) {
- *info = -9;
- } else if (*ldvr < 1 || (wantvr && *ldvr < *n)) {
- *info = -11;
- }
-
-/*
- Compute workspace
- (Note: Comments in the code beginning "Workspace:" describe the
- minimal amount of workspace needed at that point in the code,
- as well as the preferred amount for good performance.
- NB refers to the optimal block size for the immediately
- following subroutine, as returned by ILAENV.
- HSWORK refers to the workspace preferred by DHSEQR, as
- calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
- the worst case.)
-*/
-
- minwrk = 1;
- if ((*info == 0 && (*lwork >= 1 || lquery))) {
- maxwrk = ((*n) << (1)) + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1,
- n, &c__0, (ftnlen)6, (ftnlen)1);
- if ((! wantvl && ! wantvr)) {
-/* Computing MAX */
- i__1 = 1, i__2 = *n * 3;
- minwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = ilaenv_(&c__8, "DHSEQR", "EN", n, &c__1, n, &c_n1, (ftnlen)
- 6, (ftnlen)2);
- maxb = max(i__1,2);
-/*
- Computing MIN
- Computing MAX
-*/
- i__3 = 2, i__4 = ilaenv_(&c__4, "DHSEQR", "EN", n, &c__1, n, &
- c_n1, (ftnlen)6, (ftnlen)2);
- i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
- k = min(i__1,i__2);
-/* Computing MAX */
- i__1 = k * (k + 2), i__2 = (*n) << (1);
- hswork = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = *n +
- hswork;
- maxwrk = max(i__1,i__2);
- } else {
-/* Computing MAX */
- i__1 = 1, i__2 = (*n) << (2);
- minwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + (*n - 1) * ilaenv_(&c__1,
- "DORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = ilaenv_(&c__8, "DHSEQR", "SV", n, &c__1, n, &c_n1, (ftnlen)
- 6, (ftnlen)2);
- maxb = max(i__1,2);
-/*
- Computing MIN
- Computing MAX
-*/
- i__3 = 2, i__4 = ilaenv_(&c__4, "DHSEQR", "SV", n, &c__1, n, &
- c_n1, (ftnlen)6, (ftnlen)2);
- i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
- k = min(i__1,i__2);
-/* Computing MAX */
- i__1 = k * (k + 2), i__2 = (*n) << (1);
- hswork = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = *n +
- hswork;
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = (*n) << (2);
- maxwrk = max(i__1,i__2);
- }
- work[1] = (doublereal) maxwrk;
- }
- if ((*lwork < minwrk && ! lquery)) {
- *info = -13;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGEEV ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
-/* Get machine constants */
-
- eps = PRECISION;
- smlnum = SAFEMINIMUM;
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
- smlnum = sqrt(smlnum) / eps;
- bignum = 1. / smlnum;
-
-/* Scale A if max element outside range [SMLNUM,BIGNUM] */
-
- anrm = dlange_("M", n, n, &a[a_offset], lda, dum);
- scalea = FALSE_;
- if ((anrm > 0. && anrm < smlnum)) {
- scalea = TRUE_;
- cscale = smlnum;
- } else if (anrm > bignum) {
- scalea = TRUE_;
- cscale = bignum;
- }
- if (scalea) {
- dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
- ierr);
- }
-
-/*
- Balance the matrix
- (Workspace: need N)
-*/
-
- ibal = 1;
- dgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
-
-/*
- Reduce to upper Hessenberg form
- (Workspace: need 3*N, prefer 2*N+N*NB)
-*/
-
- itau = ibal + *n;
- iwrk = itau + *n;
- i__1 = *lwork - iwrk + 1;
- dgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
- &ierr);
-
- if (wantvl) {
-
-/*
- Want left eigenvectors
- Copy Householder vectors to VL
-*/
-
- *(unsigned char *)side = 'L';
- dlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
- ;
-
-/*
- Generate orthogonal matrix in VL
- (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
-*/
-
- i__1 = *lwork - iwrk + 1;
- dorghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk],
- &i__1, &ierr);
-
-/*
- Perform QR iteration, accumulating Schur vectors in VL
- (Workspace: need N+1, prefer N+HSWORK (see comments) )
-*/
-
- iwrk = itau;
- i__1 = *lwork - iwrk + 1;
- dhseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
- vl[vl_offset], ldvl, &work[iwrk], &i__1, info);
-
- if (wantvr) {
-
-/*
- Want left and right eigenvectors
- Copy Schur vectors to VR
-*/
-
- *(unsigned char *)side = 'B';
- dlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
- }
-
- } else if (wantvr) {
-
-/*
- Want right eigenvectors
- Copy Householder vectors to VR
-*/
-
- *(unsigned char *)side = 'R';
- dlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
- ;
-
-/*
- Generate orthogonal matrix in VR
- (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
-*/
-
- i__1 = *lwork - iwrk + 1;
- dorghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk],
- &i__1, &ierr);
-
-/*
- Perform QR iteration, accumulating Schur vectors in VR
- (Workspace: need N+1, prefer N+HSWORK (see comments) )
-*/
-
- iwrk = itau;
- i__1 = *lwork - iwrk + 1;
- dhseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
- vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
-
- } else {
-
-/*
- Compute eigenvalues only
- (Workspace: need N+1, prefer N+HSWORK (see comments) )
-*/
-
- iwrk = itau;
- i__1 = *lwork - iwrk + 1;
- dhseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
- vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
- }
-
-/* If INFO > 0 from DHSEQR, then quit */
-
- if (*info > 0) {
- goto L50;
- }
-
- if (wantvl || wantvr) {
-
-/*
- Compute left and/or right eigenvectors
- (Workspace: need 4*N)
-*/
-
- dtrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
- &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr);
- }
-
- if (wantvl) {
-
-/*
- Undo balancing of left eigenvectors
- (Workspace: need N)
-*/
-
- dgebak_("B", "L", n, &ilo, &ihi, &work[ibal], n, &vl[vl_offset], ldvl,
- &ierr);
-
-/* Normalize left eigenvectors and make largest component real */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (wi[i__] == 0.) {
- scl = 1. / dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
- dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
- } else if (wi[i__] > 0.) {
- d__1 = dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
- d__2 = dnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
- scl = 1. / dlapy2_(&d__1, &d__2);
- dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
- dscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
-/* Computing 2nd power */
- d__1 = vl[k + i__ * vl_dim1];
-/* Computing 2nd power */
- d__2 = vl[k + (i__ + 1) * vl_dim1];
- work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
-/* L10: */
- }
- k = idamax_(n, &work[iwrk], &c__1);
- dlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1],
- &cs, &sn, &r__);
- drot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) *
- vl_dim1 + 1], &c__1, &cs, &sn);
- vl[k + (i__ + 1) * vl_dim1] = 0.;
- }
-/* L20: */
- }
- }
-
- if (wantvr) {
-
-/*
- Undo balancing of right eigenvectors
- (Workspace: need N)
-*/
-
- dgebak_("B", "R", n, &ilo, &ihi, &work[ibal], n, &vr[vr_offset], ldvr,
- &ierr);
-
-/* Normalize right eigenvectors and make largest component real */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (wi[i__] == 0.) {
- scl = 1. / dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
- dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
- } else if (wi[i__] > 0.) {
- d__1 = dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
- d__2 = dnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
- scl = 1. / dlapy2_(&d__1, &d__2);
- dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
- dscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
-/* Computing 2nd power */
- d__1 = vr[k + i__ * vr_dim1];
-/* Computing 2nd power */
- d__2 = vr[k + (i__ + 1) * vr_dim1];
- work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
-/* L30: */
- }
- k = idamax_(n, &work[iwrk], &c__1);
- dlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
- &cs, &sn, &r__);
- drot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) *
- vr_dim1 + 1], &c__1, &cs, &sn);
- vr[k + (i__ + 1) * vr_dim1] = 0.;
- }
-/* L40: */
- }
- }
-
-/* Undo scaling if necessary */
-
-L50:
- if (scalea) {
- i__1 = *n - *info;
-/* Computing MAX */
- i__3 = *n - *info;
- i__2 = max(i__3,1);
- dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info +
- 1], &i__2, &ierr);
- i__1 = *n - *info;
-/* Computing MAX */
- i__3 = *n - *info;
- i__2 = max(i__3,1);
- dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info +
- 1], &i__2, &ierr);
- if (*info > 0) {
- i__1 = ilo - 1;
- dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1],
- n, &ierr);
- i__1 = ilo - 1;
- dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1],
- n, &ierr);
- }
- }
-
- work[1] = (doublereal) maxwrk;
- return 0;
-
-/* End of DGEEV */
-
-} /* dgeev_ */
-
-/* Subroutine */ int dgehd2_(integer *n, integer *ilo, integer *ihi,
- doublereal *a, integer *lda, doublereal *tau, doublereal *work,
- integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__;
- static doublereal aii;
- extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *), dlarfg_(integer *, doublereal *,
- doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DGEHD2 reduces a real general matrix A to upper Hessenberg form H by
- an orthogonal similarity transformation: Q' * A * Q = H .
-
- Arguments
- =========
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- It is assumed that A is already upper triangular in rows
- and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
- set by a previous call to DGEBAL; otherwise they should be
- set to 1 and N respectively. See Further Details.
- 1 <= ILO <= IHI <= max(1,N).
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the n by n general matrix to be reduced.
- On exit, the upper triangle and the first subdiagonal of A
- are overwritten with the upper Hessenberg matrix H, and the
- elements below the first subdiagonal, with the array TAU,
- represent the orthogonal matrix Q as a product of elementary
- reflectors. See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- TAU (output) DOUBLE PRECISION array, dimension (N-1)
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (N)
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of (ihi-ilo) elementary
- reflectors
-
- Q = H(ilo) H(ilo+1) . . . H(ihi-1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
- exit in A(i+2:ihi,i), and tau in TAU(i).
-
- The contents of A are illustrated by the following example, with
- n = 7, ilo = 2 and ihi = 6:
-
- on entry, on exit,
-
- ( a a a a a a a ) ( a a h h h h a )
- ( a a a a a a ) ( a h h h h a )
- ( a a a a a a ) ( h h h h h h )
- ( a a a a a a ) ( v2 h h h h h )
- ( a a a a a a ) ( v2 v3 h h h h )
- ( a a a a a a ) ( v2 v3 v4 h h h )
- ( a ) ( a )
-
- where a denotes an element of the original matrix A, h denotes a
- modified element of the upper Hessenberg matrix H, and vi denotes an
- element of the vector defining H(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -2;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGEHD2", &i__1);
- return 0;
- }
-
- i__1 = *ihi - 1;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
-
-/* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */
-
- i__2 = *ihi - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) + i__ *
- a_dim1], &c__1, &tau[i__]);
- aii = a[i__ + 1 + i__ * a_dim1];
- a[i__ + 1 + i__ * a_dim1] = 1.;
-
-/* Apply H(i) to A(1:ihi,i+1:ihi) from the right */
-
- i__2 = *ihi - i__;
- dlarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
- i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]);
-
-/* Apply H(i) to A(i+1:ihi,i+1:n) from the left */
-
- i__2 = *ihi - i__;
- i__3 = *n - i__;
- dlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
- i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]);
-
- a[i__ + 1 + i__ * a_dim1] = aii;
-/* L10: */
- }
-
- return 0;
-
-/* End of DGEHD2 */
-
-} /* dgehd2_ */
-
-/* Subroutine */ int dgehrd_(integer *n, integer *ilo, integer *ihi,
- doublereal *a, integer *lda, doublereal *tau, doublereal *work,
- integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__;
- static doublereal t[4160] /* was [65][64] */;
- static integer ib;
- static doublereal ei;
- static integer nb, nh, nx, iws;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- static integer nbmin, iinfo;
- extern /* Subroutine */ int dgehd2_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *),
- dlarfb_(char *, char *, char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *), dlahrd_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer ldwork, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DGEHRD reduces a real general matrix A to upper Hessenberg form H by
- an orthogonal similarity transformation: Q' * A * Q = H .
-
- Arguments
- =========
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- It is assumed that A is already upper triangular in rows
- and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
- set by a previous call to DGEBAL; otherwise they should be
- set to 1 and N respectively. See Further Details.
- 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the N-by-N general matrix to be reduced.
- On exit, the upper triangle and the first subdiagonal of A
- are overwritten with the upper Hessenberg matrix H, and the
- elements below the first subdiagonal, with the array TAU,
- represent the orthogonal matrix Q as a product of elementary
- reflectors. See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- TAU (output) DOUBLE PRECISION array, dimension (N-1)
- The scalar factors of the elementary reflectors (see Further
- Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
- zero.
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The length of the array WORK. LWORK >= max(1,N).
- For optimum performance LWORK >= N*NB, where NB is the
- optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of (ihi-ilo) elementary
- reflectors
-
- Q = H(ilo) H(ilo+1) . . . H(ihi-1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
- exit in A(i+2:ihi,i), and tau in TAU(i).
-
- The contents of A are illustrated by the following example, with
- n = 7, ilo = 2 and ihi = 6:
-
- on entry, on exit,
-
- ( a a a a a a a ) ( a a h h h h a )
- ( a a a a a a ) ( a h h h h a )
- ( a a a a a a ) ( h h h h h h )
- ( a a a a a a ) ( v2 h h h h h )
- ( a a a a a a ) ( v2 v3 h h h h )
- ( a a a a a a ) ( v2 v3 v4 h h h )
- ( a ) ( a )
-
- where a denotes an element of the original matrix A, h denotes a
- modified element of the upper Hessenberg matrix H, and vi denotes an
- element of the vector defining H(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
-/* Computing MIN */
- i__1 = 64, i__2 = ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nb = min(i__1,i__2);
- lwkopt = *n * nb;
- work[1] = (doublereal) lwkopt;
- lquery = *lwork == -1;
- if (*n < 0) {
- *info = -1;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -2;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if ((*lwork < max(1,*n) && ! lquery)) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGEHRD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */
-
- i__1 = *ilo - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- tau[i__] = 0.;
-/* L10: */
- }
- i__1 = *n - 1;
- for (i__ = max(1,*ihi); i__ <= i__1; ++i__) {
- tau[i__] = 0.;
-/* L20: */
- }
-
-/* Quick return if possible */
-
- nh = *ihi - *ilo + 1;
- if (nh <= 1) {
- work[1] = 1.;
- return 0;
- }
-
-/*
- Determine the block size.
-
- Computing MIN
-*/
- i__1 = 64, i__2 = ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nb = min(i__1,i__2);
- nbmin = 2;
- iws = 1;
- if ((nb > 1 && nb < nh)) {
-
-/*
- Determine when to cross over from blocked to unblocked code
- (last block is always handled by unblocked code).
-
- Computing MAX
-*/
- i__1 = nb, i__2 = ilaenv_(&c__3, "DGEHRD", " ", n, ilo, ihi, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < nh) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- iws = *n * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: determine the
- minimum value of NB, and reduce NB or force use of
- unblocked code.
-
- Computing MAX
-*/
- i__1 = 2, i__2 = ilaenv_(&c__2, "DGEHRD", " ", n, ilo, ihi, &
- c_n1, (ftnlen)6, (ftnlen)1);
- nbmin = max(i__1,i__2);
- if (*lwork >= *n * nbmin) {
- nb = *lwork / *n;
- } else {
- nb = 1;
- }
- }
- }
- }
- ldwork = *n;
-
- if (nb < nbmin || nb >= nh) {
-
-/* Use unblocked code below */
-
- i__ = *ilo;
-
- } else {
-
-/* Use blocked code */
-
- i__1 = *ihi - 1 - nx;
- i__2 = nb;
- for (i__ = *ilo; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__3 = nb, i__4 = *ihi - i__;
- ib = min(i__3,i__4);
-
-/*
- Reduce columns i:i+ib-1 to Hessenberg form, returning the
- matrices V and T of the block reflector H = I - V*T*V'
- which performs the reduction, and also the matrix Y = A*V*T
-*/
-
- dlahrd_(ihi, &i__, &ib, &a[i__ * a_dim1 + 1], lda, &tau[i__], t, &
- c__65, &work[1], &ldwork);
-
-/*
- Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
- right, computing A := A - Y * V'. V(i+ib,ib-1) must be set
- to 1.
-*/
-
- ei = a[i__ + ib + (i__ + ib - 1) * a_dim1];
- a[i__ + ib + (i__ + ib - 1) * a_dim1] = 1.;
- i__3 = *ihi - i__ - ib + 1;
- dgemm_("No transpose", "Transpose", ihi, &i__3, &ib, &c_b151, &
- work[1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda, &
- c_b15, &a[(i__ + ib) * a_dim1 + 1], lda);
- a[i__ + ib + (i__ + ib - 1) * a_dim1] = ei;
-
-/*
- Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
- left
-*/
-
- i__3 = *ihi - i__;
- i__4 = *n - i__ - ib + 1;
- dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
- i__4, &ib, &a[i__ + 1 + i__ * a_dim1], lda, t, &c__65, &a[
- i__ + 1 + (i__ + ib) * a_dim1], lda, &work[1], &ldwork);
-/* L30: */
- }
- }
-
-/* Use unblocked code to reduce the rest of the matrix */
-
- dgehd2_(n, &i__, ihi, &a[a_offset], lda, &tau[1], &work[1], &iinfo);
- work[1] = (doublereal) iws;
-
- return 0;
-
-/* End of DGEHRD */
-
-} /* dgehrd_ */
-
-/* Subroutine */ int dgelq2_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *tau, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, k;
- static doublereal aii;
- extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *), dlarfg_(integer *, doublereal *,
- doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DGELQ2 computes an LQ factorization of a real m by n matrix A:
- A = L * Q.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the m by n matrix A.
- On exit, the elements on and below the diagonal of the array
- contain the m by min(m,n) lower trapezoidal matrix L (L is
- lower triangular if m <= n); the elements above the diagonal,
- with the array TAU, represent the orthogonal matrix Q as a
- product of elementary reflectors (see Further Details).
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (M)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of elementary reflectors
-
- Q = H(k) . . . H(2) H(1), where k = min(m,n).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
- and tau in TAU(i).
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGELQ2", &i__1);
- return 0;
- }
-
- k = min(*m,*n);
-
- i__1 = k;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Generate elementary reflector H(i) to annihilate A(i,i+1:n) */
-
- i__2 = *n - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3,*n) * a_dim1]
- , lda, &tau[i__]);
- if (i__ < *m) {
-
-/* Apply H(i) to A(i+1:m,i:n) from the right */
-
- aii = a[i__ + i__ * a_dim1];
- a[i__ + i__ * a_dim1] = 1.;
- i__2 = *m - i__;
- i__3 = *n - i__ + 1;
- dlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[
- i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
- a[i__ + i__ * a_dim1] = aii;
- }
-/* L10: */
- }
- return 0;
-
-/* End of DGELQ2 */
-
-} /* dgelq2_ */
-
-/* Subroutine */ int dgelqf_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *tau, doublereal *work, integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
- extern /* Subroutine */ int dgelq2_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *), dlarfb_(char *,
- char *, char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
- *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer ldwork, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DGELQF computes an LQ factorization of a real M-by-N matrix A:
- A = L * Q.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the M-by-N matrix A.
- On exit, the elements on and below the diagonal of the array
- contain the m-by-min(m,n) lower trapezoidal matrix L (L is
- lower triangular if m <= n); the elements above the diagonal,
- with the array TAU, represent the orthogonal matrix Q as a
- product of elementary reflectors (see Further Details).
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,M).
- For optimum performance LWORK >= M*NB, where NB is the
- optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of elementary reflectors
-
- Q = H(k) . . . H(2) H(1), where k = min(m,n).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
- and tau in TAU(i).
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- nb = ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- lwkopt = *m * nb;
- work[1] = (doublereal) lwkopt;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- } else if ((*lwork < max(1,*m) && ! lquery)) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGELQF", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- k = min(*m,*n);
- if (k == 0) {
- work[1] = 1.;
- return 0;
- }
-
- nbmin = 2;
- nx = 0;
- iws = *m;
- if ((nb > 1 && nb < k)) {
-
-/*
- Determine when to cross over from blocked to unblocked code.
-
- Computing MAX
-*/
- i__1 = 0, i__2 = ilaenv_(&c__3, "DGELQF", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < k) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- ldwork = *m;
- iws = ldwork * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: reduce NB and
- determine the minimum value of NB.
-*/
-
- nb = *lwork / ldwork;
-/* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "DGELQF", " ", m, n, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- nbmin = max(i__1,i__2);
- }
- }
- }
-
- if (((nb >= nbmin && nb < k) && nx < k)) {
-
-/* Use blocked code initially */
-
- i__1 = k - nx;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__3 = k - i__ + 1;
- ib = min(i__3,nb);
-
-/*
- Compute the LQ factorization of the current block
- A(i:i+ib-1,i:n)
-*/
-
- i__3 = *n - i__ + 1;
- dgelq2_(&ib, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
- 1], &iinfo);
- if (i__ + ib <= *m) {
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__3 = *n - i__ + 1;
- dlarft_("Forward", "Rowwise", &i__3, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], &work[1], &ldwork);
-
-/* Apply H to A(i+ib:m,i:n) from the right */
-
- i__3 = *m - i__ - ib + 1;
- i__4 = *n - i__ + 1;
- dlarfb_("Right", "No transpose", "Forward", "Rowwise", &i__3,
- &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
- ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib +
- 1], &ldwork);
- }
-/* L10: */
- }
- } else {
- i__ = 1;
- }
-
-/* Use unblocked code to factor the last or only block. */
-
- if (i__ <= k) {
- i__2 = *m - i__ + 1;
- i__1 = *n - i__ + 1;
- dgelq2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
- , &iinfo);
- }
-
- work[1] = (doublereal) iws;
- return 0;
-
-/* End of DGELQF */
-
-} /* dgelqf_ */
-
-/* Subroutine */ int dgelsd_(integer *m, integer *n, integer *nrhs,
- doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
- s, doublereal *rcond, integer *rank, doublereal *work, integer *lwork,
- integer *iwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
-
- /* Builtin functions */
- double log(doublereal);
-
- /* Local variables */
- static integer ie, il, mm;
- static doublereal eps, anrm, bnrm;
- static integer itau, nlvl, iascl, ibscl;
- static doublereal sfmin;
- static integer minmn, maxmn, itaup, itauq, mnthr, nwork;
- extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dgebrd_(
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *);
- extern doublereal dlamch_(char *), dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *),
- dlalsd_(char *, integer *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, integer *), dlascl_(char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- integer *, doublereal *, integer *, integer *), dgeqrf_(
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *, integer *), dlacpy_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *), xerbla_(char *,
- integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static doublereal bignum;
- extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, integer *);
- static integer wlalsd;
- extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- static integer ldwork;
- extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- static integer minwrk, maxwrk;
- static doublereal smlnum;
- static logical lquery;
- static integer smlsiz;
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DGELSD computes the minimum-norm solution to a real linear least
- squares problem:
- minimize 2-norm(| b - A*x |)
- using the singular value decomposition (SVD) of A. A is an M-by-N
- matrix which may be rank-deficient.
-
- Several right hand side vectors b and solution vectors x can be
- handled in a single call; they are stored as the columns of the
- M-by-NRHS right hand side matrix B and the N-by-NRHS solution
- matrix X.
-
- The problem is solved in three steps:
- (1) Reduce the coefficient matrix A to bidiagonal form with
- Householder transformations, reducing the original problem
- into a "bidiagonal least squares problem" (BLS)
- (2) Solve the BLS using a divide and conquer approach.
- (3) Apply back all the Householder tranformations to solve
- the original least squares problem.
-
- The effective rank of A is determined by treating as zero those
- singular values which are less than RCOND times the largest singular
- value.
-
- The divide and conquer algorithm makes very mild assumptions about
- floating point arithmetic. It will work on machines with a guard
- digit in add/subtract, or on those binary machines without guard
- digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- Cray-2. It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of A. M >= 0.
-
- N (input) INTEGER
- The number of columns of A. N >= 0.
-
- NRHS (input) INTEGER
- The number of right hand sides, i.e., the number of columns
- of the matrices B and X. NRHS >= 0.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the M-by-N matrix A.
- On exit, A has been destroyed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
- On entry, the M-by-NRHS right hand side matrix B.
- On exit, B is overwritten by the N-by-NRHS solution
- matrix X. If m >= n and RANK = n, the residual
- sum-of-squares for the solution in the i-th column is given
- by the sum of squares of elements n+1:m in that column.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,max(M,N)).
-
- S (output) DOUBLE PRECISION array, dimension (min(M,N))
- The singular values of A in decreasing order.
- The condition number of A in the 2-norm = S(1)/S(min(m,n)).
-
- RCOND (input) DOUBLE PRECISION
- RCOND is used to determine the effective rank of A.
- Singular values S(i) <= RCOND*S(1) are treated as zero.
- If RCOND < 0, machine precision is used instead.
-
- RANK (output) INTEGER
- The effective rank of A, i.e., the number of singular values
- which are greater than RCOND*S(1).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK must be at least 1.
- The exact minimum amount of workspace needed depends on M,
- N and NRHS. As long as LWORK is at least
- 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
- if M is greater than or equal to N or
- 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
- if M is less than N, the code will execute correctly.
- SMLSIZ is returned by ILAENV and is equal to the maximum
- size of the subproblems at the bottom of the computation
- tree (usually about 25), and
- NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
- For good performance, LWORK should generally be larger.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- IWORK (workspace) INTEGER array, dimension (LIWORK)
- LIWORK >= 3 * MINMN * NLVL + 11 * MINMN,
- where MINMN = MIN( M,N ).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: the algorithm for computing the SVD failed to converge;
- if INFO = i, i off-diagonal elements of an intermediate
- bidiagonal form did not converge to zero.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Ren-Cang Li, Computer Science Division, University of
- California at Berkeley, USA
- Osni Marques, LBNL/NERSC, USA
-
- =====================================================================
-
-
- Test the input arguments.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --s;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
- minmn = min(*m,*n);
- maxmn = max(*m,*n);
- mnthr = ilaenv_(&c__6, "DGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)6, (
- ftnlen)1);
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*nrhs < 0) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- } else if (*ldb < max(1,maxmn)) {
- *info = -7;
- }
-
- smlsiz = ilaenv_(&c__9, "DGELSD", " ", &c__0, &c__0, &c__0, &c__0, (
- ftnlen)6, (ftnlen)1);
-
-/*
- Compute workspace.
- (Note: Comments in the code beginning "Workspace:" describe the
- minimal amount of workspace needed at that point in the code,
- as well as the preferred amount for good performance.
- NB refers to the optimal block size for the immediately
- following subroutine, as returned by ILAENV.)
-*/
-
- minwrk = 1;
- minmn = max(1,minmn);
-/* Computing MAX */
- i__1 = (integer) (log((doublereal) minmn / (doublereal) (smlsiz + 1)) /
- log(2.)) + 1;
- nlvl = max(i__1,0);
-
- if (*info == 0) {
- maxwrk = 0;
- mm = *m;
- if ((*m >= *n && *m >= mnthr)) {
-
-/* Path 1a - overdetermined, with many more rows than columns. */
-
- mm = *n;
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m,
- n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "DORMQR", "LT",
- m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
- maxwrk = max(i__1,i__2);
- }
- if (*m >= *n) {
-
-/*
- Path 1 - overdetermined or exactly determined.
-
- Computing MAX
-*/
- i__1 = maxwrk, i__2 = *n * 3 + (mm + *n) * ilaenv_(&c__1, "DGEBRD"
- , " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *n * 3 + *nrhs * ilaenv_(&c__1, "DORMBR",
- "QLT", &mm, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *n * 3 + (*n - 1) * ilaenv_(&c__1, "DORMBR",
- "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing 2nd power */
- i__1 = smlsiz + 1;
- wlalsd = *n * 9 + ((*n) << (1)) * smlsiz + ((*n) << (3)) * nlvl +
- *n * *nrhs + i__1 * i__1;
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *n * 3 + wlalsd;
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = max(i__1,i__2),
- i__2 = *n * 3 + wlalsd;
- minwrk = max(i__1,i__2);
- }
- if (*n > *m) {
-/* Computing 2nd power */
- i__1 = smlsiz + 1;
- wlalsd = *m * 9 + ((*m) << (1)) * smlsiz + ((*m) << (3)) * nlvl +
- *m * *nrhs + i__1 * i__1;
- if (*n >= mnthr) {
-
-/*
- Path 2a - underdetermined, with many more columns
- than rows.
-*/
-
- maxwrk = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1,
- &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + ((*m) << (1))
- * ilaenv_(&c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + *nrhs *
- ilaenv_(&c__1, "DORMBR", "QLT", m, nrhs, m, &c_n1, (
- ftnlen)6, (ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + (*m - 1) *
- ilaenv_(&c__1, "DORMBR", "PLN", m, nrhs, m, &c_n1, (
- ftnlen)6, (ftnlen)3);
- maxwrk = max(i__1,i__2);
- if (*nrhs > 1) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
- maxwrk = max(i__1,i__2);
- } else {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + ((*m) << (1));
- maxwrk = max(i__1,i__2);
- }
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m + *nrhs * ilaenv_(&c__1, "DORMLQ",
- "LT", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)2);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + wlalsd;
- maxwrk = max(i__1,i__2);
- } else {
-
-/* Path 2 - remaining underdetermined cases. */
-
- maxwrk = *m * 3 + (*n + *m) * ilaenv_(&c__1, "DGEBRD", " ", m,
- n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * 3 + *nrhs * ilaenv_(&c__1, "DORMBR"
- , "QLT", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR",
- "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * 3 + wlalsd;
- maxwrk = max(i__1,i__2);
- }
-/* Computing MAX */
- i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *m, i__1 = max(i__1,i__2),
- i__2 = *m * 3 + wlalsd;
- minwrk = max(i__1,i__2);
- }
- minwrk = min(minwrk,maxwrk);
- work[1] = (doublereal) maxwrk;
- if ((*lwork < minwrk && ! lquery)) {
- *info = -12;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGELSD", &i__1);
- return 0;
- } else if (lquery) {
- goto L10;
- }
-
-/* Quick return if possible. */
-
- if (*m == 0 || *n == 0) {
- *rank = 0;
- return 0;
- }
-
-/* Get machine parameters. */
-
- eps = PRECISION;
- sfmin = SAFEMINIMUM;
- smlnum = sfmin / eps;
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
-
-/* Scale A if max entry outside range [SMLNUM,BIGNUM]. */
-
- anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]);
- iascl = 0;
- if ((anrm > 0. && anrm < smlnum)) {
-
-/* Scale matrix norm up to SMLNUM. */
-
- dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
- info);
- iascl = 1;
- } else if (anrm > bignum) {
-
-/* Scale matrix norm down to BIGNUM. */
-
- dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
- info);
- iascl = 2;
- } else if (anrm == 0.) {
-
-/* Matrix all zero. Return zero solution. */
-
- i__1 = max(*m,*n);
- dlaset_("F", &i__1, nrhs, &c_b29, &c_b29, &b[b_offset], ldb);
- dlaset_("F", &minmn, &c__1, &c_b29, &c_b29, &s[1], &c__1);
- *rank = 0;
- goto L10;
- }
-
-/* Scale B if max entry outside range [SMLNUM,BIGNUM]. */
-
- bnrm = dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
- ibscl = 0;
- if ((bnrm > 0. && bnrm < smlnum)) {
-
-/* Scale matrix norm up to SMLNUM. */
-
- dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 1;
- } else if (bnrm > bignum) {
-
-/* Scale matrix norm down to BIGNUM. */
-
- dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 2;
- }
-
-/* If M < N make sure certain entries of B are zero. */
-
- if (*m < *n) {
- i__1 = *n - *m;
- dlaset_("F", &i__1, nrhs, &c_b29, &c_b29, &b[*m + 1 + b_dim1], ldb);
- }
-
-/* Overdetermined case. */
-
- if (*m >= *n) {
-
-/* Path 1 - overdetermined or exactly determined. */
-
- mm = *m;
- if (*m >= mnthr) {
-
-/* Path 1a - overdetermined, with many more rows than columns. */
-
- mm = *n;
- itau = 1;
- nwork = itau + *n;
-
-/*
- Compute A=Q*R.
- (Workspace: need 2*N, prefer N+N*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
- info);
-
-/*
- Multiply B by transpose(Q).
- (Workspace: need N+NRHS, prefer N+NRHS*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
- b_offset], ldb, &work[nwork], &i__1, info);
-
-/* Zero out below R. */
-
- if (*n > 1) {
- i__1 = *n - 1;
- i__2 = *n - 1;
- dlaset_("L", &i__1, &i__2, &c_b29, &c_b29, &a[a_dim1 + 2],
- lda);
- }
- }
-
- ie = 1;
- itauq = ie + *n;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize R in A.
- (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
- work[itaup], &work[nwork], &i__1, info);
-
-/*
- Multiply B by transpose of left bidiagonalizing vectors of R.
- (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
- &b[b_offset], ldb, &work[nwork], &i__1, info);
-
-/* Solve the bidiagonal least squares problem. */
-
- dlalsd_("U", &smlsiz, n, nrhs, &s[1], &work[ie], &b[b_offset], ldb,
- rcond, rank, &work[nwork], &iwork[1], info);
- if (*info != 0) {
- goto L10;
- }
-
-/* Multiply B by right bidiagonalizing vectors of R. */
-
- i__1 = *lwork - nwork + 1;
- dormbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
- b[b_offset], ldb, &work[nwork], &i__1, info);
-
- } else /* if(complicated condition) */ {
-/* Computing MAX */
- i__1 = *m, i__2 = ((*m) << (1)) - 4, i__1 = max(i__1,i__2), i__1 =
- max(i__1,*nrhs), i__2 = *n - *m * 3;
- if ((*n >= mnthr && *lwork >= ((*m) << (2)) + *m * *m + max(i__1,i__2)
- )) {
-
-/*
- Path 2a - underdetermined, with many more columns than rows
- and sufficient workspace for an efficient algorithm.
-*/
-
- ldwork = *m;
-/*
- Computing MAX
- Computing MAX
-*/
- i__3 = *m, i__4 = ((*m) << (1)) - 4, i__3 = max(i__3,i__4), i__3 =
- max(i__3,*nrhs), i__4 = *n - *m * 3;
- i__1 = ((*m) << (2)) + *m * *lda + max(i__3,i__4), i__2 = *m * *
- lda + *m + *m * *nrhs;
- if (*lwork >= max(i__1,i__2)) {
- ldwork = *lda;
- }
- itau = 1;
- nwork = *m + 1;
-
-/*
- Compute A=L*Q.
- (Workspace: need 2*M, prefer M+M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
- info);
- il = nwork;
-
-/* Copy L to WORK(IL), zeroing out above its diagonal. */
-
- dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
- i__1 = *m - 1;
- i__2 = *m - 1;
- dlaset_("U", &i__1, &i__2, &c_b29, &c_b29, &work[il + ldwork], &
- ldwork);
- ie = il + ldwork * *m;
- itauq = ie + *m;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize L in WORK(IL).
- (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq],
- &work[itaup], &work[nwork], &i__1, info);
-
-/*
- Multiply B by transpose of left bidiagonalizing vectors of L.
- (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[
- itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
-
-/* Solve the bidiagonal least squares problem. */
-
- dlalsd_("U", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset],
- ldb, rcond, rank, &work[nwork], &iwork[1], info);
- if (*info != 0) {
- goto L10;
- }
-
-/* Multiply B by right bidiagonalizing vectors of L. */
-
- i__1 = *lwork - nwork + 1;
- dormbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
- itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
-
-/* Zero out below first M rows of B. */
-
- i__1 = *n - *m;
- dlaset_("F", &i__1, nrhs, &c_b29, &c_b29, &b[*m + 1 + b_dim1],
- ldb);
- nwork = itau + *m;
-
-/*
- Multiply transpose(Q) by B.
- (Workspace: need M+NRHS, prefer M+NRHS*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
- b_offset], ldb, &work[nwork], &i__1, info);
-
- } else {
-
-/* Path 2 - remaining underdetermined cases. */
-
- ie = 1;
- itauq = ie + *m;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize A.
- (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
- work[itaup], &work[nwork], &i__1, info);
-
-/*
- Multiply B by transpose of left bidiagonalizing vectors.
- (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
- , &b[b_offset], ldb, &work[nwork], &i__1, info);
-
-/* Solve the bidiagonal least squares problem. */
-
- dlalsd_("L", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset],
- ldb, rcond, rank, &work[nwork], &iwork[1], info);
- if (*info != 0) {
- goto L10;
- }
-
-/* Multiply B by right bidiagonalizing vectors of A. */
-
- i__1 = *lwork - nwork + 1;
- dormbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
- , &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- }
- }
-
-/* Undo scaling. */
-
- if (iascl == 1) {
- dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
- info);
- dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
- minmn, info);
- } else if (iascl == 2) {
- dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
- info);
- dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
- minmn, info);
- }
- if (ibscl == 1) {
- dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- } else if (ibscl == 2) {
- dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- }
-
-L10:
- work[1] = (doublereal) maxwrk;
- return 0;
-
-/* End of DGELSD */
-
-} /* dgelsd_ */
-
-/* Subroutine */ int dgeqr2_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *tau, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, k;
- static doublereal aii;
- extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *), dlarfg_(integer *, doublereal *,
- doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DGEQR2 computes a QR factorization of a real m by n matrix A:
- A = Q * R.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the m by n matrix A.
- On exit, the elements on and above the diagonal of the array
- contain the min(m,n) by n upper trapezoidal matrix R (R is
- upper triangular if m >= n); the elements below the diagonal,
- with the array TAU, represent the orthogonal matrix Q as a
- product of elementary reflectors (see Further Details).
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of elementary reflectors
-
- Q = H(1) H(2) . . . H(k), where k = min(m,n).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
- and tau in TAU(i).
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGEQR2", &i__1);
- return 0;
- }
-
- k = min(*m,*n);
-
- i__1 = k;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
-
- i__2 = *m - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1]
- , &c__1, &tau[i__]);
- if (i__ < *n) {
-
-/* Apply H(i) to A(i:m,i+1:n) from the left */
-
- aii = a[i__ + i__ * a_dim1];
- a[i__ + i__ * a_dim1] = 1.;
- i__2 = *m - i__ + 1;
- i__3 = *n - i__;
- dlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tau[
- i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
- a[i__ + i__ * a_dim1] = aii;
- }
-/* L10: */
- }
- return 0;
-
-/* End of DGEQR2 */
-
-} /* dgeqr2_ */
-
-/* Subroutine */ int dgeqrf_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *tau, doublereal *work, integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
- extern /* Subroutine */ int dgeqr2_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *), dlarfb_(char *,
- char *, char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
- *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer ldwork, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DGEQRF computes a QR factorization of a real M-by-N matrix A:
- A = Q * R.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the M-by-N matrix A.
- On exit, the elements on and above the diagonal of the array
- contain the min(M,N)-by-N upper trapezoidal matrix R (R is
- upper triangular if m >= n); the elements below the diagonal,
- with the array TAU, represent the orthogonal matrix Q as a
- product of min(m,n) elementary reflectors (see Further
- Details).
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,N).
- For optimum performance LWORK >= N*NB, where NB is
- the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of elementary reflectors
-
- Q = H(1) H(2) . . . H(k), where k = min(m,n).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
- and tau in TAU(i).
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- lwkopt = *n * nb;
- work[1] = (doublereal) lwkopt;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- } else if ((*lwork < max(1,*n) && ! lquery)) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGEQRF", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- k = min(*m,*n);
- if (k == 0) {
- work[1] = 1.;
- return 0;
- }
-
- nbmin = 2;
- nx = 0;
- iws = *n;
- if ((nb > 1 && nb < k)) {
-
-/*
- Determine when to cross over from blocked to unblocked code.
-
- Computing MAX
-*/
- i__1 = 0, i__2 = ilaenv_(&c__3, "DGEQRF", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < k) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- ldwork = *n;
- iws = ldwork * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: reduce NB and
- determine the minimum value of NB.
-*/
-
- nb = *lwork / ldwork;
-/* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "DGEQRF", " ", m, n, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- nbmin = max(i__1,i__2);
- }
- }
- }
-
- if (((nb >= nbmin && nb < k) && nx < k)) {
-
-/* Use blocked code initially */
-
- i__1 = k - nx;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__3 = k - i__ + 1;
- ib = min(i__3,nb);
-
-/*
- Compute the QR factorization of the current block
- A(i:m,i:i+ib-1)
-*/
-
- i__3 = *m - i__ + 1;
- dgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
- 1], &iinfo);
- if (i__ + ib <= *n) {
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__3 = *m - i__ + 1;
- dlarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], &work[1], &ldwork);
-
-/* Apply H' to A(i:m,i+ib:n) from the left */
-
- i__3 = *m - i__ + 1;
- i__4 = *n - i__ - ib + 1;
- dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
- i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
- ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &work[ib
- + 1], &ldwork);
- }
-/* L10: */
- }
- } else {
- i__ = 1;
- }
-
-/* Use unblocked code to factor the last or only block. */
-
- if (i__ <= k) {
- i__2 = *m - i__ + 1;
- i__1 = *n - i__ + 1;
- dgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
- , &iinfo);
- }
-
- work[1] = (doublereal) iws;
- return 0;
-
-/* End of DGEQRF */
-
-} /* dgeqrf_ */
-
-/* Subroutine */ int dgesdd_(char *jobz, integer *m, integer *n, doublereal *
- a, integer *lda, doublereal *s, doublereal *u, integer *ldu,
- doublereal *vt, integer *ldvt, doublereal *work, integer *lwork,
- integer *iwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
- i__2, i__3;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__, ie, il, ir, iu, blk;
- static doublereal dum[1], eps;
- static integer ivt, iscl;
- static doublereal anrm;
- static integer idum[1], ierr, itau;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- extern logical lsame_(char *, char *);
- static integer chunk, minmn, wrkbl, itaup, itauq, mnthr;
- static logical wntqa;
- static integer nwork;
- static logical wntqn, wntqo, wntqs;
- extern /* Subroutine */ int dbdsdc_(char *, char *, integer *, doublereal
- *, doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *), dgebrd_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *);
- extern doublereal dlamch_(char *), dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- static integer bdspac;
- extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *),
- dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, integer *, integer *),
- dgeqrf_(integer *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *), dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *),
- xerbla_(char *, integer *), dorgbr_(char *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static doublereal bignum;
- extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, integer *), dorglq_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *);
- static integer ldwrkl, ldwrkr, minwrk, ldwrku, maxwrk, ldwkvt;
- static doublereal smlnum;
- static logical wntqas, lquery;
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DGESDD computes the singular value decomposition (SVD) of a real
- M-by-N matrix A, optionally computing the left and right singular
- vectors. If singular vectors are desired, it uses a
- divide-and-conquer algorithm.
-
- The SVD is written
-
- A = U * SIGMA * transpose(V)
-
- where SIGMA is an M-by-N matrix which is zero except for its
- min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
- V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
- are the singular values of A; they are real and non-negative, and
- are returned in descending order. The first min(m,n) columns of
- U and V are the left and right singular vectors of A.
-
- Note that the routine returns VT = V**T, not V.
-
- The divide and conquer algorithm makes very mild assumptions about
- floating point arithmetic. It will work on machines with a guard
- digit in add/subtract, or on those binary machines without guard
- digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- Cray-2. It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none.
-
- Arguments
- =========
-
- JOBZ (input) CHARACTER*1
- Specifies options for computing all or part of the matrix U:
- = 'A': all M columns of U and all N rows of V**T are
- returned in the arrays U and VT;
- = 'S': the first min(M,N) columns of U and the first
- min(M,N) rows of V**T are returned in the arrays U
- and VT;
- = 'O': If M >= N, the first N columns of U are overwritten
- on the array A and all rows of V**T are returned in
- the array VT;
- otherwise, all columns of U are returned in the
- array U and the first M rows of V**T are overwritten
- in the array VT;
- = 'N': no columns of U or rows of V**T are computed.
-
- M (input) INTEGER
- The number of rows of the input matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the input matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the M-by-N matrix A.
- On exit,
- if JOBZ = 'O', A is overwritten with the first N columns
- of U (the left singular vectors, stored
- columnwise) if M >= N;
- A is overwritten with the first M rows
- of V**T (the right singular vectors, stored
- rowwise) otherwise.
- if JOBZ .ne. 'O', the contents of A are destroyed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- S (output) DOUBLE PRECISION array, dimension (min(M,N))
- The singular values of A, sorted so that S(i) >= S(i+1).
-
- U (output) DOUBLE PRECISION array, dimension (LDU,UCOL)
- UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
- UCOL = min(M,N) if JOBZ = 'S'.
- If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
- orthogonal matrix U;
- if JOBZ = 'S', U contains the first min(M,N) columns of U
- (the left singular vectors, stored columnwise);
- if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= 1; if
- JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
-
- VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
- If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
- N-by-N orthogonal matrix V**T;
- if JOBZ = 'S', VT contains the first min(M,N) rows of
- V**T (the right singular vectors, stored rowwise);
- if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
-
- LDVT (input) INTEGER
- The leading dimension of the array VT. LDVT >= 1; if
- JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
- if JOBZ = 'S', LDVT >= min(M,N).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= 1.
- If JOBZ = 'N',
- LWORK >= 3*min(M,N) + max(max(M,N),6*min(M,N)).
- If JOBZ = 'O',
- LWORK >= 3*min(M,N)*min(M,N) +
- max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).
- If JOBZ = 'S' or 'A'
- LWORK >= 3*min(M,N)*min(M,N) +
- max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)).
- For good performance, LWORK should generally be larger.
- If LWORK < 0 but other input arguments are legal, WORK(1)
- returns the optimal LWORK.
-
- IWORK (workspace) INTEGER array, dimension (8*min(M,N))
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: DBDSDC did not converge, updating process failed.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --s;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
- minmn = min(*m,*n);
- mnthr = (integer) (minmn * 11. / 6.);
- wntqa = lsame_(jobz, "A");
- wntqs = lsame_(jobz, "S");
- wntqas = wntqa || wntqs;
- wntqo = lsame_(jobz, "O");
- wntqn = lsame_(jobz, "N");
- minwrk = 1;
- maxwrk = 1;
- lquery = *lwork == -1;
-
- if (! (wntqa || wntqs || wntqo || wntqn)) {
- *info = -1;
- } else if (*m < 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- } else if (*ldu < 1 || (wntqas && *ldu < *m) || ((wntqo && *m < *n) && *
- ldu < *m)) {
- *info = -8;
- } else if (*ldvt < 1 || (wntqa && *ldvt < *n) || (wntqs && *ldvt < minmn)
- || ((wntqo && *m >= *n) && *ldvt < *n)) {
- *info = -10;
- }
-
-/*
- Compute workspace
- (Note: Comments in the code beginning "Workspace:" describe the
- minimal amount of workspace needed at that point in the code,
- as well as the preferred amount for good performance.
- NB refers to the optimal block size for the immediately
- following subroutine, as returned by ILAENV.)
-*/
-
- if (((*info == 0 && *m > 0) && *n > 0)) {
- if (*m >= *n) {
-
-/* Compute space needed for DBDSDC */
-
- if (wntqn) {
- bdspac = *n * 7;
- } else {
- bdspac = *n * 3 * *n + ((*n) << (2));
- }
- if (*m >= mnthr) {
- if (wntqn) {
-
-/* Path 1 (M much larger than N, JOBZ='N') */
-
- wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + ((*n) << (1)) * ilaenv_(&
- c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *n;
- maxwrk = max(i__1,i__2);
- minwrk = bdspac + *n;
- } else if (wntqo) {
-
-/* Path 2 (M much larger than N, JOBZ='O') */
-
- wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR",
- " ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + ((*n) << (1)) * ilaenv_(&
- c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
- , "QLN", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
- , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *n * 3;
- wrkbl = max(i__1,i__2);
- maxwrk = wrkbl + ((*n) << (1)) * *n;
- minwrk = bdspac + ((*n) << (1)) * *n + *n * 3;
- } else if (wntqs) {
-
-/* Path 3 (M much larger than N, JOBZ='S') */
-
- wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR",
- " ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + ((*n) << (1)) * ilaenv_(&
- c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
- , "QLN", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
- , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *n * 3;
- wrkbl = max(i__1,i__2);
- maxwrk = wrkbl + *n * *n;
- minwrk = bdspac + *n * *n + *n * 3;
- } else if (wntqa) {
-
-/* Path 4 (M much larger than N, JOBZ='A') */
-
- wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n + *m * ilaenv_(&c__1, "DORGQR",
- " ", m, m, n, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + ((*n) << (1)) * ilaenv_(&
- c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
- , "QLN", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
- , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *n * 3;
- wrkbl = max(i__1,i__2);
- maxwrk = wrkbl + *n * *n;
- minwrk = bdspac + *n * *n + *n * 3;
- }
- } else {
-
-/* Path 5 (M at least N, but not much larger) */
-
- wrkbl = *n * 3 + (*m + *n) * ilaenv_(&c__1, "DGEBRD", " ", m,
- n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- if (wntqn) {
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *n * 3;
- maxwrk = max(i__1,i__2);
- minwrk = *n * 3 + max(*m,bdspac);
- } else if (wntqo) {
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
- , "QLN", m, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
- , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *n * 3;
- wrkbl = max(i__1,i__2);
- maxwrk = wrkbl + *m * *n;
-/* Computing MAX */
- i__1 = *m, i__2 = *n * *n + bdspac;
- minwrk = *n * 3 + max(i__1,i__2);
- } else if (wntqs) {
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
- , "QLN", m, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
- , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *n * 3;
- maxwrk = max(i__1,i__2);
- minwrk = *n * 3 + max(*m,bdspac);
- } else if (wntqa) {
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "QLN", m, m, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
- , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = bdspac + *n * 3;
- maxwrk = max(i__1,i__2);
- minwrk = *n * 3 + max(*m,bdspac);
- }
- }
- } else {
-
-/* Compute space needed for DBDSDC */
-
- if (wntqn) {
- bdspac = *m * 7;
- } else {
- bdspac = *m * 3 * *m + ((*m) << (2));
- }
- if (*n >= mnthr) {
- if (wntqn) {
-
-/* Path 1t (N much larger than M, JOBZ='N') */
-
- wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + ((*m) << (1)) * ilaenv_(&
- c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *m;
- maxwrk = max(i__1,i__2);
- minwrk = bdspac + *m;
- } else if (wntqo) {
-
-/* Path 2t (N much larger than M, JOBZ='O') */
-
- wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "DORGLQ",
- " ", m, n, m, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + ((*m) << (1)) * ilaenv_(&
- c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "QLN", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "PRT", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *m * 3;
- wrkbl = max(i__1,i__2);
- maxwrk = wrkbl + ((*m) << (1)) * *m;
- minwrk = bdspac + ((*m) << (1)) * *m + *m * 3;
- } else if (wntqs) {
-
-/* Path 3t (N much larger than M, JOBZ='S') */
-
- wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "DORGLQ",
- " ", m, n, m, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + ((*m) << (1)) * ilaenv_(&
- c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "QLN", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "PRT", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *m * 3;
- wrkbl = max(i__1,i__2);
- maxwrk = wrkbl + *m * *m;
- minwrk = bdspac + *m * *m + *m * 3;
- } else if (wntqa) {
-
-/* Path 4t (N much larger than M, JOBZ='A') */
-
- wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m + *n * ilaenv_(&c__1, "DORGLQ",
- " ", n, n, m, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + ((*m) << (1)) * ilaenv_(&
- c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "QLN", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "PRT", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *m * 3;
- wrkbl = max(i__1,i__2);
- maxwrk = wrkbl + *m * *m;
- minwrk = bdspac + *m * *m + *m * 3;
- }
- } else {
-
-/* Path 5t (N greater than M, but not much larger) */
-
- wrkbl = *m * 3 + (*m + *n) * ilaenv_(&c__1, "DGEBRD", " ", m,
- n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- if (wntqn) {
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *m * 3;
- maxwrk = max(i__1,i__2);
- minwrk = *m * 3 + max(*n,bdspac);
- } else if (wntqo) {
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "QLN", m, m, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "PRT", m, n, m, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *m * 3;
- wrkbl = max(i__1,i__2);
- maxwrk = wrkbl + *m * *n;
-/* Computing MAX */
- i__1 = *n, i__2 = *m * *m + bdspac;
- minwrk = *m * 3 + max(i__1,i__2);
- } else if (wntqs) {
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "QLN", m, m, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "PRT", m, n, m, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *m * 3;
- maxwrk = max(i__1,i__2);
- minwrk = *m * 3 + max(*n,bdspac);
- } else if (wntqa) {
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "QLN", m, m, n, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
- , "PRT", n, n, m, &c_n1, (ftnlen)6, (ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = bdspac + *m * 3;
- maxwrk = max(i__1,i__2);
- minwrk = *m * 3 + max(*n,bdspac);
- }
- }
- }
- work[1] = (doublereal) maxwrk;
- }
-
- if ((*lwork < minwrk && ! lquery)) {
- *info = -12;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGESDD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- if (*lwork >= 1) {
- work[1] = 1.;
- }
- return 0;
- }
-
-/* Get machine constants */
-
- eps = PRECISION;
- smlnum = sqrt(SAFEMINIMUM) / eps;
- bignum = 1. / smlnum;
-
-/* Scale A if max element outside range [SMLNUM,BIGNUM] */
-
- anrm = dlange_("M", m, n, &a[a_offset], lda, dum);
- iscl = 0;
- if ((anrm > 0. && anrm < smlnum)) {
- iscl = 1;
- dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
- ierr);
- } else if (anrm > bignum) {
- iscl = 1;
- dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
- ierr);
- }
-
- if (*m >= *n) {
-
-/*
- A has at least as many rows as columns. If A has sufficiently
- more rows than columns, first reduce using the QR
- decomposition (if sufficient workspace available)
-*/
-
- if (*m >= mnthr) {
-
- if (wntqn) {
-
-/*
- Path 1 (M much larger than N, JOBZ='N')
- No singular vectors to be computed
-*/
-
- itau = 1;
- nwork = itau + *n;
-
-/*
- Compute A=Q*R
- (Workspace: need 2*N, prefer N+N*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__1, &ierr);
-
-/* Zero out below R */
-
- i__1 = *n - 1;
- i__2 = *n - 1;
- dlaset_("L", &i__1, &i__2, &c_b29, &c_b29, &a[a_dim1 + 2],
- lda);
- ie = 1;
- itauq = ie + *n;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize R in A
- (Workspace: need 4*N, prefer 3*N+2*N*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__1, &ierr);
- nwork = ie + *n;
-
-/*
- Perform bidiagonal SVD, computing singular values only
- (Workspace: need N+BDSPAC)
-*/
-
- dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
- dum, idum, &work[nwork], &iwork[1], info);
-
- } else if (wntqo) {
-
-/*
- Path 2 (M much larger than N, JOBZ = 'O')
- N left singular vectors to be overwritten on A and
- N right singular vectors to be computed in VT
-*/
-
- ir = 1;
-
-/* WORK(IR) is LDWRKR by N */
-
- if (*lwork >= *lda * *n + *n * *n + *n * 3 + bdspac) {
- ldwrkr = *lda;
- } else {
- ldwrkr = (*lwork - *n * *n - *n * 3 - bdspac) / *n;
- }
- itau = ir + ldwrkr * *n;
- nwork = itau + *n;
-
-/*
- Compute A=Q*R
- (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__1, &ierr);
-
-/* Copy R to WORK(IR), zeroing out below it */
-
- dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
- i__1 = *n - 1;
- i__2 = *n - 1;
- dlaset_("L", &i__1, &i__2, &c_b29, &c_b29, &work[ir + 1], &
- ldwrkr);
-
-/*
- Generate Q in A
- (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
- &i__1, &ierr);
- ie = itau;
- itauq = ie + *n;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize R in VT, copying result to WORK(IR)
- (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__1, &ierr);
-
-/* WORK(IU) is N by N */
-
- iu = nwork;
- nwork = iu + *n * *n;
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in WORK(IU) and computing right
- singular vectors of bidiagonal matrix in VT
- (Workspace: need N+N*N+BDSPAC)
-*/
-
- dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
- vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
- info);
-
-/*
- Overwrite WORK(IU) by left singular vectors of R
- and VT by right singular vectors of R
- (Workspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
- itauq], &work[iu], n, &work[nwork], &i__1, &ierr);
- i__1 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
- ierr);
-
-/*
- Multiply Q in A by left singular vectors of R in
- WORK(IU), storing result in WORK(IR) and copying to A
- (Workspace: need 2*N*N, prefer N*N+M*N)
-*/
-
- i__1 = *m;
- i__2 = ldwrkr;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
- i__2) {
-/* Computing MIN */
- i__3 = *m - i__ + 1;
- chunk = min(i__3,ldwrkr);
- dgemm_("N", "N", &chunk, n, n, &c_b15, &a[i__ + a_dim1],
- lda, &work[iu], n, &c_b29, &work[ir], &ldwrkr);
- dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
- a_dim1], lda);
-/* L10: */
- }
-
- } else if (wntqs) {
-
-/*
- Path 3 (M much larger than N, JOBZ='S')
- N left singular vectors to be computed in U and
- N right singular vectors to be computed in VT
-*/
-
- ir = 1;
-
-/* WORK(IR) is N by N */
-
- ldwrkr = *n;
- itau = ir + ldwrkr * *n;
- nwork = itau + *n;
-
-/*
- Compute A=Q*R
- (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__2, &ierr);
-
-/* Copy R to WORK(IR), zeroing out below it */
-
- dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
- i__2 = *n - 1;
- i__1 = *n - 1;
- dlaset_("L", &i__2, &i__1, &c_b29, &c_b29, &work[ir + 1], &
- ldwrkr);
-
-/*
- Generate Q in A
- (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
- &i__2, &ierr);
- ie = itau;
- itauq = ie + *n;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize R in WORK(IR)
- (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__2, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagoal matrix in U and computing right singular
- vectors of bidiagonal matrix in VT
- (Workspace: need N+BDSPAC)
-*/
-
- dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
- vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
- info);
-
-/*
- Overwrite U by left singular vectors of R and VT
- by right singular vectors of R
- (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
-
- i__2 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
- ierr);
-
-/*
- Multiply Q in A by left singular vectors of R in
- WORK(IR), storing result in U
- (Workspace: need N*N)
-*/
-
- dlacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr);
- dgemm_("N", "N", m, n, n, &c_b15, &a[a_offset], lda, &work[ir]
- , &ldwrkr, &c_b29, &u[u_offset], ldu);
-
- } else if (wntqa) {
-
-/*
- Path 4 (M much larger than N, JOBZ='A')
- M left singular vectors to be computed in U and
- N right singular vectors to be computed in VT
-*/
-
- iu = 1;
-
-/* WORK(IU) is N by N */
-
- ldwrku = *n;
- itau = iu + ldwrku * *n;
- nwork = itau + *n;
-
-/*
- Compute A=Q*R, copying result to U
- (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__2, &ierr);
- dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
-
-/*
- Generate Q in U
- (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
-*/
- i__2 = *lwork - nwork + 1;
- dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork],
- &i__2, &ierr);
-
-/* Produce R in A, zeroing out other entries */
-
- i__2 = *n - 1;
- i__1 = *n - 1;
- dlaset_("L", &i__2, &i__1, &c_b29, &c_b29, &a[a_dim1 + 2],
- lda);
- ie = itau;
- itauq = ie + *n;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize R in A
- (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__2, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in WORK(IU) and computing right
- singular vectors of bidiagonal matrix in VT
- (Workspace: need N+N*N+BDSPAC)
-*/
-
- dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
- vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
- info);
-
-/*
- Overwrite WORK(IU) by left singular vectors of R and VT
- by right singular vectors of R
- (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[
- itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
- ierr);
- i__2 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
- ierr);
-
-/*
- Multiply Q in U by left singular vectors of R in
- WORK(IU), storing result in A
- (Workspace: need N*N)
-*/
-
- dgemm_("N", "N", m, n, n, &c_b15, &u[u_offset], ldu, &work[iu]
- , &ldwrku, &c_b29, &a[a_offset], lda);
-
-/* Copy left singular vectors of A from A to U */
-
- dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
-
- }
-
- } else {
-
-/*
- M .LT. MNTHR
-
- Path 5 (M at least N, but not much larger)
- Reduce to bidiagonal form without QR decomposition
-*/
-
- ie = 1;
- itauq = ie + *n;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize A
- (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
- work[itaup], &work[nwork], &i__2, &ierr);
- if (wntqn) {
-
-/*
- Perform bidiagonal SVD, only computing singular values
- (Workspace: need N+BDSPAC)
-*/
-
- dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
- dum, idum, &work[nwork], &iwork[1], info);
- } else if (wntqo) {
- iu = nwork;
- if (*lwork >= *m * *n + *n * 3 + bdspac) {
-
-/* WORK( IU ) is M by N */
-
- ldwrku = *m;
- nwork = iu + ldwrku * *n;
- dlaset_("F", m, n, &c_b29, &c_b29, &work[iu], &ldwrku);
- } else {
-
-/* WORK( IU ) is N by N */
-
- ldwrku = *n;
- nwork = iu + ldwrku * *n;
-
-/* WORK(IR) is LDWRKR by N */
-
- ir = nwork;
- ldwrkr = (*lwork - *n * *n - *n * 3) / *n;
- }
- nwork = iu + ldwrku * *n;
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in WORK(IU) and computing right
- singular vectors of bidiagonal matrix in VT
- (Workspace: need N+N*N+BDSPAC)
-*/
-
- dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], &ldwrku, &
- vt[vt_offset], ldvt, dum, idum, &work[nwork], &iwork[
- 1], info);
-
-/*
- Overwrite VT by right singular vectors of A
- (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
- ierr);
-
- if (*lwork >= *m * *n + *n * 3 + bdspac) {
-
-/*
- Overwrite WORK(IU) by left singular vectors of A
- (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
- itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
- ierr);
-
-/* Copy left singular vectors of A from WORK(IU) to A */
-
- dlacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda);
- } else {
-
-/*
- Generate Q in A
- (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
- work[nwork], &i__2, &ierr);
-
-/*
- Multiply Q in A by left singular vectors of
- bidiagonal matrix in WORK(IU), storing result in
- WORK(IR) and copying to A
- (Workspace: need 2*N*N, prefer N*N+M*N)
-*/
-
- i__2 = *m;
- i__1 = ldwrkr;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
- i__1) {
-/* Computing MIN */
- i__3 = *m - i__ + 1;
- chunk = min(i__3,ldwrkr);
- dgemm_("N", "N", &chunk, n, n, &c_b15, &a[i__ +
- a_dim1], lda, &work[iu], &ldwrku, &c_b29, &
- work[ir], &ldwrkr);
- dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
- a_dim1], lda);
-/* L20: */
- }
- }
-
- } else if (wntqs) {
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in U and computing right singular
- vectors of bidiagonal matrix in VT
- (Workspace: need N+BDSPAC)
-*/
-
- dlaset_("F", m, n, &c_b29, &c_b29, &u[u_offset], ldu);
- dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
- vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
- info);
-
-/*
- Overwrite U by left singular vectors of A and VT
- by right singular vectors of A
- (Workspace: need 3*N, prefer 2*N+N*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
- i__1 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
- ierr);
- } else if (wntqa) {
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in U and computing right singular
- vectors of bidiagonal matrix in VT
- (Workspace: need N+BDSPAC)
-*/
-
- dlaset_("F", m, m, &c_b29, &c_b29, &u[u_offset], ldu);
- dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
- vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
- info);
-
-/* Set the right corner of U to identity matrix */
-
- i__1 = *m - *n;
- i__2 = *m - *n;
- dlaset_("F", &i__1, &i__2, &c_b29, &c_b15, &u[*n + 1 + (*n +
- 1) * u_dim1], ldu);
-
-/*
- Overwrite U by left singular vectors of A and VT
- by right singular vectors of A
- (Workspace: need N*N+2*N+M, prefer N*N+2*N+M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
- i__1 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
- ierr);
- }
-
- }
-
- } else {
-
-/*
- A has more columns than rows. If A has sufficiently more
- columns than rows, first reduce using the LQ decomposition (if
- sufficient workspace available)
-*/
-
- if (*n >= mnthr) {
-
- if (wntqn) {
-
-/*
- Path 1t (N much larger than M, JOBZ='N')
- No singular vectors to be computed
-*/
-
- itau = 1;
- nwork = itau + *m;
-
-/*
- Compute A=L*Q
- (Workspace: need 2*M, prefer M+M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__1, &ierr);
-
-/* Zero out above L */
-
- i__1 = *m - 1;
- i__2 = *m - 1;
- dlaset_("U", &i__1, &i__2, &c_b29, &c_b29, &a[((a_dim1) << (1)
- ) + 1], lda);
- ie = 1;
- itauq = ie + *m;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize L in A
- (Workspace: need 4*M, prefer 3*M+2*M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__1, &ierr);
- nwork = ie + *m;
-
-/*
- Perform bidiagonal SVD, computing singular values only
- (Workspace: need M+BDSPAC)
-*/
-
- dbdsdc_("U", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
- dum, idum, &work[nwork], &iwork[1], info);
-
- } else if (wntqo) {
-
-/*
- Path 2t (N much larger than M, JOBZ='O')
- M right singular vectors to be overwritten on A and
- M left singular vectors to be computed in U
-*/
-
- ivt = 1;
-
-/* IVT is M by M */
-
- il = ivt + *m * *m;
- if (*lwork >= *m * *n + *m * *m + *m * 3 + bdspac) {
-
-/* WORK(IL) is M by N */
-
- ldwrkl = *m;
- chunk = *n;
- } else {
- ldwrkl = *m;
- chunk = (*lwork - *m * *m) / *m;
- }
- itau = il + ldwrkl * *m;
- nwork = itau + *m;
-
-/*
- Compute A=L*Q
- (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__1, &ierr);
-
-/* Copy L to WORK(IL), zeroing about above it */
-
- dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
- i__1 = *m - 1;
- i__2 = *m - 1;
- dlaset_("U", &i__1, &i__2, &c_b29, &c_b29, &work[il + ldwrkl],
- &ldwrkl);
-
-/*
- Generate Q in A
- (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
- &i__1, &ierr);
- ie = itau;
- itauq = ie + *m;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize L in WORK(IL)
- (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__1, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in U, and computing right singular
- vectors of bidiagonal matrix in WORK(IVT)
- (Workspace: need M+M*M+BDSPAC)
-*/
-
- dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
- work[ivt], m, dum, idum, &work[nwork], &iwork[1],
- info);
-
-/*
- Overwrite U by left singular vectors of L and WORK(IVT)
- by right singular vectors of L
- (Workspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
- i__1 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
- itaup], &work[ivt], m, &work[nwork], &i__1, &ierr);
-
-/*
- Multiply right singular vectors of L in WORK(IVT) by Q
- in A, storing result in WORK(IL) and copying to A
- (Workspace: need 2*M*M, prefer M*M+M*N)
-*/
-
- i__1 = *n;
- i__2 = chunk;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
- i__2) {
-/* Computing MIN */
- i__3 = *n - i__ + 1;
- blk = min(i__3,chunk);
- dgemm_("N", "N", m, &blk, m, &c_b15, &work[ivt], m, &a[
- i__ * a_dim1 + 1], lda, &c_b29, &work[il], &
- ldwrkl);
- dlacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1
- + 1], lda);
-/* L30: */
- }
-
- } else if (wntqs) {
-
-/*
- Path 3t (N much larger than M, JOBZ='S')
- M right singular vectors to be computed in VT and
- M left singular vectors to be computed in U
-*/
-
- il = 1;
-
-/* WORK(IL) is M by M */
-
- ldwrkl = *m;
- itau = il + ldwrkl * *m;
- nwork = itau + *m;
-
-/*
- Compute A=L*Q
- (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__2, &ierr);
-
-/* Copy L to WORK(IL), zeroing out above it */
-
- dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
- i__2 = *m - 1;
- i__1 = *m - 1;
- dlaset_("U", &i__2, &i__1, &c_b29, &c_b29, &work[il + ldwrkl],
- &ldwrkl);
-
-/*
- Generate Q in A
- (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
- &i__2, &ierr);
- ie = itau;
- itauq = ie + *m;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize L in WORK(IU), copying result to U
- (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__2, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in U and computing right singular
- vectors of bidiagonal matrix in VT
- (Workspace: need M+BDSPAC)
-*/
-
- dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
- vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
- info);
-
-/*
- Overwrite U by left singular vectors of L and VT
- by right singular vectors of L
- (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
- i__2 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
- ierr);
-
-/*
- Multiply right singular vectors of L in WORK(IL) by
- Q in A, storing result in VT
- (Workspace: need M*M)
-*/
-
- dlacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl);
- dgemm_("N", "N", m, n, m, &c_b15, &work[il], &ldwrkl, &a[
- a_offset], lda, &c_b29, &vt[vt_offset], ldvt);
-
- } else if (wntqa) {
-
-/*
- Path 4t (N much larger than M, JOBZ='A')
- N right singular vectors to be computed in VT and
- M left singular vectors to be computed in U
-*/
-
- ivt = 1;
-
-/* WORK(IVT) is M by M */
-
- ldwkvt = *m;
- itau = ivt + ldwkvt * *m;
- nwork = itau + *m;
-
-/*
- Compute A=L*Q, copying result to VT
- (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__2, &ierr);
- dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
-
-/*
- Generate Q in VT
- (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[
- nwork], &i__2, &ierr);
-
-/* Produce L in A, zeroing out other entries */
-
- i__2 = *m - 1;
- i__1 = *m - 1;
- dlaset_("U", &i__2, &i__1, &c_b29, &c_b29, &a[((a_dim1) << (1)
- ) + 1], lda);
- ie = itau;
- itauq = ie + *m;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize L in A
- (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__2, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in U and computing right singular
- vectors of bidiagonal matrix in WORK(IVT)
- (Workspace: need M+M*M+BDSPAC)
-*/
-
- dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
- work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
- , info);
-
-/*
- Overwrite U by left singular vectors of L and WORK(IVT)
- by right singular vectors of L
- (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
- i__2 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", m, m, m, &a[a_offset], lda, &work[
- itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, &
- ierr);
-
-/*
- Multiply right singular vectors of L in WORK(IVT) by
- Q in VT, storing result in A
- (Workspace: need M*M)
-*/
-
- dgemm_("N", "N", m, n, m, &c_b15, &work[ivt], &ldwkvt, &vt[
- vt_offset], ldvt, &c_b29, &a[a_offset], lda);
-
-/* Copy right singular vectors of A from A to VT */
-
- dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
-
- }
-
- } else {
-
-/*
- N .LT. MNTHR
-
- Path 5t (N greater than M, but not much larger)
- Reduce to bidiagonal form without LQ decomposition
-*/
-
- ie = 1;
- itauq = ie + *m;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize A
- (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
- work[itaup], &work[nwork], &i__2, &ierr);
- if (wntqn) {
-
-/*
- Perform bidiagonal SVD, only computing singular values
- (Workspace: need M+BDSPAC)
-*/
-
- dbdsdc_("L", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
- dum, idum, &work[nwork], &iwork[1], info);
- } else if (wntqo) {
- ldwkvt = *m;
- ivt = nwork;
- if (*lwork >= *m * *n + *m * 3 + bdspac) {
-
-/* WORK( IVT ) is M by N */
-
- dlaset_("F", m, n, &c_b29, &c_b29, &work[ivt], &ldwkvt);
- nwork = ivt + ldwkvt * *n;
- } else {
-
-/* WORK( IVT ) is M by M */
-
- nwork = ivt + ldwkvt * *m;
- il = nwork;
-
-/* WORK(IL) is M by CHUNK */
-
- chunk = (*lwork - *m * *m - *m * 3) / *m;
- }
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in U and computing right singular
- vectors of bidiagonal matrix in WORK(IVT)
- (Workspace: need M*M+BDSPAC)
-*/
-
- dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
- work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
- , info);
-
-/*
- Overwrite U by left singular vectors of A
- (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
-
- if (*lwork >= *m * *n + *m * 3 + bdspac) {
-
-/*
- Overwrite WORK(IVT) by left singular vectors of A
- (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
- itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2,
- &ierr);
-
-/* Copy right singular vectors of A from WORK(IVT) to A */
-
- dlacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda);
- } else {
-
-/*
- Generate P**T in A
- (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
-*/
-
- i__2 = *lwork - nwork + 1;
- dorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
- work[nwork], &i__2, &ierr);
-
-/*
- Multiply Q in A by right singular vectors of
- bidiagonal matrix in WORK(IVT), storing result in
- WORK(IL) and copying to A
- (Workspace: need 2*M*M, prefer M*M+M*N)
-*/
-
- i__2 = *n;
- i__1 = chunk;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
- i__1) {
-/* Computing MIN */
- i__3 = *n - i__ + 1;
- blk = min(i__3,chunk);
- dgemm_("N", "N", m, &blk, m, &c_b15, &work[ivt], &
- ldwkvt, &a[i__ * a_dim1 + 1], lda, &c_b29, &
- work[il], m);
- dlacpy_("F", m, &blk, &work[il], m, &a[i__ * a_dim1 +
- 1], lda);
-/* L40: */
- }
- }
- } else if (wntqs) {
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in U and computing right singular
- vectors of bidiagonal matrix in VT
- (Workspace: need M+BDSPAC)
-*/
-
- dlaset_("F", m, n, &c_b29, &c_b29, &vt[vt_offset], ldvt);
- dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
- vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
- info);
-
-/*
- Overwrite U by left singular vectors of A and VT
- by right singular vectors of A
- (Workspace: need 3*M, prefer 2*M+M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
- i__1 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
- ierr);
- } else if (wntqa) {
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in U and computing right singular
- vectors of bidiagonal matrix in VT
- (Workspace: need M+BDSPAC)
-*/
-
- dlaset_("F", n, n, &c_b29, &c_b29, &vt[vt_offset], ldvt);
- dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
- vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
- info);
-
-/* Set the right corner of VT to identity matrix */
-
- i__1 = *n - *m;
- i__2 = *n - *m;
- dlaset_("F", &i__1, &i__2, &c_b29, &c_b15, &vt[*m + 1 + (*m +
- 1) * vt_dim1], ldvt);
-
-/*
- Overwrite U by left singular vectors of A and VT
- by right singular vectors of A
- (Workspace: need 2*M+N, prefer 2*M+N*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
- i__1 = *lwork - nwork + 1;
- dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
- ierr);
- }
-
- }
-
- }
-
-/* Undo scaling if necessary */
-
- if (iscl == 1) {
- if (anrm > bignum) {
- dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
- minmn, &ierr);
- }
- if (anrm < smlnum) {
- dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
- minmn, &ierr);
- }
- }
-
-/* Return optimal workspace in WORK(1) */
-
- work[1] = (doublereal) maxwrk;
-
- return 0;
-
-/* End of DGESDD */
-
-} /* dgesdd_ */
-
-/* Subroutine */ int dgesv_(integer *n, integer *nrhs, doublereal *a, integer
- *lda, integer *ipiv, doublereal *b, integer *ldb, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1;
-
- /* Local variables */
- extern /* Subroutine */ int dgetrf_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), xerbla_(char *, integer *), dgetrs_(char *, integer *, integer *, doublereal *,
- integer *, integer *, doublereal *, integer *, integer *);
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- March 31, 1993
-
-
- Purpose
- =======
-
- DGESV computes the solution to a real system of linear equations
- A * X = B,
- where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
-
- The LU decomposition with partial pivoting and row interchanges is
- used to factor A as
- A = P * L * U,
- where P is a permutation matrix, L is unit lower triangular, and U is
- upper triangular. The factored form of A is then used to solve the
- system of equations A * X = B.
-
- Arguments
- =========
-
- N (input) INTEGER
- The number of linear equations, i.e., the order of the
- matrix A. N >= 0.
-
- NRHS (input) INTEGER
- The number of right hand sides, i.e., the number of columns
- of the matrix B. NRHS >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the N-by-N coefficient matrix A.
- On exit, the factors L and U from the factorization
- A = P*L*U; the unit diagonal elements of L are not stored.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- IPIV (output) INTEGER array, dimension (N)
- The pivot indices that define the permutation matrix P;
- row i of the matrix was interchanged with row IPIV(i).
-
- B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
- On entry, the N-by-NRHS matrix of right hand side matrix B.
- On exit, if INFO = 0, the N-by-NRHS solution matrix X.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, U(i,i) is exactly zero. The factorization
- has been completed, but the factor U is exactly
- singular, so the solution could not be computed.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- } else if (*nrhs < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- } else if (*ldb < max(1,*n)) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGESV ", &i__1);
- return 0;
- }
-
-/* Compute the LU factorization of A. */
-
- dgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);
- if (*info == 0) {
-
-/* Solve the system A*X = B, overwriting B with X. */
-
- dgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[
- b_offset], ldb, info);
- }
- return 0;
-
-/* End of DGESV */
-
-} /* dgesv_ */
-
-/* Subroutine */ int dgetf2_(integer *m, integer *n, doublereal *a, integer *
- lda, integer *ipiv, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublereal d__1;
-
- /* Local variables */
- static integer j, jp;
- extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *), dscal_(integer *, doublereal *, doublereal *, integer
- *), dswap_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1992
-
-
- Purpose
- =======
-
- DGETF2 computes an LU factorization of a general m-by-n matrix A
- using partial pivoting with row interchanges.
-
- The factorization has the form
- A = P * L * U
- where P is a permutation matrix, L is lower triangular with unit
- diagonal elements (lower trapezoidal if m > n), and U is upper
- triangular (upper trapezoidal if m < n).
-
- This is the right-looking Level 2 BLAS version of the algorithm.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the m by n matrix to be factored.
- On exit, the factors L and U from the factorization
- A = P*L*U; the unit diagonal elements of L are not stored.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- IPIV (output) INTEGER array, dimension (min(M,N))
- The pivot indices; for 1 <= i <= min(M,N), row i of the
- matrix was interchanged with row IPIV(i).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -k, the k-th argument had an illegal value
- > 0: if INFO = k, U(k,k) is exactly zero. The factorization
- has been completed, but the factor U is exactly
- singular, and division by zero will occur if it is used
- to solve a system of equations.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGETF2", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- return 0;
- }
-
- i__1 = min(*m,*n);
- for (j = 1; j <= i__1; ++j) {
-
-/* Find pivot and test for singularity. */
-
- i__2 = *m - j + 1;
- jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1);
- ipiv[j] = jp;
- if (a[jp + j * a_dim1] != 0.) {
-
-/* Apply the interchange to columns 1:N. */
-
- if (jp != j) {
- dswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda);
- }
-
-/* Compute elements J+1:M of J-th column. */
-
- if (j < *m) {
- i__2 = *m - j;
- d__1 = 1. / a[j + j * a_dim1];
- dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
- }
-
- } else if (*info == 0) {
-
- *info = j;
- }
-
- if (j < min(*m,*n)) {
-
-/* Update trailing submatrix. */
-
- i__2 = *m - j;
- i__3 = *n - j;
- dger_(&i__2, &i__3, &c_b151, &a[j + 1 + j * a_dim1], &c__1, &a[j
- + (j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1],
- lda);
- }
-/* L10: */
- }
- return 0;
-
-/* End of DGETF2 */
-
-} /* dgetf2_ */
-
-/* Subroutine */ int dgetrf_(integer *m, integer *n, doublereal *a, integer *
- lda, integer *ipiv, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
-
- /* Local variables */
- static integer i__, j, jb, nb;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- static integer iinfo;
- extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *), dgetf2_(
- integer *, integer *, doublereal *, integer *, integer *, integer
- *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int dlaswp_(integer *, doublereal *, integer *,
- integer *, integer *, integer *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- March 31, 1993
-
-
- Purpose
- =======
-
- DGETRF computes an LU factorization of a general M-by-N matrix A
- using partial pivoting with row interchanges.
-
- The factorization has the form
- A = P * L * U
- where P is a permutation matrix, L is lower triangular with unit
- diagonal elements (lower trapezoidal if m > n), and U is upper
- triangular (upper trapezoidal if m < n).
-
- This is the right-looking Level 3 BLAS version of the algorithm.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the M-by-N matrix to be factored.
- On exit, the factors L and U from the factorization
- A = P*L*U; the unit diagonal elements of L are not stored.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- IPIV (output) INTEGER array, dimension (min(M,N))
- The pivot indices; for 1 <= i <= min(M,N), row i of the
- matrix was interchanged with row IPIV(i).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, U(i,i) is exactly zero. The factorization
- has been completed, but the factor U is exactly
- singular, and division by zero will occur if it is used
- to solve a system of equations.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGETRF", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- return 0;
- }
-
-/* Determine the block size for this environment. */
-
- nb = ilaenv_(&c__1, "DGETRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- if (nb <= 1 || nb >= min(*m,*n)) {
-
-/* Use unblocked code. */
-
- dgetf2_(m, n, &a[a_offset], lda, &ipiv[1], info);
- } else {
-
-/* Use blocked code. */
-
- i__1 = min(*m,*n);
- i__2 = nb;
- for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-/* Computing MIN */
- i__3 = min(*m,*n) - j + 1;
- jb = min(i__3,nb);
-
-/*
- Factor diagonal and subdiagonal blocks and test for exact
- singularity.
-*/
-
- i__3 = *m - j + 1;
- dgetf2_(&i__3, &jb, &a[j + j * a_dim1], lda, &ipiv[j], &iinfo);
-
-/* Adjust INFO and the pivot indices. */
-
- if ((*info == 0 && iinfo > 0)) {
- *info = iinfo + j - 1;
- }
-/* Computing MIN */
- i__4 = *m, i__5 = j + jb - 1;
- i__3 = min(i__4,i__5);
- for (i__ = j; i__ <= i__3; ++i__) {
- ipiv[i__] = j - 1 + ipiv[i__];
-/* L10: */
- }
-
-/* Apply interchanges to columns 1:J-1. */
-
- i__3 = j - 1;
- i__4 = j + jb - 1;
- dlaswp_(&i__3, &a[a_offset], lda, &j, &i__4, &ipiv[1], &c__1);
-
- if (j + jb <= *n) {
-
-/* Apply interchanges to columns J+JB:N. */
-
- i__3 = *n - j - jb + 1;
- i__4 = j + jb - 1;
- dlaswp_(&i__3, &a[(j + jb) * a_dim1 + 1], lda, &j, &i__4, &
- ipiv[1], &c__1);
-
-/* Compute block row of U. */
-
- i__3 = *n - j - jb + 1;
- dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &i__3, &
- c_b15, &a[j + j * a_dim1], lda, &a[j + (j + jb) *
- a_dim1], lda);
- if (j + jb <= *m) {
-
-/* Update trailing submatrix. */
-
- i__3 = *m - j - jb + 1;
- i__4 = *n - j - jb + 1;
- dgemm_("No transpose", "No transpose", &i__3, &i__4, &jb,
- &c_b151, &a[j + jb + j * a_dim1], lda, &a[j + (j
- + jb) * a_dim1], lda, &c_b15, &a[j + jb + (j + jb)
- * a_dim1], lda);
- }
- }
-/* L20: */
- }
- }
- return 0;
-
-/* End of DGETRF */
-
-} /* dgetrf_ */
-
-/* Subroutine */ int dgetrs_(char *trans, integer *n, integer *nrhs,
- doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer *
- ldb, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1;
-
- /* Local variables */
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *), xerbla_(
- char *, integer *), dlaswp_(integer *, doublereal *,
- integer *, integer *, integer *, integer *, integer *);
- static logical notran;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- March 31, 1993
-
-
- Purpose
- =======
-
- DGETRS solves a system of linear equations
- A * X = B or A' * X = B
- with a general N-by-N matrix A using the LU factorization computed
- by DGETRF.
-
- Arguments
- =========
-
- TRANS (input) CHARACTER*1
- Specifies the form of the system of equations:
- = 'N': A * X = B (No transpose)
- = 'T': A'* X = B (Transpose)
- = 'C': A'* X = B (Conjugate transpose = Transpose)
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- NRHS (input) INTEGER
- The number of right hand sides, i.e., the number of columns
- of the matrix B. NRHS >= 0.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,N)
- The factors L and U from the factorization A = P*L*U
- as computed by DGETRF.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- IPIV (input) INTEGER array, dimension (N)
- The pivot indices from DGETRF; for 1<=i<=N, row i of the
- matrix was interchanged with row IPIV(i).
-
- B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
- On entry, the right hand side matrix B.
- On exit, the solution matrix X.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- *info = 0;
- notran = lsame_(trans, "N");
- if (((! notran && ! lsame_(trans, "T")) && ! lsame_(
- trans, "C"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*nrhs < 0) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if (*ldb < max(1,*n)) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGETRS", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0 || *nrhs == 0) {
- return 0;
- }
-
- if (notran) {
-
-/*
- Solve A * X = B.
-
- Apply row interchanges to the right hand sides.
-*/
-
- dlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c__1);
-
-/* Solve L*X = B, overwriting B with X. */
-
- dtrsm_("Left", "Lower", "No transpose", "Unit", n, nrhs, &c_b15, &a[
- a_offset], lda, &b[b_offset], ldb);
-
-/* Solve U*X = B, overwriting B with X. */
-
- dtrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b15, &
- a[a_offset], lda, &b[b_offset], ldb);
- } else {
-
-/*
- Solve A' * X = B.
-
- Solve U'*X = B, overwriting B with X.
-*/
-
- dtrsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b15, &a[
- a_offset], lda, &b[b_offset], ldb);
-
-/* Solve L'*X = B, overwriting B with X. */
-
- dtrsm_("Left", "Lower", "Transpose", "Unit", n, nrhs, &c_b15, &a[
- a_offset], lda, &b[b_offset], ldb);
-
-/* Apply row interchanges to the solution vectors. */
-
- dlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c_n1);
- }
-
- return 0;
-
-/* End of DGETRS */
-
-} /* dgetrs_ */
-
-/* Subroutine */ int dhseqr_(char *job, char *compz, integer *n, integer *ilo,
- integer *ihi, doublereal *h__, integer *ldh, doublereal *wr,
- doublereal *wi, doublereal *z__, integer *ldz, doublereal *work,
- integer *lwork, integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3[2], i__4,
- i__5;
- doublereal d__1, d__2;
- char ch__1[2];
-
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i__, j, k, l;
- static doublereal s[225] /* was [15][15] */, v[16];
- static integer i1, i2, ii, nh, nr, ns, nv;
- static doublereal vv[16];
- static integer itn;
- static doublereal tau;
- static integer its;
- static doublereal ulp, tst1;
- static integer maxb;
- static doublereal absw;
- static integer ierr;
- static doublereal unfl, temp, ovfl;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- static integer itemp;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static logical initz, wantt, wantz;
- extern doublereal dlapy2_(doublereal *, doublereal *);
- extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
-
- extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
- integer *, doublereal *);
- extern integer idamax_(integer *, doublereal *, integer *);
- extern doublereal dlanhs_(char *, integer *, doublereal *, integer *,
- doublereal *);
- extern /* Subroutine */ int dlahqr_(logical *, logical *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *), dlacpy_(char *, integer *, integer *, doublereal *,
- integer *, doublereal *, integer *), dlaset_(char *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int xerbla_(char *, integer *), dlarfx_(
- char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *, doublereal *);
- static doublereal smlnum;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DHSEQR computes the eigenvalues of a real upper Hessenberg matrix H
- and, optionally, the matrices T and Z from the Schur decomposition
- H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur
- form), and Z is the orthogonal matrix of Schur vectors.
-
- Optionally Z may be postmultiplied into an input orthogonal matrix Q,
- so that this routine can give the Schur factorization of a matrix A
- which has been reduced to the Hessenberg form H by the orthogonal
- matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
-
- Arguments
- =========
-
- JOB (input) CHARACTER*1
- = 'E': compute eigenvalues only;
- = 'S': compute eigenvalues and the Schur form T.
-
- COMPZ (input) CHARACTER*1
- = 'N': no Schur vectors are computed;
- = 'I': Z is initialized to the unit matrix and the matrix Z
- of Schur vectors of H is returned;
- = 'V': Z must contain an orthogonal matrix Q on entry, and
- the product Q*Z is returned.
-
- N (input) INTEGER
- The order of the matrix H. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- It is assumed that H is already upper triangular in rows
- and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
- set by a previous call to DGEBAL, and then passed to SGEHRD
- when the matrix output by DGEBAL is reduced to Hessenberg
- form. Otherwise ILO and IHI should be set to 1 and N
- respectively.
- 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
-
- H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
- On entry, the upper Hessenberg matrix H.
- On exit, if JOB = 'S', H contains the upper quasi-triangular
- matrix T from the Schur decomposition (the Schur form);
- 2-by-2 diagonal blocks (corresponding to complex conjugate
- pairs of eigenvalues) are returned in standard form, with
- H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. If JOB = 'E',
- the contents of H are unspecified on exit.
-
- LDH (input) INTEGER
- The leading dimension of the array H. LDH >= max(1,N).
-
- WR (output) DOUBLE PRECISION array, dimension (N)
- WI (output) DOUBLE PRECISION array, dimension (N)
- The real and imaginary parts, respectively, of the computed
- eigenvalues. If two eigenvalues are computed as a complex
- conjugate pair, they are stored in consecutive elements of
- WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and
- WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in the
- same order as on the diagonal of the Schur form returned in
- H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
- diagonal block, WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and
- WI(i+1) = -WI(i).
-
- Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
- If COMPZ = 'N': Z is not referenced.
- If COMPZ = 'I': on entry, Z need not be set, and on exit, Z
- contains the orthogonal matrix Z of the Schur vectors of H.
- If COMPZ = 'V': on entry Z must contain an N-by-N matrix Q,
- which is assumed to be equal to the unit matrix except for
- the submatrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.
- Normally Q is the orthogonal matrix generated by DORGHR after
- the call to DGEHRD which formed the Hessenberg matrix H.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z.
- LDZ >= max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 otherwise.
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,N).
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, DHSEQR failed to compute all of the
- eigenvalues in a total of 30*(IHI-ILO+1) iterations;
- elements 1:ilo-1 and i+1:n of WR and WI contain those
- eigenvalues which have been successfully computed.
-
- =====================================================================
-
-
- Decode and test the input parameters
-*/
-
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- --wr;
- --wi;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- wantt = lsame_(job, "S");
- initz = lsame_(compz, "I");
- wantz = initz || lsame_(compz, "V");
-
- *info = 0;
- work[1] = (doublereal) max(1,*n);
- lquery = *lwork == -1;
- if ((! lsame_(job, "E") && ! wantt)) {
- *info = -1;
- } else if ((! lsame_(compz, "N") && ! wantz)) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -4;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -5;
- } else if (*ldh < max(1,*n)) {
- *info = -7;
- } else if (*ldz < 1 || (wantz && *ldz < max(1,*n))) {
- *info = -11;
- } else if ((*lwork < max(1,*n) && ! lquery)) {
- *info = -13;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DHSEQR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Initialize Z, if necessary */
-
- if (initz) {
- dlaset_("Full", n, n, &c_b29, &c_b15, &z__[z_offset], ldz);
- }
-
-/* Store the eigenvalues isolated by DGEBAL. */
-
- i__1 = *ilo - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- wr[i__] = h__[i__ + i__ * h_dim1];
- wi[i__] = 0.;
-/* L10: */
- }
- i__1 = *n;
- for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
- wr[i__] = h__[i__ + i__ * h_dim1];
- wi[i__] = 0.;
-/* L20: */
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
- if (*ilo == *ihi) {
- wr[*ilo] = h__[*ilo + *ilo * h_dim1];
- wi[*ilo] = 0.;
- return 0;
- }
-
-/*
- Set rows and columns ILO to IHI to zero below the first
- subdiagonal.
-*/
-
- i__1 = *ihi - 2;
- for (j = *ilo; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j + 2; i__ <= i__2; ++i__) {
- h__[i__ + j * h_dim1] = 0.;
-/* L30: */
- }
-/* L40: */
- }
- nh = *ihi - *ilo + 1;
-
-/*
- Determine the order of the multi-shift QR algorithm to be used.
-
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = job;
- i__3[1] = 1, a__1[1] = compz;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- ns = ilaenv_(&c__4, "DHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
- ftnlen)2);
-/* Writing concatenation */
- i__3[0] = 1, a__1[0] = job;
- i__3[1] = 1, a__1[1] = compz;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- maxb = ilaenv_(&c__8, "DHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
- ftnlen)2);
- if (ns <= 2 || ns > nh || maxb >= nh) {
-
-/* Use the standard double-shift algorithm */
-
- dlahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &wi[
- 1], ilo, ihi, &z__[z_offset], ldz, info);
- return 0;
- }
- maxb = max(3,maxb);
-/* Computing MIN */
- i__1 = min(ns,maxb);
- ns = min(i__1,15);
-
-/*
- Now 2 < NS <= MAXB < NH.
-
- Set machine-dependent constants for the stopping criterion.
- If norm(H) <= sqrt(OVFL), overflow should not occur.
-*/
-
- unfl = SAFEMINIMUM;
- ovfl = 1. / unfl;
- dlabad_(&unfl, &ovfl);
- ulp = PRECISION;
- smlnum = unfl * (nh / ulp);
-
-/*
- I1 and I2 are the indices of the first row and last column of H
- to which transformations must be applied. If eigenvalues only are
- being computed, I1 and I2 are set inside the main loop.
-*/
-
- if (wantt) {
- i1 = 1;
- i2 = *n;
- }
-
-/* ITN is the total number of multiple-shift QR iterations allowed. */
-
- itn = nh * 30;
-
-/*
- The main loop begins here. I is the loop index and decreases from
- IHI to ILO in steps of at most MAXB. Each iteration of the loop
- works with the active submatrix in rows and columns L to I.
- Eigenvalues I+1 to IHI have already converged. Either L = ILO or
- H(L,L-1) is negligible so that the matrix splits.
-*/
-
- i__ = *ihi;
-L50:
- l = *ilo;
- if (i__ < *ilo) {
- goto L170;
- }
-
-/*
- Perform multiple-shift QR iterations on rows and columns ILO to I
- until a submatrix of order at most MAXB splits off at the bottom
- because a subdiagonal element has become negligible.
-*/
-
- i__1 = itn;
- for (its = 0; its <= i__1; ++its) {
-
-/* Look for a single small subdiagonal element. */
-
- i__2 = l + 1;
- for (k = i__; k >= i__2; --k) {
- tst1 = (d__1 = h__[k - 1 + (k - 1) * h_dim1], abs(d__1)) + (d__2 =
- h__[k + k * h_dim1], abs(d__2));
- if (tst1 == 0.) {
- i__4 = i__ - l + 1;
- tst1 = dlanhs_("1", &i__4, &h__[l + l * h_dim1], ldh, &work[1]
- );
- }
-/* Computing MAX */
- d__2 = ulp * tst1;
- if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= max(d__2,
- smlnum)) {
- goto L70;
- }
-/* L60: */
- }
-L70:
- l = k;
- if (l > *ilo) {
-
-/* H(L,L-1) is negligible. */
-
- h__[l + (l - 1) * h_dim1] = 0.;
- }
-
-/* Exit from loop if a submatrix of order <= MAXB has split off. */
-
- if (l >= i__ - maxb + 1) {
- goto L160;
- }
-
-/*
- Now the active submatrix is in rows and columns L to I. If
- eigenvalues only are being computed, only the active submatrix
- need be transformed.
-*/
-
- if (! wantt) {
- i1 = l;
- i2 = i__;
- }
-
- if (its == 20 || its == 30) {
-
-/* Exceptional shifts. */
-
- i__2 = i__;
- for (ii = i__ - ns + 1; ii <= i__2; ++ii) {
- wr[ii] = ((d__1 = h__[ii + (ii - 1) * h_dim1], abs(d__1)) + (
- d__2 = h__[ii + ii * h_dim1], abs(d__2))) * 1.5;
- wi[ii] = 0.;
-/* L80: */
- }
- } else {
-
-/* Use eigenvalues of trailing submatrix of order NS as shifts. */
-
- dlacpy_("Full", &ns, &ns, &h__[i__ - ns + 1 + (i__ - ns + 1) *
- h_dim1], ldh, s, &c__15);
- dlahqr_(&c_false, &c_false, &ns, &c__1, &ns, s, &c__15, &wr[i__ -
- ns + 1], &wi[i__ - ns + 1], &c__1, &ns, &z__[z_offset],
- ldz, &ierr);
- if (ierr > 0) {
-
-/*
- If DLAHQR failed to compute all NS eigenvalues, use the
- unconverged diagonal elements as the remaining shifts.
-*/
-
- i__2 = ierr;
- for (ii = 1; ii <= i__2; ++ii) {
- wr[i__ - ns + ii] = s[ii + ii * 15 - 16];
- wi[i__ - ns + ii] = 0.;
-/* L90: */
- }
- }
- }
-
-/*
- Form the first column of (G-w(1)) (G-w(2)) . . . (G-w(ns))
- where G is the Hessenberg submatrix H(L:I,L:I) and w is
- the vector of shifts (stored in WR and WI). The result is
- stored in the local array V.
-*/
-
- v[0] = 1.;
- i__2 = ns + 1;
- for (ii = 2; ii <= i__2; ++ii) {
- v[ii - 1] = 0.;
-/* L100: */
- }
- nv = 1;
- i__2 = i__;
- for (j = i__ - ns + 1; j <= i__2; ++j) {
- if (wi[j] >= 0.) {
- if (wi[j] == 0.) {
-
-/* real shift */
-
- i__4 = nv + 1;
- dcopy_(&i__4, v, &c__1, vv, &c__1);
- i__4 = nv + 1;
- d__1 = -wr[j];
- dgemv_("No transpose", &i__4, &nv, &c_b15, &h__[l + l *
- h_dim1], ldh, vv, &c__1, &d__1, v, &c__1);
- ++nv;
- } else if (wi[j] > 0.) {
-
-/* complex conjugate pair of shifts */
-
- i__4 = nv + 1;
- dcopy_(&i__4, v, &c__1, vv, &c__1);
- i__4 = nv + 1;
- d__1 = wr[j] * -2.;
- dgemv_("No transpose", &i__4, &nv, &c_b15, &h__[l + l *
- h_dim1], ldh, v, &c__1, &d__1, vv, &c__1);
- i__4 = nv + 1;
- itemp = idamax_(&i__4, vv, &c__1);
-/* Computing MAX */
- d__2 = (d__1 = vv[itemp - 1], abs(d__1));
- temp = 1. / max(d__2,smlnum);
- i__4 = nv + 1;
- dscal_(&i__4, &temp, vv, &c__1);
- absw = dlapy2_(&wr[j], &wi[j]);
- temp = temp * absw * absw;
- i__4 = nv + 2;
- i__5 = nv + 1;
- dgemv_("No transpose", &i__4, &i__5, &c_b15, &h__[l + l *
- h_dim1], ldh, vv, &c__1, &temp, v, &c__1);
- nv += 2;
- }
-
-/*
- Scale V(1:NV) so that max(abs(V(i))) = 1. If V is zero,
- reset it to the unit vector.
-*/
-
- itemp = idamax_(&nv, v, &c__1);
- temp = (d__1 = v[itemp - 1], abs(d__1));
- if (temp == 0.) {
- v[0] = 1.;
- i__4 = nv;
- for (ii = 2; ii <= i__4; ++ii) {
- v[ii - 1] = 0.;
-/* L110: */
- }
- } else {
- temp = max(temp,smlnum);
- d__1 = 1. / temp;
- dscal_(&nv, &d__1, v, &c__1);
- }
- }
-/* L120: */
- }
-
-/* Multiple-shift QR step */
-
- i__2 = i__ - 1;
- for (k = l; k <= i__2; ++k) {
-
-/*
- The first iteration of this loop determines a reflection G
- from the vector V and applies it from left and right to H,
- thus creating a nonzero bulge below the subdiagonal.
-
- Each subsequent iteration determines a reflection G to
- restore the Hessenberg form in the (K-1)th column, and thus
- chases the bulge one step toward the bottom of the active
- submatrix. NR is the order of G.
-
- Computing MIN
-*/
- i__4 = ns + 1, i__5 = i__ - k + 1;
- nr = min(i__4,i__5);
- if (k > l) {
- dcopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
- }
- dlarfg_(&nr, v, &v[1], &c__1, &tau);
- if (k > l) {
- h__[k + (k - 1) * h_dim1] = v[0];
- i__4 = i__;
- for (ii = k + 1; ii <= i__4; ++ii) {
- h__[ii + (k - 1) * h_dim1] = 0.;
-/* L130: */
- }
- }
- v[0] = 1.;
-
-/*
- Apply G from the left to transform the rows of the matrix in
- columns K to I2.
-*/
-
- i__4 = i2 - k + 1;
- dlarfx_("Left", &nr, &i__4, v, &tau, &h__[k + k * h_dim1], ldh, &
- work[1]);
-
-/*
- Apply G from the right to transform the columns of the
- matrix in rows I1 to min(K+NR,I).
-
- Computing MIN
-*/
- i__5 = k + nr;
- i__4 = min(i__5,i__) - i1 + 1;
- dlarfx_("Right", &i__4, &nr, v, &tau, &h__[i1 + k * h_dim1], ldh,
- &work[1]);
-
- if (wantz) {
-
-/* Accumulate transformations in the matrix Z */
-
- dlarfx_("Right", &nh, &nr, v, &tau, &z__[*ilo + k * z_dim1],
- ldz, &work[1]);
- }
-/* L140: */
- }
-
-/* L150: */
- }
-
-/* Failure to converge in remaining number of iterations */
-
- *info = i__;
- return 0;
-
-L160:
-
-/*
- A submatrix of order <= MAXB in rows and columns L to I has split
- off. Use the double-shift QR algorithm to handle it.
-*/
-
- dlahqr_(&wantt, &wantz, n, &l, &i__, &h__[h_offset], ldh, &wr[1], &wi[1],
- ilo, ihi, &z__[z_offset], ldz, info);
- if (*info > 0) {
- return 0;
- }
-
-/*
- Decrement number of remaining iterations, and return to start of
- the main loop with a new value of I.
-*/
-
- itn -= its;
- i__ = l - 1;
- goto L50;
-
-L170:
- work[1] = (doublereal) max(1,*n);
- return 0;
-
-/* End of DHSEQR */
-
-} /* dhseqr_ */
-
-/* Subroutine */ int dlabad_(doublereal *small, doublereal *large)
-{
- /* Builtin functions */
- double d_lg10(doublereal *), sqrt(doublereal);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLABAD takes as input the values computed by DLAMCH for underflow and
- overflow, and returns the square root of each of these values if the
- log of LARGE is sufficiently large. This subroutine is intended to
- identify machines with a large exponent range, such as the Crays, and
- redefine the underflow and overflow limits to be the square roots of
- the values computed by DLAMCH. This subroutine is needed because
- DLAMCH does not compensate for poor arithmetic in the upper half of
- the exponent range, as is found on a Cray.
-
- Arguments
- =========
-
- SMALL (input/output) DOUBLE PRECISION
- On entry, the underflow threshold as computed by DLAMCH.
- On exit, if LOG10(LARGE) is sufficiently large, the square
- root of SMALL, otherwise unchanged.
-
- LARGE (input/output) DOUBLE PRECISION
- On entry, the overflow threshold as computed by DLAMCH.
- On exit, if LOG10(LARGE) is sufficiently large, the square
- root of LARGE, otherwise unchanged.
-
- =====================================================================
-
-
- If it looks like we're on a Cray, take the square root of
- SMALL and LARGE to avoid overflow and underflow problems.
-*/
-
- if (d_lg10(large) > 2e3) {
- *small = sqrt(*small);
- *large = sqrt(*large);
- }
-
- return 0;
-
-/* End of DLABAD */
-
-} /* dlabad_ */
-
-/* Subroutine */ int dlabrd_(integer *m, integer *n, integer *nb, doublereal *
- a, integer *lda, doublereal *d__, doublereal *e, doublereal *tauq,
- doublereal *taup, doublereal *x, integer *ldx, doublereal *y, integer
- *ldy)
-{
- /* System generated locals */
- integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
- i__3;
-
- /* Local variables */
- static integer i__;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *), dgemv_(char *, integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), dlarfg_(integer *, doublereal *,
- doublereal *, integer *, doublereal *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DLABRD reduces the first NB rows and columns of a real general
- m by n matrix A to upper or lower bidiagonal form by an orthogonal
- transformation Q' * A * P, and returns the matrices X and Y which
- are needed to apply the transformation to the unreduced part of A.
-
- If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
- bidiagonal form.
-
- This is an auxiliary routine called by DGEBRD
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows in the matrix A.
-
- N (input) INTEGER
- The number of columns in the matrix A.
-
- NB (input) INTEGER
- The number of leading rows and columns of A to be reduced.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the m by n general matrix to be reduced.
- On exit, the first NB rows and columns of the matrix are
- overwritten; the rest of the array is unchanged.
- If m >= n, elements on and below the diagonal in the first NB
- columns, with the array TAUQ, represent the orthogonal
- matrix Q as a product of elementary reflectors; and
- elements above the diagonal in the first NB rows, with the
- array TAUP, represent the orthogonal matrix P as a product
- of elementary reflectors.
- If m < n, elements below the diagonal in the first NB
- columns, with the array TAUQ, represent the orthogonal
- matrix Q as a product of elementary reflectors, and
- elements on and above the diagonal in the first NB rows,
- with the array TAUP, represent the orthogonal matrix P as
- a product of elementary reflectors.
- See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- D (output) DOUBLE PRECISION array, dimension (NB)
- The diagonal elements of the first NB rows and columns of
- the reduced matrix. D(i) = A(i,i).
-
- E (output) DOUBLE PRECISION array, dimension (NB)
- The off-diagonal elements of the first NB rows and columns of
- the reduced matrix.
-
- TAUQ (output) DOUBLE PRECISION array dimension (NB)
- The scalar factors of the elementary reflectors which
- represent the orthogonal matrix Q. See Further Details.
-
- TAUP (output) DOUBLE PRECISION array, dimension (NB)
- The scalar factors of the elementary reflectors which
- represent the orthogonal matrix P. See Further Details.
-
- X (output) DOUBLE PRECISION array, dimension (LDX,NB)
- The m-by-nb matrix X required to update the unreduced part
- of A.
-
- LDX (input) INTEGER
- The leading dimension of the array X. LDX >= M.
-
- Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
- The n-by-nb matrix Y required to update the unreduced part
- of A.
-
- LDY (output) INTEGER
- The leading dimension of the array Y. LDY >= N.
-
- Further Details
- ===============
-
- The matrices Q and P are represented as products of elementary
- reflectors:
-
- Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
-
- Each H(i) and G(i) has the form:
-
- H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-
- where tauq and taup are real scalars, and v and u are real vectors.
-
- If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
- A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
- A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
- A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
- A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- The elements of the vectors v and u together form the m-by-nb matrix
- V and the nb-by-n matrix U' which are needed, with X and Y, to apply
- the transformation to the unreduced part of the matrix, using a block
- update of the form: A := A - V*Y' - X*U'.
-
- The contents of A on exit are illustrated by the following examples
- with nb = 2:
-
- m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
-
- ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
- ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
- ( v1 v2 a a a ) ( v1 1 a a a a )
- ( v1 v2 a a a ) ( v1 v2 a a a a )
- ( v1 v2 a a a ) ( v1 v2 a a a a )
- ( v1 v2 a a a )
-
- where a denotes an element of the original matrix which is unchanged,
- vi denotes an element of the vector defining H(i), and ui an element
- of the vector defining G(i).
-
- =====================================================================
-
-
- Quick return if possible
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tauq;
- --taup;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1 * 1;
- y -= y_offset;
-
- /* Function Body */
- if (*m <= 0 || *n <= 0) {
- return 0;
- }
-
- if (*m >= *n) {
-
-/* Reduce to upper bidiagonal form */
-
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Update A(i:m,i) */
-
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[i__ + a_dim1],
- lda, &y[i__ + y_dim1], ldy, &c_b15, &a[i__ + i__ * a_dim1]
- , &c__1);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &x[i__ + x_dim1],
- ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b15, &a[i__ + i__ *
- a_dim1], &c__1);
-
-/* Generate reflection Q(i) to annihilate A(i+1:m,i) */
-
- i__2 = *m - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ *
- a_dim1], &c__1, &tauq[i__]);
- d__[i__] = a[i__ + i__ * a_dim1];
- if (i__ < *n) {
- a[i__ + i__ * a_dim1] = 1.;
-
-/* Compute Y(i+1:n,i) */
-
- i__2 = *m - i__ + 1;
- i__3 = *n - i__;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[i__ + (i__ + 1) *
- a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b29,
- &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[i__ + a_dim1],
- lda, &a[i__ + i__ * a_dim1], &c__1, &c_b29, &y[i__ *
- y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &y[i__ + 1 +
- y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b15, &y[
- i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &x[i__ + x_dim1],
- ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b29, &y[i__ *
- y_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- dgemv_("Transpose", &i__2, &i__3, &c_b151, &a[(i__ + 1) *
- a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b15,
- &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *n - i__;
- dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
-
-/* Update A(i,i+1:n) */
-
- i__2 = *n - i__;
- dgemv_("No transpose", &i__2, &i__, &c_b151, &y[i__ + 1 +
- y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b15, &a[i__ +
- (i__ + 1) * a_dim1], lda);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- dgemv_("Transpose", &i__2, &i__3, &c_b151, &a[(i__ + 1) *
- a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b15, &a[
- i__ + (i__ + 1) * a_dim1], lda);
-
-/* Generate reflection P(i) to annihilate A(i,i+2:n) */
-
- i__2 = *n - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(
- i__3,*n) * a_dim1], lda, &taup[i__]);
- e[i__] = a[i__ + (i__ + 1) * a_dim1];
- a[i__ + (i__ + 1) * a_dim1] = 1.;
-
-/* Compute X(i+1:m,i) */
-
- i__2 = *m - i__;
- i__3 = *n - i__;
- dgemv_("No transpose", &i__2, &i__3, &c_b15, &a[i__ + 1 + (
- i__ + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1],
- lda, &c_b29, &x[i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__;
- dgemv_("Transpose", &i__2, &i__, &c_b15, &y[i__ + 1 + y_dim1],
- ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b29, &x[
- i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- dgemv_("No transpose", &i__2, &i__, &c_b151, &a[i__ + 1 +
- a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b15, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- dgemv_("No transpose", &i__2, &i__3, &c_b15, &a[(i__ + 1) *
- a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
- c_b29, &x[i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &x[i__ + 1 +
- x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b15, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *m - i__;
- dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
- }
-/* L10: */
- }
- } else {
-
-/* Reduce to lower bidiagonal form */
-
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Update A(i,i:n) */
-
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &y[i__ + y_dim1],
- ldy, &a[i__ + a_dim1], lda, &c_b15, &a[i__ + i__ * a_dim1]
- , lda);
- i__2 = i__ - 1;
- i__3 = *n - i__ + 1;
- dgemv_("Transpose", &i__2, &i__3, &c_b151, &a[i__ * a_dim1 + 1],
- lda, &x[i__ + x_dim1], ldx, &c_b15, &a[i__ + i__ * a_dim1]
- , lda);
-
-/* Generate reflection P(i) to annihilate A(i,i+1:n) */
-
- i__2 = *n - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3,*n) *
- a_dim1], lda, &taup[i__]);
- d__[i__] = a[i__ + i__ * a_dim1];
- if (i__ < *m) {
- a[i__ + i__ * a_dim1] = 1.;
-
-/* Compute X(i+1:m,i) */
-
- i__2 = *m - i__;
- i__3 = *n - i__ + 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b15, &a[i__ + 1 + i__
- * a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b29, &
- x[i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &y[i__ + y_dim1],
- ldy, &a[i__ + i__ * a_dim1], lda, &c_b29, &x[i__ *
- x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[i__ + 1 +
- a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b15, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__ + 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b15, &a[i__ * a_dim1
- + 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b29, &x[
- i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &x[i__ + 1 +
- x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b15, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *m - i__;
- dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
-
-/* Update A(i+1:m,i) */
-
- i__2 = *m - i__;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[i__ + 1 +
- a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b15, &a[i__ +
- 1 + i__ * a_dim1], &c__1);
- i__2 = *m - i__;
- dgemv_("No transpose", &i__2, &i__, &c_b151, &x[i__ + 1 +
- x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b15, &a[
- i__ + 1 + i__ * a_dim1], &c__1);
-
-/* Generate reflection Q(i) to annihilate A(i+2:m,i) */
-
- i__2 = *m - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*m) +
- i__ * a_dim1], &c__1, &tauq[i__]);
- e[i__] = a[i__ + 1 + i__ * a_dim1];
- a[i__ + 1 + i__ * a_dim1] = 1.;
-
-/* Compute Y(i+1:n,i) */
-
- i__2 = *m - i__;
- i__3 = *n - i__;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[i__ + 1 + (i__ +
- 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1,
- &c_b29, &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[i__ + 1 + a_dim1]
- , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b29, &y[
- i__ * y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &y[i__ + 1 +
- y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b15, &y[
- i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__;
- dgemv_("Transpose", &i__2, &i__, &c_b15, &x[i__ + 1 + x_dim1],
- ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b29, &y[
- i__ * y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- dgemv_("Transpose", &i__, &i__2, &c_b151, &a[(i__ + 1) *
- a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b15,
- &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *n - i__;
- dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
- }
-/* L20: */
- }
- }
- return 0;
-
-/* End of DLABRD */
-
-} /* dlabrd_ */
-
-/* Subroutine */ int dlacpy_(char *uplo, integer *m, integer *n, doublereal *
- a, integer *lda, doublereal *b, integer *ldb)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, j;
- extern logical lsame_(char *, char *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DLACPY copies all or part of a two-dimensional matrix A to another
- matrix B.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- Specifies the part of the matrix A to be copied to B.
- = 'U': Upper triangular part
- = 'L': Lower triangular part
- Otherwise: All of the matrix A
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,N)
- The m by n matrix A. If UPLO = 'U', only the upper triangle
- or trapezoid is accessed; if UPLO = 'L', only the lower
- triangle or trapezoid is accessed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- B (output) DOUBLE PRECISION array, dimension (LDB,N)
- On exit, B = A in the locations specified by UPLO.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,M).
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = min(j,*m);
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
-/* L10: */
- }
-/* L20: */
- }
- } else if (lsame_(uplo, "L")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
-/* L30: */
- }
-/* L40: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
-/* L50: */
- }
-/* L60: */
- }
- }
- return 0;
-
-/* End of DLACPY */
-
-} /* dlacpy_ */
-
-/* Subroutine */ int dladiv_(doublereal *a, doublereal *b, doublereal *c__,
- doublereal *d__, doublereal *p, doublereal *q)
-{
- static doublereal e, f;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLADIV performs complex division in real arithmetic
-
- a + i*b
- p + i*q = ---------
- c + i*d
-
- The algorithm is due to Robert L. Smith and can be found
- in D. Knuth, The art of Computer Programming, Vol.2, p.195
-
- Arguments
- =========
-
- A (input) DOUBLE PRECISION
- B (input) DOUBLE PRECISION
- C (input) DOUBLE PRECISION
- D (input) DOUBLE PRECISION
- The scalars a, b, c, and d in the above expression.
-
- P (output) DOUBLE PRECISION
- Q (output) DOUBLE PRECISION
- The scalars p and q in the above expression.
-
- =====================================================================
-*/
-
-
- if (abs(*d__) < abs(*c__)) {
- e = *d__ / *c__;
- f = *c__ + *d__ * e;
- *p = (*a + *b * e) / f;
- *q = (*b - *a * e) / f;
- } else {
- e = *c__ / *d__;
- f = *d__ + *c__ * e;
- *p = (*b + *a * e) / f;
- *q = (-(*a) + *b * e) / f;
- }
-
- return 0;
-
-/* End of DLADIV */
-
-} /* dladiv_ */
-
-/* Subroutine */ int dlae2_(doublereal *a, doublereal *b, doublereal *c__,
- doublereal *rt1, doublereal *rt2)
-{
- /* System generated locals */
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal ab, df, tb, sm, rt, adf, acmn, acmx;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix
- [ A B ]
- [ B C ].
- On return, RT1 is the eigenvalue of larger absolute value, and RT2
- is the eigenvalue of smaller absolute value.
-
- Arguments
- =========
-
- A (input) DOUBLE PRECISION
- The (1,1) element of the 2-by-2 matrix.
-
- B (input) DOUBLE PRECISION
- The (1,2) and (2,1) elements of the 2-by-2 matrix.
-
- C (input) DOUBLE PRECISION
- The (2,2) element of the 2-by-2 matrix.
-
- RT1 (output) DOUBLE PRECISION
- The eigenvalue of larger absolute value.
-
- RT2 (output) DOUBLE PRECISION
- The eigenvalue of smaller absolute value.
-
- Further Details
- ===============
-
- RT1 is accurate to a few ulps barring over/underflow.
-
- RT2 may be inaccurate if there is massive cancellation in the
- determinant A*C-B*B; higher precision or correctly rounded or
- correctly truncated arithmetic would be needed to compute RT2
- accurately in all cases.
-
- Overflow is possible only if RT1 is within a factor of 5 of overflow.
- Underflow is harmless if the input data is 0 or exceeds
- underflow_threshold / macheps.
-
- =====================================================================
-
-
- Compute the eigenvalues
-*/
-
- sm = *a + *c__;
- df = *a - *c__;
- adf = abs(df);
- tb = *b + *b;
- ab = abs(tb);
- if (abs(*a) > abs(*c__)) {
- acmx = *a;
- acmn = *c__;
- } else {
- acmx = *c__;
- acmn = *a;
- }
- if (adf > ab) {
-/* Computing 2nd power */
- d__1 = ab / adf;
- rt = adf * sqrt(d__1 * d__1 + 1.);
- } else if (adf < ab) {
-/* Computing 2nd power */
- d__1 = adf / ab;
- rt = ab * sqrt(d__1 * d__1 + 1.);
- } else {
-
-/* Includes case AB=ADF=0 */
-
- rt = ab * sqrt(2.);
- }
- if (sm < 0.) {
- *rt1 = (sm - rt) * .5;
-
-/*
- Order of execution important.
- To get fully accurate smaller eigenvalue,
- next line needs to be executed in higher precision.
-*/
-
- *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
- } else if (sm > 0.) {
- *rt1 = (sm + rt) * .5;
-
-/*
- Order of execution important.
- To get fully accurate smaller eigenvalue,
- next line needs to be executed in higher precision.
-*/
-
- *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
- } else {
-
-/* Includes case RT1 = RT2 = 0 */
-
- *rt1 = rt * .5;
- *rt2 = rt * -.5;
- }
- return 0;
-
-/* End of DLAE2 */
-
-} /* dlae2_ */
-
-/* Subroutine */ int dlaed0_(integer *icompq, integer *qsiz, integer *n,
- doublereal *d__, doublereal *e, doublereal *q, integer *ldq,
- doublereal *qstore, integer *ldqs, doublereal *work, integer *iwork,
- integer *info)
-{
- /* System generated locals */
- integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
- doublereal d__1;
-
- /* Builtin functions */
- double log(doublereal);
- integer pow_ii(integer *, integer *);
-
- /* Local variables */
- static integer i__, j, k, iq, lgn, msd2, smm1, spm1, spm2;
- static doublereal temp;
- static integer curr;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- static integer iperm;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static integer indxq, iwrem;
- extern /* Subroutine */ int dlaed1_(integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *, integer *);
- static integer iqptr;
- extern /* Subroutine */ int dlaed7_(integer *, integer *, integer *,
- integer *, integer *, integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *, integer *, integer *, integer *, integer *, doublereal
- *, doublereal *, integer *, integer *);
- static integer tlvls;
- extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *);
- static integer igivcl;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer igivnm, submat, curprb, subpbs, igivpt;
- extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *);
- static integer curlvl, matsiz, iprmpt, smlsiz;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLAED0 computes all eigenvalues and corresponding eigenvectors of a
- symmetric tridiagonal matrix using the divide and conquer method.
-
- Arguments
- =========
-
- ICOMPQ (input) INTEGER
- = 0: Compute eigenvalues only.
- = 1: Compute eigenvectors of original dense symmetric matrix
- also. On entry, Q contains the orthogonal matrix used
- to reduce the original matrix to tridiagonal form.
- = 2: Compute eigenvalues and eigenvectors of tridiagonal
- matrix.
-
- QSIZ (input) INTEGER
- The dimension of the orthogonal matrix used to reduce
- the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the main diagonal of the tridiagonal matrix.
- On exit, its eigenvalues.
-
- E (input) DOUBLE PRECISION array, dimension (N-1)
- The off-diagonal elements of the tridiagonal matrix.
- On exit, E has been destroyed.
-
- Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
- On entry, Q must contain an N-by-N orthogonal matrix.
- If ICOMPQ = 0 Q is not referenced.
- If ICOMPQ = 1 On entry, Q is a subset of the columns of the
- orthogonal matrix used to reduce the full
- matrix to tridiagonal form corresponding to
- the subset of the full matrix which is being
- decomposed at this time.
- If ICOMPQ = 2 On entry, Q will be the identity matrix.
- On exit, Q contains the eigenvectors of the
- tridiagonal matrix.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. If eigenvectors are
- desired, then LDQ >= max(1,N). In any case, LDQ >= 1.
-
- QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N)
- Referenced only when ICOMPQ = 1. Used to store parts of
- the eigenvector matrix when the updating matrix multiplies
- take place.
-
- LDQS (input) INTEGER
- The leading dimension of the array QSTORE. If ICOMPQ = 1,
- then LDQS >= max(1,N). In any case, LDQS >= 1.
-
- WORK (workspace) DOUBLE PRECISION array,
- If ICOMPQ = 0 or 1, the dimension of WORK must be at least
- 1 + 3*N + 2*N*lg N + 2*N**2
- ( lg( N ) = smallest integer k
- such that 2^k >= N )
- If ICOMPQ = 2, the dimension of WORK must be at least
- 4*N + N**2.
-
- IWORK (workspace) INTEGER array,
- If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
- 6 + 6*N + 5*N*lg N.
- ( lg( N ) = smallest integer k
- such that 2^k >= N )
- If ICOMPQ = 2, the dimension of IWORK must be at least
- 3 + 5*N.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The algorithm failed to compute an eigenvalue while
- working on the submatrix lying in rows and columns
- INFO/(N+1) through mod(INFO,N+1).
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- qstore_dim1 = *ldqs;
- qstore_offset = 1 + qstore_dim1 * 1;
- qstore -= qstore_offset;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- if (*icompq < 0 || *icompq > 2) {
- *info = -1;
- } else if ((*icompq == 1 && *qsiz < max(0,*n))) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ldq < max(1,*n)) {
- *info = -7;
- } else if (*ldqs < max(1,*n)) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAED0", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- smlsiz = ilaenv_(&c__9, "DLAED0", " ", &c__0, &c__0, &c__0, &c__0, (
- ftnlen)6, (ftnlen)1);
-
-/*
- Determine the size and placement of the submatrices, and save in
- the leading elements of IWORK.
-*/
-
- iwork[1] = *n;
- subpbs = 1;
- tlvls = 0;
-L10:
- if (iwork[subpbs] > smlsiz) {
- for (j = subpbs; j >= 1; --j) {
- iwork[j * 2] = (iwork[j] + 1) / 2;
- iwork[((j) << (1)) - 1] = iwork[j] / 2;
-/* L20: */
- }
- ++tlvls;
- subpbs <<= 1;
- goto L10;
- }
- i__1 = subpbs;
- for (j = 2; j <= i__1; ++j) {
- iwork[j] += iwork[j - 1];
-/* L30: */
- }
-
-/*
- Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
- using rank-1 modifications (cuts).
-*/
-
- spm1 = subpbs - 1;
- i__1 = spm1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- submat = iwork[i__] + 1;
- smm1 = submat - 1;
- d__[smm1] -= (d__1 = e[smm1], abs(d__1));
- d__[submat] -= (d__1 = e[smm1], abs(d__1));
-/* L40: */
- }
-
- indxq = ((*n) << (2)) + 3;
- if (*icompq != 2) {
-
-/*
- Set up workspaces for eigenvalues only/accumulate new vectors
- routine
-*/
-
- temp = log((doublereal) (*n)) / log(2.);
- lgn = (integer) temp;
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- iprmpt = indxq + *n + 1;
- iperm = iprmpt + *n * lgn;
- iqptr = iperm + *n * lgn;
- igivpt = iqptr + *n + 2;
- igivcl = igivpt + *n * lgn;
-
- igivnm = 1;
- iq = igivnm + ((*n) << (1)) * lgn;
-/* Computing 2nd power */
- i__1 = *n;
- iwrem = iq + i__1 * i__1 + 1;
-
-/* Initialize pointers */
-
- i__1 = subpbs;
- for (i__ = 0; i__ <= i__1; ++i__) {
- iwork[iprmpt + i__] = 1;
- iwork[igivpt + i__] = 1;
-/* L50: */
- }
- iwork[iqptr] = 1;
- }
-
-/*
- Solve each submatrix eigenproblem at the bottom of the divide and
- conquer tree.
-*/
-
- curr = 0;
- i__1 = spm1;
- for (i__ = 0; i__ <= i__1; ++i__) {
- if (i__ == 0) {
- submat = 1;
- matsiz = iwork[1];
- } else {
- submat = iwork[i__] + 1;
- matsiz = iwork[i__ + 1] - iwork[i__];
- }
- if (*icompq == 2) {
- dsteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat +
- submat * q_dim1], ldq, &work[1], info);
- if (*info != 0) {
- goto L130;
- }
- } else {
- dsteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 +
- iwork[iqptr + curr]], &matsiz, &work[1], info);
- if (*info != 0) {
- goto L130;
- }
- if (*icompq == 1) {
- dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b15, &q[submat *
- q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]],
- &matsiz, &c_b29, &qstore[submat * qstore_dim1 + 1],
- ldqs);
- }
-/* Computing 2nd power */
- i__2 = matsiz;
- iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
- ++curr;
- }
- k = 1;
- i__2 = iwork[i__ + 1];
- for (j = submat; j <= i__2; ++j) {
- iwork[indxq + j] = k;
- ++k;
-/* L60: */
- }
-/* L70: */
- }
-
-/*
- Successively merge eigensystems of adjacent submatrices
- into eigensystem for the corresponding larger matrix.
-
- while ( SUBPBS > 1 )
-*/
-
- curlvl = 1;
-L80:
- if (subpbs > 1) {
- spm2 = subpbs - 2;
- i__1 = spm2;
- for (i__ = 0; i__ <= i__1; i__ += 2) {
- if (i__ == 0) {
- submat = 1;
- matsiz = iwork[2];
- msd2 = iwork[1];
- curprb = 0;
- } else {
- submat = iwork[i__] + 1;
- matsiz = iwork[i__ + 2] - iwork[i__];
- msd2 = matsiz / 2;
- ++curprb;
- }
-
-/*
- Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
- into an eigensystem of size MATSIZ.
- DLAED1 is used only for the full eigensystem of a tridiagonal
- matrix.
- DLAED7 handles the cases in which eigenvalues only or eigenvalues
- and eigenvectors of a full symmetric matrix (which was reduced to
- tridiagonal form) are desired.
-*/
-
- if (*icompq == 2) {
- dlaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1],
- ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &
- msd2, &work[1], &iwork[subpbs + 1], info);
- } else {
- dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
- submat], &qstore[submat * qstore_dim1 + 1], ldqs, &
- iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
- work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm]
- , &iwork[igivpt], &iwork[igivcl], &work[igivnm], &
- work[iwrem], &iwork[subpbs + 1], info);
- }
- if (*info != 0) {
- goto L130;
- }
- iwork[i__ / 2 + 1] = iwork[i__ + 2];
-/* L90: */
- }
- subpbs /= 2;
- ++curlvl;
- goto L80;
- }
-
-/*
- end while
-
- Re-merge the eigenvalues/vectors which were deflated at the final
- merge step.
-*/
-
- if (*icompq == 1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- j = iwork[indxq + i__];
- work[i__] = d__[j];
- dcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1
- + 1], &c__1);
-/* L100: */
- }
- dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
- } else if (*icompq == 2) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- j = iwork[indxq + i__];
- work[i__] = d__[j];
- dcopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);
-/* L110: */
- }
- dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
- dlacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- j = iwork[indxq + i__];
- work[i__] = d__[j];
-/* L120: */
- }
- dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
- }
- goto L140;
-
-L130:
- *info = submat * (*n + 1) + submat + matsiz - 1;
-
-L140:
- return 0;
-
-/* End of DLAED0 */
-
-} /* dlaed0_ */
-
-/* Subroutine */ int dlaed1_(integer *n, doublereal *d__, doublereal *q,
- integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt,
- doublereal *work, integer *iwork, integer *info)
-{
- /* System generated locals */
- integer q_dim1, q_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, k, n1, n2, is, iw, iz, iq2, zpp1, indx, indxc;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static integer indxp;
- extern /* Subroutine */ int dlaed2_(integer *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *, integer *, integer *, integer *), dlaed3_(integer *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, doublereal *, integer *);
- static integer idlmda;
- extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), xerbla_(char *, integer *);
- static integer coltyp;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLAED1 computes the updated eigensystem of a diagonal
- matrix after modification by a rank-one symmetric matrix. This
- routine is used only for the eigenproblem which requires all
- eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles
- the case in which eigenvalues only or eigenvalues and eigenvectors
- of a full symmetric matrix (which was reduced to tridiagonal form)
- are desired.
-
- T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
-
- where Z = Q'u, u is a vector of length N with ones in the
- CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
-
- The eigenvectors of the original matrix are stored in Q, and the
- eigenvalues are in D. The algorithm consists of three stages:
-
- The first stage consists of deflating the size of the problem
- when there are multiple eigenvalues or if there is a zero in
- the Z vector. For each such occurence the dimension of the
- secular equation problem is reduced by one. This stage is
- performed by the routine DLAED2.
-
- The second stage consists of calculating the updated
- eigenvalues. This is done by finding the roots of the secular
- equation via the routine DLAED4 (as called by DLAED3).
- This routine also calculates the eigenvectors of the current
- problem.
-
- The final stage consists of computing the updated eigenvectors
- directly using the updated eigenvalues. The eigenvectors for
- the current problem are multiplied with the eigenvectors from
- the overall problem.
-
- Arguments
- =========
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the eigenvalues of the rank-1-perturbed matrix.
- On exit, the eigenvalues of the repaired matrix.
-
- Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
- On entry, the eigenvectors of the rank-1-perturbed matrix.
- On exit, the eigenvectors of the repaired tridiagonal matrix.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max(1,N).
-
- INDXQ (input/output) INTEGER array, dimension (N)
- On entry, the permutation which separately sorts the two
- subproblems in D into ascending order.
- On exit, the permutation which will reintegrate the
- subproblems back into sorted order,
- i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
-
- RHO (input) DOUBLE PRECISION
- The subdiagonal entry used to create the rank-1 modification.
-
- CUTPNT (input) INTEGER
- The location of the last eigenvalue in the leading sub-matrix.
- min(1,N) <= CUTPNT <= N/2.
-
- WORK (workspace) DOUBLE PRECISION array, dimension (4*N + N**2)
-
- IWORK (workspace) INTEGER array, dimension (4*N)
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an eigenvalue did not converge
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
- Modified by Francoise Tisseur, University of Tennessee.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --indxq;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- if (*n < 0) {
- *info = -1;
- } else if (*ldq < max(1,*n)) {
- *info = -4;
- } else /* if(complicated condition) */ {
-/* Computing MIN */
- i__1 = 1, i__2 = *n / 2;
- if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) {
- *info = -7;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAED1", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
-/*
- The following values are integer pointers which indicate
- the portion of the workspace
- used by a particular array in DLAED2 and DLAED3.
-*/
-
- iz = 1;
- idlmda = iz + *n;
- iw = idlmda + *n;
- iq2 = iw + *n;
-
- indx = 1;
- indxc = indx + *n;
- coltyp = indxc + *n;
- indxp = coltyp + *n;
-
-
-/*
- Form the z-vector which consists of the last row of Q_1 and the
- first row of Q_2.
-*/
-
- dcopy_(cutpnt, &q[*cutpnt + q_dim1], ldq, &work[iz], &c__1);
- zpp1 = *cutpnt + 1;
- i__1 = *n - *cutpnt;
- dcopy_(&i__1, &q[zpp1 + zpp1 * q_dim1], ldq, &work[iz + *cutpnt], &c__1);
-
-/* Deflate eigenvalues. */
-
- dlaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[
- iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[
- indxc], &iwork[indxp], &iwork[coltyp], info);
-
- if (*info != 0) {
- goto L20;
- }
-
-/* Solve Secular Equation. */
-
- if (k != 0) {
- is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp +
- 1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2;
- dlaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda],
- &work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[
- is], info);
- if (*info != 0) {
- goto L20;
- }
-
-/* Prepare the INDXQ sorting permutation. */
-
- n1 = k;
- n2 = *n - k;
- dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- indxq[i__] = i__;
-/* L10: */
- }
- }
-
-L20:
- return 0;
-
-/* End of DLAED1 */
-
-} /* dlaed1_ */
-
-/* Subroutine */ int dlaed2_(integer *k, integer *n, integer *n1, doublereal *
- d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho,
- doublereal *z__, doublereal *dlamda, doublereal *w, doublereal *q2,
- integer *indx, integer *indxc, integer *indxp, integer *coltyp,
- integer *info)
-{
- /* System generated locals */
- integer q_dim1, q_offset, i__1, i__2;
- doublereal d__1, d__2, d__3, d__4;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal c__;
- static integer i__, j;
- static doublereal s, t;
- static integer k2, n2, ct, nj, pj, js, iq1, iq2, n1p1;
- static doublereal eps, tau, tol;
- static integer psm[4], imax, jmax;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- static integer ctot[4];
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *), dcopy_(integer *, doublereal *, integer *, doublereal
- *, integer *);
-
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), dlacpy_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DLAED2 merges the two sets of eigenvalues together into a single
- sorted set. Then it tries to deflate the size of the problem.
- There are two ways in which deflation can occur: when two or more
- eigenvalues are close together or if there is a tiny entry in the
- Z vector. For each such occurrence the order of the related secular
- equation problem is reduced by one.
-
- Arguments
- =========
-
- K (output) INTEGER
- The number of non-deflated eigenvalues, and the order of the
- related secular equation. 0 <= K <=N.
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- N1 (input) INTEGER
- The location of the last eigenvalue in the leading sub-matrix.
- min(1,N) <= N1 <= N/2.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, D contains the eigenvalues of the two submatrices to
- be combined.
- On exit, D contains the trailing (N-K) updated eigenvalues
- (those which were deflated) sorted into increasing order.
-
- Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
- On entry, Q contains the eigenvectors of two submatrices in
- the two square blocks with corners at (1,1), (N1,N1)
- and (N1+1, N1+1), (N,N).
- On exit, Q contains the trailing (N-K) updated eigenvectors
- (those which were deflated) in its last N-K columns.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max(1,N).
-
- INDXQ (input/output) INTEGER array, dimension (N)
- The permutation which separately sorts the two sub-problems
- in D into ascending order. Note that elements in the second
- half of this permutation must first have N1 added to their
- values. Destroyed on exit.
-
- RHO (input/output) DOUBLE PRECISION
- On entry, the off-diagonal element associated with the rank-1
- cut which originally split the two submatrices which are now
- being recombined.
- On exit, RHO has been modified to the value required by
- DLAED3.
-
- Z (input) DOUBLE PRECISION array, dimension (N)
- On entry, Z contains the updating vector (the last
- row of the first sub-eigenvector matrix and the first row of
- the second sub-eigenvector matrix).
- On exit, the contents of Z have been destroyed by the updating
- process.
-
- DLAMDA (output) DOUBLE PRECISION array, dimension (N)
- A copy of the first K eigenvalues which will be used by
- DLAED3 to form the secular equation.
-
- W (output) DOUBLE PRECISION array, dimension (N)
- The first k values of the final deflation-altered z-vector
- which will be passed to DLAED3.
-
- Q2 (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
- A copy of the first K eigenvectors which will be used by
- DLAED3 in a matrix multiply (DGEMM) to solve for the new
- eigenvectors.
-
- INDX (workspace) INTEGER array, dimension (N)
- The permutation used to sort the contents of DLAMDA into
- ascending order.
-
- INDXC (output) INTEGER array, dimension (N)
- The permutation used to arrange the columns of the deflated
- Q matrix into three groups: the first group contains non-zero
- elements only at and above N1, the second contains
- non-zero elements only below N1, and the third is dense.
-
- INDXP (workspace) INTEGER array, dimension (N)
- The permutation used to place deflated values of D at the end
- of the array. INDXP(1:K) points to the nondeflated D-values
- and INDXP(K+1:N) points to the deflated eigenvalues.
-
- COLTYP (workspace/output) INTEGER array, dimension (N)
- During execution, a label which will indicate which of the
- following types a column in the Q2 matrix is:
- 1 : non-zero in the upper half only;
- 2 : dense;
- 3 : non-zero in the lower half only;
- 4 : deflated.
- On exit, COLTYP(i) is the number of columns of type i,
- for i=1 to 4 only.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
- Modified by Francoise Tisseur, University of Tennessee.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --indxq;
- --z__;
- --dlamda;
- --w;
- --q2;
- --indx;
- --indxc;
- --indxp;
- --coltyp;
-
- /* Function Body */
- *info = 0;
-
- if (*n < 0) {
- *info = -2;
- } else if (*ldq < max(1,*n)) {
- *info = -6;
- } else /* if(complicated condition) */ {
-/* Computing MIN */
- i__1 = 1, i__2 = *n / 2;
- if (min(i__1,i__2) > *n1 || *n / 2 < *n1) {
- *info = -3;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAED2", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- n2 = *n - *n1;
- n1p1 = *n1 + 1;
-
- if (*rho < 0.) {
- dscal_(&n2, &c_b151, &z__[n1p1], &c__1);
- }
-
-/*
- Normalize z so that norm(z) = 1. Since z is the concatenation of
- two normalized vectors, norm2(z) = sqrt(2).
-*/
-
- t = 1. / sqrt(2.);
- dscal_(n, &t, &z__[1], &c__1);
-
-/* RHO = ABS( norm(z)**2 * RHO ) */
-
- *rho = (d__1 = *rho * 2., abs(d__1));
-
-/* Sort the eigenvalues into increasing order */
-
- i__1 = *n;
- for (i__ = n1p1; i__ <= i__1; ++i__) {
- indxq[i__] += *n1;
-/* L10: */
- }
-
-/* re-integrate the deflated parts from the last pass */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlamda[i__] = d__[indxq[i__]];
-/* L20: */
- }
- dlamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]);
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- indx[i__] = indxq[indxc[i__]];
-/* L30: */
- }
-
-/* Calculate the allowable deflation tolerance */
-
- imax = idamax_(n, &z__[1], &c__1);
- jmax = idamax_(n, &d__[1], &c__1);
- eps = EPSILON;
-/* Computing MAX */
- d__3 = (d__1 = d__[jmax], abs(d__1)), d__4 = (d__2 = z__[imax], abs(d__2))
- ;
- tol = eps * 8. * max(d__3,d__4);
-
-/*
- If the rank-1 modifier is small enough, no more needs to be done
- except to reorganize Q so that its columns correspond with the
- elements in D.
-*/
-
- if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
- *k = 0;
- iq2 = 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__ = indx[j];
- dcopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
- dlamda[j] = d__[i__];
- iq2 += *n;
-/* L40: */
- }
- dlacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);
- dcopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);
- goto L190;
- }
-
-/*
- If there are multiple eigenvalues then the problem deflates. Here
- the number of equal eigenvalues are found. As each equal
- eigenvalue is found, an elementary reflector is computed to rotate
- the corresponding eigensubspace so that the corresponding
- components of Z are zero in this new basis.
-*/
-
- i__1 = *n1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- coltyp[i__] = 1;
-/* L50: */
- }
- i__1 = *n;
- for (i__ = n1p1; i__ <= i__1; ++i__) {
- coltyp[i__] = 3;
-/* L60: */
- }
-
-
- *k = 0;
- k2 = *n + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- nj = indx[j];
- if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
-
-/* Deflate due to small z component. */
-
- --k2;
- coltyp[nj] = 4;
- indxp[k2] = nj;
- if (j == *n) {
- goto L100;
- }
- } else {
- pj = nj;
- goto L80;
- }
-/* L70: */
- }
-L80:
- ++j;
- nj = indx[j];
- if (j > *n) {
- goto L100;
- }
- if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
-
-/* Deflate due to small z component. */
-
- --k2;
- coltyp[nj] = 4;
- indxp[k2] = nj;
- } else {
-
-/* Check if eigenvalues are close enough to allow deflation. */
-
- s = z__[pj];
- c__ = z__[nj];
-
-/*
- Find sqrt(a**2+b**2) without overflow or
- destructive underflow.
-*/
-
- tau = dlapy2_(&c__, &s);
- t = d__[nj] - d__[pj];
- c__ /= tau;
- s = -s / tau;
- if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {
-
-/* Deflation is possible. */
-
- z__[nj] = tau;
- z__[pj] = 0.;
- if (coltyp[nj] != coltyp[pj]) {
- coltyp[nj] = 2;
- }
- coltyp[pj] = 4;
- drot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, &
- c__, &s);
-/* Computing 2nd power */
- d__1 = c__;
-/* Computing 2nd power */
- d__2 = s;
- t = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
-/* Computing 2nd power */
- d__1 = s;
-/* Computing 2nd power */
- d__2 = c__;
- d__[nj] = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
- d__[pj] = t;
- --k2;
- i__ = 1;
-L90:
- if (k2 + i__ <= *n) {
- if (d__[pj] < d__[indxp[k2 + i__]]) {
- indxp[k2 + i__ - 1] = indxp[k2 + i__];
- indxp[k2 + i__] = pj;
- ++i__;
- goto L90;
- } else {
- indxp[k2 + i__ - 1] = pj;
- }
- } else {
- indxp[k2 + i__ - 1] = pj;
- }
- pj = nj;
- } else {
- ++(*k);
- dlamda[*k] = d__[pj];
- w[*k] = z__[pj];
- indxp[*k] = pj;
- pj = nj;
- }
- }
- goto L80;
-L100:
-
-/* Record the last eigenvalue. */
-
- ++(*k);
- dlamda[*k] = d__[pj];
- w[*k] = z__[pj];
- indxp[*k] = pj;
-
-/*
- Count up the total number of the various types of columns, then
- form a permutation which positions the four column types into
- four uniform groups (although one or more of these groups may be
- empty).
-*/
-
- for (j = 1; j <= 4; ++j) {
- ctot[j - 1] = 0;
-/* L110: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- ct = coltyp[j];
- ++ctot[ct - 1];
-/* L120: */
- }
-
-/* PSM(*) = Position in SubMatrix (of types 1 through 4) */
-
- psm[0] = 1;
- psm[1] = ctot[0] + 1;
- psm[2] = psm[1] + ctot[1];
- psm[3] = psm[2] + ctot[2];
- *k = *n - ctot[3];
-
-/*
- Fill out the INDXC array so that the permutation which it induces
- will place all type-1 columns first, all type-2 columns next,
- then all type-3's, and finally all type-4's.
-*/
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- js = indxp[j];
- ct = coltyp[js];
- indx[psm[ct - 1]] = js;
- indxc[psm[ct - 1]] = j;
- ++psm[ct - 1];
-/* L130: */
- }
-
-/*
- Sort the eigenvalues and corresponding eigenvectors into DLAMDA
- and Q2 respectively. The eigenvalues/vectors which were not
- deflated go into the first K slots of DLAMDA and Q2 respectively,
- while those which were deflated go into the last N - K slots.
-*/
-
- i__ = 1;
- iq1 = 1;
- iq2 = (ctot[0] + ctot[1]) * *n1 + 1;
- i__1 = ctot[0];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
- z__[i__] = d__[js];
- ++i__;
- iq1 += *n1;
-/* L140: */
- }
-
- i__1 = ctot[1];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
- dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
- z__[i__] = d__[js];
- ++i__;
- iq1 += *n1;
- iq2 += n2;
-/* L150: */
- }
-
- i__1 = ctot[2];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
- z__[i__] = d__[js];
- ++i__;
- iq2 += n2;
-/* L160: */
- }
-
- iq1 = iq2;
- i__1 = ctot[3];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- dcopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
- iq2 += *n;
- z__[i__] = d__[js];
- ++i__;
-/* L170: */
- }
-
-/*
- The deflated eigenvalues and their corresponding vectors go back
- into the last N - K slots of D and Q respectively.
-*/
-
- dlacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq);
- i__1 = *n - *k;
- dcopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);
-
-/* Copy CTOT into COLTYP for referencing in DLAED3. */
-
- for (j = 1; j <= 4; ++j) {
- coltyp[j] = ctot[j - 1];
-/* L180: */
- }
-
-L190:
- return 0;
-
-/* End of DLAED2 */
-
-} /* dlaed2_ */
-
-/* Subroutine */ int dlaed3_(integer *k, integer *n, integer *n1, doublereal *
- d__, doublereal *q, integer *ldq, doublereal *rho, doublereal *dlamda,
- doublereal *q2, integer *indx, integer *ctot, doublereal *w,
- doublereal *s, integer *info)
-{
- /* System generated locals */
- integer q_dim1, q_offset, i__1, i__2;
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static integer i__, j, n2, n12, ii, n23, iq2;
- static doublereal temp;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *),
- dcopy_(integer *, doublereal *, integer *, doublereal *, integer
- *), dlaed4_(integer *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *);
- extern doublereal dlamc3_(doublereal *, doublereal *);
- extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *), xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLAED3 finds the roots of the secular equation, as defined by the
- values in D, W, and RHO, between 1 and K. It makes the
- appropriate calls to DLAED4 and then updates the eigenvectors by
- multiplying the matrix of eigenvectors of the pair of eigensystems
- being combined by the matrix of eigenvectors of the K-by-K system
- which is solved here.
-
- This code makes very mild assumptions about floating point
- arithmetic. It will work on machines with a guard digit in
- add/subtract, or on those binary machines without guard digits
- which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
- It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none.
-
- Arguments
- =========
-
- K (input) INTEGER
- The number of terms in the rational function to be solved by
- DLAED4. K >= 0.
-
- N (input) INTEGER
- The number of rows and columns in the Q matrix.
- N >= K (deflation may result in N>K).
-
- N1 (input) INTEGER
- The location of the last eigenvalue in the leading submatrix.
- min(1,N) <= N1 <= N/2.
-
- D (output) DOUBLE PRECISION array, dimension (N)
- D(I) contains the updated eigenvalues for
- 1 <= I <= K.
-
- Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
- Initially the first K columns are used as workspace.
- On output the columns 1 to K contain
- the updated eigenvectors.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max(1,N).
-
- RHO (input) DOUBLE PRECISION
- The value of the parameter in the rank one update equation.
- RHO >= 0 required.
-
- DLAMDA (input/output) DOUBLE PRECISION array, dimension (K)
- The first K elements of this array contain the old roots
- of the deflated updating problem. These are the poles
- of the secular equation. May be changed on output by
- having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
- Cray-2, or Cray C-90, as described above.
-
- Q2 (input) DOUBLE PRECISION array, dimension (LDQ2, N)
- The first K columns of this matrix contain the non-deflated
- eigenvectors for the split problem.
-
- INDX (input) INTEGER array, dimension (N)
- The permutation used to arrange the columns of the deflated
- Q matrix into three groups (see DLAED2).
- The rows of the eigenvectors found by DLAED4 must be likewise
- permuted before the matrix multiply can take place.
-
- CTOT (input) INTEGER array, dimension (4)
- A count of the total number of the various types of columns
- in Q, as described in INDX. The fourth column type is any
- column which has been deflated.
-
- W (input/output) DOUBLE PRECISION array, dimension (K)
- The first K elements of this array contain the components
- of the deflation-adjusted updating vector. Destroyed on
- output.
-
- S (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K
- Will contain the eigenvectors of the repaired matrix which
- will be multiplied by the previously accumulated eigenvectors
- to update the system.
-
- LDS (input) INTEGER
- The leading dimension of S. LDS >= max(1,K).
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an eigenvalue did not converge
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
- Modified by Francoise Tisseur, University of Tennessee.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --dlamda;
- --q2;
- --indx;
- --ctot;
- --w;
- --s;
-
- /* Function Body */
- *info = 0;
-
- if (*k < 0) {
- *info = -1;
- } else if (*n < *k) {
- *info = -2;
- } else if (*ldq < max(1,*n)) {
- *info = -6;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAED3", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*k == 0) {
- return 0;
- }
-
-/*
- Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
- be computed with high relative accuracy (barring over/underflow).
- This is a problem on machines without a guard digit in
- add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
- The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
- which on any of these machines zeros out the bottommost
- bit of DLAMDA(I) if it is 1; this makes the subsequent
- subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
- occurs. On binary machines with a guard digit (almost all
- machines) it does not change DLAMDA(I) at all. On hexadecimal
- and decimal machines with a guard digit, it slightly
- changes the bottommost bits of DLAMDA(I). It does not account
- for hexadecimal or decimal machines without guard digits
- (we know of none). We use a subroutine call to compute
- 2*DLAMBDA(I) to prevent optimizing compilers from eliminating
- this code.
-*/
-
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlamda[i__] = dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
-/* L10: */
- }
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j],
- info);
-
-/* If the zero finder fails, the computation is terminated. */
-
- if (*info != 0) {
- goto L120;
- }
-/* L20: */
- }
-
- if (*k == 1) {
- goto L110;
- }
- if (*k == 2) {
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- w[1] = q[j * q_dim1 + 1];
- w[2] = q[j * q_dim1 + 2];
- ii = indx[1];
- q[j * q_dim1 + 1] = w[ii];
- ii = indx[2];
- q[j * q_dim1 + 2] = w[ii];
-/* L30: */
- }
- goto L110;
- }
-
-/* Compute updated W. */
-
- dcopy_(k, &w[1], &c__1, &s[1], &c__1);
-
-/* Initialize W(I) = Q(I,I) */
-
- i__1 = *ldq + 1;
- dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
-/* L40: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
-/* L50: */
- }
-/* L60: */
- }
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__1 = sqrt(-w[i__]);
- w[i__] = d_sign(&d__1, &s[i__]);
-/* L70: */
- }
-
-/* Compute eigenvectors of the modified rank-1 modification. */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- s[i__] = w[i__] / q[i__ + j * q_dim1];
-/* L80: */
- }
- temp = dnrm2_(k, &s[1], &c__1);
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- ii = indx[i__];
- q[i__ + j * q_dim1] = s[ii] / temp;
-/* L90: */
- }
-/* L100: */
- }
-
-/* Compute the updated eigenvectors. */
-
-L110:
-
- n2 = *n - *n1;
- n12 = ctot[1] + ctot[2];
- n23 = ctot[2] + ctot[3];
-
- dlacpy_("A", &n23, k, &q[ctot[1] + 1 + q_dim1], ldq, &s[1], &n23);
- iq2 = *n1 * n12 + 1;
- if (n23 != 0) {
- dgemm_("N", "N", &n2, k, &n23, &c_b15, &q2[iq2], &n2, &s[1], &n23, &
- c_b29, &q[*n1 + 1 + q_dim1], ldq);
- } else {
- dlaset_("A", &n2, k, &c_b29, &c_b29, &q[*n1 + 1 + q_dim1], ldq);
- }
-
- dlacpy_("A", &n12, k, &q[q_offset], ldq, &s[1], &n12);
- if (n12 != 0) {
- dgemm_("N", "N", n1, k, &n12, &c_b15, &q2[1], n1, &s[1], &n12, &c_b29,
- &q[q_offset], ldq);
- } else {
- dlaset_("A", n1, k, &c_b29, &c_b29, &q[q_dim1 + 1], ldq);
- }
-
-
-L120:
- return 0;
-
-/* End of DLAED3 */
-
-} /* dlaed3_ */
-
-/* Subroutine */ int dlaed4_(integer *n, integer *i__, doublereal *d__,
- doublereal *z__, doublereal *delta, doublereal *rho, doublereal *dlam,
- integer *info)
-{
- /* System generated locals */
- integer i__1;
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal a, b, c__;
- static integer j;
- static doublereal w;
- static integer ii;
- static doublereal dw, zz[3];
- static integer ip1;
- static doublereal del, eta, phi, eps, tau, psi;
- static integer iim1, iip1;
- static doublereal dphi, dpsi;
- static integer iter;
- static doublereal temp, prew, temp1, dltlb, dltub, midpt;
- static integer niter;
- static logical swtch;
- extern /* Subroutine */ int dlaed5_(integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *), dlaed6_(integer *,
- logical *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *);
- static logical swtch3;
-
- static logical orgati;
- static doublereal erretm, rhoinv;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- December 23, 1999
-
-
- Purpose
- =======
-
- This subroutine computes the I-th updated eigenvalue of a symmetric
- rank-one modification to a diagonal matrix whose elements are
- given in the array d, and that
-
- D(i) < D(j) for i < j
-
- and that RHO > 0. This is arranged by the calling routine, and is
- no loss in generality. The rank-one modified system is thus
-
- diag( D ) + RHO * Z * Z_transpose.
-
- where we assume the Euclidean norm of Z is 1.
-
- The method consists of approximating the rational functions in the
- secular equation by simpler interpolating rational functions.
-
- Arguments
- =========
-
- N (input) INTEGER
- The length of all arrays.
-
- I (input) INTEGER
- The index of the eigenvalue to be computed. 1 <= I <= N.
-
- D (input) DOUBLE PRECISION array, dimension (N)
- The original eigenvalues. It is assumed that they are in
- order, D(I) < D(J) for I < J.
-
- Z (input) DOUBLE PRECISION array, dimension (N)
- The components of the updating vector.
-
- DELTA (output) DOUBLE PRECISION array, dimension (N)
- If N .ne. 1, DELTA contains (D(j) - lambda_I) in its j-th
- component. If N = 1, then DELTA(1) = 1. The vector DELTA
- contains the information necessary to construct the
- eigenvectors.
-
- RHO (input) DOUBLE PRECISION
- The scalar in the symmetric updating formula.
-
- DLAM (output) DOUBLE PRECISION
- The computed lambda_I, the I-th updated eigenvalue.
-
- INFO (output) INTEGER
- = 0: successful exit
- > 0: if INFO = 1, the updating process failed.
-
- Internal Parameters
- ===================
-
- Logical variable ORGATI (origin-at-i?) is used for distinguishing
- whether D(i) or D(i+1) is treated as the origin.
-
- ORGATI = .true. origin at i
- ORGATI = .false. origin at i+1
-
- Logical variable SWTCH3 (switch-for-3-poles?) is for noting
- if we are working with THREE poles!
-
- MAXIT is the maximum number of iterations allowed for each
- eigenvalue.
-
- Further Details
- ===============
-
- Based on contributions by
- Ren-Cang Li, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-
-
- Since this routine is called in an inner loop, we do no argument
- checking.
-
- Quick return for N=1 and 2.
-*/
-
- /* Parameter adjustments */
- --delta;
- --z__;
- --d__;
-
- /* Function Body */
- *info = 0;
- if (*n == 1) {
-
-/* Presumably, I=1 upon entry */
-
- *dlam = d__[1] + *rho * z__[1] * z__[1];
- delta[1] = 1.;
- return 0;
- }
- if (*n == 2) {
- dlaed5_(i__, &d__[1], &z__[1], &delta[1], rho, dlam);
- return 0;
- }
-
-/* Compute machine epsilon */
-
- eps = EPSILON;
- rhoinv = 1. / *rho;
-
-/* The case I = N */
-
- if (*i__ == *n) {
-
-/* Initialize some basic variables */
-
- ii = *n - 1;
- niter = 1;
-
-/* Calculate initial guess */
-
- midpt = *rho / 2.;
-
-/*
- If ||Z||_2 is not one, then TEMP should be set to
- RHO * ||Z||_2^2 / TWO
-*/
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] = d__[j] - d__[*i__] - midpt;
-/* L10: */
- }
-
- psi = 0.;
- i__1 = *n - 2;
- for (j = 1; j <= i__1; ++j) {
- psi += z__[j] * z__[j] / delta[j];
-/* L20: */
- }
-
- c__ = rhoinv + psi;
- w = c__ + z__[ii] * z__[ii] / delta[ii] + z__[*n] * z__[*n] / delta[*
- n];
-
- if (w <= 0.) {
- temp = z__[*n - 1] * z__[*n - 1] / (d__[*n] - d__[*n - 1] + *rho)
- + z__[*n] * z__[*n] / *rho;
- if (c__ <= temp) {
- tau = *rho;
- } else {
- del = d__[*n] - d__[*n - 1];
- a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n]
- ;
- b = z__[*n] * z__[*n] * del;
- if (a < 0.) {
- tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
- } else {
- tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
- }
- }
-
-/*
- It can be proved that
- D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO
-*/
-
- dltlb = midpt;
- dltub = *rho;
- } else {
- del = d__[*n] - d__[*n - 1];
- a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
- b = z__[*n] * z__[*n] * del;
- if (a < 0.) {
- tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
- } else {
- tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
- }
-
-/*
- It can be proved that
- D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2
-*/
-
- dltlb = 0.;
- dltub = midpt;
- }
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] = d__[j] - d__[*i__] - tau;
-/* L30: */
- }
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = ii;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / delta[j];
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L40: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- temp = z__[*n] / delta[*n];
- phi = z__[*n] * temp;
- dphi = temp * temp;
- erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
- + dphi);
-
- w = rhoinv + phi + psi;
-
-/* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- *dlam = d__[*i__] + tau;
- goto L250;
- }
-
- if (w <= 0.) {
- dltlb = max(dltlb,tau);
- } else {
- dltub = min(dltub,tau);
- }
-
-/* Calculate the new step */
-
- ++niter;
- c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
- a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * (
- dpsi + dphi);
- b = delta[*n - 1] * delta[*n] * w;
- if (c__ < 0.) {
- c__ = abs(c__);
- }
- if (c__ == 0.) {
-/*
- ETA = B/A
- ETA = RHO - TAU
-*/
- eta = dltub - tau;
- } else if (a >= 0.) {
- eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__
- * 2.);
- } else {
- eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
- );
- }
-
-/*
- Note, eta should be positive if w is negative, and
- eta should be negative otherwise. However,
- if for some reason caused by roundoff, eta*w > 0,
- we simply use one Newton step instead. This way
- will guarantee eta*w < 0.
-*/
-
- if (w * eta > 0.) {
- eta = -w / (dpsi + dphi);
- }
- temp = tau + eta;
- if (temp > dltub || temp < dltlb) {
- if (w < 0.) {
- eta = (dltub - tau) / 2.;
- } else {
- eta = (dltlb - tau) / 2.;
- }
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] -= eta;
-/* L50: */
- }
-
- tau += eta;
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = ii;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / delta[j];
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L60: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- temp = z__[*n] / delta[*n];
- phi = z__[*n] * temp;
- dphi = temp * temp;
- erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
- + dphi);
-
- w = rhoinv + phi + psi;
-
-/* Main loop to update the values of the array DELTA */
-
- iter = niter + 1;
-
- for (niter = iter; niter <= MAXITERLOOPS; ++niter) {
-
-/* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- *dlam = d__[*i__] + tau;
- goto L250;
- }
-
- if (w <= 0.) {
- dltlb = max(dltlb,tau);
- } else {
- dltub = min(dltub,tau);
- }
-
-/* Calculate the new step */
-
- c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
- a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] *
- (dpsi + dphi);
- b = delta[*n - 1] * delta[*n] * w;
- if (a >= 0.) {
- eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
- c__ * 2.);
- } else {
- eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
- d__1))));
- }
-
-/*
- Note, eta should be positive if w is negative, and
- eta should be negative otherwise. However,
- if for some reason caused by roundoff, eta*w > 0,
- we simply use one Newton step instead. This way
- will guarantee eta*w < 0.
-*/
-
- if (w * eta > 0.) {
- eta = -w / (dpsi + dphi);
- }
- temp = tau + eta;
- if (temp > dltub || temp < dltlb) {
- if (w < 0.) {
- eta = (dltub - tau) / 2.;
- } else {
- eta = (dltlb - tau) / 2.;
- }
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] -= eta;
-/* L70: */
- }
-
- tau += eta;
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = ii;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / delta[j];
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L80: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- temp = z__[*n] / delta[*n];
- phi = z__[*n] * temp;
- dphi = temp * temp;
- erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (
- dpsi + dphi);
-
- w = rhoinv + phi + psi;
-/* L90: */
- }
-
-/* Return with INFO = 1, NITER = MAXIT and not converged */
-
- *info = 1;
- *dlam = d__[*i__] + tau;
- goto L250;
-
-/* End for the case I = N */
-
- } else {
-
-/* The case for I < N */
-
- niter = 1;
- ip1 = *i__ + 1;
-
-/* Calculate initial guess */
-
- del = d__[ip1] - d__[*i__];
- midpt = del / 2.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] = d__[j] - d__[*i__] - midpt;
-/* L100: */
- }
-
- psi = 0.;
- i__1 = *i__ - 1;
- for (j = 1; j <= i__1; ++j) {
- psi += z__[j] * z__[j] / delta[j];
-/* L110: */
- }
-
- phi = 0.;
- i__1 = *i__ + 2;
- for (j = *n; j >= i__1; --j) {
- phi += z__[j] * z__[j] / delta[j];
-/* L120: */
- }
- c__ = rhoinv + psi + phi;
- w = c__ + z__[*i__] * z__[*i__] / delta[*i__] + z__[ip1] * z__[ip1] /
- delta[ip1];
-
- if (w > 0.) {
-
-/*
- d(i)< the ith eigenvalue < (d(i)+d(i+1))/2
-
- We choose d(i) as origin.
-*/
-
- orgati = TRUE_;
- a = c__ * del + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
- b = z__[*i__] * z__[*i__] * del;
- if (a > 0.) {
- tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
- d__1))));
- } else {
- tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
- c__ * 2.);
- }
- dltlb = 0.;
- dltub = midpt;
- } else {
-
-/*
- (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1)
-
- We choose d(i+1) as origin.
-*/
-
- orgati = FALSE_;
- a = c__ * del - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
- b = z__[ip1] * z__[ip1] * del;
- if (a < 0.) {
- tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
- d__1))));
- } else {
- tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) /
- (c__ * 2.);
- }
- dltlb = -midpt;
- dltub = 0.;
- }
-
- if (orgati) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] = d__[j] - d__[*i__] - tau;
-/* L130: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] = d__[j] - d__[ip1] - tau;
-/* L140: */
- }
- }
- if (orgati) {
- ii = *i__;
- } else {
- ii = *i__ + 1;
- }
- iim1 = ii - 1;
- iip1 = ii + 1;
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = iim1;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / delta[j];
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L150: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- dphi = 0.;
- phi = 0.;
- i__1 = iip1;
- for (j = *n; j >= i__1; --j) {
- temp = z__[j] / delta[j];
- phi += z__[j] * temp;
- dphi += temp * temp;
- erretm += phi;
-/* L160: */
- }
-
- w = rhoinv + phi + psi;
-
-/*
- W is the value of the secular function with
- its ii-th element removed.
-*/
-
- swtch3 = FALSE_;
- if (orgati) {
- if (w < 0.) {
- swtch3 = TRUE_;
- }
- } else {
- if (w > 0.) {
- swtch3 = TRUE_;
- }
- }
- if (ii == 1 || ii == *n) {
- swtch3 = FALSE_;
- }
-
- temp = z__[ii] / delta[ii];
- dw = dpsi + dphi + temp * temp;
- temp = z__[ii] * temp;
- w += temp;
- erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. +
- abs(tau) * dw;
-
-/* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- if (orgati) {
- *dlam = d__[*i__] + tau;
- } else {
- *dlam = d__[ip1] + tau;
- }
- goto L250;
- }
-
- if (w <= 0.) {
- dltlb = max(dltlb,tau);
- } else {
- dltub = min(dltub,tau);
- }
-
-/* Calculate the new step */
-
- ++niter;
- if (! swtch3) {
- if (orgati) {
-/* Computing 2nd power */
- d__1 = z__[*i__] / delta[*i__];
- c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (d__1 *
- d__1);
- } else {
-/* Computing 2nd power */
- d__1 = z__[ip1] / delta[ip1];
- c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * (d__1 *
- d__1);
- }
- a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] *
- dw;
- b = delta[*i__] * delta[ip1] * w;
- if (c__ == 0.) {
- if (a == 0.) {
- if (orgati) {
- a = z__[*i__] * z__[*i__] + delta[ip1] * delta[ip1] *
- (dpsi + dphi);
- } else {
- a = z__[ip1] * z__[ip1] + delta[*i__] * delta[*i__] *
- (dpsi + dphi);
- }
- }
- eta = b / a;
- } else if (a <= 0.) {
- eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
- c__ * 2.);
- } else {
- eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
- d__1))));
- }
- } else {
-
-/* Interpolation using THREE most relevant poles */
-
- temp = rhoinv + psi + phi;
- if (orgati) {
- temp1 = z__[iim1] / delta[iim1];
- temp1 *= temp1;
- c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] - d__[
- iip1]) * temp1;
- zz[0] = z__[iim1] * z__[iim1];
- zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + dphi);
- } else {
- temp1 = z__[iip1] / delta[iip1];
- temp1 *= temp1;
- c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] - d__[
- iim1]) * temp1;
- zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - temp1));
- zz[2] = z__[iip1] * z__[iip1];
- }
- zz[1] = z__[ii] * z__[ii];
- dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, info);
- if (*info != 0) {
- goto L250;
- }
- }
-
-/*
- Note, eta should be positive if w is negative, and
- eta should be negative otherwise. However,
- if for some reason caused by roundoff, eta*w > 0,
- we simply use one Newton step instead. This way
- will guarantee eta*w < 0.
-*/
-
- if (w * eta >= 0.) {
- eta = -w / dw;
- }
- temp = tau + eta;
- if (temp > dltub || temp < dltlb) {
- if (w < 0.) {
- eta = (dltub - tau) / 2.;
- } else {
- eta = (dltlb - tau) / 2.;
- }
- }
-
- prew = w;
-
-/* L170: */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] -= eta;
-/* L180: */
- }
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = iim1;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / delta[j];
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L190: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- dphi = 0.;
- phi = 0.;
- i__1 = iip1;
- for (j = *n; j >= i__1; --j) {
- temp = z__[j] / delta[j];
- phi += z__[j] * temp;
- dphi += temp * temp;
- erretm += phi;
-/* L200: */
- }
-
- temp = z__[ii] / delta[ii];
- dw = dpsi + dphi + temp * temp;
- temp = z__[ii] * temp;
- w = rhoinv + phi + psi + temp;
- erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + (
- d__1 = tau + eta, abs(d__1)) * dw;
-
- swtch = FALSE_;
- if (orgati) {
- if (-w > abs(prew) / 10.) {
- swtch = TRUE_;
- }
- } else {
- if (w > abs(prew) / 10.) {
- swtch = TRUE_;
- }
- }
-
- tau += eta;
-
-/* Main loop to update the values of the array DELTA */
-
- iter = niter + 1;
-
- for (niter = iter; niter <= MAXITERLOOPS; ++niter) {
-
-/* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- if (orgati) {
- *dlam = d__[*i__] + tau;
- } else {
- *dlam = d__[ip1] + tau;
- }
- goto L250;
- }
-
- if (w <= 0.) {
- dltlb = max(dltlb,tau);
- } else {
- dltub = min(dltub,tau);
- }
-
-/* Calculate the new step */
-
- if (! swtch3) {
- if (! swtch) {
- if (orgati) {
-/* Computing 2nd power */
- d__1 = z__[*i__] / delta[*i__];
- c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (
- d__1 * d__1);
- } else {
-/* Computing 2nd power */
- d__1 = z__[ip1] / delta[ip1];
- c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) *
- (d__1 * d__1);
- }
- } else {
- temp = z__[ii] / delta[ii];
- if (orgati) {
- dpsi += temp * temp;
- } else {
- dphi += temp * temp;
- }
- c__ = w - delta[*i__] * dpsi - delta[ip1] * dphi;
- }
- a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1]
- * dw;
- b = delta[*i__] * delta[ip1] * w;
- if (c__ == 0.) {
- if (a == 0.) {
- if (! swtch) {
- if (orgati) {
- a = z__[*i__] * z__[*i__] + delta[ip1] *
- delta[ip1] * (dpsi + dphi);
- } else {
- a = z__[ip1] * z__[ip1] + delta[*i__] * delta[
- *i__] * (dpsi + dphi);
- }
- } else {
- a = delta[*i__] * delta[*i__] * dpsi + delta[ip1]
- * delta[ip1] * dphi;
- }
- }
- eta = b / a;
- } else if (a <= 0.) {
- eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
- / (c__ * 2.);
- } else {
- eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__,
- abs(d__1))));
- }
- } else {
-
-/* Interpolation using THREE most relevant poles */
-
- temp = rhoinv + psi + phi;
- if (swtch) {
- c__ = temp - delta[iim1] * dpsi - delta[iip1] * dphi;
- zz[0] = delta[iim1] * delta[iim1] * dpsi;
- zz[2] = delta[iip1] * delta[iip1] * dphi;
- } else {
- if (orgati) {
- temp1 = z__[iim1] / delta[iim1];
- temp1 *= temp1;
- c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1]
- - d__[iip1]) * temp1;
- zz[0] = z__[iim1] * z__[iim1];
- zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 +
- dphi);
- } else {
- temp1 = z__[iip1] / delta[iip1];
- temp1 *= temp1;
- c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1]
- - d__[iim1]) * temp1;
- zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi -
- temp1));
- zz[2] = z__[iip1] * z__[iip1];
- }
- }
- dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta,
- info);
- if (*info != 0) {
- goto L250;
- }
- }
-
-/*
- Note, eta should be positive if w is negative, and
- eta should be negative otherwise. However,
- if for some reason caused by roundoff, eta*w > 0,
- we simply use one Newton step instead. This way
- will guarantee eta*w < 0.
-*/
-
- if (w * eta >= 0.) {
- eta = -w / dw;
- }
- temp = tau + eta;
- if (temp > dltub || temp < dltlb) {
- if (w < 0.) {
- eta = (dltub - tau) / 2.;
- } else {
- eta = (dltlb - tau) / 2.;
- }
- }
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] -= eta;
-/* L210: */
- }
-
- tau += eta;
- prew = w;
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = iim1;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / delta[j];
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L220: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- dphi = 0.;
- phi = 0.;
- i__1 = iip1;
- for (j = *n; j >= i__1; --j) {
- temp = z__[j] / delta[j];
- phi += z__[j] * temp;
- dphi += temp * temp;
- erretm += phi;
-/* L230: */
- }
-
- temp = z__[ii] / delta[ii];
- dw = dpsi + dphi + temp * temp;
- temp = z__[ii] * temp;
- w = rhoinv + phi + psi + temp;
- erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.
- + abs(tau) * dw;
- if ((w * prew > 0. && abs(w) > abs(prew) / 10.)) {
- swtch = ! swtch;
- }
-
-/* L240: */
- }
-
-/* Return with INFO = 1, NITER = MAXIT and not converged */
-
- *info = 1;
- if (orgati) {
- *dlam = d__[*i__] + tau;
- } else {
- *dlam = d__[ip1] + tau;
- }
-
- }
-
-L250:
-
- return 0;
-
-/* End of DLAED4 */
-
-} /* dlaed4_ */
-
-/* Subroutine */ int dlaed5_(integer *i__, doublereal *d__, doublereal *z__,
- doublereal *delta, doublereal *rho, doublereal *dlam)
-{
- /* System generated locals */
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal b, c__, w, del, tau, temp;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- This subroutine computes the I-th eigenvalue of a symmetric rank-one
- modification of a 2-by-2 diagonal matrix
-
- diag( D ) + RHO * Z * transpose(Z) .
-
- The diagonal elements in the array D are assumed to satisfy
-
- D(i) < D(j) for i < j .
-
- We also assume RHO > 0 and that the Euclidean norm of the vector
- Z is one.
-
- Arguments
- =========
-
- I (input) INTEGER
- The index of the eigenvalue to be computed. I = 1 or I = 2.
-
- D (input) DOUBLE PRECISION array, dimension (2)
- The original eigenvalues. We assume D(1) < D(2).
-
- Z (input) DOUBLE PRECISION array, dimension (2)
- The components of the updating vector.
-
- DELTA (output) DOUBLE PRECISION array, dimension (2)
- The vector DELTA contains the information necessary
- to construct the eigenvectors.
-
- RHO (input) DOUBLE PRECISION
- The scalar in the symmetric updating formula.
-
- DLAM (output) DOUBLE PRECISION
- The computed lambda_I, the I-th updated eigenvalue.
-
- Further Details
- ===============
-
- Based on contributions by
- Ren-Cang Li, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --delta;
- --z__;
- --d__;
-
- /* Function Body */
- del = d__[2] - d__[1];
- if (*i__ == 1) {
- w = *rho * 2. * (z__[2] * z__[2] - z__[1] * z__[1]) / del + 1.;
- if (w > 0.) {
- b = del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
- c__ = *rho * z__[1] * z__[1] * del;
-
-/* B > ZERO, always */
-
- tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1))));
- *dlam = d__[1] + tau;
- delta[1] = -z__[1] / tau;
- delta[2] = z__[2] / (del - tau);
- } else {
- b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
- c__ = *rho * z__[2] * z__[2] * del;
- if (b > 0.) {
- tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.));
- } else {
- tau = (b - sqrt(b * b + c__ * 4.)) / 2.;
- }
- *dlam = d__[2] + tau;
- delta[1] = -z__[1] / (del + tau);
- delta[2] = -z__[2] / tau;
- }
- temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]);
- delta[1] /= temp;
- delta[2] /= temp;
- } else {
-
-/* Now I=2 */
-
- b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
- c__ = *rho * z__[2] * z__[2] * del;
- if (b > 0.) {
- tau = (b + sqrt(b * b + c__ * 4.)) / 2.;
- } else {
- tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.));
- }
- *dlam = d__[2] + tau;
- delta[1] = -z__[1] / (del + tau);
- delta[2] = -z__[2] / tau;
- temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]);
- delta[1] /= temp;
- delta[2] /= temp;
- }
- return 0;
-
-/* End OF DLAED5 */
-
-} /* dlaed5_ */
-
-/* Subroutine */ int dlaed6_(integer *kniter, logical *orgati, doublereal *
- rho, doublereal *d__, doublereal *z__, doublereal *finit, doublereal *
- tau, integer *info)
-{
- /* Initialized data */
-
- static logical first = TRUE_;
-
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2, d__3, d__4;
-
- /* Builtin functions */
- double sqrt(doublereal), log(doublereal), pow_di(doublereal *, integer *);
-
- /* Local variables */
- static doublereal a, b, c__, f;
- static integer i__;
- static doublereal fc, df, ddf, eta, eps, base;
- static integer iter;
- static doublereal temp, temp1, temp2, temp3, temp4;
- static logical scale;
- static integer niter;
- static doublereal small1, small2, sminv1, sminv2;
-
- static doublereal dscale[3], sclfac, zscale[3], erretm, sclinv;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLAED6 computes the positive or negative root (closest to the origin)
- of
- z(1) z(2) z(3)
- f(x) = rho + --------- + ---------- + ---------
- d(1)-x d(2)-x d(3)-x
-
- It is assumed that
-
- if ORGATI = .true. the root is between d(2) and d(3);
- otherwise it is between d(1) and d(2)
-
- This routine will be called by DLAED4 when necessary. In most cases,
- the root sought is the smallest in magnitude, though it might not be
- in some extremely rare situations.
-
- Arguments
- =========
-
- KNITER (input) INTEGER
- Refer to DLAED4 for its significance.
-
- ORGATI (input) LOGICAL
- If ORGATI is true, the needed root is between d(2) and
- d(3); otherwise it is between d(1) and d(2). See
- DLAED4 for further details.
-
- RHO (input) DOUBLE PRECISION
- Refer to the equation f(x) above.
-
- D (input) DOUBLE PRECISION array, dimension (3)
- D satisfies d(1) < d(2) < d(3).
-
- Z (input) DOUBLE PRECISION array, dimension (3)
- Each of the elements in z must be positive.
-
- FINIT (input) DOUBLE PRECISION
- The value of f at 0. It is more accurate than the one
- evaluated inside this routine (if someone wants to do
- so).
-
- TAU (output) DOUBLE PRECISION
- The root of the equation f(x).
-
- INFO (output) INTEGER
- = 0: successful exit
- > 0: if INFO = 1, failure to converge
-
- Further Details
- ===============
-
- Based on contributions by
- Ren-Cang Li, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-*/
-
- /* Parameter adjustments */
- --z__;
- --d__;
-
- /* Function Body */
-
- *info = 0;
-
- niter = 1;
- *tau = 0.;
- if (*kniter == 2) {
- if (*orgati) {
- temp = (d__[3] - d__[2]) / 2.;
- c__ = *rho + z__[1] / (d__[1] - d__[2] - temp);
- a = c__ * (d__[2] + d__[3]) + z__[2] + z__[3];
- b = c__ * d__[2] * d__[3] + z__[2] * d__[3] + z__[3] * d__[2];
- } else {
- temp = (d__[1] - d__[2]) / 2.;
- c__ = *rho + z__[3] / (d__[3] - d__[2] - temp);
- a = c__ * (d__[1] + d__[2]) + z__[1] + z__[2];
- b = c__ * d__[1] * d__[2] + z__[1] * d__[2] + z__[2] * d__[1];
- }
-/* Computing MAX */
- d__1 = abs(a), d__2 = abs(b), d__1 = max(d__1,d__2), d__2 = abs(c__);
- temp = max(d__1,d__2);
- a /= temp;
- b /= temp;
- c__ /= temp;
- if (c__ == 0.) {
- *tau = b / a;
- } else if (a <= 0.) {
- *tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
- c__ * 2.);
- } else {
- *tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))
- ));
- }
- temp = *rho + z__[1] / (d__[1] - *tau) + z__[2] / (d__[2] - *tau) +
- z__[3] / (d__[3] - *tau);
- if (abs(*finit) <= abs(temp)) {
- *tau = 0.;
- }
- }
-
-/*
- On first call to routine, get machine parameters for
- possible scaling to avoid overflow
-*/
-
- if (first) {
- eps = EPSILON;
- base = BASE;
- i__1 = (integer) (log(SAFEMINIMUM) / log(base) / 3.);
- small1 = pow_di(&base, &i__1);
- sminv1 = 1. / small1;
- small2 = small1 * small1;
- sminv2 = sminv1 * sminv1;
- first = FALSE_;
- }
-
-/*
- Determine if scaling of inputs necessary to avoid overflow
- when computing 1/TEMP**3
-*/
-
- if (*orgati) {
-/* Computing MIN */
- d__3 = (d__1 = d__[2] - *tau, abs(d__1)), d__4 = (d__2 = d__[3] - *
- tau, abs(d__2));
- temp = min(d__3,d__4);
- } else {
-/* Computing MIN */
- d__3 = (d__1 = d__[1] - *tau, abs(d__1)), d__4 = (d__2 = d__[2] - *
- tau, abs(d__2));
- temp = min(d__3,d__4);
- }
- scale = FALSE_;
- if (temp <= small1) {
- scale = TRUE_;
- if (temp <= small2) {
-
-/* Scale up by power of radix nearest 1/SAFMIN**(2/3) */
-
- sclfac = sminv2;
- sclinv = small2;
- } else {
-
-/* Scale up by power of radix nearest 1/SAFMIN**(1/3) */
-
- sclfac = sminv1;
- sclinv = small1;
- }
-
-/* Scaling up safe because D, Z, TAU scaled elsewhere to be O(1) */
-
- for (i__ = 1; i__ <= 3; ++i__) {
- dscale[i__ - 1] = d__[i__] * sclfac;
- zscale[i__ - 1] = z__[i__] * sclfac;
-/* L10: */
- }
- *tau *= sclfac;
- } else {
-
-/* Copy D and Z to DSCALE and ZSCALE */
-
- for (i__ = 1; i__ <= 3; ++i__) {
- dscale[i__ - 1] = d__[i__];
- zscale[i__ - 1] = z__[i__];
-/* L20: */
- }
- }
-
- fc = 0.;
- df = 0.;
- ddf = 0.;
- for (i__ = 1; i__ <= 3; ++i__) {
- temp = 1. / (dscale[i__ - 1] - *tau);
- temp1 = zscale[i__ - 1] * temp;
- temp2 = temp1 * temp;
- temp3 = temp2 * temp;
- fc += temp1 / dscale[i__ - 1];
- df += temp2;
- ddf += temp3;
-/* L30: */
- }
- f = *finit + *tau * fc;
-
- if (abs(f) <= 0.) {
- goto L60;
- }
-
-/*
- Iteration begins
-
- It is not hard to see that
-
- 1) Iterations will go up monotonically
- if FINIT < 0;
-
- 2) Iterations will go down monotonically
- if FINIT > 0.
-*/
-
- iter = niter + 1;
-
- for (niter = iter; niter <= MAXITERLOOPS; ++niter) {
-
- if (*orgati) {
- temp1 = dscale[1] - *tau;
- temp2 = dscale[2] - *tau;
- } else {
- temp1 = dscale[0] - *tau;
- temp2 = dscale[1] - *tau;
- }
- a = (temp1 + temp2) * f - temp1 * temp2 * df;
- b = temp1 * temp2 * f;
- c__ = f - (temp1 + temp2) * df + temp1 * temp2 * ddf;
-/* Computing MAX */
- d__1 = abs(a), d__2 = abs(b), d__1 = max(d__1,d__2), d__2 = abs(c__);
- temp = max(d__1,d__2);
- a /= temp;
- b /= temp;
- c__ /= temp;
- if (c__ == 0.) {
- eta = b / a;
- } else if (a <= 0.) {
- eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__
- * 2.);
- } else {
- eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
- );
- }
- if (f * eta >= 0.) {
- eta = -f / df;
- }
-
- temp = eta + *tau;
- if (*orgati) {
- if ((eta > 0. && temp >= dscale[2])) {
- eta = (dscale[2] - *tau) / 2.;
- }
- if ((eta < 0. && temp <= dscale[1])) {
- eta = (dscale[1] - *tau) / 2.;
- }
- } else {
- if ((eta > 0. && temp >= dscale[1])) {
- eta = (dscale[1] - *tau) / 2.;
- }
- if ((eta < 0. && temp <= dscale[0])) {
- eta = (dscale[0] - *tau) / 2.;
- }
- }
- *tau += eta;
-
- fc = 0.;
- erretm = 0.;
- df = 0.;
- ddf = 0.;
- for (i__ = 1; i__ <= 3; ++i__) {
- temp = 1. / (dscale[i__ - 1] - *tau);
- temp1 = zscale[i__ - 1] * temp;
- temp2 = temp1 * temp;
- temp3 = temp2 * temp;
- temp4 = temp1 / dscale[i__ - 1];
- fc += temp4;
- erretm += abs(temp4);
- df += temp2;
- ddf += temp3;
-/* L40: */
- }
- f = *finit + *tau * fc;
- erretm = (abs(*finit) + abs(*tau) * erretm) * 8. + abs(*tau) * df;
- if (abs(f) <= eps * erretm) {
- goto L60;
- }
-/* L50: */
- }
- *info = 1;
-L60:
-
-/* Undo scaling */
-
- if (scale) {
- *tau *= sclinv;
- }
- return 0;
-
-/* End of DLAED6 */
-
-} /* dlaed6_ */
-
-/* Subroutine */ int dlaed7_(integer *icompq, integer *n, integer *qsiz,
- integer *tlvls, integer *curlvl, integer *curpbm, doublereal *d__,
- doublereal *q, integer *ldq, integer *indxq, doublereal *rho, integer
- *cutpnt, doublereal *qstore, integer *qptr, integer *prmptr, integer *
- perm, integer *givptr, integer *givcol, doublereal *givnum,
- doublereal *work, integer *iwork, integer *info)
-{
- /* System generated locals */
- integer q_dim1, q_offset, i__1, i__2;
-
- /* Builtin functions */
- integer pow_ii(integer *, integer *);
-
- /* Local variables */
- static integer i__, k, n1, n2, is, iw, iz, iq2, ptr, ldq2, indx, curr;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- static integer indxc, indxp;
- extern /* Subroutine */ int dlaed8_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *, integer *,
- doublereal *, integer *, integer *, integer *), dlaed9_(integer *,
- integer *, integer *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, integer *), dlaeda_(integer *, integer *, integer *,
- integer *, integer *, integer *, integer *, integer *, doublereal
- *, doublereal *, integer *, doublereal *, doublereal *, integer *)
- ;
- static integer idlmda;
- extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), xerbla_(char *, integer *);
- static integer coltyp;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- DLAED7 computes the updated eigensystem of a diagonal
- matrix after modification by a rank-one symmetric matrix. This
- routine is used only for the eigenproblem which requires all
- eigenvalues and optionally eigenvectors of a dense symmetric matrix
- that has been reduced to tridiagonal form. DLAED1 handles
- the case in which all eigenvalues and eigenvectors of a symmetric
- tridiagonal matrix are desired.
-
- T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
-
- where Z = Q'u, u is a vector of length N with ones in the
- CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
-
- The eigenvectors of the original matrix are stored in Q, and the
- eigenvalues are in D. The algorithm consists of three stages:
-
- The first stage consists of deflating the size of the problem
- when there are multiple eigenvalues or if there is a zero in
- the Z vector. For each such occurence the dimension of the
- secular equation problem is reduced by one. This stage is
- performed by the routine DLAED8.
-
- The second stage consists of calculating the updated
- eigenvalues. This is done by finding the roots of the secular
- equation via the routine DLAED4 (as called by DLAED9).
- This routine also calculates the eigenvectors of the current
- problem.
-
- The final stage consists of computing the updated eigenvectors
- directly using the updated eigenvalues. The eigenvectors for
- the current problem are multiplied with the eigenvectors from
- the overall problem.
-
- Arguments
- =========
-
- ICOMPQ (input) INTEGER
- = 0: Compute eigenvalues only.
- = 1: Compute eigenvectors of original dense symmetric matrix
- also. On entry, Q contains the orthogonal matrix used
- to reduce the original matrix to tridiagonal form.
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- QSIZ (input) INTEGER
- The dimension of the orthogonal matrix used to reduce
- the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
-
- TLVLS (input) INTEGER
- The total number of merging levels in the overall divide and
- conquer tree.
-
- CURLVL (input) INTEGER
- The current level in the overall merge routine,
- 0 <= CURLVL <= TLVLS.
-
- CURPBM (input) INTEGER
- The current problem in the current level in the overall
- merge routine (counting from upper left to lower right).
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the eigenvalues of the rank-1-perturbed matrix.
- On exit, the eigenvalues of the repaired matrix.
-
- Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
- On entry, the eigenvectors of the rank-1-perturbed matrix.
- On exit, the eigenvectors of the repaired tridiagonal matrix.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max(1,N).
-
- INDXQ (output) INTEGER array, dimension (N)
- The permutation which will reintegrate the subproblem just
- solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
- will be in ascending order.
-
- RHO (input) DOUBLE PRECISION
- The subdiagonal element used to create the rank-1
- modification.
-
- CUTPNT (input) INTEGER
- Contains the location of the last eigenvalue in the leading
- sub-matrix. min(1,N) <= CUTPNT <= N.
-
- QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)
- Stores eigenvectors of submatrices encountered during
- divide and conquer, packed together. QPTR points to
- beginning of the submatrices.
-
- QPTR (input/output) INTEGER array, dimension (N+2)
- List of indices pointing to beginning of submatrices stored
- in QSTORE. The submatrices are numbered starting at the
- bottom left of the divide and conquer tree, from left to
- right and bottom to top.
-
- PRMPTR (input) INTEGER array, dimension (N lg N)
- Contains a list of pointers which indicate where in PERM a
- level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
- indicates the size of the permutation and also the size of
- the full, non-deflated problem.
-
- PERM (input) INTEGER array, dimension (N lg N)
- Contains the permutations (from deflation and sorting) to be
- applied to each eigenblock.
-
- GIVPTR (input) INTEGER array, dimension (N lg N)
- Contains a list of pointers which indicate where in GIVCOL a
- level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
- indicates the number of Givens rotations.
-
- GIVCOL (input) INTEGER array, dimension (2, N lg N)
- Each pair of numbers indicates a pair of columns to take place
- in a Givens rotation.
-
- GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
- Each number indicates the S value to be used in the
- corresponding Givens rotation.
-
- WORK (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N)
-
- IWORK (workspace) INTEGER array, dimension (4*N)
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an eigenvalue did not converge
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --indxq;
- --qstore;
- --qptr;
- --prmptr;
- --perm;
- --givptr;
- givcol -= 3;
- givnum -= 3;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if ((*icompq == 1 && *qsiz < *n)) {
- *info = -4;
- } else if (*ldq < max(1,*n)) {
- *info = -9;
- } else if (min(1,*n) > *cutpnt || *n < *cutpnt) {
- *info = -12;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAED7", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
-/*
- The following values are for bookkeeping purposes only. They are
- integer pointers which indicate the portion of the workspace
- used by a particular array in DLAED8 and DLAED9.
-*/
-
- if (*icompq == 1) {
- ldq2 = *qsiz;
- } else {
- ldq2 = *n;
- }
-
- iz = 1;
- idlmda = iz + *n;
- iw = idlmda + *n;
- iq2 = iw + *n;
- is = iq2 + *n * ldq2;
-
- indx = 1;
- indxc = indx + *n;
- coltyp = indxc + *n;
- indxp = coltyp + *n;
-
-/*
- Form the z-vector which consists of the last row of Q_1 and the
- first row of Q_2.
-*/
-
- ptr = pow_ii(&c__2, tlvls) + 1;
- i__1 = *curlvl - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *tlvls - i__;
- ptr += pow_ii(&c__2, &i__2);
-/* L10: */
- }
- curr = ptr + *curpbm;
- dlaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], &
- givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz
- + *n], info);
-
-/*
- When solving the final problem, we no longer need the stored data,
- so we will overwrite the data from this level onto the previously
- used storage space.
-*/
-
- if (*curlvl == *tlvls) {
- qptr[curr] = 1;
- prmptr[curr] = 1;
- givptr[curr] = 1;
- }
-
-/* Sort and Deflate eigenvalues. */
-
- dlaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho,
- cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], &
- perm[prmptr[curr]], &givptr[curr + 1], &givcol[((givptr[curr]) <<
- (1)) + 1], &givnum[((givptr[curr]) << (1)) + 1], &iwork[indxp], &
- iwork[indx], info);
- prmptr[curr + 1] = prmptr[curr] + *n;
- givptr[curr + 1] += givptr[curr];
-
-/* Solve Secular Equation. */
-
- if (k != 0) {
- dlaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda],
- &work[iw], &qstore[qptr[curr]], &k, info);
- if (*info != 0) {
- goto L30;
- }
- if (*icompq == 1) {
- dgemm_("N", "N", qsiz, &k, &k, &c_b15, &work[iq2], &ldq2, &qstore[
- qptr[curr]], &k, &c_b29, &q[q_offset], ldq);
- }
-/* Computing 2nd power */
- i__1 = k;
- qptr[curr + 1] = qptr[curr] + i__1 * i__1;
-
-/* Prepare the INDXQ sorting permutation. */
-
- n1 = k;
- n2 = *n - k;
- dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
- } else {
- qptr[curr + 1] = qptr[curr];
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- indxq[i__] = i__;
-/* L20: */
- }
- }
-
-L30:
- return 0;
-
-/* End of DLAED7 */
-
-} /* dlaed7_ */
-
-/* Subroutine */ int dlaed8_(integer *icompq, integer *k, integer *n, integer
- *qsiz, doublereal *d__, doublereal *q, integer *ldq, integer *indxq,
- doublereal *rho, integer *cutpnt, doublereal *z__, doublereal *dlamda,
- doublereal *q2, integer *ldq2, doublereal *w, integer *perm, integer
- *givptr, integer *givcol, doublereal *givnum, integer *indxp, integer
- *indx, integer *info)
-{
- /* System generated locals */
- integer q_dim1, q_offset, q2_dim1, q2_offset, i__1;
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal c__;
- static integer i__, j;
- static doublereal s, t;
- static integer k2, n1, n2, jp, n1p1;
- static doublereal eps, tau, tol;
- static integer jlam, imax, jmax;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *), dscal_(
- integer *, doublereal *, doublereal *, integer *), dcopy_(integer
- *, doublereal *, integer *, doublereal *, integer *);
-
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), dlacpy_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- DLAED8 merges the two sets of eigenvalues together into a single
- sorted set. Then it tries to deflate the size of the problem.
- There are two ways in which deflation can occur: when two or more
- eigenvalues are close together or if there is a tiny element in the
- Z vector. For each such occurrence the order of the related secular
- equation problem is reduced by one.
-
- Arguments
- =========
-
- ICOMPQ (input) INTEGER
- = 0: Compute eigenvalues only.
- = 1: Compute eigenvectors of original dense symmetric matrix
- also. On entry, Q contains the orthogonal matrix used
- to reduce the original matrix to tridiagonal form.
-
- K (output) INTEGER
- The number of non-deflated eigenvalues, and the order of the
- related secular equation.
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- QSIZ (input) INTEGER
- The dimension of the orthogonal matrix used to reduce
- the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the eigenvalues of the two submatrices to be
- combined. On exit, the trailing (N-K) updated eigenvalues
- (those which were deflated) sorted into increasing order.
-
- Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
- If ICOMPQ = 0, Q is not referenced. Otherwise,
- on entry, Q contains the eigenvectors of the partially solved
- system which has been previously updated in matrix
- multiplies with other partially solved eigensystems.
- On exit, Q contains the trailing (N-K) updated eigenvectors
- (those which were deflated) in its last N-K columns.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max(1,N).
-
- INDXQ (input) INTEGER array, dimension (N)
- The permutation which separately sorts the two sub-problems
- in D into ascending order. Note that elements in the second
- half of this permutation must first have CUTPNT added to
- their values in order to be accurate.
-
- RHO (input/output) DOUBLE PRECISION
- On entry, the off-diagonal element associated with the rank-1
- cut which originally split the two submatrices which are now
- being recombined.
- On exit, RHO has been modified to the value required by
- DLAED3.
-
- CUTPNT (input) INTEGER
- The location of the last eigenvalue in the leading
- sub-matrix. min(1,N) <= CUTPNT <= N.
-
- Z (input) DOUBLE PRECISION array, dimension (N)
- On entry, Z contains the updating vector (the last row of
- the first sub-eigenvector matrix and the first row of the
- second sub-eigenvector matrix).
- On exit, the contents of Z are destroyed by the updating
- process.
-
- DLAMDA (output) DOUBLE PRECISION array, dimension (N)
- A copy of the first K eigenvalues which will be used by
- DLAED3 to form the secular equation.
-
- Q2 (output) DOUBLE PRECISION array, dimension (LDQ2,N)
- If ICOMPQ = 0, Q2 is not referenced. Otherwise,
- a copy of the first K eigenvectors which will be used by
- DLAED7 in a matrix multiply (DGEMM) to update the new
- eigenvectors.
-
- LDQ2 (input) INTEGER
- The leading dimension of the array Q2. LDQ2 >= max(1,N).
-
- W (output) DOUBLE PRECISION array, dimension (N)
- The first k values of the final deflation-altered z-vector and
- will be passed to DLAED3.
-
- PERM (output) INTEGER array, dimension (N)
- The permutations (from deflation and sorting) to be applied
- to each eigenblock.
-
- GIVPTR (output) INTEGER
- The number of Givens rotations which took place in this
- subproblem.
-
- GIVCOL (output) INTEGER array, dimension (2, N)
- Each pair of numbers indicates a pair of columns to take place
- in a Givens rotation.
-
- GIVNUM (output) DOUBLE PRECISION array, dimension (2, N)
- Each number indicates the S value to be used in the
- corresponding Givens rotation.
-
- INDXP (workspace) INTEGER array, dimension (N)
- The permutation used to place deflated values of D at the end
- of the array. INDXP(1:K) points to the nondeflated D-values
- and INDXP(K+1:N) points to the deflated eigenvalues.
-
- INDX (workspace) INTEGER array, dimension (N)
- The permutation used to sort the contents of D into ascending
- order.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --indxq;
- --z__;
- --dlamda;
- q2_dim1 = *ldq2;
- q2_offset = 1 + q2_dim1 * 1;
- q2 -= q2_offset;
- --w;
- --perm;
- givcol -= 3;
- givnum -= 3;
- --indxp;
- --indx;
-
- /* Function Body */
- *info = 0;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*n < 0) {
- *info = -3;
- } else if ((*icompq == 1 && *qsiz < *n)) {
- *info = -4;
- } else if (*ldq < max(1,*n)) {
- *info = -7;
- } else if (*cutpnt < min(1,*n) || *cutpnt > *n) {
- *info = -10;
- } else if (*ldq2 < max(1,*n)) {
- *info = -14;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAED8", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- n1 = *cutpnt;
- n2 = *n - n1;
- n1p1 = n1 + 1;
-
- if (*rho < 0.) {
- dscal_(&n2, &c_b151, &z__[n1p1], &c__1);
- }
-
-/* Normalize z so that norm(z) = 1 */
-
- t = 1. / sqrt(2.);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- indx[j] = j;
-/* L10: */
- }
- dscal_(n, &t, &z__[1], &c__1);
- *rho = (d__1 = *rho * 2., abs(d__1));
-
-/* Sort the eigenvalues into increasing order */
-
- i__1 = *n;
- for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) {
- indxq[i__] += *cutpnt;
-/* L20: */
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlamda[i__] = d__[indxq[i__]];
- w[i__] = z__[indxq[i__]];
-/* L30: */
- }
- i__ = 1;
- j = *cutpnt + 1;
- dlamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]);
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = dlamda[indx[i__]];
- z__[i__] = w[indx[i__]];
-/* L40: */
- }
-
-/* Calculate the allowable deflation tolerence */
-
- imax = idamax_(n, &z__[1], &c__1);
- jmax = idamax_(n, &d__[1], &c__1);
- eps = EPSILON;
- tol = eps * 8. * (d__1 = d__[jmax], abs(d__1));
-
-/*
- If the rank-1 modifier is small enough, no more needs to be done
- except to reorganize Q so that its columns correspond with the
- elements in D.
-*/
-
- if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
- *k = 0;
- if (*icompq == 0) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- perm[j] = indxq[indx[j]];
-/* L50: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- perm[j] = indxq[indx[j]];
- dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1
- + 1], &c__1);
-/* L60: */
- }
- dlacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq);
- }
- return 0;
- }
-
-/*
- If there are multiple eigenvalues then the problem deflates. Here
- the number of equal eigenvalues are found. As each equal
- eigenvalue is found, an elementary reflector is computed to rotate
- the corresponding eigensubspace so that the corresponding
- components of Z are zero in this new basis.
-*/
-
- *k = 0;
- *givptr = 0;
- k2 = *n + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {
-
-/* Deflate due to small z component. */
-
- --k2;
- indxp[k2] = j;
- if (j == *n) {
- goto L110;
- }
- } else {
- jlam = j;
- goto L80;
- }
-/* L70: */
- }
-L80:
- ++j;
- if (j > *n) {
- goto L100;
- }
- if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {
-
-/* Deflate due to small z component. */
-
- --k2;
- indxp[k2] = j;
- } else {
-
-/* Check if eigenvalues are close enough to allow deflation. */
-
- s = z__[jlam];
- c__ = z__[j];
-
-/*
- Find sqrt(a**2+b**2) without overflow or
- destructive underflow.
-*/
-
- tau = dlapy2_(&c__, &s);
- t = d__[j] - d__[jlam];
- c__ /= tau;
- s = -s / tau;
- if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {
-
-/* Deflation is possible. */
-
- z__[j] = tau;
- z__[jlam] = 0.;
-
-/* Record the appropriate Givens rotation */
-
- ++(*givptr);
- givcol[((*givptr) << (1)) + 1] = indxq[indx[jlam]];
- givcol[((*givptr) << (1)) + 2] = indxq[indx[j]];
- givnum[((*givptr) << (1)) + 1] = c__;
- givnum[((*givptr) << (1)) + 2] = s;
- if (*icompq == 1) {
- drot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[
- indxq[indx[j]] * q_dim1 + 1], &c__1, &c__, &s);
- }
- t = d__[jlam] * c__ * c__ + d__[j] * s * s;
- d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__;
- d__[jlam] = t;
- --k2;
- i__ = 1;
-L90:
- if (k2 + i__ <= *n) {
- if (d__[jlam] < d__[indxp[k2 + i__]]) {
- indxp[k2 + i__ - 1] = indxp[k2 + i__];
- indxp[k2 + i__] = jlam;
- ++i__;
- goto L90;
- } else {
- indxp[k2 + i__ - 1] = jlam;
- }
- } else {
- indxp[k2 + i__ - 1] = jlam;
- }
- jlam = j;
- } else {
- ++(*k);
- w[*k] = z__[jlam];
- dlamda[*k] = d__[jlam];
- indxp[*k] = jlam;
- jlam = j;
- }
- }
- goto L80;
-L100:
-
-/* Record the last eigenvalue. */
-
- ++(*k);
- w[*k] = z__[jlam];
- dlamda[*k] = d__[jlam];
- indxp[*k] = jlam;
-
-L110:
-
-/*
- Sort the eigenvalues and corresponding eigenvectors into DLAMDA
- and Q2 respectively. The eigenvalues/vectors which were not
- deflated go into the first K slots of DLAMDA and Q2 respectively,
- while those which were deflated go into the last N - K slots.
-*/
-
- if (*icompq == 0) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- jp = indxp[j];
- dlamda[j] = d__[jp];
- perm[j] = indxq[indx[jp]];
-/* L120: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- jp = indxp[j];
- dlamda[j] = d__[jp];
- perm[j] = indxq[indx[jp]];
- dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1]
- , &c__1);
-/* L130: */
- }
- }
-
-/*
- The deflated eigenvalues and their corresponding vectors go back
- into the last N - K slots of D and Q respectively.
-*/
-
- if (*k < *n) {
- if (*icompq == 0) {
- i__1 = *n - *k;
- dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
- } else {
- i__1 = *n - *k;
- dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
- i__1 = *n - *k;
- dlacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(*
- k + 1) * q_dim1 + 1], ldq);
- }
- }
-
- return 0;
-
-/* End of DLAED8 */
-
-} /* dlaed8_ */
-
-/* Subroutine */ int dlaed9_(integer *k, integer *kstart, integer *kstop,
- integer *n, doublereal *d__, doublereal *q, integer *ldq, doublereal *
- rho, doublereal *dlamda, doublereal *w, doublereal *s, integer *lds,
- integer *info)
-{
- /* System generated locals */
- integer q_dim1, q_offset, s_dim1, s_offset, i__1, i__2;
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static integer i__, j;
- static doublereal temp;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), dlaed4_(integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *);
- extern doublereal dlamc3_(doublereal *, doublereal *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- DLAED9 finds the roots of the secular equation, as defined by the
- values in D, Z, and RHO, between KSTART and KSTOP. It makes the
- appropriate calls to DLAED4 and then stores the new matrix of
- eigenvectors for use in calculating the next level of Z vectors.
-
- Arguments
- =========
-
- K (input) INTEGER
- The number of terms in the rational function to be solved by
- DLAED4. K >= 0.
-
- KSTART (input) INTEGER
- KSTOP (input) INTEGER
- The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
- are to be computed. 1 <= KSTART <= KSTOP <= K.
-
- N (input) INTEGER
- The number of rows and columns in the Q matrix.
- N >= K (delation may result in N > K).
-
- D (output) DOUBLE PRECISION array, dimension (N)
- D(I) contains the updated eigenvalues
- for KSTART <= I <= KSTOP.
-
- Q (workspace) DOUBLE PRECISION array, dimension (LDQ,N)
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max( 1, N ).
-
- RHO (input) DOUBLE PRECISION
- The value of the parameter in the rank one update equation.
- RHO >= 0 required.
-
- DLAMDA (input) DOUBLE PRECISION array, dimension (K)
- The first K elements of this array contain the old roots
- of the deflated updating problem. These are the poles
- of the secular equation.
-
- W (input) DOUBLE PRECISION array, dimension (K)
- The first K elements of this array contain the components
- of the deflation-adjusted updating vector.
-
- S (output) DOUBLE PRECISION array, dimension (LDS, K)
- Will contain the eigenvectors of the repaired matrix which
- will be stored for subsequent Z vector calculation and
- multiplied by the previously accumulated eigenvectors
- to update the system.
-
- LDS (input) INTEGER
- The leading dimension of S. LDS >= max( 1, K ).
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an eigenvalue did not converge
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --dlamda;
- --w;
- s_dim1 = *lds;
- s_offset = 1 + s_dim1 * 1;
- s -= s_offset;
-
- /* Function Body */
- *info = 0;
-
- if (*k < 0) {
- *info = -1;
- } else if (*kstart < 1 || *kstart > max(1,*k)) {
- *info = -2;
- } else if (max(1,*kstop) < *kstart || *kstop > max(1,*k)) {
- *info = -3;
- } else if (*n < *k) {
- *info = -4;
- } else if (*ldq < max(1,*k)) {
- *info = -7;
- } else if (*lds < max(1,*k)) {
- *info = -12;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAED9", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*k == 0) {
- return 0;
- }
-
-/*
- Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
- be computed with high relative accuracy (barring over/underflow).
- This is a problem on machines without a guard digit in
- add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
- The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
- which on any of these machines zeros out the bottommost
- bit of DLAMDA(I) if it is 1; this makes the subsequent
- subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
- occurs. On binary machines with a guard digit (almost all
- machines) it does not change DLAMDA(I) at all. On hexadecimal
- and decimal machines with a guard digit, it slightly
- changes the bottommost bits of DLAMDA(I). It does not account
- for hexadecimal or decimal machines without guard digits
- (we know of none). We use a subroutine call to compute
- 2*DLAMBDA(I) to prevent optimizing compilers from eliminating
- this code.
-*/
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlamda[i__] = dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
-/* L10: */
- }
-
- i__1 = *kstop;
- for (j = *kstart; j <= i__1; ++j) {
- dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j],
- info);
-
-/* If the zero finder fails, the computation is terminated. */
-
- if (*info != 0) {
- goto L120;
- }
-/* L20: */
- }
-
- if (*k == 1 || *k == 2) {
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *k;
- for (j = 1; j <= i__2; ++j) {
- s[j + i__ * s_dim1] = q[j + i__ * q_dim1];
-/* L30: */
- }
-/* L40: */
- }
- goto L120;
- }
-
-/* Compute updated W. */
-
- dcopy_(k, &w[1], &c__1, &s[s_offset], &c__1);
-
-/* Initialize W(I) = Q(I,I) */
-
- i__1 = *ldq + 1;
- dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
-/* L50: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
-/* L60: */
- }
-/* L70: */
- }
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__1 = sqrt(-w[i__]);
- w[i__] = d_sign(&d__1, &s[i__ + s_dim1]);
-/* L80: */
- }
-
-/* Compute eigenvectors of the modified rank-1 modification. */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- q[i__ + j * q_dim1] = w[i__] / q[i__ + j * q_dim1];
-/* L90: */
- }
- temp = dnrm2_(k, &q[j * q_dim1 + 1], &c__1);
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- s[i__ + j * s_dim1] = q[i__ + j * q_dim1] / temp;
-/* L100: */
- }
-/* L110: */
- }
-
-L120:
- return 0;
-
-/* End of DLAED9 */
-
-} /* dlaed9_ */
-
-/* Subroutine */ int dlaeda_(integer *n, integer *tlvls, integer *curlvl,
- integer *curpbm, integer *prmptr, integer *perm, integer *givptr,
- integer *givcol, doublereal *givnum, doublereal *q, integer *qptr,
- doublereal *z__, doublereal *ztemp, integer *info)
-{
- /* System generated locals */
- integer i__1, i__2, i__3;
-
- /* Builtin functions */
- integer pow_ii(integer *, integer *);
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__, k, mid, ptr;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- static integer curr, bsiz1, bsiz2, psiz1, psiz2, zptr1;
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), dcopy_(integer *,
- doublereal *, integer *, doublereal *, integer *), xerbla_(char *,
- integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- DLAEDA computes the Z vector corresponding to the merge step in the
- CURLVLth step of the merge process with TLVLS steps for the CURPBMth
- problem.
-
- Arguments
- =========
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- TLVLS (input) INTEGER
- The total number of merging levels in the overall divide and
- conquer tree.
-
- CURLVL (input) INTEGER
- The current level in the overall merge routine,
- 0 <= curlvl <= tlvls.
-
- CURPBM (input) INTEGER
- The current problem in the current level in the overall
- merge routine (counting from upper left to lower right).
-
- PRMPTR (input) INTEGER array, dimension (N lg N)
- Contains a list of pointers which indicate where in PERM a
- level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
- indicates the size of the permutation and incidentally the
- size of the full, non-deflated problem.
-
- PERM (input) INTEGER array, dimension (N lg N)
- Contains the permutations (from deflation and sorting) to be
- applied to each eigenblock.
-
- GIVPTR (input) INTEGER array, dimension (N lg N)
- Contains a list of pointers which indicate where in GIVCOL a
- level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
- indicates the number of Givens rotations.
-
- GIVCOL (input) INTEGER array, dimension (2, N lg N)
- Each pair of numbers indicates a pair of columns to take place
- in a Givens rotation.
-
- GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
- Each number indicates the S value to be used in the
- corresponding Givens rotation.
-
- Q (input) DOUBLE PRECISION array, dimension (N**2)
- Contains the square eigenblocks from previous levels, the
- starting positions for blocks are given by QPTR.
-
- QPTR (input) INTEGER array, dimension (N+2)
- Contains a list of pointers which indicate where in Q an
- eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates
- the size of the block.
-
- Z (output) DOUBLE PRECISION array, dimension (N)
- On output this vector contains the updating vector (the last
- row of the first sub-eigenvector matrix and the first row of
- the second sub-eigenvector matrix).
-
- ZTEMP (workspace) DOUBLE PRECISION array, dimension (N)
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --ztemp;
- --z__;
- --qptr;
- --q;
- givnum -= 3;
- givcol -= 3;
- --givptr;
- --perm;
- --prmptr;
-
- /* Function Body */
- *info = 0;
-
- if (*n < 0) {
- *info = -1;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAEDA", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
-/* Determine location of first number in second half. */
-
- mid = *n / 2 + 1;
-
-/* Gather last/first rows of appropriate eigenblocks into center of Z */
-
- ptr = 1;
-
-/*
- Determine location of lowest level subproblem in the full storage
- scheme
-*/
-
- i__1 = *curlvl - 1;
- curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1;
-
-/*
- Determine size of these matrices. We add HALF to the value of
- the SQRT in case the machine underestimates one of these square
- roots.
-*/
-
- bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + .5);
- bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])) +
- .5);
- i__1 = mid - bsiz1 - 1;
- for (k = 1; k <= i__1; ++k) {
- z__[k] = 0.;
-/* L10: */
- }
- dcopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], &
- c__1);
- dcopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1);
- i__1 = *n;
- for (k = mid + bsiz2; k <= i__1; ++k) {
- z__[k] = 0.;
-/* L20: */
- }
-
-/*
- Loop thru remaining levels 1 -> CURLVL applying the Givens
- rotations and permutation and then multiplying the center matrices
- against the current Z.
-*/
-
- ptr = pow_ii(&c__2, tlvls) + 1;
- i__1 = *curlvl - 1;
- for (k = 1; k <= i__1; ++k) {
- i__2 = *curlvl - k;
- i__3 = *curlvl - k - 1;
- curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) -
- 1;
- psiz1 = prmptr[curr + 1] - prmptr[curr];
- psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
- zptr1 = mid - psiz1;
-
-/* Apply Givens at CURR and CURR+1 */
-
- i__2 = givptr[curr + 1] - 1;
- for (i__ = givptr[curr]; i__ <= i__2; ++i__) {
- drot_(&c__1, &z__[zptr1 + givcol[((i__) << (1)) + 1] - 1], &c__1,
- &z__[zptr1 + givcol[((i__) << (1)) + 2] - 1], &c__1, &
- givnum[((i__) << (1)) + 1], &givnum[((i__) << (1)) + 2]);
-/* L30: */
- }
- i__2 = givptr[curr + 2] - 1;
- for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) {
- drot_(&c__1, &z__[mid - 1 + givcol[((i__) << (1)) + 1]], &c__1, &
- z__[mid - 1 + givcol[((i__) << (1)) + 2]], &c__1, &givnum[
- ((i__) << (1)) + 1], &givnum[((i__) << (1)) + 2]);
-/* L40: */
- }
- psiz1 = prmptr[curr + 1] - prmptr[curr];
- psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
- i__2 = psiz1 - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1];
-/* L50: */
- }
- i__2 = psiz2 - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] -
- 1];
-/* L60: */
- }
-
-/*
- Multiply Blocks at CURR and CURR+1
-
- Determine size of these matrices. We add HALF to the value of
- the SQRT in case the machine underestimates one of these
- square roots.
-*/
-
- bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) +
- .5);
- bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])
- ) + .5);
- if (bsiz1 > 0) {
- dgemv_("T", &bsiz1, &bsiz1, &c_b15, &q[qptr[curr]], &bsiz1, &
- ztemp[1], &c__1, &c_b29, &z__[zptr1], &c__1);
- }
- i__2 = psiz1 - bsiz1;
- dcopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1);
- if (bsiz2 > 0) {
- dgemv_("T", &bsiz2, &bsiz2, &c_b15, &q[qptr[curr + 1]], &bsiz2, &
- ztemp[psiz1 + 1], &c__1, &c_b29, &z__[mid], &c__1);
- }
- i__2 = psiz2 - bsiz2;
- dcopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], &
- c__1);
-
- i__2 = *tlvls - k;
- ptr += pow_ii(&c__2, &i__2);
-/* L70: */
- }
-
- return 0;
-
-/* End of DLAEDA */
-
-} /* dlaeda_ */
-
-/* Subroutine */ int dlaev2_(doublereal *a, doublereal *b, doublereal *c__,
- doublereal *rt1, doublereal *rt2, doublereal *cs1, doublereal *sn1)
-{
- /* System generated locals */
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal ab, df, cs, ct, tb, sm, tn, rt, adf, acs;
- static integer sgn1, sgn2;
- static doublereal acmn, acmx;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
- [ A B ]
- [ B C ].
- On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
- eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
- eigenvector for RT1, giving the decomposition
-
- [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
- [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
-
- Arguments
- =========
-
- A (input) DOUBLE PRECISION
- The (1,1) element of the 2-by-2 matrix.
-
- B (input) DOUBLE PRECISION
- The (1,2) element and the conjugate of the (2,1) element of
- the 2-by-2 matrix.
-
- C (input) DOUBLE PRECISION
- The (2,2) element of the 2-by-2 matrix.
-
- RT1 (output) DOUBLE PRECISION
- The eigenvalue of larger absolute value.
-
- RT2 (output) DOUBLE PRECISION
- The eigenvalue of smaller absolute value.
-
- CS1 (output) DOUBLE PRECISION
- SN1 (output) DOUBLE PRECISION
- The vector (CS1, SN1) is a unit right eigenvector for RT1.
-
- Further Details
- ===============
-
- RT1 is accurate to a few ulps barring over/underflow.
-
- RT2 may be inaccurate if there is massive cancellation in the
- determinant A*C-B*B; higher precision or correctly rounded or
- correctly truncated arithmetic would be needed to compute RT2
- accurately in all cases.
-
- CS1 and SN1 are accurate to a few ulps barring over/underflow.
-
- Overflow is possible only if RT1 is within a factor of 5 of overflow.
- Underflow is harmless if the input data is 0 or exceeds
- underflow_threshold / macheps.
-
- =====================================================================
-
-
- Compute the eigenvalues
-*/
-
- sm = *a + *c__;
- df = *a - *c__;
- adf = abs(df);
- tb = *b + *b;
- ab = abs(tb);
- if (abs(*a) > abs(*c__)) {
- acmx = *a;
- acmn = *c__;
- } else {
- acmx = *c__;
- acmn = *a;
- }
- if (adf > ab) {
-/* Computing 2nd power */
- d__1 = ab / adf;
- rt = adf * sqrt(d__1 * d__1 + 1.);
- } else if (adf < ab) {
-/* Computing 2nd power */
- d__1 = adf / ab;
- rt = ab * sqrt(d__1 * d__1 + 1.);
- } else {
-
-/* Includes case AB=ADF=0 */
-
- rt = ab * sqrt(2.);
- }
- if (sm < 0.) {
- *rt1 = (sm - rt) * .5;
- sgn1 = -1;
-
-/*
- Order of execution important.
- To get fully accurate smaller eigenvalue,
- next line needs to be executed in higher precision.
-*/
-
- *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
- } else if (sm > 0.) {
- *rt1 = (sm + rt) * .5;
- sgn1 = 1;
-
-/*
- Order of execution important.
- To get fully accurate smaller eigenvalue,
- next line needs to be executed in higher precision.
-*/
-
- *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
- } else {
-
-/* Includes case RT1 = RT2 = 0 */
-
- *rt1 = rt * .5;
- *rt2 = rt * -.5;
- sgn1 = 1;
- }
-
-/* Compute the eigenvector */
-
- if (df >= 0.) {
- cs = df + rt;
- sgn2 = 1;
- } else {
- cs = df - rt;
- sgn2 = -1;
- }
- acs = abs(cs);
- if (acs > ab) {
- ct = -tb / cs;
- *sn1 = 1. / sqrt(ct * ct + 1.);
- *cs1 = ct * *sn1;
- } else {
- if (ab == 0.) {
- *cs1 = 1.;
- *sn1 = 0.;
- } else {
- tn = -cs / tb;
- *cs1 = 1. / sqrt(tn * tn + 1.);
- *sn1 = tn * *cs1;
- }
- }
- if (sgn1 == sgn2) {
- tn = *cs1;
- *cs1 = -(*sn1);
- *sn1 = tn;
- }
- return 0;
-
-/* End of DLAEV2 */
-
-} /* dlaev2_ */
-
-/* Subroutine */ int dlahqr_(logical *wantt, logical *wantz, integer *n,
- integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal
- *wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__,
- integer *ldz, integer *info)
-{
- /* System generated locals */
- integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static integer i__, j, k, l, m;
- static doublereal s, v[3];
- static integer i1, i2;
- static doublereal t1, t2, t3, v1, v2, v3, h00, h10, h11, h12, h21, h22,
- h33, h44;
- static integer nh;
- static doublereal cs;
- static integer nr;
- static doublereal sn;
- static integer nz;
- static doublereal ave, h33s, h44s;
- static integer itn, its;
- static doublereal ulp, sum, tst1, h43h34, disc, unfl, ovfl;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- static doublereal work[1];
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), dlanv2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *), dlabad_(
- doublereal *, doublereal *);
-
- extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
- integer *, doublereal *);
- extern doublereal dlanhs_(char *, integer *, doublereal *, integer *,
- doublereal *);
- static doublereal smlnum;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLAHQR is an auxiliary routine called by DHSEQR to update the
- eigenvalues and Schur decomposition already computed by DHSEQR, by
- dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
-
- Arguments
- =========
-
- WANTT (input) LOGICAL
- = .TRUE. : the full Schur form T is required;
- = .FALSE.: only eigenvalues are required.
-
- WANTZ (input) LOGICAL
- = .TRUE. : the matrix of Schur vectors Z is required;
- = .FALSE.: Schur vectors are not required.
-
- N (input) INTEGER
- The order of the matrix H. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- It is assumed that H is already upper quasi-triangular in
- rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
- ILO = 1). DLAHQR works primarily with the Hessenberg
- submatrix in rows and columns ILO to IHI, but applies
- transformations to all of H if WANTT is .TRUE..
- 1 <= ILO <= max(1,IHI); IHI <= N.
-
- H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
- On entry, the upper Hessenberg matrix H.
- On exit, if WANTT is .TRUE., H is upper quasi-triangular in
- rows and columns ILO:IHI, with any 2-by-2 diagonal blocks in
- standard form. If WANTT is .FALSE., the contents of H are
- unspecified on exit.
-
- LDH (input) INTEGER
- The leading dimension of the array H. LDH >= max(1,N).
-
- WR (output) DOUBLE PRECISION array, dimension (N)
- WI (output) DOUBLE PRECISION array, dimension (N)
- The real and imaginary parts, respectively, of the computed
- eigenvalues ILO to IHI are stored in the corresponding
- elements of WR and WI. If two eigenvalues are computed as a
- complex conjugate pair, they are stored in consecutive
- elements of WR and WI, say the i-th and (i+1)th, with
- WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
- eigenvalues are stored in the same order as on the diagonal
- of the Schur form returned in H, with WR(i) = H(i,i), and, if
- H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
- WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
-
- ILOZ (input) INTEGER
- IHIZ (input) INTEGER
- Specify the rows of Z to which transformations must be
- applied if WANTZ is .TRUE..
- 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
-
- Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
- If WANTZ is .TRUE., on entry Z must contain the current
- matrix Z of transformations accumulated by DHSEQR, and on
- exit Z has been updated; transformations are applied only to
- the submatrix Z(ILOZ:IHIZ,ILO:IHI).
- If WANTZ is .FALSE., Z is not referenced.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- > 0: DLAHQR failed to compute all the eigenvalues ILO to IHI
- in a total of 30*(IHI-ILO+1) iterations; if INFO = i,
- elements i+1:ihi of WR and WI contain those eigenvalues
- which have been successfully computed.
-
- Further Details
- ===============
-
- 2-96 Based on modifications by
- David Day, Sandia National Laboratory, USA
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- --wr;
- --wi;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
-
- /* Function Body */
- *info = 0;
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
- if (*ilo == *ihi) {
- wr[*ilo] = h__[*ilo + *ilo * h_dim1];
- wi[*ilo] = 0.;
- return 0;
- }
-
- nh = *ihi - *ilo + 1;
- nz = *ihiz - *iloz + 1;
-
-/*
- Set machine-dependent constants for the stopping criterion.
- If norm(H) <= sqrt(OVFL), overflow should not occur.
-*/
-
- unfl = SAFEMINIMUM;
- ovfl = 1. / unfl;
- dlabad_(&unfl, &ovfl);
- ulp = PRECISION;
- smlnum = unfl * (nh / ulp);
-
-/*
- I1 and I2 are the indices of the first row and last column of H
- to which transformations must be applied. If eigenvalues only are
- being computed, I1 and I2 are set inside the main loop.
-*/
-
- if (*wantt) {
- i1 = 1;
- i2 = *n;
- }
-
-/* ITN is the total number of QR iterations allowed. */
-
- itn = nh * 30;
-
-/*
- The main loop begins here. I is the loop index and decreases from
- IHI to ILO in steps of 1 or 2. Each iteration of the loop works
- with the active submatrix in rows and columns L to I.
- Eigenvalues I+1 to IHI have already converged. Either L = ILO or
- H(L,L-1) is negligible so that the matrix splits.
-*/
-
- i__ = *ihi;
-L10:
- l = *ilo;
- if (i__ < *ilo) {
- goto L150;
- }
-
-/*
- Perform QR iterations on rows and columns ILO to I until a
- submatrix of order 1 or 2 splits off at the bottom because a
- subdiagonal element has become negligible.
-*/
-
- i__1 = itn;
- for (its = 0; its <= i__1; ++its) {
-
-/* Look for a single small subdiagonal element. */
-
- i__2 = l + 1;
- for (k = i__; k >= i__2; --k) {
- tst1 = (d__1 = h__[k - 1 + (k - 1) * h_dim1], abs(d__1)) + (d__2 =
- h__[k + k * h_dim1], abs(d__2));
- if (tst1 == 0.) {
- i__3 = i__ - l + 1;
- tst1 = dlanhs_("1", &i__3, &h__[l + l * h_dim1], ldh, work);
- }
-/* Computing MAX */
- d__2 = ulp * tst1;
- if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= max(d__2,
- smlnum)) {
- goto L30;
- }
-/* L20: */
- }
-L30:
- l = k;
- if (l > *ilo) {
-
-/* H(L,L-1) is negligible */
-
- h__[l + (l - 1) * h_dim1] = 0.;
- }
-
-/* Exit from loop if a submatrix of order 1 or 2 has split off. */
-
- if (l >= i__ - 1) {
- goto L140;
- }
-
-/*
- Now the active submatrix is in rows and columns L to I. If
- eigenvalues only are being computed, only the active submatrix
- need be transformed.
-*/
-
- if (! (*wantt)) {
- i1 = l;
- i2 = i__;
- }
-
- if (its == 10 || its == 20) {
-
-/* Exceptional shift. */
-
- s = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1)) + (d__2 =
- h__[i__ - 1 + (i__ - 2) * h_dim1], abs(d__2));
- h44 = s * .75 + h__[i__ + i__ * h_dim1];
- h33 = h44;
- h43h34 = s * -.4375 * s;
- } else {
-
-/*
- Prepare to use Francis' double shift
- (i.e. 2nd degree generalized Rayleigh quotient)
-*/
-
- h44 = h__[i__ + i__ * h_dim1];
- h33 = h__[i__ - 1 + (i__ - 1) * h_dim1];
- h43h34 = h__[i__ + (i__ - 1) * h_dim1] * h__[i__ - 1 + i__ *
- h_dim1];
- s = h__[i__ - 1 + (i__ - 2) * h_dim1] * h__[i__ - 1 + (i__ - 2) *
- h_dim1];
- disc = (h33 - h44) * .5;
- disc = disc * disc + h43h34;
- if (disc > 0.) {
-
-/* Real roots: use Wilkinson's shift twice */
-
- disc = sqrt(disc);
- ave = (h33 + h44) * .5;
- if (abs(h33) - abs(h44) > 0.) {
- h33 = h33 * h44 - h43h34;
- h44 = h33 / (d_sign(&disc, &ave) + ave);
- } else {
- h44 = d_sign(&disc, &ave) + ave;
- }
- h33 = h44;
- h43h34 = 0.;
- }
- }
-
-/* Look for two consecutive small subdiagonal elements. */
-
- i__2 = l;
- for (m = i__ - 2; m >= i__2; --m) {
-/*
- Determine the effect of starting the double-shift QR
- iteration at row M, and see if this would make H(M,M-1)
- negligible.
-*/
-
- h11 = h__[m + m * h_dim1];
- h22 = h__[m + 1 + (m + 1) * h_dim1];
- h21 = h__[m + 1 + m * h_dim1];
- h12 = h__[m + (m + 1) * h_dim1];
- h44s = h44 - h11;
- h33s = h33 - h11;
- v1 = (h33s * h44s - h43h34) / h21 + h12;
- v2 = h22 - h11 - h33s - h44s;
- v3 = h__[m + 2 + (m + 1) * h_dim1];
- s = abs(v1) + abs(v2) + abs(v3);
- v1 /= s;
- v2 /= s;
- v3 /= s;
- v[0] = v1;
- v[1] = v2;
- v[2] = v3;
- if (m == l) {
- goto L50;
- }
- h00 = h__[m - 1 + (m - 1) * h_dim1];
- h10 = h__[m + (m - 1) * h_dim1];
- tst1 = abs(v1) * (abs(h00) + abs(h11) + abs(h22));
- if (abs(h10) * (abs(v2) + abs(v3)) <= ulp * tst1) {
- goto L50;
- }
-/* L40: */
- }
-L50:
-
-/* Double-shift QR step */
-
- i__2 = i__ - 1;
- for (k = m; k <= i__2; ++k) {
-
-/*
- The first iteration of this loop determines a reflection G
- from the vector V and applies it from left and right to H,
- thus creating a nonzero bulge below the subdiagonal.
-
- Each subsequent iteration determines a reflection G to
- restore the Hessenberg form in the (K-1)th column, and thus
- chases the bulge one step toward the bottom of the active
- submatrix. NR is the order of G.
-
- Computing MIN
-*/
- i__3 = 3, i__4 = i__ - k + 1;
- nr = min(i__3,i__4);
- if (k > m) {
- dcopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
- }
- dlarfg_(&nr, v, &v[1], &c__1, &t1);
- if (k > m) {
- h__[k + (k - 1) * h_dim1] = v[0];
- h__[k + 1 + (k - 1) * h_dim1] = 0.;
- if (k < i__ - 1) {
- h__[k + 2 + (k - 1) * h_dim1] = 0.;
- }
- } else if (m > l) {
- h__[k + (k - 1) * h_dim1] = -h__[k + (k - 1) * h_dim1];
- }
- v2 = v[1];
- t2 = t1 * v2;
- if (nr == 3) {
- v3 = v[2];
- t3 = t1 * v3;
-
-/*
- Apply G from the left to transform the rows of the matrix
- in columns K to I2.
-*/
-
- i__3 = i2;
- for (j = k; j <= i__3; ++j) {
- sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1]
- + v3 * h__[k + 2 + j * h_dim1];
- h__[k + j * h_dim1] -= sum * t1;
- h__[k + 1 + j * h_dim1] -= sum * t2;
- h__[k + 2 + j * h_dim1] -= sum * t3;
-/* L60: */
- }
-
-/*
- Apply G from the right to transform the columns of the
- matrix in rows I1 to min(K+3,I).
-
- Computing MIN
-*/
- i__4 = k + 3;
- i__3 = min(i__4,i__);
- for (j = i1; j <= i__3; ++j) {
- sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
- + v3 * h__[j + (k + 2) * h_dim1];
- h__[j + k * h_dim1] -= sum * t1;
- h__[j + (k + 1) * h_dim1] -= sum * t2;
- h__[j + (k + 2) * h_dim1] -= sum * t3;
-/* L70: */
- }
-
- if (*wantz) {
-
-/* Accumulate transformations in the matrix Z */
-
- i__3 = *ihiz;
- for (j = *iloz; j <= i__3; ++j) {
- sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) *
- z_dim1] + v3 * z__[j + (k + 2) * z_dim1];
- z__[j + k * z_dim1] -= sum * t1;
- z__[j + (k + 1) * z_dim1] -= sum * t2;
- z__[j + (k + 2) * z_dim1] -= sum * t3;
-/* L80: */
- }
- }
- } else if (nr == 2) {
-
-/*
- Apply G from the left to transform the rows of the matrix
- in columns K to I2.
-*/
-
- i__3 = i2;
- for (j = k; j <= i__3; ++j) {
- sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1];
- h__[k + j * h_dim1] -= sum * t1;
- h__[k + 1 + j * h_dim1] -= sum * t2;
-/* L90: */
- }
-
-/*
- Apply G from the right to transform the columns of the
- matrix in rows I1 to min(K+3,I).
-*/
-
- i__3 = i__;
- for (j = i1; j <= i__3; ++j) {
- sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
- ;
- h__[j + k * h_dim1] -= sum * t1;
- h__[j + (k + 1) * h_dim1] -= sum * t2;
-/* L100: */
- }
-
- if (*wantz) {
-
-/* Accumulate transformations in the matrix Z */
-
- i__3 = *ihiz;
- for (j = *iloz; j <= i__3; ++j) {
- sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) *
- z_dim1];
- z__[j + k * z_dim1] -= sum * t1;
- z__[j + (k + 1) * z_dim1] -= sum * t2;
-/* L110: */
- }
- }
- }
-/* L120: */
- }
-
-/* L130: */
- }
-
-/* Failure to converge in remaining number of iterations */
-
- *info = i__;
- return 0;
-
-L140:
-
- if (l == i__) {
-
-/* H(I,I-1) is negligible: one eigenvalue has converged. */
-
- wr[i__] = h__[i__ + i__ * h_dim1];
- wi[i__] = 0.;
- } else if (l == i__ - 1) {
-
-/*
- H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
-
- Transform the 2-by-2 submatrix to standard Schur form,
- and compute and store the eigenvalues.
-*/
-
- dlanv2_(&h__[i__ - 1 + (i__ - 1) * h_dim1], &h__[i__ - 1 + i__ *
- h_dim1], &h__[i__ + (i__ - 1) * h_dim1], &h__[i__ + i__ *
- h_dim1], &wr[i__ - 1], &wi[i__ - 1], &wr[i__], &wi[i__], &cs,
- &sn);
-
- if (*wantt) {
-
-/* Apply the transformation to the rest of H. */
-
- if (i2 > i__) {
- i__1 = i2 - i__;
- drot_(&i__1, &h__[i__ - 1 + (i__ + 1) * h_dim1], ldh, &h__[
- i__ + (i__ + 1) * h_dim1], ldh, &cs, &sn);
- }
- i__1 = i__ - i1 - 1;
- drot_(&i__1, &h__[i1 + (i__ - 1) * h_dim1], &c__1, &h__[i1 + i__ *
- h_dim1], &c__1, &cs, &sn);
- }
- if (*wantz) {
-
-/* Apply the transformation to Z. */
-
- drot_(&nz, &z__[*iloz + (i__ - 1) * z_dim1], &c__1, &z__[*iloz +
- i__ * z_dim1], &c__1, &cs, &sn);
- }
- }
-
-/*
- Decrement number of remaining iterations, and return to start of
- the main loop with new value of I.
-*/
-
- itn -= its;
- i__ = l - 1;
- goto L10;
-
-L150:
- return 0;
-
-/* End of DLAHQR */
-
-} /* dlahqr_ */
-
-/* Subroutine */ int dlahrd_(integer *n, integer *k, integer *nb, doublereal *
- a, integer *lda, doublereal *tau, doublereal *t, integer *ldt,
- doublereal *y, integer *ldy)
-{
- /* System generated locals */
- integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
- i__3;
- doublereal d__1;
-
- /* Local variables */
- static integer i__;
- static doublereal ei;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *), dgemv_(char *, integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), dcopy_(integer *, doublereal *,
- integer *, doublereal *, integer *), daxpy_(integer *, doublereal
- *, doublereal *, integer *, doublereal *, integer *), dtrmv_(char
- *, char *, char *, integer *, doublereal *, integer *, doublereal
- *, integer *), dlarfg_(integer *,
- doublereal *, doublereal *, integer *, doublereal *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
- matrix A so that elements below the k-th subdiagonal are zero. The
- reduction is performed by an orthogonal similarity transformation
- Q' * A * Q. The routine returns the matrices V and T which determine
- Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
-
- This is an auxiliary routine called by DGEHRD.
-
- Arguments
- =========
-
- N (input) INTEGER
- The order of the matrix A.
-
- K (input) INTEGER
- The offset for the reduction. Elements below the k-th
- subdiagonal in the first NB columns are reduced to zero.
-
- NB (input) INTEGER
- The number of columns to be reduced.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
- On entry, the n-by-(n-k+1) general matrix A.
- On exit, the elements on and above the k-th subdiagonal in
- the first NB columns are overwritten with the corresponding
- elements of the reduced matrix; the elements below the k-th
- subdiagonal, with the array TAU, represent the matrix Q as a
- product of elementary reflectors. The other columns of A are
- unchanged. See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- TAU (output) DOUBLE PRECISION array, dimension (NB)
- The scalar factors of the elementary reflectors. See Further
- Details.
-
- T (output) DOUBLE PRECISION array, dimension (LDT,NB)
- The upper triangular matrix T.
-
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= NB.
-
- Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
- The n-by-nb matrix Y.
-
- LDY (input) INTEGER
- The leading dimension of the array Y. LDY >= N.
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of nb elementary reflectors
-
- Q = H(1) H(2) . . . H(nb).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
- A(i+k+1:n,i), and tau in TAU(i).
-
- The elements of the vectors v together form the (n-k+1)-by-nb matrix
- V which is needed, with T and Y, to apply the transformation to the
- unreduced part of the matrix, using an update of the form:
- A := (I - V*T*V') * (A - Y*V').
-
- The contents of A on exit are illustrated by the following example
- with n = 7, k = 3 and nb = 2:
-
- ( a h a a a )
- ( a h a a a )
- ( a h a a a )
- ( h h a a a )
- ( v1 h a a a )
- ( v1 v2 a a a )
- ( v1 v2 a a a )
-
- where a denotes an element of the original matrix A, h denotes a
- modified element of the upper Hessenberg matrix H, and vi denotes an
- element of the vector defining H(i).
-
- =====================================================================
-
-
- Quick return if possible
-*/
-
- /* Parameter adjustments */
- --tau;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1 * 1;
- y -= y_offset;
-
- /* Function Body */
- if (*n <= 1) {
- return 0;
- }
-
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (i__ > 1) {
-
-/*
- Update A(1:n,i)
-
- Compute i-th column of A - Y * V'
-*/
-
- i__2 = i__ - 1;
- dgemv_("No transpose", n, &i__2, &c_b151, &y[y_offset], ldy, &a[*
- k + i__ - 1 + a_dim1], lda, &c_b15, &a[i__ * a_dim1 + 1],
- &c__1);
-
-/*
- Apply I - V * T' * V' to this column (call it b) from the
- left, using the last column of T as workspace
-
- Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
- ( V2 ) ( b2 )
-
- where V1 is unit lower triangular
-
- w := V1' * b1
-*/
-
- i__2 = i__ - 1;
- dcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
- 1], &c__1);
- i__2 = i__ - 1;
- dtrmv_("Lower", "Transpose", "Unit", &i__2, &a[*k + 1 + a_dim1],
- lda, &t[*nb * t_dim1 + 1], &c__1);
-
-/* w := w + V2'*b2 */
-
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[*k + i__ + a_dim1],
- lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b15, &t[*nb *
- t_dim1 + 1], &c__1);
-
-/* w := T'*w */
-
- i__2 = i__ - 1;
- dtrmv_("Upper", "Transpose", "Non-unit", &i__2, &t[t_offset], ldt,
- &t[*nb * t_dim1 + 1], &c__1);
-
-/* b2 := b2 - V2*w */
-
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[*k + i__ +
- a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1, &c_b15, &a[*k
- + i__ + i__ * a_dim1], &c__1);
-
-/* b1 := b1 - V1*w */
-
- i__2 = i__ - 1;
- dtrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
- , lda, &t[*nb * t_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- daxpy_(&i__2, &c_b151, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 +
- i__ * a_dim1], &c__1);
-
- a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
- }
-
-/*
- Generate the elementary reflector H(i) to annihilate
- A(k+i+1:n,i)
-*/
-
- i__2 = *n - *k - i__ + 1;
-/* Computing MIN */
- i__3 = *k + i__ + 1;
- dlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[min(i__3,*n) + i__ *
- a_dim1], &c__1, &tau[i__]);
- ei = a[*k + i__ + i__ * a_dim1];
- a[*k + i__ + i__ * a_dim1] = 1.;
-
-/* Compute Y(1:n,i) */
-
- i__2 = *n - *k - i__ + 1;
- dgemv_("No transpose", n, &i__2, &c_b15, &a[(i__ + 1) * a_dim1 + 1],
- lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b29, &y[i__ *
- y_dim1 + 1], &c__1);
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[*k + i__ + a_dim1], lda,
- &a[*k + i__ + i__ * a_dim1], &c__1, &c_b29, &t[i__ * t_dim1 +
- 1], &c__1);
- i__2 = i__ - 1;
- dgemv_("No transpose", n, &i__2, &c_b151, &y[y_offset], ldy, &t[i__ *
- t_dim1 + 1], &c__1, &c_b15, &y[i__ * y_dim1 + 1], &c__1);
- dscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);
-
-/* Compute T(1:i,i) */
-
- i__2 = i__ - 1;
- d__1 = -tau[i__];
- dscal_(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
- &t[i__ * t_dim1 + 1], &c__1)
- ;
- t[i__ + i__ * t_dim1] = tau[i__];
-
-/* L10: */
- }
- a[*k + *nb + *nb * a_dim1] = ei;
-
- return 0;
-
-/* End of DLAHRD */
-
-} /* dlahrd_ */
-
-/* Subroutine */ int dlaln2_(logical *ltrans, integer *na, integer *nw,
- doublereal *smin, doublereal *ca, doublereal *a, integer *lda,
- doublereal *d1, doublereal *d2, doublereal *b, integer *ldb,
- doublereal *wr, doublereal *wi, doublereal *x, integer *ldx,
- doublereal *scale, doublereal *xnorm, integer *info)
-{
- /* Initialized data */
-
- static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
- static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
- static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
- 4,3,2,1 };
-
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
- doublereal d__1, d__2, d__3, d__4, d__5, d__6;
- static doublereal equiv_0[4], equiv_1[4];
-
- /* Local variables */
- static integer j;
-#define ci (equiv_0)
-#define cr (equiv_1)
- static doublereal bi1, bi2, br1, br2, xi1, xi2, xr1, xr2, ci21, ci22,
- cr21, cr22, li21, csi, ui11, lr21, ui12, ui22;
-#define civ (equiv_0)
- static doublereal csr, ur11, ur12, ur22;
-#define crv (equiv_1)
- static doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s, u22abs;
- static integer icmax;
- static doublereal bnorm, cnorm, smini;
-
- extern /* Subroutine */ int dladiv_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *);
- static doublereal bignum, smlnum;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLALN2 solves a system of the form (ca A - w D ) X = s B
- or (ca A' - w D) X = s B with possible scaling ("s") and
- perturbation of A. (A' means A-transpose.)
-
- A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA
- real diagonal matrix, w is a real or complex value, and X and B are
- NA x 1 matrices -- real if w is real, complex if w is complex. NA
- may be 1 or 2.
-
- If w is complex, X and B are represented as NA x 2 matrices,
- the first column of each being the real part and the second
- being the imaginary part.
-
- "s" is a scaling factor (.LE. 1), computed by DLALN2, which is
- so chosen that X can be computed without overflow. X is further
- scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
- than overflow.
-
- If both singular values of (ca A - w D) are less than SMIN,
- SMIN*identity will be used instead of (ca A - w D). If only one
- singular value is less than SMIN, one element of (ca A - w D) will be
- perturbed enough to make the smallest singular value roughly SMIN.
- If both singular values are at least SMIN, (ca A - w D) will not be
- perturbed. In any case, the perturbation will be at most some small
- multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values
- are computed by infinity-norm approximations, and thus will only be
- correct to a factor of 2 or so.
-
- Note: all input quantities are assumed to be smaller than overflow
- by a reasonable factor. (See BIGNUM.)
-
- Arguments
- ==========
-
- LTRANS (input) LOGICAL
- =.TRUE.: A-transpose will be used.
- =.FALSE.: A will be used (not transposed.)
-
- NA (input) INTEGER
- The size of the matrix A. It may (only) be 1 or 2.
-
- NW (input) INTEGER
- 1 if "w" is real, 2 if "w" is complex. It may only be 1
- or 2.
-
- SMIN (input) DOUBLE PRECISION
- The desired lower bound on the singular values of A. This
- should be a safe distance away from underflow or overflow,
- say, between (underflow/machine precision) and (machine
- precision * overflow ). (See BIGNUM and ULP.)
-
- CA (input) DOUBLE PRECISION
- The coefficient c, which A is multiplied by.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,NA)
- The NA x NA matrix A.
-
- LDA (input) INTEGER
- The leading dimension of A. It must be at least NA.
-
- D1 (input) DOUBLE PRECISION
- The 1,1 element in the diagonal matrix D.
-
- D2 (input) DOUBLE PRECISION
- The 2,2 element in the diagonal matrix D. Not used if NW=1.
-
- B (input) DOUBLE PRECISION array, dimension (LDB,NW)
- The NA x NW matrix B (right-hand side). If NW=2 ("w" is
- complex), column 1 contains the real part of B and column 2
- contains the imaginary part.
-
- LDB (input) INTEGER
- The leading dimension of B. It must be at least NA.
-
- WR (input) DOUBLE PRECISION
- The real part of the scalar "w".
-
- WI (input) DOUBLE PRECISION
- The imaginary part of the scalar "w". Not used if NW=1.
-
- X (output) DOUBLE PRECISION array, dimension (LDX,NW)
- The NA x NW matrix X (unknowns), as computed by DLALN2.
- If NW=2 ("w" is complex), on exit, column 1 will contain
- the real part of X and column 2 will contain the imaginary
- part.
-
- LDX (input) INTEGER
- The leading dimension of X. It must be at least NA.
-
- SCALE (output) DOUBLE PRECISION
- The scale factor that B must be multiplied by to insure
- that overflow does not occur when computing X. Thus,
- (ca A - w D) X will be SCALE*B, not B (ignoring
- perturbations of A.) It will be at most 1.
-
- XNORM (output) DOUBLE PRECISION
- The infinity-norm of X, when X is regarded as an NA x NW
- real matrix.
-
- INFO (output) INTEGER
- An error flag. It will be set to zero if no error occurs,
- a negative number if an argument is in error, or a positive
- number if ca A - w D had to be perturbed.
- The possible values are:
- = 0: No error occurred, and (ca A - w D) did not have to be
- perturbed.
- = 1: (ca A - w D) had to be perturbed to make its smallest
- (or only) singular value greater than SMIN.
- NOTE: In the interests of speed, this routine does not
- check the inputs for errors.
-
- =====================================================================
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
-
- /* Function Body */
-
-/* Compute BIGNUM */
-
- smlnum = 2. * SAFEMINIMUM;
- bignum = 1. / smlnum;
- smini = max(*smin,smlnum);
-
-/* Don't check for input errors */
-
- *info = 0;
-
-/* Standard Initializations */
-
- *scale = 1.;
-
- if (*na == 1) {
-
-/* 1 x 1 (i.e., scalar) system C X = B */
-
- if (*nw == 1) {
-
-/*
- Real 1x1 system.
-
- C = ca A - w D
-*/
-
- csr = *ca * a[a_dim1 + 1] - *wr * *d1;
- cnorm = abs(csr);
-
-/* If | C | < SMINI, use C = SMINI */
-
- if (cnorm < smini) {
- csr = smini;
- cnorm = smini;
- *info = 1;
- }
-
-/* Check scaling for X = B / C */
-
- bnorm = (d__1 = b[b_dim1 + 1], abs(d__1));
- if ((cnorm < 1. && bnorm > 1.)) {
- if (bnorm > bignum * cnorm) {
- *scale = 1. / bnorm;
- }
- }
-
-/* Compute X */
-
- x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr;
- *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
- } else {
-
-/*
- Complex 1x1 system (w is complex)
-
- C = ca A - w D
-*/
-
- csr = *ca * a[a_dim1 + 1] - *wr * *d1;
- csi = -(*wi) * *d1;
- cnorm = abs(csr) + abs(csi);
-
-/* If | C | < SMINI, use C = SMINI */
-
- if (cnorm < smini) {
- csr = smini;
- csi = 0.;
- cnorm = smini;
- *info = 1;
- }
-
-/* Check scaling for X = B / C */
-
- bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[((b_dim1) <<
- (1)) + 1], abs(d__2));
- if ((cnorm < 1. && bnorm > 1.)) {
- if (bnorm > bignum * cnorm) {
- *scale = 1. / bnorm;
- }
- }
-
-/* Compute X */
-
- d__1 = *scale * b[b_dim1 + 1];
- d__2 = *scale * b[((b_dim1) << (1)) + 1];
- dladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[((x_dim1) <<
- (1)) + 1]);
- *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[((x_dim1)
- << (1)) + 1], abs(d__2));
- }
-
- } else {
-
-/*
- 2x2 System
-
- Compute the real part of C = ca A - w D (or ca A' - w D )
-*/
-
- cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1;
- cr[3] = *ca * a[((a_dim1) << (1)) + 2] - *wr * *d2;
- if (*ltrans) {
- cr[2] = *ca * a[a_dim1 + 2];
- cr[1] = *ca * a[((a_dim1) << (1)) + 1];
- } else {
- cr[1] = *ca * a[a_dim1 + 2];
- cr[2] = *ca * a[((a_dim1) << (1)) + 1];
- }
-
- if (*nw == 1) {
-
-/*
- Real 2x2 system (w is real)
-
- Find the largest element in C
-*/
-
- cmax = 0.;
- icmax = 0;
-
- for (j = 1; j <= 4; ++j) {
- if ((d__1 = crv[j - 1], abs(d__1)) > cmax) {
- cmax = (d__1 = crv[j - 1], abs(d__1));
- icmax = j;
- }
-/* L10: */
- }
-
-/* If norm(C) < SMINI, use SMINI*identity. */
-
- if (cmax < smini) {
-/* Computing MAX */
- d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[
- b_dim1 + 2], abs(d__2));
- bnorm = max(d__3,d__4);
- if ((smini < 1. && bnorm > 1.)) {
- if (bnorm > bignum * smini) {
- *scale = 1. / bnorm;
- }
- }
- temp = *scale / smini;
- x[x_dim1 + 1] = temp * b[b_dim1 + 1];
- x[x_dim1 + 2] = temp * b[b_dim1 + 2];
- *xnorm = temp * bnorm;
- *info = 1;
- return 0;
- }
-
-/* Gaussian elimination with complete pivoting. */
-
- ur11 = crv[icmax - 1];
- cr21 = crv[ipivot[((icmax) << (2)) - 3] - 1];
- ur12 = crv[ipivot[((icmax) << (2)) - 2] - 1];
- cr22 = crv[ipivot[((icmax) << (2)) - 1] - 1];
- ur11r = 1. / ur11;
- lr21 = ur11r * cr21;
- ur22 = cr22 - ur12 * lr21;
-
-/* If smaller pivot < SMINI, use SMINI */
-
- if (abs(ur22) < smini) {
- ur22 = smini;
- *info = 1;
- }
- if (rswap[icmax - 1]) {
- br1 = b[b_dim1 + 2];
- br2 = b[b_dim1 + 1];
- } else {
- br1 = b[b_dim1 + 1];
- br2 = b[b_dim1 + 2];
- }
- br2 -= lr21 * br1;
-/* Computing MAX */
- d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2);
- bbnd = max(d__2,d__3);
- if ((bbnd > 1. && abs(ur22) < 1.)) {
- if (bbnd >= bignum * abs(ur22)) {
- *scale = 1. / bbnd;
- }
- }
-
- xr2 = br2 * *scale / ur22;
- xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
- if (zswap[icmax - 1]) {
- x[x_dim1 + 1] = xr2;
- x[x_dim1 + 2] = xr1;
- } else {
- x[x_dim1 + 1] = xr1;
- x[x_dim1 + 2] = xr2;
- }
-/* Computing MAX */
- d__1 = abs(xr1), d__2 = abs(xr2);
- *xnorm = max(d__1,d__2);
-
-/* Further scaling if norm(A) norm(X) > overflow */
-
- if ((*xnorm > 1. && cmax > 1.)) {
- if (*xnorm > bignum / cmax) {
- temp = cmax / bignum;
- x[x_dim1 + 1] = temp * x[x_dim1 + 1];
- x[x_dim1 + 2] = temp * x[x_dim1 + 2];
- *xnorm = temp * *xnorm;
- *scale = temp * *scale;
- }
- }
- } else {
-
-/*
- Complex 2x2 system (w is complex)
-
- Find the largest element in C
-*/
-
- ci[0] = -(*wi) * *d1;
- ci[1] = 0.;
- ci[2] = 0.;
- ci[3] = -(*wi) * *d2;
- cmax = 0.;
- icmax = 0;
-
- for (j = 1; j <= 4; ++j) {
- if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs(
- d__2)) > cmax) {
- cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1]
- , abs(d__2));
- icmax = j;
- }
-/* L20: */
- }
-
-/* If norm(C) < SMINI, use SMINI*identity. */
-
- if (cmax < smini) {
-/* Computing MAX */
- d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[((b_dim1)
- << (1)) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 +
- 2], abs(d__3)) + (d__4 = b[((b_dim1) << (1)) + 2],
- abs(d__4));
- bnorm = max(d__5,d__6);
- if ((smini < 1. && bnorm > 1.)) {
- if (bnorm > bignum * smini) {
- *scale = 1. / bnorm;
- }
- }
- temp = *scale / smini;
- x[x_dim1 + 1] = temp * b[b_dim1 + 1];
- x[x_dim1 + 2] = temp * b[b_dim1 + 2];
- x[((x_dim1) << (1)) + 1] = temp * b[((b_dim1) << (1)) + 1];
- x[((x_dim1) << (1)) + 2] = temp * b[((b_dim1) << (1)) + 2];
- *xnorm = temp * bnorm;
- *info = 1;
- return 0;
- }
-
-/* Gaussian elimination with complete pivoting. */
-
- ur11 = crv[icmax - 1];
- ui11 = civ[icmax - 1];
- cr21 = crv[ipivot[((icmax) << (2)) - 3] - 1];
- ci21 = civ[ipivot[((icmax) << (2)) - 3] - 1];
- ur12 = crv[ipivot[((icmax) << (2)) - 2] - 1];
- ui12 = civ[ipivot[((icmax) << (2)) - 2] - 1];
- cr22 = crv[ipivot[((icmax) << (2)) - 1] - 1];
- ci22 = civ[ipivot[((icmax) << (2)) - 1] - 1];
- if (icmax == 1 || icmax == 4) {
-
-/* Code when off-diagonals of pivoted C are real */
-
- if (abs(ur11) > abs(ui11)) {
- temp = ui11 / ur11;
-/* Computing 2nd power */
- d__1 = temp;
- ur11r = 1. / (ur11 * (d__1 * d__1 + 1.));
- ui11r = -temp * ur11r;
- } else {
- temp = ur11 / ui11;
-/* Computing 2nd power */
- d__1 = temp;
- ui11r = -1. / (ui11 * (d__1 * d__1 + 1.));
- ur11r = -temp * ui11r;
- }
- lr21 = cr21 * ur11r;
- li21 = cr21 * ui11r;
- ur12s = ur12 * ur11r;
- ui12s = ur12 * ui11r;
- ur22 = cr22 - ur12 * lr21;
- ui22 = ci22 - ur12 * li21;
- } else {
-
-/* Code when diagonals of pivoted C are real */
-
- ur11r = 1. / ur11;
- ui11r = 0.;
- lr21 = cr21 * ur11r;
- li21 = ci21 * ur11r;
- ur12s = ur12 * ur11r;
- ui12s = ui12 * ur11r;
- ur22 = cr22 - ur12 * lr21 + ui12 * li21;
- ui22 = -ur12 * li21 - ui12 * lr21;
- }
- u22abs = abs(ur22) + abs(ui22);
-
-/* If smaller pivot < SMINI, use SMINI */
-
- if (u22abs < smini) {
- ur22 = smini;
- ui22 = 0.;
- *info = 1;
- }
- if (rswap[icmax - 1]) {
- br2 = b[b_dim1 + 1];
- br1 = b[b_dim1 + 2];
- bi2 = b[((b_dim1) << (1)) + 1];
- bi1 = b[((b_dim1) << (1)) + 2];
- } else {
- br1 = b[b_dim1 + 1];
- br2 = b[b_dim1 + 2];
- bi1 = b[((b_dim1) << (1)) + 1];
- bi2 = b[((b_dim1) << (1)) + 2];
- }
- br2 = br2 - lr21 * br1 + li21 * bi1;
- bi2 = bi2 - li21 * br1 - lr21 * bi1;
-/* Computing MAX */
- d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r))
- ), d__2 = abs(br2) + abs(bi2);
- bbnd = max(d__1,d__2);
- if ((bbnd > 1. && u22abs < 1.)) {
- if (bbnd >= bignum * u22abs) {
- *scale = 1. / bbnd;
- br1 = *scale * br1;
- bi1 = *scale * bi1;
- br2 = *scale * br2;
- bi2 = *scale * bi2;
- }
- }
-
- dladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
- xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
- xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
- if (zswap[icmax - 1]) {
- x[x_dim1 + 1] = xr2;
- x[x_dim1 + 2] = xr1;
- x[((x_dim1) << (1)) + 1] = xi2;
- x[((x_dim1) << (1)) + 2] = xi1;
- } else {
- x[x_dim1 + 1] = xr1;
- x[x_dim1 + 2] = xr2;
- x[((x_dim1) << (1)) + 1] = xi1;
- x[((x_dim1) << (1)) + 2] = xi2;
- }
-/* Computing MAX */
- d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2);
- *xnorm = max(d__1,d__2);
-
-/* Further scaling if norm(A) norm(X) > overflow */
-
- if ((*xnorm > 1. && cmax > 1.)) {
- if (*xnorm > bignum / cmax) {
- temp = cmax / bignum;
- x[x_dim1 + 1] = temp * x[x_dim1 + 1];
- x[x_dim1 + 2] = temp * x[x_dim1 + 2];
- x[((x_dim1) << (1)) + 1] = temp * x[((x_dim1) << (1)) + 1]
- ;
- x[((x_dim1) << (1)) + 2] = temp * x[((x_dim1) << (1)) + 2]
- ;
- *xnorm = temp * *xnorm;
- *scale = temp * *scale;
- }
- }
- }
- }
-
- return 0;
-
-/* End of DLALN2 */
-
-} /* dlaln2_ */
-
-#undef crv
-#undef civ
-#undef cr
-#undef ci
-
-
-/* Subroutine */ int dlals0_(integer *icompq, integer *nl, integer *nr,
- integer *sqre, integer *nrhs, doublereal *b, integer *ldb, doublereal
- *bx, integer *ldbx, integer *perm, integer *givptr, integer *givcol,
- integer *ldgcol, doublereal *givnum, integer *ldgnum, doublereal *
- poles, doublereal *difl, doublereal *difr, doublereal *z__, integer *
- k, doublereal *c__, doublereal *s, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer givcol_dim1, givcol_offset, b_dim1, b_offset, bx_dim1, bx_offset,
- difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1,
- poles_offset, i__1, i__2;
- doublereal d__1;
-
- /* Local variables */
- static integer i__, j, m, n;
- static doublereal dj;
- static integer nlp1;
- static doublereal temp;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- static doublereal diflj, difrj, dsigj;
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), dcopy_(integer *,
- doublereal *, integer *, doublereal *, integer *);
- extern doublereal dlamc3_(doublereal *, doublereal *);
- extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), dlacpy_(char *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *),
- xerbla_(char *, integer *);
- static doublereal dsigjp;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- December 1, 1999
-
-
- Purpose
- =======
-
- DLALS0 applies back the multiplying factors of either the left or the
- right singular vector matrix of a diagonal matrix appended by a row
- to the right hand side matrix B in solving the least squares problem
- using the divide-and-conquer SVD approach.
-
- For the left singular vector matrix, three types of orthogonal
- matrices are involved:
-
- (1L) Givens rotations: the number of such rotations is GIVPTR; the
- pairs of columns/rows they were applied to are stored in GIVCOL;
- and the C- and S-values of these rotations are stored in GIVNUM.
-
- (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
- row, and for J=2:N, PERM(J)-th row of B is to be moved to the
- J-th row.
-
- (3L) The left singular vector matrix of the remaining matrix.
-
- For the right singular vector matrix, four types of orthogonal
- matrices are involved:
-
- (1R) The right singular vector matrix of the remaining matrix.
-
- (2R) If SQRE = 1, one extra Givens rotation to generate the right
- null space.
-
- (3R) The inverse transformation of (2L).
-
- (4R) The inverse transformation of (1L).
-
- Arguments
- =========
-
- ICOMPQ (input) INTEGER
- Specifies whether singular vectors are to be computed in
- factored form:
- = 0: Left singular vector matrix.
- = 1: Right singular vector matrix.
-
- NL (input) INTEGER
- The row dimension of the upper block. NL >= 1.
-
- NR (input) INTEGER
- The row dimension of the lower block. NR >= 1.
-
- SQRE (input) INTEGER
- = 0: the lower block is an NR-by-NR square matrix.
- = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-
- The bidiagonal matrix has row dimension N = NL + NR + 1,
- and column dimension M = N + SQRE.
-
- NRHS (input) INTEGER
- The number of columns of B and BX. NRHS must be at least 1.
-
- B (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )
- On input, B contains the right hand sides of the least
- squares problem in rows 1 through M. On output, B contains
- the solution X in rows 1 through N.
-
- LDB (input) INTEGER
- The leading dimension of B. LDB must be at least
- max(1,MAX( M, N ) ).
-
- BX (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
-
- LDBX (input) INTEGER
- The leading dimension of BX.
-
- PERM (input) INTEGER array, dimension ( N )
- The permutations (from deflation and sorting) applied
- to the two blocks.
-
- GIVPTR (input) INTEGER
- The number of Givens rotations which took place in this
- subproblem.
-
- GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
- Each pair of numbers indicates a pair of rows/columns
- involved in a Givens rotation.
-
- LDGCOL (input) INTEGER
- The leading dimension of GIVCOL, must be at least N.
-
- GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
- Each number indicates the C or S value used in the
- corresponding Givens rotation.
-
- LDGNUM (input) INTEGER
- The leading dimension of arrays DIFR, POLES and
- GIVNUM, must be at least K.
-
- POLES (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
- On entry, POLES(1:K, 1) contains the new singular
- values obtained from solving the secular equation, and
- POLES(1:K, 2) is an array containing the poles in the secular
- equation.
-
- DIFL (input) DOUBLE PRECISION array, dimension ( K ).
- On entry, DIFL(I) is the distance between I-th updated
- (undeflated) singular value and the I-th (undeflated) old
- singular value.
-
- DIFR (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
- On entry, DIFR(I, 1) contains the distances between I-th
- updated (undeflated) singular value and the I+1-th
- (undeflated) old singular value. And DIFR(I, 2) is the
- normalizing factor for the I-th right singular vector.
-
- Z (input) DOUBLE PRECISION array, dimension ( K )
- Contain the components of the deflation-adjusted updating row
- vector.
-
- K (input) INTEGER
- Contains the dimension of the non-deflated matrix,
- This is the order of the related secular equation. 1 <= K <=N.
-
- C (input) DOUBLE PRECISION
- C contains garbage if SQRE =0 and the C-value of a Givens
- rotation related to the right null space if SQRE = 1.
-
- S (input) DOUBLE PRECISION
- S contains garbage if SQRE =0 and the S-value of a Givens
- rotation related to the right null space if SQRE = 1.
-
- WORK (workspace) DOUBLE PRECISION array, dimension ( K )
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Ren-Cang Li, Computer Science Division, University of
- California at Berkeley, USA
- Osni Marques, LBNL/NERSC, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- bx_dim1 = *ldbx;
- bx_offset = 1 + bx_dim1 * 1;
- bx -= bx_offset;
- --perm;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1 * 1;
- givcol -= givcol_offset;
- difr_dim1 = *ldgnum;
- difr_offset = 1 + difr_dim1 * 1;
- difr -= difr_offset;
- poles_dim1 = *ldgnum;
- poles_offset = 1 + poles_dim1 * 1;
- poles -= poles_offset;
- givnum_dim1 = *ldgnum;
- givnum_offset = 1 + givnum_dim1 * 1;
- givnum -= givnum_offset;
- --difl;
- --z__;
- --work;
-
- /* Function Body */
- *info = 0;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*nl < 1) {
- *info = -2;
- } else if (*nr < 1) {
- *info = -3;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -4;
- }
-
- n = *nl + *nr + 1;
-
- if (*nrhs < 1) {
- *info = -5;
- } else if (*ldb < n) {
- *info = -7;
- } else if (*ldbx < n) {
- *info = -9;
- } else if (*givptr < 0) {
- *info = -11;
- } else if (*ldgcol < n) {
- *info = -13;
- } else if (*ldgnum < n) {
- *info = -15;
- } else if (*k < 1) {
- *info = -20;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLALS0", &i__1);
- return 0;
- }
-
- m = n + *sqre;
- nlp1 = *nl + 1;
-
- if (*icompq == 0) {
-
-/*
- Apply back orthogonal transformations from the left.
-
- Step (1L): apply back the Givens rotations performed.
-*/
-
- i__1 = *givptr;
- for (i__ = 1; i__ <= i__1; ++i__) {
- drot_(nrhs, &b[givcol[i__ + ((givcol_dim1) << (1))] + b_dim1],
- ldb, &b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[
- i__ + ((givnum_dim1) << (1))], &givnum[i__ + givnum_dim1])
- ;
-/* L10: */
- }
-
-/* Step (2L): permute rows of B. */
-
- dcopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx);
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- dcopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1],
- ldbx);
-/* L20: */
- }
-
-/*
- Step (3L): apply the inverse of the left singular vector
- matrix to BX.
-*/
-
- if (*k == 1) {
- dcopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb);
- if (z__[1] < 0.) {
- dscal_(nrhs, &c_b151, &b[b_offset], ldb);
- }
- } else {
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- diflj = difl[j];
- dj = poles[j + poles_dim1];
- dsigj = -poles[j + ((poles_dim1) << (1))];
- if (j < *k) {
- difrj = -difr[j + difr_dim1];
- dsigjp = -poles[j + 1 + ((poles_dim1) << (1))];
- }
- if (z__[j] == 0. || poles[j + ((poles_dim1) << (1))] == 0.) {
- work[j] = 0.;
- } else {
- work[j] = -poles[j + ((poles_dim1) << (1))] * z__[j] /
- diflj / (poles[j + ((poles_dim1) << (1))] + dj);
- }
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (z__[i__] == 0. || poles[i__ + ((poles_dim1) << (1))]
- == 0.) {
- work[i__] = 0.;
- } else {
- work[i__] = poles[i__ + ((poles_dim1) << (1))] * z__[
- i__] / (dlamc3_(&poles[i__ + ((poles_dim1) <<
- (1))], &dsigj) - diflj) / (poles[i__ + ((
- poles_dim1) << (1))] + dj);
- }
-/* L30: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- if (z__[i__] == 0. || poles[i__ + ((poles_dim1) << (1))]
- == 0.) {
- work[i__] = 0.;
- } else {
- work[i__] = poles[i__ + ((poles_dim1) << (1))] * z__[
- i__] / (dlamc3_(&poles[i__ + ((poles_dim1) <<
- (1))], &dsigjp) + difrj) / (poles[i__ + ((
- poles_dim1) << (1))] + dj);
- }
-/* L40: */
- }
- work[1] = -1.;
- temp = dnrm2_(k, &work[1], &c__1);
- dgemv_("T", k, nrhs, &c_b15, &bx[bx_offset], ldbx, &work[1], &
- c__1, &c_b29, &b[j + b_dim1], ldb);
- dlascl_("G", &c__0, &c__0, &temp, &c_b15, &c__1, nrhs, &b[j +
- b_dim1], ldb, info);
-/* L50: */
- }
- }
-
-/* Move the deflated rows of BX to B also. */
-
- if (*k < max(m,n)) {
- i__1 = n - *k;
- dlacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1
- + b_dim1], ldb);
- }
- } else {
-
-/*
- Apply back the right orthogonal transformations.
-
- Step (1R): apply back the new right singular vector matrix
- to B.
-*/
-
- if (*k == 1) {
- dcopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx);
- } else {
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dsigj = poles[j + ((poles_dim1) << (1))];
- if (z__[j] == 0.) {
- work[j] = 0.;
- } else {
- work[j] = -z__[j] / difl[j] / (dsigj + poles[j +
- poles_dim1]) / difr[j + ((difr_dim1) << (1))];
- }
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (z__[j] == 0.) {
- work[i__] = 0.;
- } else {
- d__1 = -poles[i__ + 1 + ((poles_dim1) << (1))];
- work[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difr[
- i__ + difr_dim1]) / (dsigj + poles[i__ +
- poles_dim1]) / difr[i__ + ((difr_dim1) << (1))
- ];
- }
-/* L60: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- if (z__[j] == 0.) {
- work[i__] = 0.;
- } else {
- d__1 = -poles[i__ + ((poles_dim1) << (1))];
- work[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difl[
- i__]) / (dsigj + poles[i__ + poles_dim1]) /
- difr[i__ + ((difr_dim1) << (1))];
- }
-/* L70: */
- }
- dgemv_("T", k, nrhs, &c_b15, &b[b_offset], ldb, &work[1], &
- c__1, &c_b29, &bx[j + bx_dim1], ldbx);
-/* L80: */
- }
- }
-
-/*
- Step (2R): if SQRE = 1, apply back the rotation that is
- related to the right null space of the subproblem.
-*/
-
- if (*sqre == 1) {
- dcopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx);
- drot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__,
- s);
- }
- if (*k < max(m,n)) {
- i__1 = n - *k;
- dlacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 +
- bx_dim1], ldbx);
- }
-
-/* Step (3R): permute rows of B. */
-
- dcopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb);
- if (*sqre == 1) {
- dcopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb);
- }
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- dcopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1],
- ldb);
-/* L90: */
- }
-
-/* Step (4R): apply back the Givens rotations performed. */
-
- for (i__ = *givptr; i__ >= 1; --i__) {
- d__1 = -givnum[i__ + givnum_dim1];
- drot_(nrhs, &b[givcol[i__ + ((givcol_dim1) << (1))] + b_dim1],
- ldb, &b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[
- i__ + ((givnum_dim1) << (1))], &d__1);
-/* L100: */
- }
- }
-
- return 0;
-
-/* End of DLALS0 */
-
-} /* dlals0_ */
-
-/* Subroutine */ int dlalsa_(integer *icompq, integer *smlsiz, integer *n,
- integer *nrhs, doublereal *b, integer *ldb, doublereal *bx, integer *
- ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *k,
- doublereal *difl, doublereal *difr, doublereal *z__, doublereal *
- poles, integer *givptr, integer *givcol, integer *ldgcol, integer *
- perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *
- work, integer *iwork, integer *info)
-{
- /* System generated locals */
- integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1,
- b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1,
- difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset,
- u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1,
- i__2;
-
- /* Builtin functions */
- integer pow_ii(integer *, integer *);
-
- /* Local variables */
- static integer i__, j, i1, ic, lf, nd, ll, nl, nr, im1, nlf, nrf, lvl,
- ndb1, nlp1, lvl2, nrp1, nlvl, sqre;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- static integer inode, ndiml, ndimr;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), dlals0_(integer *, integer *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *, integer *, integer *, integer *, integer *, doublereal
- *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *), dlasdt_(integer *, integer *, integer *, integer *,
- integer *, integer *, integer *), xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLALSA is an itermediate step in solving the least squares problem
- by computing the SVD of the coefficient matrix in compact form (The
- singular vectors are computed as products of simple orthorgonal
- matrices.).
-
- If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
- matrix of an upper bidiagonal matrix to the right hand side; and if
- ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
- right hand side. The singular vector matrices were generated in
- compact form by DLALSA.
-
- Arguments
- =========
-
-
- ICOMPQ (input) INTEGER
- Specifies whether the left or the right singular vector
- matrix is involved.
- = 0: Left singular vector matrix
- = 1: Right singular vector matrix
-
- SMLSIZ (input) INTEGER
- The maximum size of the subproblems at the bottom of the
- computation tree.
-
- N (input) INTEGER
- The row and column dimensions of the upper bidiagonal matrix.
-
- NRHS (input) INTEGER
- The number of columns of B and BX. NRHS must be at least 1.
-
- B (input) DOUBLE PRECISION array, dimension ( LDB, NRHS )
- On input, B contains the right hand sides of the least
- squares problem in rows 1 through M. On output, B contains
- the solution X in rows 1 through N.
-
- LDB (input) INTEGER
- The leading dimension of B in the calling subprogram.
- LDB must be at least max(1,MAX( M, N ) ).
-
- BX (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
- On exit, the result of applying the left or right singular
- vector matrix to B.
-
- LDBX (input) INTEGER
- The leading dimension of BX.
-
- U (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
- On entry, U contains the left singular vector matrices of all
- subproblems at the bottom level.
-
- LDU (input) INTEGER, LDU = > N.
- The leading dimension of arrays U, VT, DIFL, DIFR,
- POLES, GIVNUM, and Z.
-
- VT (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
- On entry, VT' contains the right singular vector matrices of
- all subproblems at the bottom level.
-
- K (input) INTEGER array, dimension ( N ).
-
- DIFL (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
- where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
-
- DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
- On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
- distances between singular values on the I-th level and
- singular values on the (I -1)-th level, and DIFR(*, 2 * I)
- record the normalizing factors of the right singular vectors
- matrices of subproblems on I-th level.
-
- Z (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
- On entry, Z(1, I) contains the components of the deflation-
- adjusted updating row vector for subproblems on the I-th
- level.
-
- POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
- On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
- singular values involved in the secular equations on the I-th
- level.
-
- GIVPTR (input) INTEGER array, dimension ( N ).
- On entry, GIVPTR( I ) records the number of Givens
- rotations performed on the I-th problem on the computation
- tree.
-
- GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
- On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
- locations of Givens rotations performed on the I-th level on
- the computation tree.
-
- LDGCOL (input) INTEGER, LDGCOL = > N.
- The leading dimension of arrays GIVCOL and PERM.
-
- PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).
- On entry, PERM(*, I) records permutations done on the I-th
- level of the computation tree.
-
- GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
- On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
- values of Givens rotations performed on the I-th level on the
- computation tree.
-
- C (input) DOUBLE PRECISION array, dimension ( N ).
- On entry, if the I-th subproblem is not square,
- C( I ) contains the C-value of a Givens rotation related to
- the right null space of the I-th subproblem.
-
- S (input) DOUBLE PRECISION array, dimension ( N ).
- On entry, if the I-th subproblem is not square,
- S( I ) contains the S-value of a Givens rotation related to
- the right null space of the I-th subproblem.
-
- WORK (workspace) DOUBLE PRECISION array.
- The dimension must be at least N.
-
- IWORK (workspace) INTEGER array.
- The dimension must be at least 3 * N
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Ren-Cang Li, Computer Science Division, University of
- California at Berkeley, USA
- Osni Marques, LBNL/NERSC, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- bx_dim1 = *ldbx;
- bx_offset = 1 + bx_dim1 * 1;
- bx -= bx_offset;
- givnum_dim1 = *ldu;
- givnum_offset = 1 + givnum_dim1 * 1;
- givnum -= givnum_offset;
- poles_dim1 = *ldu;
- poles_offset = 1 + poles_dim1 * 1;
- poles -= poles_offset;
- z_dim1 = *ldu;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- difr_dim1 = *ldu;
- difr_offset = 1 + difr_dim1 * 1;
- difr -= difr_offset;
- difl_dim1 = *ldu;
- difl_offset = 1 + difl_dim1 * 1;
- difl -= difl_offset;
- vt_dim1 = *ldu;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- --k;
- --givptr;
- perm_dim1 = *ldgcol;
- perm_offset = 1 + perm_dim1 * 1;
- perm -= perm_offset;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1 * 1;
- givcol -= givcol_offset;
- --c__;
- --s;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*smlsiz < 3) {
- *info = -2;
- } else if (*n < *smlsiz) {
- *info = -3;
- } else if (*nrhs < 1) {
- *info = -4;
- } else if (*ldb < *n) {
- *info = -6;
- } else if (*ldbx < *n) {
- *info = -8;
- } else if (*ldu < *n) {
- *info = -10;
- } else if (*ldgcol < *n) {
- *info = -19;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLALSA", &i__1);
- return 0;
- }
-
-/* Book-keeping and setting up the computation tree. */
-
- inode = 1;
- ndiml = inode + *n;
- ndimr = ndiml + *n;
-
- dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
- smlsiz);
-
-/*
- The following code applies back the left singular vector factors.
- For applying back the right singular vector factors, go to 50.
-*/
-
- if (*icompq == 1) {
- goto L50;
- }
-
-/*
- The nodes on the bottom level of the tree were solved
- by DLASDQ. The corresponding left and right singular vector
- matrices are in explicit form. First apply back the left
- singular vector matrices.
-*/
-
- ndb1 = (nd + 1) / 2;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
-
-/*
- IC : center row of each node
- NL : number of rows of left subproblem
- NR : number of rows of right subproblem
- NLF: starting row of the left subproblem
- NRF: starting row of the right subproblem
-*/
-
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nr = iwork[ndimr + i1];
- nlf = ic - nl;
- nrf = ic + 1;
- dgemm_("T", "N", &nl, nrhs, &nl, &c_b15, &u[nlf + u_dim1], ldu, &b[
- nlf + b_dim1], ldb, &c_b29, &bx[nlf + bx_dim1], ldbx);
- dgemm_("T", "N", &nr, nrhs, &nr, &c_b15, &u[nrf + u_dim1], ldu, &b[
- nrf + b_dim1], ldb, &c_b29, &bx[nrf + bx_dim1], ldbx);
-/* L10: */
- }
-
-/*
- Next copy the rows of B that correspond to unchanged rows
- in the bidiagonal matrix to BX.
-*/
-
- i__1 = nd;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ic = iwork[inode + i__ - 1];
- dcopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
-/* L20: */
- }
-
-/*
- Finally go through the left singular vector matrices of all
- the other subproblems bottom-up on the tree.
-*/
-
- j = pow_ii(&c__2, &nlvl);
- sqre = 0;
-
- for (lvl = nlvl; lvl >= 1; --lvl) {
- lvl2 = ((lvl) << (1)) - 1;
-
-/*
- find the first node LF and last node LL on
- the current level LVL
-*/
-
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__1 = lvl - 1;
- lf = pow_ii(&c__2, &i__1);
- ll = ((lf) << (1)) - 1;
- }
- i__1 = ll;
- for (i__ = lf; i__ <= i__1; ++i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- nrf = ic + 1;
- --j;
- dlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
- b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
- givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
- givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
- poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
- lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
- j], &s[j], &work[1], info);
-/* L30: */
- }
-/* L40: */
- }
- goto L90;
-
-/* ICOMPQ = 1: applying back the right singular vector factors. */
-
-L50:
-
-/*
- First now go through the right singular vector matrices of all
- the tree nodes top-down.
-*/
-
- j = 0;
- i__1 = nlvl;
- for (lvl = 1; lvl <= i__1; ++lvl) {
- lvl2 = ((lvl) << (1)) - 1;
-
-/*
- Find the first node LF and last node LL on
- the current level LVL.
-*/
-
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__2 = lvl - 1;
- lf = pow_ii(&c__2, &i__2);
- ll = ((lf) << (1)) - 1;
- }
- i__2 = lf;
- for (i__ = ll; i__ >= i__2; --i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- nrf = ic + 1;
- if (i__ == ll) {
- sqre = 0;
- } else {
- sqre = 1;
- }
- ++j;
- dlals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
- nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
- givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
- givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
- poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
- lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
- j], &s[j], &work[1], info);
-/* L60: */
- }
-/* L70: */
- }
-
-/*
- The nodes on the bottom level of the tree were solved
- by DLASDQ. The corresponding right singular vector
- matrices are in explicit form. Apply them back.
-*/
-
- ndb1 = (nd + 1) / 2;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nr = iwork[ndimr + i1];
- nlp1 = nl + 1;
- if (i__ == nd) {
- nrp1 = nr;
- } else {
- nrp1 = nr + 1;
- }
- nlf = ic - nl;
- nrf = ic + 1;
- dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b15, &vt[nlf + vt_dim1], ldu,
- &b[nlf + b_dim1], ldb, &c_b29, &bx[nlf + bx_dim1], ldbx);
- dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b15, &vt[nrf + vt_dim1], ldu,
- &b[nrf + b_dim1], ldb, &c_b29, &bx[nrf + bx_dim1], ldbx);
-/* L80: */
- }
-
-L90:
-
- return 0;
-
-/* End of DLALSA */
-
-} /* dlalsa_ */
-
-/* Subroutine */ int dlalsd_(char *uplo, integer *smlsiz, integer *n, integer
- *nrhs, doublereal *d__, doublereal *e, doublereal *b, integer *ldb,
- doublereal *rcond, integer *rank, doublereal *work, integer *iwork,
- integer *info)
-{
- /* System generated locals */
- integer b_dim1, b_offset, i__1, i__2;
- doublereal d__1;
-
- /* Builtin functions */
- double log(doublereal), d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static integer c__, i__, j, k;
- static doublereal r__;
- static integer s, u, z__;
- static doublereal cs;
- static integer bx;
- static doublereal sn;
- static integer st, vt, nm1, st1;
- static doublereal eps;
- static integer iwk;
- static doublereal tol;
- static integer difl, difr, perm, nsub;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- static integer nlvl, sqre, bxst;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *),
- dcopy_(integer *, doublereal *, integer *, doublereal *, integer
- *);
- static integer poles, sizei, nsize, nwork, icmpq1, icmpq2;
-
- extern /* Subroutine */ int dlasda_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *), dlalsa_(integer *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, integer *), dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer
- *, integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *), dlacpy_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *), dlartg_(doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *), dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *),
- xerbla_(char *, integer *);
- static integer givcol;
- extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
- integer *);
- static doublereal orgnrm;
- static integer givnum, givptr, smlszp;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DLALSD uses the singular value decomposition of A to solve the least
- squares problem of finding X to minimize the Euclidean norm of each
- column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
- are N-by-NRHS. The solution X overwrites B.
-
- The singular values of A smaller than RCOND times the largest
- singular value are treated as zero in solving the least squares
- problem; in this case a minimum norm solution is returned.
- The actual singular values are returned in D in ascending order.
-
- This code makes very mild assumptions about floating point
- arithmetic. It will work on machines with a guard digit in
- add/subtract, or on those binary machines without guard digits
- which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
- It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- = 'U': D and E define an upper bidiagonal matrix.
- = 'L': D and E define a lower bidiagonal matrix.
-
- SMLSIZ (input) INTEGER
- The maximum size of the subproblems at the bottom of the
- computation tree.
-
- N (input) INTEGER
- The dimension of the bidiagonal matrix. N >= 0.
-
- NRHS (input) INTEGER
- The number of columns of B. NRHS must be at least 1.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry D contains the main diagonal of the bidiagonal
- matrix. On exit, if INFO = 0, D contains its singular values.
-
- E (input) DOUBLE PRECISION array, dimension (N-1)
- Contains the super-diagonal entries of the bidiagonal matrix.
- On exit, E has been destroyed.
-
- B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
- On input, B contains the right hand sides of the least
- squares problem. On output, B contains the solution X.
-
- LDB (input) INTEGER
- The leading dimension of B in the calling subprogram.
- LDB must be at least max(1,N).
-
- RCOND (input) DOUBLE PRECISION
- The singular values of A less than or equal to RCOND times
- the largest singular value are treated as zero in solving
- the least squares problem. If RCOND is negative,
- machine precision is used instead.
- For example, if diag(S)*X=B were the least squares problem,
- where diag(S) is a diagonal matrix of singular values, the
- solution would be X(i) = B(i) / S(i) if S(i) is greater than
- RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
- RCOND*max(S).
-
- RANK (output) INTEGER
- The number of singular values of A greater than RCOND times
- the largest singular value.
-
- WORK (workspace) DOUBLE PRECISION array, dimension at least
- (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
- where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
-
- IWORK (workspace) INTEGER array, dimension at least
- (3*N*NLVL + 11*N)
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The algorithm failed to compute an singular value while
- working on the submatrix lying in rows and columns
- INFO/(N+1) through MOD(INFO,N+1).
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Ren-Cang Li, Computer Science Division, University of
- California at Berkeley, USA
- Osni Marques, LBNL/NERSC, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 1) {
- *info = -4;
- } else if (*ldb < 1 || *ldb < *n) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLALSD", &i__1);
- return 0;
- }
-
- eps = EPSILON;
-
-/* Set up the tolerance. */
-
- if (*rcond <= 0. || *rcond >= 1.) {
- *rcond = eps;
- }
-
- *rank = 0;
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- } else if (*n == 1) {
- if (d__[1] == 0.) {
- dlaset_("A", &c__1, nrhs, &c_b29, &c_b29, &b[b_offset], ldb);
- } else {
- *rank = 1;
- dlascl_("G", &c__0, &c__0, &d__[1], &c_b15, &c__1, nrhs, &b[
- b_offset], ldb, info);
- d__[1] = abs(d__[1]);
- }
- return 0;
- }
-
-/* Rotate the matrix if it is lower bidiagonal. */
-
- if (*(unsigned char *)uplo == 'L') {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- if (*nrhs == 1) {
- drot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
- c__1, &cs, &sn);
- } else {
- work[((i__) << (1)) - 1] = cs;
- work[i__ * 2] = sn;
- }
-/* L10: */
- }
- if (*nrhs > 1) {
- i__1 = *nrhs;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n - 1;
- for (j = 1; j <= i__2; ++j) {
- cs = work[((j) << (1)) - 1];
- sn = work[j * 2];
- drot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ *
- b_dim1], &c__1, &cs, &sn);
-/* L20: */
- }
-/* L30: */
- }
- }
- }
-
-/* Scale. */
-
- nm1 = *n - 1;
- orgnrm = dlanst_("M", n, &d__[1], &e[1]);
- if (orgnrm == 0.) {
- dlaset_("A", n, nrhs, &c_b29, &c_b29, &b[b_offset], ldb);
- return 0;
- }
-
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, info);
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1,
- info);
-
-/*
- If N is smaller than the minimum divide size SMLSIZ, then solve
- the problem with another solver.
-*/
-
- if (*n <= *smlsiz) {
- nwork = *n * *n + 1;
- dlaset_("A", n, n, &c_b29, &c_b15, &work[1], n);
- dlasdq_("U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, &
- work[1], n, &b[b_offset], ldb, &work[nwork], info);
- if (*info != 0) {
- return 0;
- }
- tol = *rcond * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (d__[i__] <= tol) {
- dlaset_("A", &c__1, nrhs, &c_b29, &c_b29, &b[i__ + b_dim1],
- ldb);
- } else {
- dlascl_("G", &c__0, &c__0, &d__[i__], &c_b15, &c__1, nrhs, &b[
- i__ + b_dim1], ldb, info);
- ++(*rank);
- }
-/* L40: */
- }
- dgemm_("T", "N", n, nrhs, n, &c_b15, &work[1], n, &b[b_offset], ldb, &
- c_b29, &work[nwork], n);
- dlacpy_("A", n, nrhs, &work[nwork], n, &b[b_offset], ldb);
-
-/* Unscale. */
-
- dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n,
- info);
- dlasrt_("D", n, &d__[1], info);
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, nrhs, &b[b_offset],
- ldb, info);
-
- return 0;
- }
-
-/* Book-keeping and setting up some constants. */
-
- nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) /
- log(2.)) + 1;
-
- smlszp = *smlsiz + 1;
-
- u = 1;
- vt = *smlsiz * *n + 1;
- difl = vt + smlszp * *n;
- difr = difl + nlvl * *n;
- z__ = difr + ((nlvl * *n) << (1));
- c__ = z__ + nlvl * *n;
- s = c__ + *n;
- poles = s + *n;
- givnum = poles + ((nlvl) << (1)) * *n;
- bx = givnum + ((nlvl) << (1)) * *n;
- nwork = bx + *n * *nrhs;
-
- sizei = *n + 1;
- k = sizei + *n;
- givptr = k + *n;
- perm = givptr + *n;
- givcol = perm + nlvl * *n;
- iwk = givcol + ((nlvl * *n) << (1));
-
- st = 1;
- sqre = 0;
- icmpq1 = 1;
- icmpq2 = 0;
- nsub = 0;
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) < eps) {
- d__[i__] = d_sign(&eps, &d__[i__]);
- }
-/* L50: */
- }
-
- i__1 = nm1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
- ++nsub;
- iwork[nsub] = st;
-
-/*
- Subproblem found. First determine its size and then
- apply divide and conquer on it.
-*/
-
- if (i__ < nm1) {
-
-/* A subproblem with E(I) small for I < NM1. */
-
- nsize = i__ - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
-
-/* A subproblem with E(NM1) not too small but I = NM1. */
-
- nsize = *n - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- } else {
-
-/*
- A subproblem with E(NM1) small. This implies an
- 1-by-1 subproblem at D(N), which is not solved
- explicitly.
-*/
-
- nsize = i__ - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- ++nsub;
- iwork[nsub] = *n;
- iwork[sizei + nsub - 1] = 1;
- dcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
- }
- st1 = st - 1;
- if (nsize == 1) {
-
-/*
- This is a 1-by-1 subproblem and is not solved
- explicitly.
-*/
-
- dcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
- } else if (nsize <= *smlsiz) {
-
-/* This is a small subproblem and is solved by DLASDQ. */
-
- dlaset_("A", &nsize, &nsize, &c_b29, &c_b15, &work[vt + st1],
- n);
- dlasdq_("U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[
- st], &work[vt + st1], n, &work[nwork], n, &b[st +
- b_dim1], ldb, &work[nwork], info);
- if (*info != 0) {
- return 0;
- }
- dlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
- st1], n);
- } else {
-
-/* A large problem. Solve it using divide and conquer. */
-
- dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
- work[u + st1], n, &work[vt + st1], &iwork[k + st1], &
- work[difl + st1], &work[difr + st1], &work[z__ + st1],
- &work[poles + st1], &iwork[givptr + st1], &iwork[
- givcol + st1], n, &iwork[perm + st1], &work[givnum +
- st1], &work[c__ + st1], &work[s + st1], &work[nwork],
- &iwork[iwk], info);
- if (*info != 0) {
- return 0;
- }
- bxst = bx + st1;
- dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
- work[bxst], n, &work[u + st1], n, &work[vt + st1], &
- iwork[k + st1], &work[difl + st1], &work[difr + st1],
- &work[z__ + st1], &work[poles + st1], &iwork[givptr +
- st1], &iwork[givcol + st1], n, &iwork[perm + st1], &
- work[givnum + st1], &work[c__ + st1], &work[s + st1],
- &work[nwork], &iwork[iwk], info);
- if (*info != 0) {
- return 0;
- }
- }
- st = i__ + 1;
- }
-/* L60: */
- }
-
-/* Apply the singular values and treat the tiny ones as zero. */
-
- tol = *rcond * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/*
- Some of the elements in D can be negative because 1-by-1
- subproblems were not solved explicitly.
-*/
-
- if ((d__1 = d__[i__], abs(d__1)) <= tol) {
- dlaset_("A", &c__1, nrhs, &c_b29, &c_b29, &work[bx + i__ - 1], n);
- } else {
- ++(*rank);
- dlascl_("G", &c__0, &c__0, &d__[i__], &c_b15, &c__1, nrhs, &work[
- bx + i__ - 1], n, info);
- }
- d__[i__] = (d__1 = d__[i__], abs(d__1));
-/* L70: */
- }
-
-/* Now apply back the right singular vectors. */
-
- icmpq2 = 1;
- i__1 = nsub;
- for (i__ = 1; i__ <= i__1; ++i__) {
- st = iwork[i__];
- st1 = st - 1;
- nsize = iwork[sizei + i__ - 1];
- bxst = bx + st1;
- if (nsize == 1) {
- dcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
- } else if (nsize <= *smlsiz) {
- dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b15, &work[vt + st1], n,
- &work[bxst], n, &c_b29, &b[st + b_dim1], ldb);
- } else {
- dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
- b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[
- k + st1], &work[difl + st1], &work[difr + st1], &work[z__
- + st1], &work[poles + st1], &iwork[givptr + st1], &iwork[
- givcol + st1], n, &iwork[perm + st1], &work[givnum + st1],
- &work[c__ + st1], &work[s + st1], &work[nwork], &iwork[
- iwk], info);
- if (*info != 0) {
- return 0;
- }
- }
-/* L80: */
- }
-
-/* Unscale and sort the singular values. */
-
- dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, info);
- dlasrt_("D", n, &d__[1], info);
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, nrhs, &b[b_offset], ldb,
- info);
-
- return 0;
-
-/* End of DLALSD */
-
-} /* dlalsd_ */
-
-/* Subroutine */ int dlamrg_(integer *n1, integer *n2, doublereal *a, integer
- *dtrd1, integer *dtrd2, integer *index)
-{
- /* System generated locals */
- integer i__1;
-
- /* Local variables */
- static integer i__, ind1, ind2, n1sv, n2sv;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- DLAMRG will create a permutation list which will merge the elements
- of A (which is composed of two independently sorted sets) into a
- single set which is sorted in ascending order.
-
- Arguments
- =========
-
- N1 (input) INTEGER
- N2 (input) INTEGER
- These arguements contain the respective lengths of the two
- sorted lists to be merged.
-
- A (input) DOUBLE PRECISION array, dimension (N1+N2)
- The first N1 elements of A contain a list of numbers which
- are sorted in either ascending or descending order. Likewise
- for the final N2 elements.
-
- DTRD1 (input) INTEGER
- DTRD2 (input) INTEGER
- These are the strides to be taken through the array A.
- Allowable strides are 1 and -1. They indicate whether a
- subset of A is sorted in ascending (DTRDx = 1) or descending
- (DTRDx = -1) order.
-
- INDEX (output) INTEGER array, dimension (N1+N2)
- On exit this array will contain a permutation such that
- if B( I ) = A( INDEX( I ) ) for I=1,N1+N2, then B will be
- sorted in ascending order.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --index;
- --a;
-
- /* Function Body */
- n1sv = *n1;
- n2sv = *n2;
- if (*dtrd1 > 0) {
- ind1 = 1;
- } else {
- ind1 = *n1;
- }
- if (*dtrd2 > 0) {
- ind2 = *n1 + 1;
- } else {
- ind2 = *n1 + *n2;
- }
- i__ = 1;
-/* while ( (N1SV > 0) & (N2SV > 0) ) */
-L10:
- if ((n1sv > 0 && n2sv > 0)) {
- if (a[ind1] <= a[ind2]) {
- index[i__] = ind1;
- ++i__;
- ind1 += *dtrd1;
- --n1sv;
- } else {
- index[i__] = ind2;
- ++i__;
- ind2 += *dtrd2;
- --n2sv;
- }
- goto L10;
- }
-/* end while */
- if (n1sv == 0) {
- i__1 = n2sv;
- for (n1sv = 1; n1sv <= i__1; ++n1sv) {
- index[i__] = ind2;
- ++i__;
- ind2 += *dtrd2;
-/* L20: */
- }
- } else {
-/* N2SV .EQ. 0 */
- i__1 = n1sv;
- for (n2sv = 1; n2sv <= i__1; ++n2sv) {
- index[i__] = ind1;
- ++i__;
- ind1 += *dtrd1;
-/* L30: */
- }
- }
-
- return 0;
-
-/* End of DLAMRG */
-
-} /* dlamrg_ */
-
-doublereal dlange_(char *norm, integer *m, integer *n, doublereal *a, integer
- *lda, doublereal *work)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal ret_val, d__1, d__2, d__3;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__, j;
- static doublereal sum, scale;
- extern logical lsame_(char *, char *);
- static doublereal value;
- extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
- doublereal *, doublereal *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLANGE returns the value of the one norm, or the Frobenius norm, or
- the infinity norm, or the element of largest absolute value of a
- real matrix A.
-
- Description
- ===========
-
- DLANGE returns the value
-
- DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- (
- ( norm1(A), NORM = '1', 'O' or 'o'
- (
- ( normI(A), NORM = 'I' or 'i'
- (
- ( normF(A), NORM = 'F', 'f', 'E' or 'e'
-
- where norm1 denotes the one norm of a matrix (maximum column sum),
- normI denotes the infinity norm of a matrix (maximum row sum) and
- normF denotes the Frobenius norm of a matrix (square root of sum of
- squares). Note that max(abs(A(i,j))) is not a matrix norm.
-
- Arguments
- =========
-
- NORM (input) CHARACTER*1
- Specifies the value to be returned in DLANGE as described
- above.
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0. When M = 0,
- DLANGE is set to zero.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0. When N = 0,
- DLANGE is set to zero.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,N)
- The m by n matrix A.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(M,1).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
- where LWORK >= M when NORM = 'I'; otherwise, WORK is not
- referenced.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --work;
-
- /* Function Body */
- if (min(*m,*n) == 0) {
- value = 0.;
- } else if (lsame_(norm, "M")) {
-
-/* Find max(abs(A(i,j))). */
-
- value = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
-/* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- value = max(d__2,d__3);
-/* L10: */
- }
-/* L20: */
- }
- } else if (lsame_(norm, "O") || *(unsigned char *)
- norm == '1') {
-
-/* Find norm1(A). */
-
- value = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = 0.;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
-/* L30: */
- }
- value = max(value,sum);
-/* L40: */
- }
- } else if (lsame_(norm, "I")) {
-
-/* Find normI(A). */
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
-/* L50: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
-/* L60: */
- }
-/* L70: */
- }
- value = 0.;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
-/* Computing MAX */
- d__1 = value, d__2 = work[i__];
- value = max(d__1,d__2);
-/* L80: */
- }
- } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
-
-/* Find normF(A). */
-
- scale = 0.;
- sum = 1.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- dlassq_(m, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
-/* L90: */
- }
- value = scale * sqrt(sum);
- }
-
- ret_val = value;
- return ret_val;
-
-/* End of DLANGE */
-
-} /* dlange_ */
-
-doublereal dlanhs_(char *norm, integer *n, doublereal *a, integer *lda,
- doublereal *work)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- doublereal ret_val, d__1, d__2, d__3;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__, j;
- static doublereal sum, scale;
- extern logical lsame_(char *, char *);
- static doublereal value;
- extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
- doublereal *, doublereal *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLANHS returns the value of the one norm, or the Frobenius norm, or
- the infinity norm, or the element of largest absolute value of a
- Hessenberg matrix A.
-
- Description
- ===========
-
- DLANHS returns the value
-
- DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- (
- ( norm1(A), NORM = '1', 'O' or 'o'
- (
- ( normI(A), NORM = 'I' or 'i'
- (
- ( normF(A), NORM = 'F', 'f', 'E' or 'e'
-
- where norm1 denotes the one norm of a matrix (maximum column sum),
- normI denotes the infinity norm of a matrix (maximum row sum) and
- normF denotes the Frobenius norm of a matrix (square root of sum of
- squares). Note that max(abs(A(i,j))) is not a matrix norm.
-
- Arguments
- =========
-
- NORM (input) CHARACTER*1
- Specifies the value to be returned in DLANHS as described
- above.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0. When N = 0, DLANHS is
- set to zero.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,N)
- The n by n upper Hessenberg matrix A; the part of A below the
- first sub-diagonal is not referenced.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(N,1).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
- where LWORK >= N when NORM = 'I'; otherwise, WORK is not
- referenced.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --work;
-
- /* Function Body */
- if (*n == 0) {
- value = 0.;
- } else if (lsame_(norm, "M")) {
-
-/* Find max(abs(A(i,j))). */
-
- value = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = *n, i__4 = j + 1;
- i__2 = min(i__3,i__4);
- for (i__ = 1; i__ <= i__2; ++i__) {
-/* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- value = max(d__2,d__3);
-/* L10: */
- }
-/* L20: */
- }
- } else if (lsame_(norm, "O") || *(unsigned char *)
- norm == '1') {
-
-/* Find norm1(A). */
-
- value = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = 0.;
-/* Computing MIN */
- i__3 = *n, i__4 = j + 1;
- i__2 = min(i__3,i__4);
- for (i__ = 1; i__ <= i__2; ++i__) {
- sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
-/* L30: */
- }
- value = max(value,sum);
-/* L40: */
- }
- } else if (lsame_(norm, "I")) {
-
-/* Find normI(A). */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
-/* L50: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = *n, i__4 = j + 1;
- i__2 = min(i__3,i__4);
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
-/* L60: */
- }
-/* L70: */
- }
- value = 0.;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-/* Computing MAX */
- d__1 = value, d__2 = work[i__];
- value = max(d__1,d__2);
-/* L80: */
- }
- } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
-
-/* Find normF(A). */
-
- scale = 0.;
- sum = 1.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = *n, i__4 = j + 1;
- i__2 = min(i__3,i__4);
- dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
-/* L90: */
- }
- value = scale * sqrt(sum);
- }
-
- ret_val = value;
- return ret_val;
-
-/* End of DLANHS */
-
-} /* dlanhs_ */
-
-doublereal dlanst_(char *norm, integer *n, doublereal *d__, doublereal *e)
-{
- /* System generated locals */
- integer i__1;
- doublereal ret_val, d__1, d__2, d__3, d__4, d__5;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__;
- static doublereal sum, scale;
- extern logical lsame_(char *, char *);
- static doublereal anorm;
- extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
- doublereal *, doublereal *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DLANST returns the value of the one norm, or the Frobenius norm, or
- the infinity norm, or the element of largest absolute value of a
- real symmetric tridiagonal matrix A.
-
- Description
- ===========
-
- DLANST returns the value
-
- DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- (
- ( norm1(A), NORM = '1', 'O' or 'o'
- (
- ( normI(A), NORM = 'I' or 'i'
- (
- ( normF(A), NORM = 'F', 'f', 'E' or 'e'
-
- where norm1 denotes the one norm of a matrix (maximum column sum),
- normI denotes the infinity norm of a matrix (maximum row sum) and
- normF denotes the Frobenius norm of a matrix (square root of sum of
- squares). Note that max(abs(A(i,j))) is not a matrix norm.
-
- Arguments
- =========
-
- NORM (input) CHARACTER*1
- Specifies the value to be returned in DLANST as described
- above.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0. When N = 0, DLANST is
- set to zero.
-
- D (input) DOUBLE PRECISION array, dimension (N)
- The diagonal elements of A.
-
- E (input) DOUBLE PRECISION array, dimension (N-1)
- The (n-1) sub-diagonal or super-diagonal elements of A.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --e;
- --d__;
-
- /* Function Body */
- if (*n <= 0) {
- anorm = 0.;
- } else if (lsame_(norm, "M")) {
-
-/* Find max(abs(A(i,j))). */
-
- anorm = (d__1 = d__[*n], abs(d__1));
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
-/* Computing MAX */
- d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1));
- anorm = max(d__2,d__3);
-/* Computing MAX */
- d__2 = anorm, d__3 = (d__1 = e[i__], abs(d__1));
- anorm = max(d__2,d__3);
-/* L10: */
- }
- } else if (lsame_(norm, "O") || *(unsigned char *)
- norm == '1' || lsame_(norm, "I")) {
-
-/* Find norm1(A). */
-
- if (*n == 1) {
- anorm = abs(d__[1]);
- } else {
-/* Computing MAX */
- d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = e[*n - 1], abs(
- d__1)) + (d__2 = d__[*n], abs(d__2));
- anorm = max(d__3,d__4);
- i__1 = *n - 1;
- for (i__ = 2; i__ <= i__1; ++i__) {
-/* Computing MAX */
- d__4 = anorm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[
- i__], abs(d__2)) + (d__3 = e[i__ - 1], abs(d__3));
- anorm = max(d__4,d__5);
-/* L20: */
- }
- }
- } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
-
-/* Find normF(A). */
-
- scale = 0.;
- sum = 1.;
- if (*n > 1) {
- i__1 = *n - 1;
- dlassq_(&i__1, &e[1], &c__1, &scale, &sum);
- sum *= 2;
- }
- dlassq_(n, &d__[1], &c__1, &scale, &sum);
- anorm = scale * sqrt(sum);
- }
-
- ret_val = anorm;
- return ret_val;
-
-/* End of DLANST */
-
-} /* dlanst_ */
-
-doublereal dlansy_(char *norm, char *uplo, integer *n, doublereal *a, integer
- *lda, doublereal *work)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal ret_val, d__1, d__2, d__3;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__, j;
- static doublereal sum, absa, scale;
- extern logical lsame_(char *, char *);
- static doublereal value;
- extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
- doublereal *, doublereal *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLANSY returns the value of the one norm, or the Frobenius norm, or
- the infinity norm, or the element of largest absolute value of a
- real symmetric matrix A.
-
- Description
- ===========
-
- DLANSY returns the value
-
- DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- (
- ( norm1(A), NORM = '1', 'O' or 'o'
- (
- ( normI(A), NORM = 'I' or 'i'
- (
- ( normF(A), NORM = 'F', 'f', 'E' or 'e'
-
- where norm1 denotes the one norm of a matrix (maximum column sum),
- normI denotes the infinity norm of a matrix (maximum row sum) and
- normF denotes the Frobenius norm of a matrix (square root of sum of
- squares). Note that max(abs(A(i,j))) is not a matrix norm.
-
- Arguments
- =========
-
- NORM (input) CHARACTER*1
- Specifies the value to be returned in DLANSY as described
- above.
-
- UPLO (input) CHARACTER*1
- Specifies whether the upper or lower triangular part of the
- symmetric matrix A is to be referenced.
- = 'U': Upper triangular part of A is referenced
- = 'L': Lower triangular part of A is referenced
-
- N (input) INTEGER
- The order of the matrix A. N >= 0. When N = 0, DLANSY is
- set to zero.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,N)
- The symmetric matrix A. If UPLO = 'U', the leading n by n
- upper triangular part of A contains the upper triangular part
- of the matrix A, and the strictly lower triangular part of A
- is not referenced. If UPLO = 'L', the leading n by n lower
- triangular part of A contains the lower triangular part of
- the matrix A, and the strictly upper triangular part of A is
- not referenced.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(N,1).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
- where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
- WORK is not referenced.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --work;
-
- /* Function Body */
- if (*n == 0) {
- value = 0.;
- } else if (lsame_(norm, "M")) {
-
-/* Find max(abs(A(i,j))). */
-
- value = 0.;
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
-/* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
- d__1));
- value = max(d__2,d__3);
-/* L10: */
- }
-/* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
-/* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
- d__1));
- value = max(d__2,d__3);
-/* L30: */
- }
-/* L40: */
- }
- }
- } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {
-
-/* Find normI(A) ( = norm1(A), since A is symmetric). */
-
- value = 0.;
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = 0.;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- absa = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- sum += absa;
- work[i__] += absa;
-/* L50: */
- }
- work[j] = sum + (d__1 = a[j + j * a_dim1], abs(d__1));
-/* L60: */
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-/* Computing MAX */
- d__1 = value, d__2 = work[i__];
- value = max(d__1,d__2);
-/* L70: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
-/* L80: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = work[j] + (d__1 = a[j + j * a_dim1], abs(d__1));
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- absa = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- sum += absa;
- work[i__] += absa;
-/* L90: */
- }
- value = max(value,sum);
-/* L100: */
- }
- }
- } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
-
-/* Find normF(A). */
-
- scale = 0.;
- sum = 1.;
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- i__2 = j - 1;
- dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
-/* L110: */
- }
- } else {
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n - j;
- dlassq_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &scale, &sum);
-/* L120: */
- }
- }
- sum *= 2;
- i__1 = *lda + 1;
- dlassq_(n, &a[a_offset], &i__1, &scale, &sum);
- value = scale * sqrt(sum);
- }
-
- ret_val = value;
- return ret_val;
-
-/* End of DLANSY */
-
-} /* dlansy_ */
-
-/* Subroutine */ int dlanv2_(doublereal *a, doublereal *b, doublereal *c__,
- doublereal *d__, doublereal *rt1r, doublereal *rt1i, doublereal *rt2r,
- doublereal *rt2i, doublereal *cs, doublereal *sn)
-{
- /* System generated locals */
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double d_sign(doublereal *, doublereal *), sqrt(doublereal);
-
- /* Local variables */
- static doublereal p, z__, aa, bb, cc, dd, cs1, sn1, sab, sac, eps, tau,
- temp, scale, bcmax, bcmis, sigma;
-
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
- matrix in standard form:
-
- [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
- [ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
-
- where either
- 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
- 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
- conjugate eigenvalues.
-
- Arguments
- =========
-
- A (input/output) DOUBLE PRECISION
- B (input/output) DOUBLE PRECISION
- C (input/output) DOUBLE PRECISION
- D (input/output) DOUBLE PRECISION
- On entry, the elements of the input matrix.
- On exit, they are overwritten by the elements of the
- standardised Schur form.
-
- RT1R (output) DOUBLE PRECISION
- RT1I (output) DOUBLE PRECISION
- RT2R (output) DOUBLE PRECISION
- RT2I (output) DOUBLE PRECISION
- The real and imaginary parts of the eigenvalues. If the
- eigenvalues are a complex conjugate pair, RT1I > 0.
-
- CS (output) DOUBLE PRECISION
- SN (output) DOUBLE PRECISION
- Parameters of the rotation matrix.
-
- Further Details
- ===============
-
- Modified by V. Sima, Research Institute for Informatics, Bucharest,
- Romania, to reduce the risk of cancellation errors,
- when computing real eigenvalues, and to ensure, if possible, that
- abs(RT1R) >= abs(RT2R).
-
- =====================================================================
-*/
-
-
- eps = PRECISION;
- if (*c__ == 0.) {
- *cs = 1.;
- *sn = 0.;
- goto L10;
-
- } else if (*b == 0.) {
-
-/* Swap rows and columns */
-
- *cs = 0.;
- *sn = 1.;
- temp = *d__;
- *d__ = *a;
- *a = temp;
- *b = -(*c__);
- *c__ = 0.;
- goto L10;
- } else if ((*a - *d__ == 0. && d_sign(&c_b15, b) != d_sign(&c_b15, c__)))
- {
- *cs = 1.;
- *sn = 0.;
- goto L10;
- } else {
-
- temp = *a - *d__;
- p = temp * .5;
-/* Computing MAX */
- d__1 = abs(*b), d__2 = abs(*c__);
- bcmax = max(d__1,d__2);
-/* Computing MIN */
- d__1 = abs(*b), d__2 = abs(*c__);
- bcmis = min(d__1,d__2) * d_sign(&c_b15, b) * d_sign(&c_b15, c__);
-/* Computing MAX */
- d__1 = abs(p);
- scale = max(d__1,bcmax);
- z__ = p / scale * p + bcmax / scale * bcmis;
-
-/*
- If Z is of the order of the machine accuracy, postpone the
- decision on the nature of eigenvalues
-*/
-
- if (z__ >= eps * 4.) {
-
-/* Real eigenvalues. Compute A and D. */
-
- d__1 = sqrt(scale) * sqrt(z__);
- z__ = p + d_sign(&d__1, &p);
- *a = *d__ + z__;
- *d__ -= bcmax / z__ * bcmis;
-
-/* Compute B and the rotation matrix */
-
- tau = dlapy2_(c__, &z__);
- *cs = z__ / tau;
- *sn = *c__ / tau;
- *b -= *c__;
- *c__ = 0.;
- } else {
-
-/*
- Complex eigenvalues, or real (almost) equal eigenvalues.
- Make diagonal elements equal.
-*/
-
- sigma = *b + *c__;
- tau = dlapy2_(&sigma, &temp);
- *cs = sqrt((abs(sigma) / tau + 1.) * .5);
- *sn = -(p / (tau * *cs)) * d_sign(&c_b15, &sigma);
-
-/*
- Compute [ AA BB ] = [ A B ] [ CS -SN ]
- [ CC DD ] [ C D ] [ SN CS ]
-*/
-
- aa = *a * *cs + *b * *sn;
- bb = -(*a) * *sn + *b * *cs;
- cc = *c__ * *cs + *d__ * *sn;
- dd = -(*c__) * *sn + *d__ * *cs;
-
-/*
- Compute [ A B ] = [ CS SN ] [ AA BB ]
- [ C D ] [-SN CS ] [ CC DD ]
-*/
-
- *a = aa * *cs + cc * *sn;
- *b = bb * *cs + dd * *sn;
- *c__ = -aa * *sn + cc * *cs;
- *d__ = -bb * *sn + dd * *cs;
-
- temp = (*a + *d__) * .5;
- *a = temp;
- *d__ = temp;
-
- if (*c__ != 0.) {
- if (*b != 0.) {
- if (d_sign(&c_b15, b) == d_sign(&c_b15, c__)) {
-
-/* Real eigenvalues: reduce to upper triangular form */
-
- sab = sqrt((abs(*b)));
- sac = sqrt((abs(*c__)));
- d__1 = sab * sac;
- p = d_sign(&d__1, c__);
- tau = 1. / sqrt((d__1 = *b + *c__, abs(d__1)));
- *a = temp + p;
- *d__ = temp - p;
- *b -= *c__;
- *c__ = 0.;
- cs1 = sab * tau;
- sn1 = sac * tau;
- temp = *cs * cs1 - *sn * sn1;
- *sn = *cs * sn1 + *sn * cs1;
- *cs = temp;
- }
- } else {
- *b = -(*c__);
- *c__ = 0.;
- temp = *cs;
- *cs = -(*sn);
- *sn = temp;
- }
- }
- }
-
- }
-
-L10:
-
-/* Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I). */
-
- *rt1r = *a;
- *rt2r = *d__;
- if (*c__ == 0.) {
- *rt1i = 0.;
- *rt2i = 0.;
- } else {
- *rt1i = sqrt((abs(*b))) * sqrt((abs(*c__)));
- *rt2i = -(*rt1i);
- }
- return 0;
-
-/* End of DLANV2 */
-
-} /* dlanv2_ */
-
-doublereal dlapy2_(doublereal *x, doublereal *y)
-{
- /* System generated locals */
- doublereal ret_val, d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal w, z__, xabs, yabs;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary
- overflow.
-
- Arguments
- =========
-
- X (input) DOUBLE PRECISION
- Y (input) DOUBLE PRECISION
- X and Y specify the values x and y.
-
- =====================================================================
-*/
-
-
- xabs = abs(*x);
- yabs = abs(*y);
- w = max(xabs,yabs);
- z__ = min(xabs,yabs);
- if (z__ == 0.) {
- ret_val = w;
- } else {
-/* Computing 2nd power */
- d__1 = z__ / w;
- ret_val = w * sqrt(d__1 * d__1 + 1.);
- }
- return ret_val;
-
-/* End of DLAPY2 */
-
-} /* dlapy2_ */
-
-doublereal dlapy3_(doublereal *x, doublereal *y, doublereal *z__)
-{
- /* System generated locals */
- doublereal ret_val, d__1, d__2, d__3;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal w, xabs, yabs, zabs;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLAPY3 returns sqrt(x**2+y**2+z**2), taking care not to cause
- unnecessary overflow.
-
- Arguments
- =========
-
- X (input) DOUBLE PRECISION
- Y (input) DOUBLE PRECISION
- Z (input) DOUBLE PRECISION
- X, Y and Z specify the values x, y and z.
-
- =====================================================================
-*/
-
-
- xabs = abs(*x);
- yabs = abs(*y);
- zabs = abs(*z__);
-/* Computing MAX */
- d__1 = max(xabs,yabs);
- w = max(d__1,zabs);
- if (w == 0.) {
- ret_val = 0.;
- } else {
-/* Computing 2nd power */
- d__1 = xabs / w;
-/* Computing 2nd power */
- d__2 = yabs / w;
-/* Computing 2nd power */
- d__3 = zabs / w;
- ret_val = w * sqrt(d__1 * d__1 + d__2 * d__2 + d__3 * d__3);
- }
- return ret_val;
-
-/* End of DLAPY3 */
-
-} /* dlapy3_ */
-
-/* Subroutine */ int dlarf_(char *side, integer *m, integer *n, doublereal *v,
- integer *incv, doublereal *tau, doublereal *c__, integer *ldc,
- doublereal *work)
-{
- /* System generated locals */
- integer c_dim1, c_offset;
- doublereal d__1;
-
- /* Local variables */
- extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DLARF applies a real elementary reflector H to a real m by n matrix
- C, from either the left or the right. H is represented in the form
-
- H = I - tau * v * v'
-
- where tau is a real scalar and v is a real vector.
-
- If tau = 0, then H is taken to be the unit matrix.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': form H * C
- = 'R': form C * H
-
- M (input) INTEGER
- The number of rows of the matrix C.
-
- N (input) INTEGER
- The number of columns of the matrix C.
-
- V (input) DOUBLE PRECISION array, dimension
- (1 + (M-1)*abs(INCV)) if SIDE = 'L'
- or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
- The vector v in the representation of H. V is not used if
- TAU = 0.
-
- INCV (input) INTEGER
- The increment between elements of v. INCV <> 0.
-
- TAU (input) DOUBLE PRECISION
- The value tau in the representation of H.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the m by n matrix C.
- On exit, C is overwritten by the matrix H * C if SIDE = 'L',
- or C * H if SIDE = 'R'.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace) DOUBLE PRECISION array, dimension
- (N) if SIDE = 'L'
- or (M) if SIDE = 'R'
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --v;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- if (lsame_(side, "L")) {
-
-/* Form H * C */
-
- if (*tau != 0.) {
-
-/* w := C' * v */
-
- dgemv_("Transpose", m, n, &c_b15, &c__[c_offset], ldc, &v[1],
- incv, &c_b29, &work[1], &c__1);
-
-/* C := C - v * w' */
-
- d__1 = -(*tau);
- dger_(m, n, &d__1, &v[1], incv, &work[1], &c__1, &c__[c_offset],
- ldc);
- }
- } else {
-
-/* Form C * H */
-
- if (*tau != 0.) {
-
-/* w := C * v */
-
- dgemv_("No transpose", m, n, &c_b15, &c__[c_offset], ldc, &v[1],
- incv, &c_b29, &work[1], &c__1);
-
-/* C := C - w * v' */
-
- d__1 = -(*tau);
- dger_(m, n, &d__1, &work[1], &c__1, &v[1], incv, &c__[c_offset],
- ldc);
- }
- }
- return 0;
-
-/* End of DLARF */
-
-} /* dlarf_ */
-
-/* Subroutine */ int dlarfb_(char *side, char *trans, char *direct, char *
- storev, integer *m, integer *n, integer *k, doublereal *v, integer *
- ldv, doublereal *t, integer *ldt, doublereal *c__, integer *ldc,
- doublereal *work, integer *ldwork)
-{
- /* System generated locals */
- integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
- work_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, j;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), dtrmm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *);
- static char transt[1];
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DLARFB applies a real block reflector H or its transpose H' to a
- real m by n matrix C, from either the left or the right.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply H or H' from the Left
- = 'R': apply H or H' from the Right
-
- TRANS (input) CHARACTER*1
- = 'N': apply H (No transpose)
- = 'T': apply H' (Transpose)
-
- DIRECT (input) CHARACTER*1
- Indicates how H is formed from a product of elementary
- reflectors
- = 'F': H = H(1) H(2) . . . H(k) (Forward)
- = 'B': H = H(k) . . . H(2) H(1) (Backward)
-
- STOREV (input) CHARACTER*1
- Indicates how the vectors which define the elementary
- reflectors are stored:
- = 'C': Columnwise
- = 'R': Rowwise
-
- M (input) INTEGER
- The number of rows of the matrix C.
-
- N (input) INTEGER
- The number of columns of the matrix C.
-
- K (input) INTEGER
- The order of the matrix T (= the number of elementary
- reflectors whose product defines the block reflector).
-
- V (input) DOUBLE PRECISION array, dimension
- (LDV,K) if STOREV = 'C'
- (LDV,M) if STOREV = 'R' and SIDE = 'L'
- (LDV,N) if STOREV = 'R' and SIDE = 'R'
- The matrix V. See further details.
-
- LDV (input) INTEGER
- The leading dimension of the array V.
- If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
- if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
- if STOREV = 'R', LDV >= K.
-
- T (input) DOUBLE PRECISION array, dimension (LDT,K)
- The triangular k by k matrix T in the representation of the
- block reflector.
-
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= K.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the m by n matrix C.
- On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDA >= max(1,M).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)
-
- LDWORK (input) INTEGER
- The leading dimension of the array WORK.
- If SIDE = 'L', LDWORK >= max(1,N);
- if SIDE = 'R', LDWORK >= max(1,M).
-
- =====================================================================
-
-
- Quick return if possible
-*/
-
- /* Parameter adjustments */
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- work_dim1 = *ldwork;
- work_offset = 1 + work_dim1 * 1;
- work -= work_offset;
-
- /* Function Body */
- if (*m <= 0 || *n <= 0) {
- return 0;
- }
-
- if (lsame_(trans, "N")) {
- *(unsigned char *)transt = 'T';
- } else {
- *(unsigned char *)transt = 'N';
- }
-
- if (lsame_(storev, "C")) {
-
- if (lsame_(direct, "F")) {
-
-/*
- Let V = ( V1 ) (first K rows)
- ( V2 )
- where V1 is unit lower triangular.
-*/
-
- if (lsame_(side, "L")) {
-
-/*
- Form H * C or H' * C where C = ( C1 )
- ( C2 )
-
- W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK)
-
- W := C1'
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
- &c__1);
-/* L10: */
- }
-
-/* W := W * V1 */
-
- dtrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b15,
- &v[v_offset], ldv, &work[work_offset], ldwork);
- if (*m > *k) {
-
-/* W := W + C2'*V2 */
-
- i__1 = *m - *k;
- dgemm_("Transpose", "No transpose", n, k, &i__1, &c_b15, &
- c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + v_dim1],
- ldv, &c_b15, &work[work_offset], ldwork);
- }
-
-/* W := W * T' or W * T */
-
- dtrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b15, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - V * W' */
-
- if (*m > *k) {
-
-/* C2 := C2 - V2 * W' */
-
- i__1 = *m - *k;
- dgemm_("No transpose", "Transpose", &i__1, n, k, &c_b151,
- &v[*k + 1 + v_dim1], ldv, &work[work_offset],
- ldwork, &c_b15, &c__[*k + 1 + c_dim1], ldc);
- }
-
-/* W := W * V1' */
-
- dtrmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b15, &
- v[v_offset], ldv, &work[work_offset], ldwork);
-
-/* C1 := C1 - W' */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
-/* L20: */
- }
-/* L30: */
- }
-
- } else if (lsame_(side, "R")) {
-
-/*
- Form C * H or C * H' where C = ( C1 C2 )
-
- W := C * V = (C1*V1 + C2*V2) (stored in WORK)
-
- W := C1
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
- work_dim1 + 1], &c__1);
-/* L40: */
- }
-
-/* W := W * V1 */
-
- dtrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b15,
- &v[v_offset], ldv, &work[work_offset], ldwork);
- if (*n > *k) {
-
-/* W := W + C2 * V2 */
-
- i__1 = *n - *k;
- dgemm_("No transpose", "No transpose", m, k, &i__1, &
- c_b15, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k +
- 1 + v_dim1], ldv, &c_b15, &work[work_offset],
- ldwork);
- }
-
-/* W := W * T or W * T' */
-
- dtrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b15, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - W * V' */
-
- if (*n > *k) {
-
-/* C2 := C2 - W * V2' */
-
- i__1 = *n - *k;
- dgemm_("No transpose", "Transpose", m, &i__1, k, &c_b151,
- &work[work_offset], ldwork, &v[*k + 1 + v_dim1],
- ldv, &c_b15, &c__[(*k + 1) * c_dim1 + 1], ldc);
- }
-
-/* W := W * V1' */
-
- dtrmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b15, &
- v[v_offset], ldv, &work[work_offset], ldwork);
-
-/* C1 := C1 - W */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
-/* L50: */
- }
-/* L60: */
- }
- }
-
- } else {
-
-/*
- Let V = ( V1 )
- ( V2 ) (last K rows)
- where V2 is unit upper triangular.
-*/
-
- if (lsame_(side, "L")) {
-
-/*
- Form H * C or H' * C where C = ( C1 )
- ( C2 )
-
- W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK)
-
- W := C2'
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
- work_dim1 + 1], &c__1);
-/* L70: */
- }
-
-/* W := W * V2 */
-
- dtrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b15,
- &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
- ldwork);
- if (*m > *k) {
-
-/* W := W + C1'*V1 */
-
- i__1 = *m - *k;
- dgemm_("Transpose", "No transpose", n, k, &i__1, &c_b15, &
- c__[c_offset], ldc, &v[v_offset], ldv, &c_b15, &
- work[work_offset], ldwork);
- }
-
-/* W := W * T' or W * T */
-
- dtrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b15, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - V * W' */
-
- if (*m > *k) {
-
-/* C1 := C1 - V1 * W' */
-
- i__1 = *m - *k;
- dgemm_("No transpose", "Transpose", &i__1, n, k, &c_b151,
- &v[v_offset], ldv, &work[work_offset], ldwork, &
- c_b15, &c__[c_offset], ldc)
- ;
- }
-
-/* W := W * V2' */
-
- dtrmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b15, &
- v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
- ldwork);
-
-/* C2 := C2 - W' */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
- work_dim1];
-/* L80: */
- }
-/* L90: */
- }
-
- } else if (lsame_(side, "R")) {
-
-/*
- Form C * H or C * H' where C = ( C1 C2 )
-
- W := C * V = (C1*V1 + C2*V2) (stored in WORK)
-
- W := C2
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
- j * work_dim1 + 1], &c__1);
-/* L100: */
- }
-
-/* W := W * V2 */
-
- dtrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b15,
- &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
- ldwork);
- if (*n > *k) {
-
-/* W := W + C1 * V1 */
-
- i__1 = *n - *k;
- dgemm_("No transpose", "No transpose", m, k, &i__1, &
- c_b15, &c__[c_offset], ldc, &v[v_offset], ldv, &
- c_b15, &work[work_offset], ldwork);
- }
-
-/* W := W * T or W * T' */
-
- dtrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b15, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - W * V' */
-
- if (*n > *k) {
-
-/* C1 := C1 - W * V1' */
-
- i__1 = *n - *k;
- dgemm_("No transpose", "Transpose", m, &i__1, k, &c_b151,
- &work[work_offset], ldwork, &v[v_offset], ldv, &
- c_b15, &c__[c_offset], ldc)
- ;
- }
-
-/* W := W * V2' */
-
- dtrmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b15, &
- v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
- ldwork);
-
-/* C2 := C2 - W */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
- work_dim1];
-/* L110: */
- }
-/* L120: */
- }
- }
- }
-
- } else if (lsame_(storev, "R")) {
-
- if (lsame_(direct, "F")) {
-
-/*
- Let V = ( V1 V2 ) (V1: first K columns)
- where V1 is unit upper triangular.
-*/
-
- if (lsame_(side, "L")) {
-
-/*
- Form H * C or H' * C where C = ( C1 )
- ( C2 )
-
- W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK)
-
- W := C1'
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
- &c__1);
-/* L130: */
- }
-
-/* W := W * V1' */
-
- dtrmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b15, &
- v[v_offset], ldv, &work[work_offset], ldwork);
- if (*m > *k) {
-
-/* W := W + C2'*V2' */
-
- i__1 = *m - *k;
- dgemm_("Transpose", "Transpose", n, k, &i__1, &c_b15, &
- c__[*k + 1 + c_dim1], ldc, &v[(*k + 1) * v_dim1 +
- 1], ldv, &c_b15, &work[work_offset], ldwork);
- }
-
-/* W := W * T' or W * T */
-
- dtrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b15, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - V' * W' */
-
- if (*m > *k) {
-
-/* C2 := C2 - V2' * W' */
-
- i__1 = *m - *k;
- dgemm_("Transpose", "Transpose", &i__1, n, k, &c_b151, &v[
- (*k + 1) * v_dim1 + 1], ldv, &work[work_offset],
- ldwork, &c_b15, &c__[*k + 1 + c_dim1], ldc);
- }
-
-/* W := W * V1 */
-
- dtrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b15,
- &v[v_offset], ldv, &work[work_offset], ldwork);
-
-/* C1 := C1 - W' */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
-/* L140: */
- }
-/* L150: */
- }
-
- } else if (lsame_(side, "R")) {
-
-/*
- Form C * H or C * H' where C = ( C1 C2 )
-
- W := C * V' = (C1*V1' + C2*V2') (stored in WORK)
-
- W := C1
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
- work_dim1 + 1], &c__1);
-/* L160: */
- }
-
-/* W := W * V1' */
-
- dtrmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b15, &
- v[v_offset], ldv, &work[work_offset], ldwork);
- if (*n > *k) {
-
-/* W := W + C2 * V2' */
-
- i__1 = *n - *k;
- dgemm_("No transpose", "Transpose", m, k, &i__1, &c_b15, &
- c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k + 1) *
- v_dim1 + 1], ldv, &c_b15, &work[work_offset],
- ldwork);
- }
-
-/* W := W * T or W * T' */
-
- dtrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b15, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - W * V */
-
- if (*n > *k) {
-
-/* C2 := C2 - W * V2 */
-
- i__1 = *n - *k;
- dgemm_("No transpose", "No transpose", m, &i__1, k, &
- c_b151, &work[work_offset], ldwork, &v[(*k + 1) *
- v_dim1 + 1], ldv, &c_b15, &c__[(*k + 1) * c_dim1
- + 1], ldc);
- }
-
-/* W := W * V1 */
-
- dtrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b15,
- &v[v_offset], ldv, &work[work_offset], ldwork);
-
-/* C1 := C1 - W */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
-/* L170: */
- }
-/* L180: */
- }
-
- }
-
- } else {
-
-/*
- Let V = ( V1 V2 ) (V2: last K columns)
- where V2 is unit lower triangular.
-*/
-
- if (lsame_(side, "L")) {
-
-/*
- Form H * C or H' * C where C = ( C1 )
- ( C2 )
-
- W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK)
-
- W := C2'
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
- work_dim1 + 1], &c__1);
-/* L190: */
- }
-
-/* W := W * V2' */
-
- dtrmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b15, &
- v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
- , ldwork);
- if (*m > *k) {
-
-/* W := W + C1'*V1' */
-
- i__1 = *m - *k;
- dgemm_("Transpose", "Transpose", n, k, &i__1, &c_b15, &
- c__[c_offset], ldc, &v[v_offset], ldv, &c_b15, &
- work[work_offset], ldwork);
- }
-
-/* W := W * T' or W * T */
-
- dtrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b15, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - V' * W' */
-
- if (*m > *k) {
-
-/* C1 := C1 - V1' * W' */
-
- i__1 = *m - *k;
- dgemm_("Transpose", "Transpose", &i__1, n, k, &c_b151, &v[
- v_offset], ldv, &work[work_offset], ldwork, &
- c_b15, &c__[c_offset], ldc);
- }
-
-/* W := W * V2 */
-
- dtrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b15,
- &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
- work_offset], ldwork);
-
-/* C2 := C2 - W' */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
- work_dim1];
-/* L200: */
- }
-/* L210: */
- }
-
- } else if (lsame_(side, "R")) {
-
-/*
- Form C * H or C * H' where C = ( C1 C2 )
-
- W := C * V' = (C1*V1' + C2*V2') (stored in WORK)
-
- W := C2
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
- j * work_dim1 + 1], &c__1);
-/* L220: */
- }
-
-/* W := W * V2' */
-
- dtrmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b15, &
- v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
- , ldwork);
- if (*n > *k) {
-
-/* W := W + C1 * V1' */
-
- i__1 = *n - *k;
- dgemm_("No transpose", "Transpose", m, k, &i__1, &c_b15, &
- c__[c_offset], ldc, &v[v_offset], ldv, &c_b15, &
- work[work_offset], ldwork);
- }
-
-/* W := W * T or W * T' */
-
- dtrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b15, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - W * V */
-
- if (*n > *k) {
-
-/* C1 := C1 - W * V1 */
-
- i__1 = *n - *k;
- dgemm_("No transpose", "No transpose", m, &i__1, k, &
- c_b151, &work[work_offset], ldwork, &v[v_offset],
- ldv, &c_b15, &c__[c_offset], ldc);
- }
-
-/* W := W * V2 */
-
- dtrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b15,
- &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
- work_offset], ldwork);
-
-/* C1 := C1 - W */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
- work_dim1];
-/* L230: */
- }
-/* L240: */
- }
-
- }
-
- }
- }
-
- return 0;
-
-/* End of DLARFB */
-
-} /* dlarfb_ */
-
-/* Subroutine */ int dlarfg_(integer *n, doublereal *alpha, doublereal *x,
- integer *incx, doublereal *tau)
-{
- /* System generated locals */
- integer i__1;
- doublereal d__1;
-
- /* Builtin functions */
- double d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static integer j, knt;
- static doublereal beta;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- static doublereal xnorm;
-
- static doublereal safmin, rsafmn;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- DLARFG generates a real elementary reflector H of order n, such
- that
-
- H * ( alpha ) = ( beta ), H' * H = I.
- ( x ) ( 0 )
-
- where alpha and beta are scalars, and x is an (n-1)-element real
- vector. H is represented in the form
-
- H = I - tau * ( 1 ) * ( 1 v' ) ,
- ( v )
-
- where tau is a real scalar and v is a real (n-1)-element
- vector.
-
- If the elements of x are all zero, then tau = 0 and H is taken to be
- the unit matrix.
-
- Otherwise 1 <= tau <= 2.
-
- Arguments
- =========
-
- N (input) INTEGER
- The order of the elementary reflector.
-
- ALPHA (input/output) DOUBLE PRECISION
- On entry, the value alpha.
- On exit, it is overwritten with the value beta.
-
- X (input/output) DOUBLE PRECISION array, dimension
- (1+(N-2)*abs(INCX))
- On entry, the vector x.
- On exit, it is overwritten with the vector v.
-
- INCX (input) INTEGER
- The increment between elements of X. INCX > 0.
-
- TAU (output) DOUBLE PRECISION
- The value tau.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --x;
-
- /* Function Body */
- if (*n <= 1) {
- *tau = 0.;
- return 0;
- }
-
- i__1 = *n - 1;
- xnorm = dnrm2_(&i__1, &x[1], incx);
-
- if (xnorm == 0.) {
-
-/* H = I */
-
- *tau = 0.;
- } else {
-
-/* general case */
-
- d__1 = dlapy2_(alpha, &xnorm);
- beta = -d_sign(&d__1, alpha);
- safmin = SAFEMINIMUM / EPSILON;
- if (abs(beta) < safmin) {
-
-/* XNORM, BETA may be inaccurate; scale X and recompute them */
-
- rsafmn = 1. / safmin;
- knt = 0;
-L10:
- ++knt;
- i__1 = *n - 1;
- dscal_(&i__1, &rsafmn, &x[1], incx);
- beta *= rsafmn;
- *alpha *= rsafmn;
- if (abs(beta) < safmin) {
- goto L10;
- }
-
-/* New BETA is at most 1, at least SAFMIN */
-
- i__1 = *n - 1;
- xnorm = dnrm2_(&i__1, &x[1], incx);
- d__1 = dlapy2_(alpha, &xnorm);
- beta = -d_sign(&d__1, alpha);
- *tau = (beta - *alpha) / beta;
- i__1 = *n - 1;
- d__1 = 1. / (*alpha - beta);
- dscal_(&i__1, &d__1, &x[1], incx);
-
-/* If ALPHA is subnormal, it may lose relative accuracy */
-
- *alpha = beta;
- i__1 = knt;
- for (j = 1; j <= i__1; ++j) {
- *alpha *= safmin;
-/* L20: */
- }
- } else {
- *tau = (beta - *alpha) / beta;
- i__1 = *n - 1;
- d__1 = 1. / (*alpha - beta);
- dscal_(&i__1, &d__1, &x[1], incx);
- *alpha = beta;
- }
- }
-
- return 0;
-
-/* End of DLARFG */
-
-} /* dlarfg_ */
-
-/* Subroutine */ int dlarft_(char *direct, char *storev, integer *n, integer *
- k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t,
- integer *ldt)
-{
- /* System generated locals */
- integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3;
- doublereal d__1;
-
- /* Local variables */
- static integer i__, j;
- static doublereal vii;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), dtrmv_(char *,
- char *, char *, integer *, doublereal *, integer *, doublereal *,
- integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DLARFT forms the triangular factor T of a real block reflector H
- of order n, which is defined as a product of k elementary reflectors.
-
- If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
-
- If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
-
- If STOREV = 'C', the vector which defines the elementary reflector
- H(i) is stored in the i-th column of the array V, and
-
- H = I - V * T * V'
-
- If STOREV = 'R', the vector which defines the elementary reflector
- H(i) is stored in the i-th row of the array V, and
-
- H = I - V' * T * V
-
- Arguments
- =========
-
- DIRECT (input) CHARACTER*1
- Specifies the order in which the elementary reflectors are
- multiplied to form the block reflector:
- = 'F': H = H(1) H(2) . . . H(k) (Forward)
- = 'B': H = H(k) . . . H(2) H(1) (Backward)
-
- STOREV (input) CHARACTER*1
- Specifies how the vectors which define the elementary
- reflectors are stored (see also Further Details):
- = 'C': columnwise
- = 'R': rowwise
-
- N (input) INTEGER
- The order of the block reflector H. N >= 0.
-
- K (input) INTEGER
- The order of the triangular factor T (= the number of
- elementary reflectors). K >= 1.
-
- V (input/output) DOUBLE PRECISION array, dimension
- (LDV,K) if STOREV = 'C'
- (LDV,N) if STOREV = 'R'
- The matrix V. See further details.
-
- LDV (input) INTEGER
- The leading dimension of the array V.
- If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i).
-
- T (output) DOUBLE PRECISION array, dimension (LDT,K)
- The k by k triangular factor T of the block reflector.
- If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
- lower triangular. The rest of the array is not used.
-
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= K.
-
- Further Details
- ===============
-
- The shape of the matrix V and the storage of the vectors which define
- the H(i) is best illustrated by the following example with n = 5 and
- k = 3. The elements equal to 1 are not stored; the corresponding
- array elements are modified but restored on exit. The rest of the
- array is not used.
-
- DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
-
- V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
- ( v1 1 ) ( 1 v2 v2 v2 )
- ( v1 v2 1 ) ( 1 v3 v3 )
- ( v1 v2 v3 )
- ( v1 v2 v3 )
-
- DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
-
- V = ( v1 v2 v3 ) V = ( v1 v1 1 )
- ( v1 v2 v3 ) ( v2 v2 v2 1 )
- ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
- ( 1 v3 )
- ( 1 )
-
- =====================================================================
-
-
- Quick return if possible
-*/
-
- /* Parameter adjustments */
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
- --tau;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
-
- /* Function Body */
- if (*n == 0) {
- return 0;
- }
-
- if (lsame_(direct, "F")) {
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (tau[i__] == 0.) {
-
-/* H(i) = I */
-
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- t[j + i__ * t_dim1] = 0.;
-/* L10: */
- }
- } else {
-
-/* general case */
-
- vii = v[i__ + i__ * v_dim1];
- v[i__ + i__ * v_dim1] = 1.;
- if (lsame_(storev, "C")) {
-
-/* T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i) */
-
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- d__1 = -tau[i__];
- dgemv_("Transpose", &i__2, &i__3, &d__1, &v[i__ + v_dim1],
- ldv, &v[i__ + i__ * v_dim1], &c__1, &c_b29, &t[
- i__ * t_dim1 + 1], &c__1);
- } else {
-
-/* T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)' */
-
- i__2 = i__ - 1;
- i__3 = *n - i__ + 1;
- d__1 = -tau[i__];
- dgemv_("No transpose", &i__2, &i__3, &d__1, &v[i__ *
- v_dim1 + 1], ldv, &v[i__ + i__ * v_dim1], ldv, &
- c_b29, &t[i__ * t_dim1 + 1], &c__1);
- }
- v[i__ + i__ * v_dim1] = vii;
-
-/* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */
-
- i__2 = i__ - 1;
- dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[
- t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1);
- t[i__ + i__ * t_dim1] = tau[i__];
- }
-/* L20: */
- }
- } else {
- for (i__ = *k; i__ >= 1; --i__) {
- if (tau[i__] == 0.) {
-
-/* H(i) = I */
-
- i__1 = *k;
- for (j = i__; j <= i__1; ++j) {
- t[j + i__ * t_dim1] = 0.;
-/* L30: */
- }
- } else {
-
-/* general case */
-
- if (i__ < *k) {
- if (lsame_(storev, "C")) {
- vii = v[*n - *k + i__ + i__ * v_dim1];
- v[*n - *k + i__ + i__ * v_dim1] = 1.;
-
-/*
- T(i+1:k,i) :=
- - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i)
-*/
-
- i__1 = *n - *k + i__;
- i__2 = *k - i__;
- d__1 = -tau[i__];
- dgemv_("Transpose", &i__1, &i__2, &d__1, &v[(i__ + 1)
- * v_dim1 + 1], ldv, &v[i__ * v_dim1 + 1], &
- c__1, &c_b29, &t[i__ + 1 + i__ * t_dim1], &
- c__1);
- v[*n - *k + i__ + i__ * v_dim1] = vii;
- } else {
- vii = v[i__ + (*n - *k + i__) * v_dim1];
- v[i__ + (*n - *k + i__) * v_dim1] = 1.;
-
-/*
- T(i+1:k,i) :=
- - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)'
-*/
-
- i__1 = *k - i__;
- i__2 = *n - *k + i__;
- d__1 = -tau[i__];
- dgemv_("No transpose", &i__1, &i__2, &d__1, &v[i__ +
- 1 + v_dim1], ldv, &v[i__ + v_dim1], ldv, &
- c_b29, &t[i__ + 1 + i__ * t_dim1], &c__1);
- v[i__ + (*n - *k + i__) * v_dim1] = vii;
- }
-
-/* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */
-
- i__1 = *k - i__;
- dtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__
- + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ *
- t_dim1], &c__1)
- ;
- }
- t[i__ + i__ * t_dim1] = tau[i__];
- }
-/* L40: */
- }
- }
- return 0;
-
-/* End of DLARFT */
-
-} /* dlarft_ */
-
-/* Subroutine */ int dlarfx_(char *side, integer *m, integer *n, doublereal *
- v, doublereal *tau, doublereal *c__, integer *ldc, doublereal *work)
-{
- /* System generated locals */
- integer c_dim1, c_offset, i__1;
- doublereal d__1;
-
- /* Local variables */
- static integer j;
- static doublereal t1, t2, t3, t4, t5, t6, t7, t8, t9, v1, v2, v3, v4, v5,
- v6, v7, v8, v9, t10, v10, sum;
- extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DLARFX applies a real elementary reflector H to a real m by n
- matrix C, from either the left or the right. H is represented in the
- form
-
- H = I - tau * v * v'
-
- where tau is a real scalar and v is a real vector.
-
- If tau = 0, then H is taken to be the unit matrix
-
- This version uses inline code if H has order < 11.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': form H * C
- = 'R': form C * H
-
- M (input) INTEGER
- The number of rows of the matrix C.
-
- N (input) INTEGER
- The number of columns of the matrix C.
-
- V (input) DOUBLE PRECISION array, dimension (M) if SIDE = 'L'
- or (N) if SIDE = 'R'
- The vector v in the representation of H.
-
- TAU (input) DOUBLE PRECISION
- The value tau in the representation of H.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the m by n matrix C.
- On exit, C is overwritten by the matrix H * C if SIDE = 'L',
- or C * H if SIDE = 'R'.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDA >= (1,M).
-
- WORK (workspace) DOUBLE PRECISION array, dimension
- (N) if SIDE = 'L'
- or (M) if SIDE = 'R'
- WORK is not referenced if H has order < 11.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --v;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- if (*tau == 0.) {
- return 0;
- }
- if (lsame_(side, "L")) {
-
-/* Form H * C, where H has order m. */
-
- switch (*m) {
- case 1: goto L10;
- case 2: goto L30;
- case 3: goto L50;
- case 4: goto L70;
- case 5: goto L90;
- case 6: goto L110;
- case 7: goto L130;
- case 8: goto L150;
- case 9: goto L170;
- case 10: goto L190;
- }
-
-/*
- Code for general M
-
- w := C'*v
-*/
-
- dgemv_("Transpose", m, n, &c_b15, &c__[c_offset], ldc, &v[1], &c__1, &
- c_b29, &work[1], &c__1);
-
-/* C := C - tau * v * w' */
-
- d__1 = -(*tau);
- dger_(m, n, &d__1, &v[1], &c__1, &work[1], &c__1, &c__[c_offset], ldc)
- ;
- goto L410;
-L10:
-
-/* Special code for 1 x 1 Householder */
-
- t1 = 1. - *tau * v[1] * v[1];
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- c__[j * c_dim1 + 1] = t1 * c__[j * c_dim1 + 1];
-/* L20: */
- }
- goto L410;
-L30:
-
-/* Special code for 2 x 2 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2];
- c__[j * c_dim1 + 1] -= sum * t1;
- c__[j * c_dim1 + 2] -= sum * t2;
-/* L40: */
- }
- goto L410;
-L50:
-
-/* Special code for 3 x 3 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
- c__[j * c_dim1 + 3];
- c__[j * c_dim1 + 1] -= sum * t1;
- c__[j * c_dim1 + 2] -= sum * t2;
- c__[j * c_dim1 + 3] -= sum * t3;
-/* L60: */
- }
- goto L410;
-L70:
-
-/* Special code for 4 x 4 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
- c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4];
- c__[j * c_dim1 + 1] -= sum * t1;
- c__[j * c_dim1 + 2] -= sum * t2;
- c__[j * c_dim1 + 3] -= sum * t3;
- c__[j * c_dim1 + 4] -= sum * t4;
-/* L80: */
- }
- goto L410;
-L90:
-
-/* Special code for 5 x 5 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
- c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
- j * c_dim1 + 5];
- c__[j * c_dim1 + 1] -= sum * t1;
- c__[j * c_dim1 + 2] -= sum * t2;
- c__[j * c_dim1 + 3] -= sum * t3;
- c__[j * c_dim1 + 4] -= sum * t4;
- c__[j * c_dim1 + 5] -= sum * t5;
-/* L100: */
- }
- goto L410;
-L110:
-
-/* Special code for 6 x 6 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- v6 = v[6];
- t6 = *tau * v6;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
- c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
- j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6];
- c__[j * c_dim1 + 1] -= sum * t1;
- c__[j * c_dim1 + 2] -= sum * t2;
- c__[j * c_dim1 + 3] -= sum * t3;
- c__[j * c_dim1 + 4] -= sum * t4;
- c__[j * c_dim1 + 5] -= sum * t5;
- c__[j * c_dim1 + 6] -= sum * t6;
-/* L120: */
- }
- goto L410;
-L130:
-
-/* Special code for 7 x 7 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- v6 = v[6];
- t6 = *tau * v6;
- v7 = v[7];
- t7 = *tau * v7;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
- c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
- j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
- c_dim1 + 7];
- c__[j * c_dim1 + 1] -= sum * t1;
- c__[j * c_dim1 + 2] -= sum * t2;
- c__[j * c_dim1 + 3] -= sum * t3;
- c__[j * c_dim1 + 4] -= sum * t4;
- c__[j * c_dim1 + 5] -= sum * t5;
- c__[j * c_dim1 + 6] -= sum * t6;
- c__[j * c_dim1 + 7] -= sum * t7;
-/* L140: */
- }
- goto L410;
-L150:
-
-/* Special code for 8 x 8 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- v6 = v[6];
- t6 = *tau * v6;
- v7 = v[7];
- t7 = *tau * v7;
- v8 = v[8];
- t8 = *tau * v8;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
- c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
- j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
- c_dim1 + 7] + v8 * c__[j * c_dim1 + 8];
- c__[j * c_dim1 + 1] -= sum * t1;
- c__[j * c_dim1 + 2] -= sum * t2;
- c__[j * c_dim1 + 3] -= sum * t3;
- c__[j * c_dim1 + 4] -= sum * t4;
- c__[j * c_dim1 + 5] -= sum * t5;
- c__[j * c_dim1 + 6] -= sum * t6;
- c__[j * c_dim1 + 7] -= sum * t7;
- c__[j * c_dim1 + 8] -= sum * t8;
-/* L160: */
- }
- goto L410;
-L170:
-
-/* Special code for 9 x 9 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- v6 = v[6];
- t6 = *tau * v6;
- v7 = v[7];
- t7 = *tau * v7;
- v8 = v[8];
- t8 = *tau * v8;
- v9 = v[9];
- t9 = *tau * v9;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
- c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
- j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
- c_dim1 + 7] + v8 * c__[j * c_dim1 + 8] + v9 * c__[j *
- c_dim1 + 9];
- c__[j * c_dim1 + 1] -= sum * t1;
- c__[j * c_dim1 + 2] -= sum * t2;
- c__[j * c_dim1 + 3] -= sum * t3;
- c__[j * c_dim1 + 4] -= sum * t4;
- c__[j * c_dim1 + 5] -= sum * t5;
- c__[j * c_dim1 + 6] -= sum * t6;
- c__[j * c_dim1 + 7] -= sum * t7;
- c__[j * c_dim1 + 8] -= sum * t8;
- c__[j * c_dim1 + 9] -= sum * t9;
-/* L180: */
- }
- goto L410;
-L190:
-
-/* Special code for 10 x 10 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- v6 = v[6];
- t6 = *tau * v6;
- v7 = v[7];
- t7 = *tau * v7;
- v8 = v[8];
- t8 = *tau * v8;
- v9 = v[9];
- t9 = *tau * v9;
- v10 = v[10];
- t10 = *tau * v10;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
- c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
- j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
- c_dim1 + 7] + v8 * c__[j * c_dim1 + 8] + v9 * c__[j *
- c_dim1 + 9] + v10 * c__[j * c_dim1 + 10];
- c__[j * c_dim1 + 1] -= sum * t1;
- c__[j * c_dim1 + 2] -= sum * t2;
- c__[j * c_dim1 + 3] -= sum * t3;
- c__[j * c_dim1 + 4] -= sum * t4;
- c__[j * c_dim1 + 5] -= sum * t5;
- c__[j * c_dim1 + 6] -= sum * t6;
- c__[j * c_dim1 + 7] -= sum * t7;
- c__[j * c_dim1 + 8] -= sum * t8;
- c__[j * c_dim1 + 9] -= sum * t9;
- c__[j * c_dim1 + 10] -= sum * t10;
-/* L200: */
- }
- goto L410;
- } else {
-
-/* Form C * H, where H has order n. */
-
- switch (*n) {
- case 1: goto L210;
- case 2: goto L230;
- case 3: goto L250;
- case 4: goto L270;
- case 5: goto L290;
- case 6: goto L310;
- case 7: goto L330;
- case 8: goto L350;
- case 9: goto L370;
- case 10: goto L390;
- }
-
-/*
- Code for general N
-
- w := C * v
-*/
-
- dgemv_("No transpose", m, n, &c_b15, &c__[c_offset], ldc, &v[1], &
- c__1, &c_b29, &work[1], &c__1);
-
-/* C := C - tau * w * v' */
-
- d__1 = -(*tau);
- dger_(m, n, &d__1, &work[1], &c__1, &v[1], &c__1, &c__[c_offset], ldc)
- ;
- goto L410;
-L210:
-
-/* Special code for 1 x 1 Householder */
-
- t1 = 1. - *tau * v[1] * v[1];
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- c__[j + c_dim1] = t1 * c__[j + c_dim1];
-/* L220: */
- }
- goto L410;
-L230:
-
-/* Special code for 2 x 2 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))];
- c__[j + c_dim1] -= sum * t1;
- c__[j + ((c_dim1) << (1))] -= sum * t2;
-/* L240: */
- }
- goto L410;
-L250:
-
-/* Special code for 3 x 3 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
- * c__[j + c_dim1 * 3];
- c__[j + c_dim1] -= sum * t1;
- c__[j + ((c_dim1) << (1))] -= sum * t2;
- c__[j + c_dim1 * 3] -= sum * t3;
-/* L260: */
- }
- goto L410;
-L270:
-
-/* Special code for 4 x 4 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
- * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))];
- c__[j + c_dim1] -= sum * t1;
- c__[j + ((c_dim1) << (1))] -= sum * t2;
- c__[j + c_dim1 * 3] -= sum * t3;
- c__[j + ((c_dim1) << (2))] -= sum * t4;
-/* L280: */
- }
- goto L410;
-L290:
-
-/* Special code for 5 x 5 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
- * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
- v5 * c__[j + c_dim1 * 5];
- c__[j + c_dim1] -= sum * t1;
- c__[j + ((c_dim1) << (1))] -= sum * t2;
- c__[j + c_dim1 * 3] -= sum * t3;
- c__[j + ((c_dim1) << (2))] -= sum * t4;
- c__[j + c_dim1 * 5] -= sum * t5;
-/* L300: */
- }
- goto L410;
-L310:
-
-/* Special code for 6 x 6 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- v6 = v[6];
- t6 = *tau * v6;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
- * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
- v5 * c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6];
- c__[j + c_dim1] -= sum * t1;
- c__[j + ((c_dim1) << (1))] -= sum * t2;
- c__[j + c_dim1 * 3] -= sum * t3;
- c__[j + ((c_dim1) << (2))] -= sum * t4;
- c__[j + c_dim1 * 5] -= sum * t5;
- c__[j + c_dim1 * 6] -= sum * t6;
-/* L320: */
- }
- goto L410;
-L330:
-
-/* Special code for 7 x 7 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- v6 = v[6];
- t6 = *tau * v6;
- v7 = v[7];
- t7 = *tau * v7;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
- * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
- v5 * c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 *
- c__[j + c_dim1 * 7];
- c__[j + c_dim1] -= sum * t1;
- c__[j + ((c_dim1) << (1))] -= sum * t2;
- c__[j + c_dim1 * 3] -= sum * t3;
- c__[j + ((c_dim1) << (2))] -= sum * t4;
- c__[j + c_dim1 * 5] -= sum * t5;
- c__[j + c_dim1 * 6] -= sum * t6;
- c__[j + c_dim1 * 7] -= sum * t7;
-/* L340: */
- }
- goto L410;
-L350:
-
-/* Special code for 8 x 8 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- v6 = v[6];
- t6 = *tau * v6;
- v7 = v[7];
- t7 = *tau * v7;
- v8 = v[8];
- t8 = *tau * v8;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
- * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
- v5 * c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 *
- c__[j + c_dim1 * 7] + v8 * c__[j + ((c_dim1) << (3))];
- c__[j + c_dim1] -= sum * t1;
- c__[j + ((c_dim1) << (1))] -= sum * t2;
- c__[j + c_dim1 * 3] -= sum * t3;
- c__[j + ((c_dim1) << (2))] -= sum * t4;
- c__[j + c_dim1 * 5] -= sum * t5;
- c__[j + c_dim1 * 6] -= sum * t6;
- c__[j + c_dim1 * 7] -= sum * t7;
- c__[j + ((c_dim1) << (3))] -= sum * t8;
-/* L360: */
- }
- goto L410;
-L370:
-
-/* Special code for 9 x 9 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- v6 = v[6];
- t6 = *tau * v6;
- v7 = v[7];
- t7 = *tau * v7;
- v8 = v[8];
- t8 = *tau * v8;
- v9 = v[9];
- t9 = *tau * v9;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
- * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
- v5 * c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 *
- c__[j + c_dim1 * 7] + v8 * c__[j + ((c_dim1) << (3))] +
- v9 * c__[j + c_dim1 * 9];
- c__[j + c_dim1] -= sum * t1;
- c__[j + ((c_dim1) << (1))] -= sum * t2;
- c__[j + c_dim1 * 3] -= sum * t3;
- c__[j + ((c_dim1) << (2))] -= sum * t4;
- c__[j + c_dim1 * 5] -= sum * t5;
- c__[j + c_dim1 * 6] -= sum * t6;
- c__[j + c_dim1 * 7] -= sum * t7;
- c__[j + ((c_dim1) << (3))] -= sum * t8;
- c__[j + c_dim1 * 9] -= sum * t9;
-/* L380: */
- }
- goto L410;
-L390:
-
-/* Special code for 10 x 10 Householder */
-
- v1 = v[1];
- t1 = *tau * v1;
- v2 = v[2];
- t2 = *tau * v2;
- v3 = v[3];
- t3 = *tau * v3;
- v4 = v[4];
- t4 = *tau * v4;
- v5 = v[5];
- t5 = *tau * v5;
- v6 = v[6];
- t6 = *tau * v6;
- v7 = v[7];
- t7 = *tau * v7;
- v8 = v[8];
- t8 = *tau * v8;
- v9 = v[9];
- t9 = *tau * v9;
- v10 = v[10];
- t10 = *tau * v10;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
- * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
- v5 * c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 *
- c__[j + c_dim1 * 7] + v8 * c__[j + ((c_dim1) << (3))] +
- v9 * c__[j + c_dim1 * 9] + v10 * c__[j + c_dim1 * 10];
- c__[j + c_dim1] -= sum * t1;
- c__[j + ((c_dim1) << (1))] -= sum * t2;
- c__[j + c_dim1 * 3] -= sum * t3;
- c__[j + ((c_dim1) << (2))] -= sum * t4;
- c__[j + c_dim1 * 5] -= sum * t5;
- c__[j + c_dim1 * 6] -= sum * t6;
- c__[j + c_dim1 * 7] -= sum * t7;
- c__[j + ((c_dim1) << (3))] -= sum * t8;
- c__[j + c_dim1 * 9] -= sum * t9;
- c__[j + c_dim1 * 10] -= sum * t10;
-/* L400: */
- }
- goto L410;
- }
-L410:
- return 0;
-
-/* End of DLARFX */
-
-} /* dlarfx_ */
-
-/* Subroutine */ int dlartg_(doublereal *f, doublereal *g, doublereal *cs,
- doublereal *sn, doublereal *r__)
-{
- /* Initialized data */
-
- static logical first = TRUE_;
-
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double log(doublereal), pow_di(doublereal *, integer *), sqrt(doublereal);
-
- /* Local variables */
- static integer i__;
- static doublereal f1, g1, eps, scale;
- static integer count;
- static doublereal safmn2, safmx2;
-
- static doublereal safmin;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- DLARTG generate a plane rotation so that
-
- [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1.
- [ -SN CS ] [ G ] [ 0 ]
-
- This is a slower, more accurate version of the BLAS1 routine DROTG,
- with the following other differences:
- F and G are unchanged on return.
- If G=0, then CS=1 and SN=0.
- If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any
- floating point operations (saves work in DBDSQR when
- there are zeros on the diagonal).
-
- If F exceeds G in magnitude, CS will be positive.
-
- Arguments
- =========
-
- F (input) DOUBLE PRECISION
- The first component of vector to be rotated.
-
- G (input) DOUBLE PRECISION
- The second component of vector to be rotated.
-
- CS (output) DOUBLE PRECISION
- The cosine of the rotation.
-
- SN (output) DOUBLE PRECISION
- The sine of the rotation.
-
- R (output) DOUBLE PRECISION
- The nonzero component of the rotated vector.
-
- =====================================================================
-*/
-
-
- if (first) {
- first = FALSE_;
- safmin = SAFEMINIMUM;
- eps = EPSILON;
- d__1 = BASE;
- i__1 = (integer) (log(safmin / eps) / log(BASE) /
- 2.);
- safmn2 = pow_di(&d__1, &i__1);
- safmx2 = 1. / safmn2;
- }
- if (*g == 0.) {
- *cs = 1.;
- *sn = 0.;
- *r__ = *f;
- } else if (*f == 0.) {
- *cs = 0.;
- *sn = 1.;
- *r__ = *g;
- } else {
- f1 = *f;
- g1 = *g;
-/* Computing MAX */
- d__1 = abs(f1), d__2 = abs(g1);
- scale = max(d__1,d__2);
- if (scale >= safmx2) {
- count = 0;
-L10:
- ++count;
- f1 *= safmn2;
- g1 *= safmn2;
-/* Computing MAX */
- d__1 = abs(f1), d__2 = abs(g1);
- scale = max(d__1,d__2);
- if (scale >= safmx2) {
- goto L10;
- }
-/* Computing 2nd power */
- d__1 = f1;
-/* Computing 2nd power */
- d__2 = g1;
- *r__ = sqrt(d__1 * d__1 + d__2 * d__2);
- *cs = f1 / *r__;
- *sn = g1 / *r__;
- i__1 = count;
- for (i__ = 1; i__ <= i__1; ++i__) {
- *r__ *= safmx2;
-/* L20: */
- }
- } else if (scale <= safmn2) {
- count = 0;
-L30:
- ++count;
- f1 *= safmx2;
- g1 *= safmx2;
-/* Computing MAX */
- d__1 = abs(f1), d__2 = abs(g1);
- scale = max(d__1,d__2);
- if (scale <= safmn2) {
- goto L30;
- }
-/* Computing 2nd power */
- d__1 = f1;
-/* Computing 2nd power */
- d__2 = g1;
- *r__ = sqrt(d__1 * d__1 + d__2 * d__2);
- *cs = f1 / *r__;
- *sn = g1 / *r__;
- i__1 = count;
- for (i__ = 1; i__ <= i__1; ++i__) {
- *r__ *= safmn2;
-/* L40: */
- }
- } else {
-/* Computing 2nd power */
- d__1 = f1;
-/* Computing 2nd power */
- d__2 = g1;
- *r__ = sqrt(d__1 * d__1 + d__2 * d__2);
- *cs = f1 / *r__;
- *sn = g1 / *r__;
- }
- if ((abs(*f) > abs(*g) && *cs < 0.)) {
- *cs = -(*cs);
- *sn = -(*sn);
- *r__ = -(*r__);
- }
- }
- return 0;
-
-/* End of DLARTG */
-
-} /* dlartg_ */
-
-/* Subroutine */ int dlas2_(doublereal *f, doublereal *g, doublereal *h__,
- doublereal *ssmin, doublereal *ssmax)
-{
- /* System generated locals */
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal c__, fa, ga, ha, as, at, au, fhmn, fhmx;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- DLAS2 computes the singular values of the 2-by-2 matrix
- [ F G ]
- [ 0 H ].
- On return, SSMIN is the smaller singular value and SSMAX is the
- larger singular value.
-
- Arguments
- =========
-
- F (input) DOUBLE PRECISION
- The (1,1) element of the 2-by-2 matrix.
-
- G (input) DOUBLE PRECISION
- The (1,2) element of the 2-by-2 matrix.
-
- H (input) DOUBLE PRECISION
- The (2,2) element of the 2-by-2 matrix.
-
- SSMIN (output) DOUBLE PRECISION
- The smaller singular value.
-
- SSMAX (output) DOUBLE PRECISION
- The larger singular value.
-
- Further Details
- ===============
-
- Barring over/underflow, all output quantities are correct to within
- a few units in the last place (ulps), even in the absence of a guard
- digit in addition/subtraction.
-
- In IEEE arithmetic, the code works correctly if one matrix element is
- infinite.
-
- Overflow will not occur unless the largest singular value itself
- overflows, or is within a few ulps of overflow. (On machines with
- partial overflow, like the Cray, overflow may occur if the largest
- singular value is within a factor of 2 of overflow.)
-
- Underflow is harmless if underflow is gradual. Otherwise, results
- may correspond to a matrix modified by perturbations of size near
- the underflow threshold.
-
- ====================================================================
-*/
-
-
- fa = abs(*f);
- ga = abs(*g);
- ha = abs(*h__);
- fhmn = min(fa,ha);
- fhmx = max(fa,ha);
- if (fhmn == 0.) {
- *ssmin = 0.;
- if (fhmx == 0.) {
- *ssmax = ga;
- } else {
-/* Computing 2nd power */
- d__1 = min(fhmx,ga) / max(fhmx,ga);
- *ssmax = max(fhmx,ga) * sqrt(d__1 * d__1 + 1.);
- }
- } else {
- if (ga < fhmx) {
- as = fhmn / fhmx + 1.;
- at = (fhmx - fhmn) / fhmx;
-/* Computing 2nd power */
- d__1 = ga / fhmx;
- au = d__1 * d__1;
- c__ = 2. / (sqrt(as * as + au) + sqrt(at * at + au));
- *ssmin = fhmn * c__;
- *ssmax = fhmx / c__;
- } else {
- au = fhmx / ga;
- if (au == 0.) {
-
-/*
- Avoid possible harmful underflow if exponent range
- asymmetric (true SSMIN may not underflow even if
- AU underflows)
-*/
-
- *ssmin = fhmn * fhmx / ga;
- *ssmax = ga;
- } else {
- as = fhmn / fhmx + 1.;
- at = (fhmx - fhmn) / fhmx;
-/* Computing 2nd power */
- d__1 = as * au;
-/* Computing 2nd power */
- d__2 = at * au;
- c__ = 1. / (sqrt(d__1 * d__1 + 1.) + sqrt(d__2 * d__2 + 1.));
- *ssmin = fhmn * c__ * au;
- *ssmin += *ssmin;
- *ssmax = ga / (c__ + c__);
- }
- }
- }
- return 0;
-
-/* End of DLAS2 */
-
-} /* dlas2_ */
-
-/* Subroutine */ int dlascl_(char *type__, integer *kl, integer *ku,
- doublereal *cfrom, doublereal *cto, integer *m, integer *n,
- doublereal *a, integer *lda, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
-
- /* Local variables */
- static integer i__, j, k1, k2, k3, k4;
- static doublereal mul, cto1;
- static logical done;
- static doublereal ctoc;
- extern logical lsame_(char *, char *);
- static integer itype;
- static doublereal cfrom1;
-
- static doublereal cfromc;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static doublereal bignum, smlnum;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DLASCL multiplies the M by N real matrix A by the real scalar
- CTO/CFROM. This is done without over/underflow as long as the final
- result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
- A may be full, upper triangular, lower triangular, upper Hessenberg,
- or banded.
-
- Arguments
- =========
-
- TYPE (input) CHARACTER*1
- TYPE indices the storage type of the input matrix.
- = 'G': A is a full matrix.
- = 'L': A is a lower triangular matrix.
- = 'U': A is an upper triangular matrix.
- = 'H': A is an upper Hessenberg matrix.
- = 'B': A is a symmetric band matrix with lower bandwidth KL
- and upper bandwidth KU and with the only the lower
- half stored.
- = 'Q': A is a symmetric band matrix with lower bandwidth KL
- and upper bandwidth KU and with the only the upper
- half stored.
- = 'Z': A is a band matrix with lower bandwidth KL and upper
- bandwidth KU.
-
- KL (input) INTEGER
- The lower bandwidth of A. Referenced only if TYPE = 'B',
- 'Q' or 'Z'.
-
- KU (input) INTEGER
- The upper bandwidth of A. Referenced only if TYPE = 'B',
- 'Q' or 'Z'.
-
- CFROM (input) DOUBLE PRECISION
- CTO (input) DOUBLE PRECISION
- The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
- without over/underflow if the final result CTO*A(I,J)/CFROM
- can be represented without over/underflow. CFROM must be
- nonzero.
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
- The matrix to be multiplied by CTO/CFROM. See TYPE for the
- storage type.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- INFO (output) INTEGER
- 0 - successful exit
- <0 - if INFO = -i, the i-th argument had an illegal value.
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- *info = 0;
-
- if (lsame_(type__, "G")) {
- itype = 0;
- } else if (lsame_(type__, "L")) {
- itype = 1;
- } else if (lsame_(type__, "U")) {
- itype = 2;
- } else if (lsame_(type__, "H")) {
- itype = 3;
- } else if (lsame_(type__, "B")) {
- itype = 4;
- } else if (lsame_(type__, "Q")) {
- itype = 5;
- } else if (lsame_(type__, "Z")) {
- itype = 6;
- } else {
- itype = -1;
- }
-
- if (itype == -1) {
- *info = -1;
- } else if (*cfrom == 0.) {
- *info = -4;
- } else if (*m < 0) {
- *info = -6;
- } else if (*n < 0 || (itype == 4 && *n != *m) || (itype == 5 && *n != *m))
- {
- *info = -7;
- } else if ((itype <= 3 && *lda < max(1,*m))) {
- *info = -9;
- } else if (itype >= 4) {
-/* Computing MAX */
- i__1 = *m - 1;
- if (*kl < 0 || *kl > max(i__1,0)) {
- *info = -2;
- } else /* if(complicated condition) */ {
-/* Computing MAX */
- i__1 = *n - 1;
- if (*ku < 0 || *ku > max(i__1,0) || ((itype == 4 || itype == 5) &&
- *kl != *ku)) {
- *info = -3;
- } else if ((itype == 4 && *lda < *kl + 1) || (itype == 5 && *lda <
- *ku + 1) || (itype == 6 && *lda < ((*kl) << (1)) + *ku +
- 1)) {
- *info = -9;
- }
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASCL", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0 || *m == 0) {
- return 0;
- }
-
-/* Get machine parameters */
-
- smlnum = SAFEMINIMUM;
- bignum = 1. / smlnum;
-
- cfromc = *cfrom;
- ctoc = *cto;
-
-L10:
- cfrom1 = cfromc * smlnum;
- cto1 = ctoc / bignum;
- if ((abs(cfrom1) > abs(ctoc) && ctoc != 0.)) {
- mul = smlnum;
- done = FALSE_;
- cfromc = cfrom1;
- } else if (abs(cto1) > abs(cfromc)) {
- mul = bignum;
- done = FALSE_;
- ctoc = cto1;
- } else {
- mul = ctoc / cfromc;
- done = TRUE_;
- }
-
- if (itype == 0) {
-
-/* Full matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
-/* L20: */
- }
-/* L30: */
- }
-
- } else if (itype == 1) {
-
-/* Lower triangular matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
-/* L40: */
- }
-/* L50: */
- }
-
- } else if (itype == 2) {
-
-/* Upper triangular matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = min(j,*m);
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
-/* L60: */
- }
-/* L70: */
- }
-
- } else if (itype == 3) {
-
-/* Upper Hessenberg matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = j + 1;
- i__2 = min(i__3,*m);
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
-/* L80: */
- }
-/* L90: */
- }
-
- } else if (itype == 4) {
-
-/* Lower half of a symmetric band matrix */
-
- k3 = *kl + 1;
- k4 = *n + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = k3, i__4 = k4 - j;
- i__2 = min(i__3,i__4);
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
-/* L100: */
- }
-/* L110: */
- }
-
- } else if (itype == 5) {
-
-/* Upper half of a symmetric band matrix */
-
- k1 = *ku + 2;
- k3 = *ku + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MAX */
- i__2 = k1 - j;
- i__3 = k3;
- for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
- a[i__ + j * a_dim1] *= mul;
-/* L120: */
- }
-/* L130: */
- }
-
- } else if (itype == 6) {
-
-/* Band matrix */
-
- k1 = *kl + *ku + 2;
- k2 = *kl + 1;
- k3 = ((*kl) << (1)) + *ku + 1;
- k4 = *kl + *ku + 1 + *m;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MAX */
- i__3 = k1 - j;
-/* Computing MIN */
- i__4 = k3, i__5 = k4 - j;
- i__2 = min(i__4,i__5);
- for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
-/* L140: */
- }
-/* L150: */
- }
-
- }
-
- if (! done) {
- goto L10;
- }
-
- return 0;
-
-/* End of DLASCL */
-
-} /* dlascl_ */
-
-/* Subroutine */ int dlasd0_(integer *n, integer *sqre, doublereal *d__,
- doublereal *e, doublereal *u, integer *ldu, doublereal *vt, integer *
- ldvt, integer *smlsiz, integer *iwork, doublereal *work, integer *
- info)
-{
- /* System generated locals */
- integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
-
- /* Builtin functions */
- integer pow_ii(integer *, integer *);
-
- /* Local variables */
- static integer i__, j, m, i1, ic, lf, nd, ll, nl, nr, im1, ncc, nlf, nrf,
- iwk, lvl, ndb1, nlp1, nrp1;
- static doublereal beta;
- static integer idxq, nlvl;
- static doublereal alpha;
- static integer inode, ndiml, idxqc, ndimr, itemp, sqrei;
- extern /* Subroutine */ int dlasd1_(integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, integer *, integer *, doublereal *,
- integer *), dlasdq_(char *, integer *, integer *, integer *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *), dlasdt_(integer *, integer *,
- integer *, integer *, integer *, integer *, integer *), xerbla_(
- char *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- Using a divide and conquer approach, DLASD0 computes the singular
- value decomposition (SVD) of a real upper bidiagonal N-by-M
- matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
- The algorithm computes orthogonal matrices U and VT such that
- B = U * S * VT. The singular values S are overwritten on D.
-
- A related subroutine, DLASDA, computes only the singular values,
- and optionally, the singular vectors in compact form.
-
- Arguments
- =========
-
- N (input) INTEGER
- On entry, the row dimension of the upper bidiagonal matrix.
- This is also the dimension of the main diagonal array D.
-
- SQRE (input) INTEGER
- Specifies the column dimension of the bidiagonal matrix.
- = 0: The bidiagonal matrix has column dimension M = N;
- = 1: The bidiagonal matrix has column dimension M = N+1;
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry D contains the main diagonal of the bidiagonal
- matrix.
- On exit D, if INFO = 0, contains its singular values.
-
- E (input) DOUBLE PRECISION array, dimension (M-1)
- Contains the subdiagonal entries of the bidiagonal matrix.
- On exit, E has been destroyed.
-
- U (output) DOUBLE PRECISION array, dimension at least (LDQ, N)
- On exit, U contains the left singular vectors.
-
- LDU (input) INTEGER
- On entry, leading dimension of U.
-
- VT (output) DOUBLE PRECISION array, dimension at least (LDVT, M)
- On exit, VT' contains the right singular vectors.
-
- LDVT (input) INTEGER
- On entry, leading dimension of VT.
-
- SMLSIZ (input) INTEGER
- On entry, maximum size of the subproblems at the
- bottom of the computation tree.
-
- IWORK INTEGER work array.
- Dimension must be at least (8 * N)
-
- WORK DOUBLE PRECISION work array.
- Dimension must be at least (3 * M**2 + 2 * M)
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an singular value did not converge
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- --iwork;
- --work;
-
- /* Function Body */
- *info = 0;
-
- if (*n < 0) {
- *info = -1;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -2;
- }
-
- m = *n + *sqre;
-
- if (*ldu < *n) {
- *info = -6;
- } else if (*ldvt < m) {
- *info = -8;
- } else if (*smlsiz < 3) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASD0", &i__1);
- return 0;
- }
-
-/* If the input matrix is too small, call DLASDQ to find the SVD. */
-
- if (*n <= *smlsiz) {
- dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset],
- ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], info);
- return 0;
- }
-
-/* Set up the computation tree. */
-
- inode = 1;
- ndiml = inode + *n;
- ndimr = ndiml + *n;
- idxq = ndimr + *n;
- iwk = idxq + *n;
- dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
- smlsiz);
-
-/*
- For the nodes on bottom level of the tree, solve
- their subproblems by DLASDQ.
-*/
-
- ndb1 = (nd + 1) / 2;
- ncc = 0;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
-
-/*
- IC : center row of each node
- NL : number of rows of left subproblem
- NR : number of rows of right subproblem
- NLF: starting row of the left subproblem
- NRF: starting row of the right subproblem
-*/
-
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nlp1 = nl + 1;
- nr = iwork[ndimr + i1];
- nrp1 = nr + 1;
- nlf = ic - nl;
- nrf = ic + 1;
- sqrei = 1;
- dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &vt[
- nlf + nlf * vt_dim1], ldvt, &u[nlf + nlf * u_dim1], ldu, &u[
- nlf + nlf * u_dim1], ldu, &work[1], info);
- if (*info != 0) {
- return 0;
- }
- itemp = idxq + nlf - 2;
- i__2 = nl;
- for (j = 1; j <= i__2; ++j) {
- iwork[itemp + j] = j;
-/* L10: */
- }
- if (i__ == nd) {
- sqrei = *sqre;
- } else {
- sqrei = 1;
- }
- nrp1 = nr + sqrei;
- dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &vt[
- nrf + nrf * vt_dim1], ldvt, &u[nrf + nrf * u_dim1], ldu, &u[
- nrf + nrf * u_dim1], ldu, &work[1], info);
- if (*info != 0) {
- return 0;
- }
- itemp = idxq + ic;
- i__2 = nr;
- for (j = 1; j <= i__2; ++j) {
- iwork[itemp + j - 1] = j;
-/* L20: */
- }
-/* L30: */
- }
-
-/* Now conquer each subproblem bottom-up. */
-
- for (lvl = nlvl; lvl >= 1; --lvl) {
-
-/*
- Find the first node LF and last node LL on the
- current level LVL.
-*/
-
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__1 = lvl - 1;
- lf = pow_ii(&c__2, &i__1);
- ll = ((lf) << (1)) - 1;
- }
- i__1 = ll;
- for (i__ = lf; i__ <= i__1; ++i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- if ((*sqre == 0 && i__ == ll)) {
- sqrei = *sqre;
- } else {
- sqrei = 1;
- }
- idxqc = idxq + nlf - 1;
- alpha = d__[ic];
- beta = e[ic];
- dlasd1_(&nl, &nr, &sqrei, &d__[nlf], &alpha, &beta, &u[nlf + nlf *
- u_dim1], ldu, &vt[nlf + nlf * vt_dim1], ldvt, &iwork[
- idxqc], &iwork[iwk], &work[1], info);
- if (*info != 0) {
- return 0;
- }
-/* L40: */
- }
-/* L50: */
- }
-
- return 0;
-
-/* End of DLASD0 */
-
-} /* dlasd0_ */
-
-/* Subroutine */ int dlasd1_(integer *nl, integer *nr, integer *sqre,
- doublereal *d__, doublereal *alpha, doublereal *beta, doublereal *u,
- integer *ldu, doublereal *vt, integer *ldvt, integer *idxq, integer *
- iwork, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer u_dim1, u_offset, vt_dim1, vt_offset, i__1;
- doublereal d__1, d__2;
-
- /* Local variables */
- static integer i__, k, m, n, n1, n2, iq, iz, iu2, ldq, idx, ldu2, ivt2,
- idxc, idxp, ldvt2;
- extern /* Subroutine */ int dlasd2_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, integer *,
- integer *, integer *, integer *, integer *, integer *), dlasd3_(
- integer *, integer *, integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, integer *, integer *, doublereal *, integer *),
- dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, integer *, integer *),
- dlamrg_(integer *, integer *, doublereal *, integer *, integer *,
- integer *);
- static integer isigma;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static doublereal orgnrm;
- static integer coltyp;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
- where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0.
-
- A related subroutine DLASD7 handles the case in which the singular
- values (and the singular vectors in factored form) are desired.
-
- DLASD1 computes the SVD as follows:
-
- ( D1(in) 0 0 0 )
- B = U(in) * ( Z1' a Z2' b ) * VT(in)
- ( 0 0 D2(in) 0 )
-
- = U(out) * ( D(out) 0) * VT(out)
-
- where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
- with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
- elsewhere; and the entry b is empty if SQRE = 0.
-
- The left singular vectors of the original matrix are stored in U, and
- the transpose of the right singular vectors are stored in VT, and the
- singular values are in D. The algorithm consists of three stages:
-
- The first stage consists of deflating the size of the problem
- when there are multiple singular values or when there are zeros in
- the Z vector. For each such occurence the dimension of the
- secular equation problem is reduced by one. This stage is
- performed by the routine DLASD2.
-
- The second stage consists of calculating the updated
- singular values. This is done by finding the square roots of the
- roots of the secular equation via the routine DLASD4 (as called
- by DLASD3). This routine also calculates the singular vectors of
- the current problem.
-
- The final stage consists of computing the updated singular vectors
- directly using the updated singular values. The singular vectors
- for the current problem are multiplied with the singular vectors
- from the overall problem.
-
- Arguments
- =========
-
- NL (input) INTEGER
- The row dimension of the upper block. NL >= 1.
-
- NR (input) INTEGER
- The row dimension of the lower block. NR >= 1.
-
- SQRE (input) INTEGER
- = 0: the lower block is an NR-by-NR square matrix.
- = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-
- The bidiagonal matrix has row dimension N = NL + NR + 1,
- and column dimension M = N + SQRE.
-
- D (input/output) DOUBLE PRECISION array,
- dimension (N = NL+NR+1).
- On entry D(1:NL,1:NL) contains the singular values of the
- upper block; and D(NL+2:N) contains the singular values of
- the lower block. On exit D(1:N) contains the singular values
- of the modified matrix.
-
- ALPHA (input) DOUBLE PRECISION
- Contains the diagonal element associated with the added row.
-
- BETA (input) DOUBLE PRECISION
- Contains the off-diagonal element associated with the added
- row.
-
- U (input/output) DOUBLE PRECISION array, dimension(LDU,N)
- On entry U(1:NL, 1:NL) contains the left singular vectors of
- the upper block; U(NL+2:N, NL+2:N) contains the left singular
- vectors of the lower block. On exit U contains the left
- singular vectors of the bidiagonal matrix.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= max( 1, N ).
-
- VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
- where M = N + SQRE.
- On entry VT(1:NL+1, 1:NL+1)' contains the right singular
- vectors of the upper block; VT(NL+2:M, NL+2:M)' contains
- the right singular vectors of the lower block. On exit
- VT' contains the right singular vectors of the
- bidiagonal matrix.
-
- LDVT (input) INTEGER
- The leading dimension of the array VT. LDVT >= max( 1, M ).
-
- IDXQ (output) INTEGER array, dimension(N)
- This contains the permutation which will reintegrate the
- subproblem just solved back into sorted order, i.e.
- D( IDXQ( I = 1, N ) ) will be in ascending order.
-
- IWORK (workspace) INTEGER array, dimension( 4 * N )
-
- WORK (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M )
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an singular value did not converge
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- --idxq;
- --iwork;
- --work;
-
- /* Function Body */
- *info = 0;
-
- if (*nl < 1) {
- *info = -1;
- } else if (*nr < 1) {
- *info = -2;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -3;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASD1", &i__1);
- return 0;
- }
-
- n = *nl + *nr + 1;
- m = n + *sqre;
-
-/*
- The following values are for bookkeeping purposes only. They are
- integer pointers which indicate the portion of the workspace
- used by a particular array in DLASD2 and DLASD3.
-*/
-
- ldu2 = n;
- ldvt2 = m;
-
- iz = 1;
- isigma = iz + m;
- iu2 = isigma + n;
- ivt2 = iu2 + ldu2 * n;
- iq = ivt2 + ldvt2 * m;
-
- idx = 1;
- idxc = idx + n;
- coltyp = idxc + n;
- idxp = coltyp + n;
-
-/*
- Scale.
-
- Computing MAX
-*/
- d__1 = abs(*alpha), d__2 = abs(*beta);
- orgnrm = max(d__1,d__2);
- d__[*nl + 1] = 0.;
- i__1 = n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
- orgnrm = (d__1 = d__[i__], abs(d__1));
- }
-/* L10: */
- }
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &n, &c__1, &d__[1], &n, info);
- *alpha /= orgnrm;
- *beta /= orgnrm;
-
-/* Deflate singular values. */
-
- dlasd2_(nl, nr, sqre, &k, &d__[1], &work[iz], alpha, beta, &u[u_offset],
- ldu, &vt[vt_offset], ldvt, &work[isigma], &work[iu2], &ldu2, &
- work[ivt2], &ldvt2, &iwork[idxp], &iwork[idx], &iwork[idxc], &
- idxq[1], &iwork[coltyp], info);
-
-/* Solve Secular Equation and update singular vectors. */
-
- ldq = k;
- dlasd3_(nl, nr, sqre, &k, &d__[1], &work[iq], &ldq, &work[isigma], &u[
- u_offset], ldu, &work[iu2], &ldu2, &vt[vt_offset], ldvt, &work[
- ivt2], &ldvt2, &iwork[idxc], &iwork[coltyp], &work[iz], info);
- if (*info != 0) {
- return 0;
- }
-
-/* Unscale. */
-
- dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, &n, &c__1, &d__[1], &n, info);
-
-/* Prepare the IDXQ sorting permutation. */
-
- n1 = k;
- n2 = n - k;
- dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
-
- return 0;
-
-/* End of DLASD1 */
-
-} /* dlasd1_ */
-
-/* Subroutine */ int dlasd2_(integer *nl, integer *nr, integer *sqre, integer
- *k, doublereal *d__, doublereal *z__, doublereal *alpha, doublereal *
- beta, doublereal *u, integer *ldu, doublereal *vt, integer *ldvt,
- doublereal *dsigma, doublereal *u2, integer *ldu2, doublereal *vt2,
- integer *ldvt2, integer *idxp, integer *idx, integer *idxc, integer *
- idxq, integer *coltyp, integer *info)
-{
- /* System generated locals */
- integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset,
- vt2_dim1, vt2_offset, i__1;
- doublereal d__1, d__2;
-
- /* Local variables */
- static doublereal c__;
- static integer i__, j, m, n;
- static doublereal s;
- static integer k2;
- static doublereal z1;
- static integer ct, jp;
- static doublereal eps, tau, tol;
- static integer psm[4], nlp1, nlp2, idxi, idxj;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- static integer ctot[4], idxjp;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static integer jprev;
-
- extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), dlacpy_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *), xerbla_(char *,
- integer *);
- static doublereal hlftol;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DLASD2 merges the two sets of singular values together into a single
- sorted set. Then it tries to deflate the size of the problem.
- There are two ways in which deflation can occur: when two or more
- singular values are close together or if there is a tiny entry in the
- Z vector. For each such occurrence the order of the related secular
- equation problem is reduced by one.
-
- DLASD2 is called from DLASD1.
-
- Arguments
- =========
-
- NL (input) INTEGER
- The row dimension of the upper block. NL >= 1.
-
- NR (input) INTEGER
- The row dimension of the lower block. NR >= 1.
-
- SQRE (input) INTEGER
- = 0: the lower block is an NR-by-NR square matrix.
- = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-
- The bidiagonal matrix has N = NL + NR + 1 rows and
- M = N + SQRE >= N columns.
-
- K (output) INTEGER
- Contains the dimension of the non-deflated matrix,
- This is the order of the related secular equation. 1 <= K <=N.
-
- D (input/output) DOUBLE PRECISION array, dimension(N)
- On entry D contains the singular values of the two submatrices
- to be combined. On exit D contains the trailing (N-K) updated
- singular values (those which were deflated) sorted into
- increasing order.
-
- ALPHA (input) DOUBLE PRECISION
- Contains the diagonal element associated with the added row.
-
- BETA (input) DOUBLE PRECISION
- Contains the off-diagonal element associated with the added
- row.
-
- U (input/output) DOUBLE PRECISION array, dimension(LDU,N)
- On entry U contains the left singular vectors of two
- submatrices in the two square blocks with corners at (1,1),
- (NL, NL), and (NL+2, NL+2), (N,N).
- On exit U contains the trailing (N-K) updated left singular
- vectors (those which were deflated) in its last N-K columns.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= N.
-
- Z (output) DOUBLE PRECISION array, dimension(N)
- On exit Z contains the updating row vector in the secular
- equation.
-
- DSIGMA (output) DOUBLE PRECISION array, dimension (N)
- Contains a copy of the diagonal elements (K-1 singular values
- and one zero) in the secular equation.
-
- U2 (output) DOUBLE PRECISION array, dimension(LDU2,N)
- Contains a copy of the first K-1 left singular vectors which
- will be used by DLASD3 in a matrix multiply (DGEMM) to solve
- for the new left singular vectors. U2 is arranged into four
- blocks. The first block contains a column with 1 at NL+1 and
- zero everywhere else; the second block contains non-zero
- entries only at and above NL; the third contains non-zero
- entries only below NL+1; and the fourth is dense.
-
- LDU2 (input) INTEGER
- The leading dimension of the array U2. LDU2 >= N.
-
- VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
- On entry VT' contains the right singular vectors of two
- submatrices in the two square blocks with corners at (1,1),
- (NL+1, NL+1), and (NL+2, NL+2), (M,M).
- On exit VT' contains the trailing (N-K) updated right singular
- vectors (those which were deflated) in its last N-K columns.
- In case SQRE =1, the last row of VT spans the right null
- space.
-
- LDVT (input) INTEGER
- The leading dimension of the array VT. LDVT >= M.
-
- VT2 (output) DOUBLE PRECISION array, dimension(LDVT2,N)
- VT2' contains a copy of the first K right singular vectors
- which will be used by DLASD3 in a matrix multiply (DGEMM) to
- solve for the new right singular vectors. VT2 is arranged into
- three blocks. The first block contains a row that corresponds
- to the special 0 diagonal element in SIGMA; the second block
- contains non-zeros only at and before NL +1; the third block
- contains non-zeros only at and after NL +2.
-
- LDVT2 (input) INTEGER
- The leading dimension of the array VT2. LDVT2 >= M.
-
- IDXP (workspace) INTEGER array, dimension(N)
- This will contain the permutation used to place deflated
- values of D at the end of the array. On output IDXP(2:K)
- points to the nondeflated D-values and IDXP(K+1:N)
- points to the deflated singular values.
-
- IDX (workspace) INTEGER array, dimension(N)
- This will contain the permutation used to sort the contents of
- D into ascending order.
-
- IDXC (output) INTEGER array, dimension(N)
- This will contain the permutation used to arrange the columns
- of the deflated U matrix into three groups: the first group
- contains non-zero entries only at and above NL, the second
- contains non-zero entries only below NL+2, and the third is
- dense.
-
- COLTYP (workspace/output) INTEGER array, dimension(N)
- As workspace, this will contain a label which will indicate
- which of the following types a column in the U2 matrix or a
- row in the VT2 matrix is:
- 1 : non-zero in the upper half only
- 2 : non-zero in the lower half only
- 3 : dense
- 4 : deflated
-
- On exit, it is an array of dimension 4, with COLTYP(I) being
- the dimension of the I-th type columns.
-
- IDXQ (input) INTEGER array, dimension(N)
- This contains the permutation which separately sorts the two
- sub-problems in D into ascending order. Note that entries in
- the first hlaf of this permutation must first be moved one
- position backward; and entries in the second half
- must first have NL+1 added to their values.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --z__;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- --dsigma;
- u2_dim1 = *ldu2;
- u2_offset = 1 + u2_dim1 * 1;
- u2 -= u2_offset;
- vt2_dim1 = *ldvt2;
- vt2_offset = 1 + vt2_dim1 * 1;
- vt2 -= vt2_offset;
- --idxp;
- --idx;
- --idxc;
- --idxq;
- --coltyp;
-
- /* Function Body */
- *info = 0;
-
- if (*nl < 1) {
- *info = -1;
- } else if (*nr < 1) {
- *info = -2;
- } else if ((*sqre != 1 && *sqre != 0)) {
- *info = -3;
- }
-
- n = *nl + *nr + 1;
- m = n + *sqre;
-
- if (*ldu < n) {
- *info = -10;
- } else if (*ldvt < m) {
- *info = -12;
- } else if (*ldu2 < n) {
- *info = -15;
- } else if (*ldvt2 < m) {
- *info = -17;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASD2", &i__1);
- return 0;
- }
-
- nlp1 = *nl + 1;
- nlp2 = *nl + 2;
-
-/*
- Generate the first part of the vector Z; and move the singular
- values in the first part of D one position backward.
-*/
-
- z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
- z__[1] = z1;
- for (i__ = *nl; i__ >= 1; --i__) {
- z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
- d__[i__ + 1] = d__[i__];
- idxq[i__ + 1] = idxq[i__] + 1;
-/* L10: */
- }
-
-/* Generate the second part of the vector Z. */
-
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
-/* L20: */
- }
-
-/* Initialize some reference arrays. */
-
- i__1 = nlp1;
- for (i__ = 2; i__ <= i__1; ++i__) {
- coltyp[i__] = 1;
-/* L30: */
- }
- i__1 = n;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- coltyp[i__] = 2;
-/* L40: */
- }
-
-/* Sort the singular values into increasing order */
-
- i__1 = n;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- idxq[i__] += nlp1;
-/* L50: */
- }
-
-/*
- DSIGMA, IDXC, IDXC, and the first column of U2
- are used as storage space.
-*/
-
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- dsigma[i__] = d__[idxq[i__]];
- u2[i__ + u2_dim1] = z__[idxq[i__]];
- idxc[i__] = coltyp[idxq[i__]];
-/* L60: */
- }
-
- dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
-
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- idxi = idx[i__] + 1;
- d__[i__] = dsigma[idxi];
- z__[i__] = u2[idxi + u2_dim1];
- coltyp[i__] = idxc[idxi];
-/* L70: */
- }
-
-/* Calculate the allowable deflation tolerance */
-
- eps = EPSILON;
-/* Computing MAX */
- d__1 = abs(*alpha), d__2 = abs(*beta);
- tol = max(d__1,d__2);
-/* Computing MAX */
- d__2 = (d__1 = d__[n], abs(d__1));
- tol = eps * 8. * max(d__2,tol);
-
-/*
- There are 2 kinds of deflation -- first a value in the z-vector
- is small, second two (or more) singular values are very close
- together (their difference is small).
-
- If the value in the z-vector is small, we simply permute the
- array so that the corresponding singular value is moved to the
- end.
-
- If two values in the D-vector are close, we perform a two-sided
- rotation designed to make one of the corresponding z-vector
- entries zero, and then permute the array so that the deflated
- singular value is moved to the end.
-
- If there are multiple singular values then the problem deflates.
- Here the number of equal singular values are found. As each equal
- singular value is found, an elementary reflector is computed to
- rotate the corresponding singular subspace so that the
- corresponding components of Z are zero in this new basis.
-*/
-
- *k = 1;
- k2 = n + 1;
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- if ((d__1 = z__[j], abs(d__1)) <= tol) {
-
-/* Deflate due to small z component. */
-
- --k2;
- idxp[k2] = j;
- coltyp[j] = 4;
- if (j == n) {
- goto L120;
- }
- } else {
- jprev = j;
- goto L90;
- }
-/* L80: */
- }
-L90:
- j = jprev;
-L100:
- ++j;
- if (j > n) {
- goto L110;
- }
- if ((d__1 = z__[j], abs(d__1)) <= tol) {
-
-/* Deflate due to small z component. */
-
- --k2;
- idxp[k2] = j;
- coltyp[j] = 4;
- } else {
-
-/* Check if singular values are close enough to allow deflation. */
-
- if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
-
-/* Deflation is possible. */
-
- s = z__[jprev];
- c__ = z__[j];
-
-/*
- Find sqrt(a**2+b**2) without overflow or
- destructive underflow.
-*/
-
- tau = dlapy2_(&c__, &s);
- c__ /= tau;
- s = -s / tau;
- z__[j] = tau;
- z__[jprev] = 0.;
-
-/*
- Apply back the Givens rotation to the left and right
- singular vector matrices.
-*/
-
- idxjp = idxq[idx[jprev] + 1];
- idxj = idxq[idx[j] + 1];
- if (idxjp <= nlp1) {
- --idxjp;
- }
- if (idxj <= nlp1) {
- --idxj;
- }
- drot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
- c__1, &c__, &s);
- drot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
- c__, &s);
- if (coltyp[j] != coltyp[jprev]) {
- coltyp[j] = 3;
- }
- coltyp[jprev] = 4;
- --k2;
- idxp[k2] = jprev;
- jprev = j;
- } else {
- ++(*k);
- u2[*k + u2_dim1] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
- jprev = j;
- }
- }
- goto L100;
-L110:
-
-/* Record the last singular value. */
-
- ++(*k);
- u2[*k + u2_dim1] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
-
-L120:
-
-/*
- Count up the total number of the various types of columns, then
- form a permutation which positions the four column types into
- four groups of uniform structure (although one or more of these
- groups may be empty).
-*/
-
- for (j = 1; j <= 4; ++j) {
- ctot[j - 1] = 0;
-/* L130: */
- }
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- ct = coltyp[j];
- ++ctot[ct - 1];
-/* L140: */
- }
-
-/* PSM(*) = Position in SubMatrix (of types 1 through 4) */
-
- psm[0] = 2;
- psm[1] = ctot[0] + 2;
- psm[2] = psm[1] + ctot[1];
- psm[3] = psm[2] + ctot[2];
-
-/*
- Fill out the IDXC array so that the permutation which it induces
- will place all type-1 columns first, all type-2 columns next,
- then all type-3's, and finally all type-4's, starting from the
- second column. This applies similarly to the rows of VT.
-*/
-
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- ct = coltyp[jp];
- idxc[psm[ct - 1]] = j;
- ++psm[ct - 1];
-/* L150: */
- }
-
-/*
- Sort the singular values and corresponding singular vectors into
- DSIGMA, U2, and VT2 respectively. The singular values/vectors
- which were not deflated go into the first K slots of DSIGMA, U2,
- and VT2 respectively, while those which were deflated go into the
- last N - K slots, except that the first column/row will be treated
- separately.
-*/
-
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- dsigma[j] = d__[jp];
- idxj = idxq[idx[idxp[idxc[j]]] + 1];
- if (idxj <= nlp1) {
- --idxj;
- }
- dcopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
- dcopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
-/* L160: */
- }
-
-/* Determine DSIGMA(1), DSIGMA(2) and Z(1) */
-
- dsigma[1] = 0.;
- hlftol = tol / 2.;
- if (abs(dsigma[2]) <= hlftol) {
- dsigma[2] = hlftol;
- }
- if (m > n) {
- z__[1] = dlapy2_(&z1, &z__[m]);
- if (z__[1] <= tol) {
- c__ = 1.;
- s = 0.;
- z__[1] = tol;
- } else {
- c__ = z1 / z__[1];
- s = z__[m] / z__[1];
- }
- } else {
- if (abs(z1) <= tol) {
- z__[1] = tol;
- } else {
- z__[1] = z1;
- }
- }
-
-/* Move the rest of the updating row to Z. */
-
- i__1 = *k - 1;
- dcopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
-
-/*
- Determine the first column of U2, the first row of VT2 and the
- last row of VT.
-*/
-
- dlaset_("A", &n, &c__1, &c_b29, &c_b29, &u2[u2_offset], ldu2);
- u2[nlp1 + u2_dim1] = 1.;
- if (m > n) {
- i__1 = nlp1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
- vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
-/* L170: */
- }
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
- vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
-/* L180: */
- }
- } else {
- dcopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
- }
- if (m > n) {
- dcopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
- }
-
-/*
- The deflated singular values and their corresponding vectors go
- into the back of D, U, and V respectively.
-*/
-
- if (n > *k) {
- i__1 = n - *k;
- dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
- i__1 = n - *k;
- dlacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
- * u_dim1 + 1], ldu);
- i__1 = n - *k;
- dlacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 +
- vt_dim1], ldvt);
- }
-
-/* Copy CTOT into COLTYP for referencing in DLASD3. */
-
- for (j = 1; j <= 4; ++j) {
- coltyp[j] = ctot[j - 1];
-/* L190: */
- }
-
- return 0;
-
-/* End of DLASD2 */
-
-} /* dlasd2_ */
-
-/* Subroutine */ int dlasd3_(integer *nl, integer *nr, integer *sqre, integer
- *k, doublereal *d__, doublereal *q, integer *ldq, doublereal *dsigma,
- doublereal *u, integer *ldu, doublereal *u2, integer *ldu2,
- doublereal *vt, integer *ldvt, doublereal *vt2, integer *ldvt2,
- integer *idxc, integer *ctot, doublereal *z__, integer *info)
-{
- /* System generated locals */
- integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1,
- vt_offset, vt2_dim1, vt2_offset, i__1, i__2;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static integer i__, j, m, n, jc;
- static doublereal rho;
- static integer nlp1, nlp2, nrp1;
- static doublereal temp;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- static integer ctemp;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static integer ktemp;
- extern doublereal dlamc3_(doublereal *, doublereal *);
- extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *), dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), dlacpy_(char *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *),
- xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DLASD3 finds all the square roots of the roots of the secular
- equation, as defined by the values in D and Z. It makes the
- appropriate calls to DLASD4 and then updates the singular
- vectors by matrix multiplication.
-
- This code makes very mild assumptions about floating point
- arithmetic. It will work on machines with a guard digit in
- add/subtract, or on those binary machines without guard digits
- which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
- It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none.
-
- DLASD3 is called from DLASD1.
-
- Arguments
- =========
-
- NL (input) INTEGER
- The row dimension of the upper block. NL >= 1.
-
- NR (input) INTEGER
- The row dimension of the lower block. NR >= 1.
-
- SQRE (input) INTEGER
- = 0: the lower block is an NR-by-NR square matrix.
- = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-
- The bidiagonal matrix has N = NL + NR + 1 rows and
- M = N + SQRE >= N columns.
-
- K (input) INTEGER
- The size of the secular equation, 1 =< K = < N.
-
- D (output) DOUBLE PRECISION array, dimension(K)
- On exit the square roots of the roots of the secular equation,
- in ascending order.
-
- Q (workspace) DOUBLE PRECISION array,
- dimension at least (LDQ,K).
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= K.
-
- DSIGMA (input) DOUBLE PRECISION array, dimension(K)
- The first K elements of this array contain the old roots
- of the deflated updating problem. These are the poles
- of the secular equation.
-
- U (input) DOUBLE PRECISION array, dimension (LDU, N)
- The last N - K columns of this matrix contain the deflated
- left singular vectors.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= N.
-
- U2 (input) DOUBLE PRECISION array, dimension (LDU2, N)
- The first K columns of this matrix contain the non-deflated
- left singular vectors for the split problem.
-
- LDU2 (input) INTEGER
- The leading dimension of the array U2. LDU2 >= N.
-
- VT (input) DOUBLE PRECISION array, dimension (LDVT, M)
- The last M - K columns of VT' contain the deflated
- right singular vectors.
-
- LDVT (input) INTEGER
- The leading dimension of the array VT. LDVT >= N.
-
- VT2 (input) DOUBLE PRECISION array, dimension (LDVT2, N)
- The first K columns of VT2' contain the non-deflated
- right singular vectors for the split problem.
-
- LDVT2 (input) INTEGER
- The leading dimension of the array VT2. LDVT2 >= N.
-
- IDXC (input) INTEGER array, dimension ( N )
- The permutation used to arrange the columns of U (and rows of
- VT) into three groups: the first group contains non-zero
- entries only at and above (or before) NL +1; the second
- contains non-zero entries only at and below (or after) NL+2;
- and the third is dense. The first column of U and the row of
- VT are treated separately, however.
-
- The rows of the singular vectors found by DLASD4
- must be likewise permuted before the matrix multiplies can
- take place.
-
- CTOT (input) INTEGER array, dimension ( 4 )
- A count of the total number of the various types of columns
- in U (or rows in VT), as described in IDXC. The fourth column
- type is any column which has been deflated.
-
- Z (input) DOUBLE PRECISION array, dimension (K)
- The first K elements of this array contain the components
- of the deflation-adjusted updating row vector.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an singular value did not converge
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --dsigma;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- u2_dim1 = *ldu2;
- u2_offset = 1 + u2_dim1 * 1;
- u2 -= u2_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- vt2_dim1 = *ldvt2;
- vt2_offset = 1 + vt2_dim1 * 1;
- vt2 -= vt2_offset;
- --idxc;
- --ctot;
- --z__;
-
- /* Function Body */
- *info = 0;
-
- if (*nl < 1) {
- *info = -1;
- } else if (*nr < 1) {
- *info = -2;
- } else if ((*sqre != 1 && *sqre != 0)) {
- *info = -3;
- }
-
- n = *nl + *nr + 1;
- m = n + *sqre;
- nlp1 = *nl + 1;
- nlp2 = *nl + 2;
-
- if (*k < 1 || *k > n) {
- *info = -4;
- } else if (*ldq < *k) {
- *info = -7;
- } else if (*ldu < n) {
- *info = -10;
- } else if (*ldu2 < n) {
- *info = -12;
- } else if (*ldvt < m) {
- *info = -14;
- } else if (*ldvt2 < m) {
- *info = -16;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASD3", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*k == 1) {
- d__[1] = abs(z__[1]);
- dcopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);
- if (z__[1] > 0.) {
- dcopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
- } else {
- i__1 = n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- u[i__ + u_dim1] = -u2[i__ + u2_dim1];
-/* L10: */
- }
- }
- return 0;
- }
-
-/*
- Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
- be computed with high relative accuracy (barring over/underflow).
- This is a problem on machines without a guard digit in
- add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
- The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
- which on any of these machines zeros out the bottommost
- bit of DSIGMA(I) if it is 1; this makes the subsequent
- subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
- occurs. On binary machines with a guard digit (almost all
- machines) it does not change DSIGMA(I) at all. On hexadecimal
- and decimal machines with a guard digit, it slightly
- changes the bottommost bits of DSIGMA(I). It does not account
- for hexadecimal or decimal machines without guard digits
- (we know of none). We use a subroutine call to compute
- 2*DLAMBDA(I) to prevent optimizing compilers from eliminating
- this code.
-*/
-
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
-/* L20: */
- }
-
-/* Keep a copy of Z. */
-
- dcopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);
-
-/* Normalize Z. */
-
- rho = dnrm2_(k, &z__[1], &c__1);
- dlascl_("G", &c__0, &c__0, &rho, &c_b15, k, &c__1, &z__[1], k, info);
- rho *= rho;
-
-/* Find the new singular values. */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dlasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j],
- &vt[j * vt_dim1 + 1], info);
-
-/* If the zero finder fails, the computation is terminated. */
-
- if (*info != 0) {
- return 0;
- }
-/* L30: */
- }
-
-/* Compute updated Z. */
-
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];
- i__2 = i__ - 1;
- for (j = 1; j <= i__2; ++j) {
- z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
- i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);
-/* L40: */
- }
- i__2 = *k - 1;
- for (j = i__; j <= i__2; ++j) {
- z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
- i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);
-/* L50: */
- }
- d__2 = sqrt((d__1 = z__[i__], abs(d__1)));
- z__[i__] = d_sign(&d__2, &q[i__ + q_dim1]);
-/* L60: */
- }
-
-/*
- Compute left singular vectors of the modified diagonal matrix,
- and store related information for the right singular vectors.
-*/
-
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ *
- vt_dim1 + 1];
- u[i__ * u_dim1 + 1] = -1.;
- i__2 = *k;
- for (j = 2; j <= i__2; ++j) {
- vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__
- * vt_dim1];
- u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];
-/* L70: */
- }
- temp = dnrm2_(k, &u[i__ * u_dim1 + 1], &c__1);
- q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;
- i__2 = *k;
- for (j = 2; j <= i__2; ++j) {
- jc = idxc[j];
- q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;
-/* L80: */
- }
-/* L90: */
- }
-
-/* Update the left singular vector matrix. */
-
- if (*k == 2) {
- dgemm_("N", "N", &n, k, k, &c_b15, &u2[u2_offset], ldu2, &q[q_offset],
- ldq, &c_b29, &u[u_offset], ldu);
- goto L100;
- }
- if (ctot[1] > 0) {
- dgemm_("N", "N", nl, k, &ctot[1], &c_b15, &u2[((u2_dim1) << (1)) + 1],
- ldu2, &q[q_dim1 + 2], ldq, &c_b29, &u[u_dim1 + 1], ldu);
- if (ctot[3] > 0) {
- ktemp = ctot[1] + 2 + ctot[2];
- dgemm_("N", "N", nl, k, &ctot[3], &c_b15, &u2[ktemp * u2_dim1 + 1]
- , ldu2, &q[ktemp + q_dim1], ldq, &c_b15, &u[u_dim1 + 1],
- ldu);
- }
- } else if (ctot[3] > 0) {
- ktemp = ctot[1] + 2 + ctot[2];
- dgemm_("N", "N", nl, k, &ctot[3], &c_b15, &u2[ktemp * u2_dim1 + 1],
- ldu2, &q[ktemp + q_dim1], ldq, &c_b29, &u[u_dim1 + 1], ldu);
- } else {
- dlacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);
- }
- dcopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);
- ktemp = ctot[1] + 2;
- ctemp = ctot[2] + ctot[3];
- dgemm_("N", "N", nr, k, &ctemp, &c_b15, &u2[nlp2 + ktemp * u2_dim1], ldu2,
- &q[ktemp + q_dim1], ldq, &c_b29, &u[nlp2 + u_dim1], ldu);
-
-/* Generate the right singular vectors. */
-
-L100:
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = dnrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);
- q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;
- i__2 = *k;
- for (j = 2; j <= i__2; ++j) {
- jc = idxc[j];
- q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;
-/* L110: */
- }
-/* L120: */
- }
-
-/* Update the right singular vector matrix. */
-
- if (*k == 2) {
- dgemm_("N", "N", k, &m, k, &c_b15, &q[q_offset], ldq, &vt2[vt2_offset]
- , ldvt2, &c_b29, &vt[vt_offset], ldvt);
- return 0;
- }
- ktemp = ctot[1] + 1;
- dgemm_("N", "N", k, &nlp1, &ktemp, &c_b15, &q[q_dim1 + 1], ldq, &vt2[
- vt2_dim1 + 1], ldvt2, &c_b29, &vt[vt_dim1 + 1], ldvt);
- ktemp = ctot[1] + 2 + ctot[2];
- if (ktemp <= *ldvt2) {
- dgemm_("N", "N", k, &nlp1, &ctot[3], &c_b15, &q[ktemp * q_dim1 + 1],
- ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b15, &vt[vt_dim1 + 1],
- ldvt);
- }
-
- ktemp = ctot[1] + 1;
- nrp1 = *nr + *sqre;
- if (ktemp > 1) {
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];
-/* L130: */
- }
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];
-/* L140: */
- }
- }
- ctemp = ctot[2] + 1 + ctot[3];
- dgemm_("N", "N", k, &nrp1, &ctemp, &c_b15, &q[ktemp * q_dim1 + 1], ldq, &
- vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b29, &vt[nlp2 * vt_dim1 +
- 1], ldvt);
-
- return 0;
-
-/* End of DLASD3 */
-
-} /* dlasd3_ */
-
-
-/* Subroutine */ int dlasd4_(integer *n, integer *i__, doublereal *d__,
- doublereal *z__, doublereal *delta, doublereal *rho, doublereal *
- sigma, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer i__1;
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal a, b, c__;
- static integer j;
- static doublereal w, dd[3];
- static integer ii;
- static doublereal dw, zz[3];
- static integer ip1;
- static doublereal eta, phi, eps, tau, psi;
- static integer iim1, iip1;
- static doublereal dphi, dpsi;
- static integer iter;
- static doublereal temp, prew, sg2lb, sg2ub, temp1, temp2, dtiim, delsq,
- dtiip;
- static integer niter;
- static doublereal dtisq;
- static logical swtch;
- static doublereal dtnsq;
- extern /* Subroutine */ int dlaed6_(integer *, logical *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *)
- , dlasd5_(integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
- static doublereal delsq2, dtnsq1;
- static logical swtch3;
-
- static logical orgati;
- static doublereal erretm, dtipsq, rhoinv;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- This subroutine computes the square root of the I-th updated
- eigenvalue of a positive symmetric rank-one modification to
- a positive diagonal matrix whose entries are given as the squares
- of the corresponding entries in the array d, and that
-
- 0 <= D(i) < D(j) for i < j
-
- and that RHO > 0. This is arranged by the calling routine, and is
- no loss in generality. The rank-one modified system is thus
-
- diag( D ) * diag( D ) + RHO * Z * Z_transpose.
-
- where we assume the Euclidean norm of Z is 1.
-
- The method consists of approximating the rational functions in the
- secular equation by simpler interpolating rational functions.
-
- Arguments
- =========
-
- N (input) INTEGER
- The length of all arrays.
-
- I (input) INTEGER
- The index of the eigenvalue to be computed. 1 <= I <= N.
-
- D (input) DOUBLE PRECISION array, dimension ( N )
- The original eigenvalues. It is assumed that they are in
- order, 0 <= D(I) < D(J) for I < J.
-
- Z (input) DOUBLE PRECISION array, dimension ( N )
- The components of the updating vector.
-
- DELTA (output) DOUBLE PRECISION array, dimension ( N )
- If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th
- component. If N = 1, then DELTA(1) = 1. The vector DELTA
- contains the information necessary to construct the
- (singular) eigenvectors.
-
- RHO (input) DOUBLE PRECISION
- The scalar in the symmetric updating formula.
-
- SIGMA (output) DOUBLE PRECISION
- The computed lambda_I, the I-th updated eigenvalue.
-
- WORK (workspace) DOUBLE PRECISION array, dimension ( N )
- If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th
- component. If N = 1, then WORK( 1 ) = 1.
-
- INFO (output) INTEGER
- = 0: successful exit
- > 0: if INFO = 1, the updating process failed.
-
- Internal Parameters
- ===================
-
- Logical variable ORGATI (origin-at-i?) is used for distinguishing
- whether D(i) or D(i+1) is treated as the origin.
-
- ORGATI = .true. origin at i
- ORGATI = .false. origin at i+1
-
- Logical variable SWTCH3 (switch-for-3-poles?) is for noting
- if we are working with THREE poles!
-
- MAXIT is the maximum number of iterations allowed for each
- eigenvalue.
-
- Further Details
- ===============
-
- Based on contributions by
- Ren-Cang Li, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-
-
- Since this routine is called in an inner loop, we do no argument
- checking.
-
- Quick return for N=1 and 2.
-*/
-
- /* Parameter adjustments */
- --work;
- --delta;
- --z__;
- --d__;
-
- /* Function Body */
- *info = 0;
- if (*n == 1) {
-
-/* Presumably, I=1 upon entry */
-
- *sigma = sqrt(d__[1] * d__[1] + *rho * z__[1] * z__[1]);
- delta[1] = 1.;
- work[1] = 1.;
- return 0;
- }
- if (*n == 2) {
- dlasd5_(i__, &d__[1], &z__[1], &delta[1], rho, sigma, &work[1]);
- return 0;
- }
-
-/* Compute machine epsilon */
-
- eps = EPSILON;
- rhoinv = 1. / *rho;
-
-/* The case I = N */
-
- if (*i__ == *n) {
-
-/* Initialize some basic variables */
-
- ii = *n - 1;
- niter = 1;
-
-/* Calculate initial guess */
-
- temp = *rho / 2.;
-
-/*
- If ||Z||_2 is not one, then TEMP should be set to
- RHO * ||Z||_2^2 / TWO
-*/
-
- temp1 = temp / (d__[*n] + sqrt(d__[*n] * d__[*n] + temp));
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] = d__[j] + d__[*n] + temp1;
- delta[j] = d__[j] - d__[*n] - temp1;
-/* L10: */
- }
-
- psi = 0.;
- i__1 = *n - 2;
- for (j = 1; j <= i__1; ++j) {
- psi += z__[j] * z__[j] / (delta[j] * work[j]);
-/* L20: */
- }
-
- c__ = rhoinv + psi;
- w = c__ + z__[ii] * z__[ii] / (delta[ii] * work[ii]) + z__[*n] * z__[*
- n] / (delta[*n] * work[*n]);
-
- if (w <= 0.) {
- temp1 = sqrt(d__[*n] * d__[*n] + *rho);
- temp = z__[*n - 1] * z__[*n - 1] / ((d__[*n - 1] + temp1) * (d__[*
- n] - d__[*n - 1] + *rho / (d__[*n] + temp1))) + z__[*n] *
- z__[*n] / *rho;
-
-/*
- The following TAU is to approximate
- SIGMA_n^2 - D( N )*D( N )
-*/
-
- if (c__ <= temp) {
- tau = *rho;
- } else {
- delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
- a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*
- n];
- b = z__[*n] * z__[*n] * delsq;
- if (a < 0.) {
- tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
- } else {
- tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
- }
- }
-
-/*
- It can be proved that
- D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU <= D(N)^2+RHO
-*/
-
- } else {
- delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
- a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
- b = z__[*n] * z__[*n] * delsq;
-
-/*
- The following TAU is to approximate
- SIGMA_n^2 - D( N )*D( N )
-*/
-
- if (a < 0.) {
- tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
- } else {
- tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
- }
-
-/*
- It can be proved that
- D(N)^2 < D(N)^2+TAU < SIGMA(N)^2 < D(N)^2+RHO/2
-*/
-
- }
-
-/* The following ETA is to approximate SIGMA_n - D( N ) */
-
- eta = tau / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau));
-
- *sigma = d__[*n] + eta;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] = d__[j] - d__[*i__] - eta;
- work[j] = d__[j] + d__[*i__] + eta;
-/* L30: */
- }
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = ii;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (delta[j] * work[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L40: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- temp = z__[*n] / (delta[*n] * work[*n]);
- phi = z__[*n] * temp;
- dphi = temp * temp;
- erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
- + dphi);
-
- w = rhoinv + phi + psi;
-
-/* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- goto L240;
- }
-
-/* Calculate the new step */
-
- ++niter;
- dtnsq1 = work[*n - 1] * delta[*n - 1];
- dtnsq = work[*n] * delta[*n];
- c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
- a = (dtnsq + dtnsq1) * w - dtnsq * dtnsq1 * (dpsi + dphi);
- b = dtnsq * dtnsq1 * w;
- if (c__ < 0.) {
- c__ = abs(c__);
- }
- if (c__ == 0.) {
- eta = *rho - *sigma * *sigma;
- } else if (a >= 0.) {
- eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__
- * 2.);
- } else {
- eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
- );
- }
-
-/*
- Note, eta should be positive if w is negative, and
- eta should be negative otherwise. However,
- if for some reason caused by roundoff, eta*w > 0,
- we simply use one Newton step instead. This way
- will guarantee eta*w < 0.
-*/
-
- if (w * eta > 0.) {
- eta = -w / (dpsi + dphi);
- }
- temp = eta - dtnsq;
- if (temp > *rho) {
- eta = *rho + dtnsq;
- }
-
- tau += eta;
- eta /= *sigma + sqrt(eta + *sigma * *sigma);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] -= eta;
- work[j] += eta;
-/* L50: */
- }
-
- *sigma += eta;
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = ii;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (work[j] * delta[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L60: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- temp = z__[*n] / (work[*n] * delta[*n]);
- phi = z__[*n] * temp;
- dphi = temp * temp;
- erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
- + dphi);
-
- w = rhoinv + phi + psi;
-
-/* Main loop to update the values of the array DELTA */
-
- iter = niter + 1;
-
- for (niter = iter; niter <= MAXITERLOOPS; ++niter) {
-
-/* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- goto L240;
- }
-
-/* Calculate the new step */
-
- dtnsq1 = work[*n - 1] * delta[*n - 1];
- dtnsq = work[*n] * delta[*n];
- c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
- a = (dtnsq + dtnsq1) * w - dtnsq1 * dtnsq * (dpsi + dphi);
- b = dtnsq1 * dtnsq * w;
- if (a >= 0.) {
- eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
- c__ * 2.);
- } else {
- eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
- d__1))));
- }
-
-/*
- Note, eta should be positive if w is negative, and
- eta should be negative otherwise. However,
- if for some reason caused by roundoff, eta*w > 0,
- we simply use one Newton step instead. This way
- will guarantee eta*w < 0.
-*/
-
- if (w * eta > 0.) {
- eta = -w / (dpsi + dphi);
- }
- temp = eta - dtnsq;
- if (temp <= 0.) {
- eta /= 2.;
- }
-
- tau += eta;
- eta /= *sigma + sqrt(eta + *sigma * *sigma);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] -= eta;
- work[j] += eta;
-/* L70: */
- }
-
- *sigma += eta;
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = ii;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (work[j] * delta[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L80: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- temp = z__[*n] / (work[*n] * delta[*n]);
- phi = z__[*n] * temp;
- dphi = temp * temp;
- erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (
- dpsi + dphi);
-
- w = rhoinv + phi + psi;
-/* L90: */
- }
-
-/* Return with INFO = 1, NITER = MAXIT and not converged */
-
- *info = 1;
- goto L240;
-
-/* End for the case I = N */
-
- } else {
-
-/* The case for I < N */
-
- niter = 1;
- ip1 = *i__ + 1;
-
-/* Calculate initial guess */
-
- delsq = (d__[ip1] - d__[*i__]) * (d__[ip1] + d__[*i__]);
- delsq2 = delsq / 2.;
- temp = delsq2 / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + delsq2));
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] = d__[j] + d__[*i__] + temp;
- delta[j] = d__[j] - d__[*i__] - temp;
-/* L100: */
- }
-
- psi = 0.;
- i__1 = *i__ - 1;
- for (j = 1; j <= i__1; ++j) {
- psi += z__[j] * z__[j] / (work[j] * delta[j]);
-/* L110: */
- }
-
- phi = 0.;
- i__1 = *i__ + 2;
- for (j = *n; j >= i__1; --j) {
- phi += z__[j] * z__[j] / (work[j] * delta[j]);
-/* L120: */
- }
- c__ = rhoinv + psi + phi;
- w = c__ + z__[*i__] * z__[*i__] / (work[*i__] * delta[*i__]) + z__[
- ip1] * z__[ip1] / (work[ip1] * delta[ip1]);
-
- if (w > 0.) {
-
-/*
- d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2
-
- We choose d(i) as origin.
-*/
-
- orgati = TRUE_;
- sg2lb = 0.;
- sg2ub = delsq2;
- a = c__ * delsq + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
- b = z__[*i__] * z__[*i__] * delsq;
- if (a > 0.) {
- tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
- d__1))));
- } else {
- tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
- c__ * 2.);
- }
-
-/*
- TAU now is an estimation of SIGMA^2 - D( I )^2. The
- following, however, is the corresponding estimation of
- SIGMA - D( I ).
-*/
-
- eta = tau / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + tau));
- } else {
-
-/*
- (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2
-
- We choose d(i+1) as origin.
-*/
-
- orgati = FALSE_;
- sg2lb = -delsq2;
- sg2ub = 0.;
- a = c__ * delsq - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
- b = z__[ip1] * z__[ip1] * delsq;
- if (a < 0.) {
- tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
- d__1))));
- } else {
- tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) /
- (c__ * 2.);
- }
-
-/*
- TAU now is an estimation of SIGMA^2 - D( IP1 )^2. The
- following, however, is the corresponding estimation of
- SIGMA - D( IP1 ).
-*/
-
- eta = tau / (d__[ip1] + sqrt((d__1 = d__[ip1] * d__[ip1] + tau,
- abs(d__1))));
- }
-
- if (orgati) {
- ii = *i__;
- *sigma = d__[*i__] + eta;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] = d__[j] + d__[*i__] + eta;
- delta[j] = d__[j] - d__[*i__] - eta;
-/* L130: */
- }
- } else {
- ii = *i__ + 1;
- *sigma = d__[ip1] + eta;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] = d__[j] + d__[ip1] + eta;
- delta[j] = d__[j] - d__[ip1] - eta;
-/* L140: */
- }
- }
- iim1 = ii - 1;
- iip1 = ii + 1;
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = iim1;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (work[j] * delta[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L150: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- dphi = 0.;
- phi = 0.;
- i__1 = iip1;
- for (j = *n; j >= i__1; --j) {
- temp = z__[j] / (work[j] * delta[j]);
- phi += z__[j] * temp;
- dphi += temp * temp;
- erretm += phi;
-/* L160: */
- }
-
- w = rhoinv + phi + psi;
-
-/*
- W is the value of the secular function with
- its ii-th element removed.
-*/
-
- swtch3 = FALSE_;
- if (orgati) {
- if (w < 0.) {
- swtch3 = TRUE_;
- }
- } else {
- if (w > 0.) {
- swtch3 = TRUE_;
- }
- }
- if (ii == 1 || ii == *n) {
- swtch3 = FALSE_;
- }
-
- temp = z__[ii] / (work[ii] * delta[ii]);
- dw = dpsi + dphi + temp * temp;
- temp = z__[ii] * temp;
- w += temp;
- erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. +
- abs(tau) * dw;
-
-/* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- goto L240;
- }
-
- if (w <= 0.) {
- sg2lb = max(sg2lb,tau);
- } else {
- sg2ub = min(sg2ub,tau);
- }
-
-/* Calculate the new step */
-
- ++niter;
- if (! swtch3) {
- dtipsq = work[ip1] * delta[ip1];
- dtisq = work[*i__] * delta[*i__];
- if (orgati) {
-/* Computing 2nd power */
- d__1 = z__[*i__] / dtisq;
- c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
- } else {
-/* Computing 2nd power */
- d__1 = z__[ip1] / dtipsq;
- c__ = w - dtisq * dw - delsq * (d__1 * d__1);
- }
- a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
- b = dtipsq * dtisq * w;
- if (c__ == 0.) {
- if (a == 0.) {
- if (orgati) {
- a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi +
- dphi);
- } else {
- a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi +
- dphi);
- }
- }
- eta = b / a;
- } else if (a <= 0.) {
- eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
- c__ * 2.);
- } else {
- eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
- d__1))));
- }
- } else {
-
-/* Interpolation using THREE most relevant poles */
-
- dtiim = work[iim1] * delta[iim1];
- dtiip = work[iip1] * delta[iip1];
- temp = rhoinv + psi + phi;
- if (orgati) {
- temp1 = z__[iim1] / dtiim;
- temp1 *= temp1;
- c__ = temp - dtiip * (dpsi + dphi) - (d__[iim1] - d__[iip1]) *
- (d__[iim1] + d__[iip1]) * temp1;
- zz[0] = z__[iim1] * z__[iim1];
- if (dpsi < temp1) {
- zz[2] = dtiip * dtiip * dphi;
- } else {
- zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
- }
- } else {
- temp1 = z__[iip1] / dtiip;
- temp1 *= temp1;
- c__ = temp - dtiim * (dpsi + dphi) - (d__[iip1] - d__[iim1]) *
- (d__[iim1] + d__[iip1]) * temp1;
- if (dphi < temp1) {
- zz[0] = dtiim * dtiim * dpsi;
- } else {
- zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
- }
- zz[2] = z__[iip1] * z__[iip1];
- }
- zz[1] = z__[ii] * z__[ii];
- dd[0] = dtiim;
- dd[1] = delta[ii] * work[ii];
- dd[2] = dtiip;
- dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
- if (*info != 0) {
- goto L240;
- }
- }
-
-/*
- Note, eta should be positive if w is negative, and
- eta should be negative otherwise. However,
- if for some reason caused by roundoff, eta*w > 0,
- we simply use one Newton step instead. This way
- will guarantee eta*w < 0.
-*/
-
- if (w * eta >= 0.) {
- eta = -w / dw;
- }
- if (orgati) {
- temp1 = work[*i__] * delta[*i__];
- temp = eta - temp1;
- } else {
- temp1 = work[ip1] * delta[ip1];
- temp = eta - temp1;
- }
- if (temp > sg2ub || temp < sg2lb) {
- if (w < 0.) {
- eta = (sg2ub - tau) / 2.;
- } else {
- eta = (sg2lb - tau) / 2.;
- }
- }
-
- tau += eta;
- eta /= *sigma + sqrt(*sigma * *sigma + eta);
-
- prew = w;
-
- *sigma += eta;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] += eta;
- delta[j] -= eta;
-/* L170: */
- }
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = iim1;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (work[j] * delta[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L180: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- dphi = 0.;
- phi = 0.;
- i__1 = iip1;
- for (j = *n; j >= i__1; --j) {
- temp = z__[j] / (work[j] * delta[j]);
- phi += z__[j] * temp;
- dphi += temp * temp;
- erretm += phi;
-/* L190: */
- }
-
- temp = z__[ii] / (work[ii] * delta[ii]);
- dw = dpsi + dphi + temp * temp;
- temp = z__[ii] * temp;
- w = rhoinv + phi + psi + temp;
- erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. +
- abs(tau) * dw;
-
- if (w <= 0.) {
- sg2lb = max(sg2lb,tau);
- } else {
- sg2ub = min(sg2ub,tau);
- }
-
- swtch = FALSE_;
- if (orgati) {
- if (-w > abs(prew) / 10.) {
- swtch = TRUE_;
- }
- } else {
- if (w > abs(prew) / 10.) {
- swtch = TRUE_;
- }
- }
-
-/* Main loop to update the values of the array DELTA and WORK */
-
- iter = niter + 1;
-
- for (niter = iter; niter <= MAXITERLOOPS; ++niter) {
-
-/* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- goto L240;
- }
-
-/* Calculate the new step */
-
- if (! swtch3) {
- dtipsq = work[ip1] * delta[ip1];
- dtisq = work[*i__] * delta[*i__];
- if (! swtch) {
- if (orgati) {
-/* Computing 2nd power */
- d__1 = z__[*i__] / dtisq;
- c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
- } else {
-/* Computing 2nd power */
- d__1 = z__[ip1] / dtipsq;
- c__ = w - dtisq * dw - delsq * (d__1 * d__1);
- }
- } else {
- temp = z__[ii] / (work[ii] * delta[ii]);
- if (orgati) {
- dpsi += temp * temp;
- } else {
- dphi += temp * temp;
- }
- c__ = w - dtisq * dpsi - dtipsq * dphi;
- }
- a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
- b = dtipsq * dtisq * w;
- if (c__ == 0.) {
- if (a == 0.) {
- if (! swtch) {
- if (orgati) {
- a = z__[*i__] * z__[*i__] + dtipsq * dtipsq *
- (dpsi + dphi);
- } else {
- a = z__[ip1] * z__[ip1] + dtisq * dtisq * (
- dpsi + dphi);
- }
- } else {
- a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi;
- }
- }
- eta = b / a;
- } else if (a <= 0.) {
- eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
- / (c__ * 2.);
- } else {
- eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__,
- abs(d__1))));
- }
- } else {
-
-/* Interpolation using THREE most relevant poles */
-
- dtiim = work[iim1] * delta[iim1];
- dtiip = work[iip1] * delta[iip1];
- temp = rhoinv + psi + phi;
- if (swtch) {
- c__ = temp - dtiim * dpsi - dtiip * dphi;
- zz[0] = dtiim * dtiim * dpsi;
- zz[2] = dtiip * dtiip * dphi;
- } else {
- if (orgati) {
- temp1 = z__[iim1] / dtiim;
- temp1 *= temp1;
- temp2 = (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[
- iip1]) * temp1;
- c__ = temp - dtiip * (dpsi + dphi) - temp2;
- zz[0] = z__[iim1] * z__[iim1];
- if (dpsi < temp1) {
- zz[2] = dtiip * dtiip * dphi;
- } else {
- zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
- }
- } else {
- temp1 = z__[iip1] / dtiip;
- temp1 *= temp1;
- temp2 = (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[
- iip1]) * temp1;
- c__ = temp - dtiim * (dpsi + dphi) - temp2;
- if (dphi < temp1) {
- zz[0] = dtiim * dtiim * dpsi;
- } else {
- zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
- }
- zz[2] = z__[iip1] * z__[iip1];
- }
- }
- dd[0] = dtiim;
- dd[1] = delta[ii] * work[ii];
- dd[2] = dtiip;
- dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
- if (*info != 0) {
- goto L240;
- }
- }
-
-/*
- Note, eta should be positive if w is negative, and
- eta should be negative otherwise. However,
- if for some reason caused by roundoff, eta*w > 0,
- we simply use one Newton step instead. This way
- will guarantee eta*w < 0.
-*/
-
- if (w * eta >= 0.) {
- eta = -w / dw;
- }
- if (orgati) {
- temp1 = work[*i__] * delta[*i__];
- temp = eta - temp1;
- } else {
- temp1 = work[ip1] * delta[ip1];
- temp = eta - temp1;
- }
- if (temp > sg2ub || temp < sg2lb) {
- if (w < 0.) {
- eta = (sg2ub - tau) / 2.;
- } else {
- eta = (sg2lb - tau) / 2.;
- }
- }
-
- tau += eta;
- eta /= *sigma + sqrt(*sigma * *sigma + eta);
-
- *sigma += eta;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] += eta;
- delta[j] -= eta;
-/* L200: */
- }
-
- prew = w;
-
-/* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.;
- psi = 0.;
- erretm = 0.;
- i__1 = iim1;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (work[j] * delta[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
-/* L210: */
- }
- erretm = abs(erretm);
-
-/* Evaluate PHI and the derivative DPHI */
-
- dphi = 0.;
- phi = 0.;
- i__1 = iip1;
- for (j = *n; j >= i__1; --j) {
- temp = z__[j] / (work[j] * delta[j]);
- phi += z__[j] * temp;
- dphi += temp * temp;
- erretm += phi;
-/* L220: */
- }
-
- temp = z__[ii] / (work[ii] * delta[ii]);
- dw = dpsi + dphi + temp * temp;
- temp = z__[ii] * temp;
- w = rhoinv + phi + psi + temp;
- erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.
- + abs(tau) * dw;
- if ((w * prew > 0. && abs(w) > abs(prew) / 10.)) {
- swtch = ! swtch;
- }
-
- if (w <= 0.) {
- sg2lb = max(sg2lb,tau);
- } else {
- sg2ub = min(sg2ub,tau);
- }
-
-/* L230: */
- }
-
-/* Return with INFO = 1, NITER = MAXIT and not converged */
-
- *info = 1;
-
- }
-
-L240:
- return 0;
-
-/* End of DLASD4 */
-
-} /* dlasd4_ */
-
-/* Subroutine */ int dlasd5_(integer *i__, doublereal *d__, doublereal *z__,
- doublereal *delta, doublereal *rho, doublereal *dsigma, doublereal *
- work)
-{
- /* System generated locals */
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal b, c__, w, del, tau, delsq;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- This subroutine computes the square root of the I-th eigenvalue
- of a positive symmetric rank-one modification of a 2-by-2 diagonal
- matrix
-
- diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
-
- The diagonal entries in the array D are assumed to satisfy
-
- 0 <= D(i) < D(j) for i < j .
-
- We also assume RHO > 0 and that the Euclidean norm of the vector
- Z is one.
-
- Arguments
- =========
-
- I (input) INTEGER
- The index of the eigenvalue to be computed. I = 1 or I = 2.
-
- D (input) DOUBLE PRECISION array, dimension ( 2 )
- The original eigenvalues. We assume 0 <= D(1) < D(2).
-
- Z (input) DOUBLE PRECISION array, dimension ( 2 )
- The components of the updating vector.
-
- DELTA (output) DOUBLE PRECISION array, dimension ( 2 )
- Contains (D(j) - lambda_I) in its j-th component.
- The vector DELTA contains the information necessary
- to construct the eigenvectors.
-
- RHO (input) DOUBLE PRECISION
- The scalar in the symmetric updating formula.
-
- DSIGMA (output) DOUBLE PRECISION
- The computed lambda_I, the I-th updated eigenvalue.
-
- WORK (workspace) DOUBLE PRECISION array, dimension ( 2 )
- WORK contains (D(j) + sigma_I) in its j-th component.
-
- Further Details
- ===============
-
- Based on contributions by
- Ren-Cang Li, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --work;
- --delta;
- --z__;
- --d__;
-
- /* Function Body */
- del = d__[2] - d__[1];
- delsq = del * (d__[2] + d__[1]);
- if (*i__ == 1) {
- w = *rho * 4. * (z__[2] * z__[2] / (d__[1] + d__[2] * 3.) - z__[1] *
- z__[1] / (d__[1] * 3. + d__[2])) / del + 1.;
- if (w > 0.) {
- b = delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
- c__ = *rho * z__[1] * z__[1] * delsq;
-
-/*
- B > ZERO, always
-
- The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
-*/
-
- tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1))));
-
-/* The following TAU is DSIGMA - D( 1 ) */
-
- tau /= d__[1] + sqrt(d__[1] * d__[1] + tau);
- *dsigma = d__[1] + tau;
- delta[1] = -tau;
- delta[2] = del - tau;
- work[1] = d__[1] * 2. + tau;
- work[2] = d__[1] + tau + d__[2];
-/*
- DELTA( 1 ) = -Z( 1 ) / TAU
- DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
-*/
- } else {
- b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
- c__ = *rho * z__[2] * z__[2] * delsq;
-
-/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
-
- if (b > 0.) {
- tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.));
- } else {
- tau = (b - sqrt(b * b + c__ * 4.)) / 2.;
- }
-
-/* The following TAU is DSIGMA - D( 2 ) */
-
- tau /= d__[2] + sqrt((d__1 = d__[2] * d__[2] + tau, abs(d__1)));
- *dsigma = d__[2] + tau;
- delta[1] = -(del + tau);
- delta[2] = -tau;
- work[1] = d__[1] + tau + d__[2];
- work[2] = d__[2] * 2. + tau;
-/*
- DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
- DELTA( 2 ) = -Z( 2 ) / TAU
-*/
- }
-/*
- TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
- DELTA( 1 ) = DELTA( 1 ) / TEMP
- DELTA( 2 ) = DELTA( 2 ) / TEMP
-*/
- } else {
-
-/* Now I=2 */
-
- b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
- c__ = *rho * z__[2] * z__[2] * delsq;
-
-/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
-
- if (b > 0.) {
- tau = (b + sqrt(b * b + c__ * 4.)) / 2.;
- } else {
- tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.));
- }
-
-/* The following TAU is DSIGMA - D( 2 ) */
-
- tau /= d__[2] + sqrt(d__[2] * d__[2] + tau);
- *dsigma = d__[2] + tau;
- delta[1] = -(del + tau);
- delta[2] = -tau;
- work[1] = d__[1] + tau + d__[2];
- work[2] = d__[2] * 2. + tau;
-/*
- DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
- DELTA( 2 ) = -Z( 2 ) / TAU
- TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
- DELTA( 1 ) = DELTA( 1 ) / TEMP
- DELTA( 2 ) = DELTA( 2 ) / TEMP
-*/
- }
- return 0;
-
-/* End of DLASD5 */
-
-} /* dlasd5_ */
-
-/* Subroutine */ int dlasd6_(integer *icompq, integer *nl, integer *nr,
- integer *sqre, doublereal *d__, doublereal *vf, doublereal *vl,
- doublereal *alpha, doublereal *beta, integer *idxq, integer *perm,
- integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum,
- integer *ldgnum, doublereal *poles, doublereal *difl, doublereal *
- difr, doublereal *z__, integer *k, doublereal *c__, doublereal *s,
- doublereal *work, integer *iwork, integer *info)
-{
- /* System generated locals */
- integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset,
- poles_dim1, poles_offset, i__1;
- doublereal d__1, d__2;
-
- /* Local variables */
- static integer i__, m, n, n1, n2, iw, idx, idxc, idxp, ivfw, ivlw;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), dlasd7_(integer *, integer *, integer *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- integer *, integer *, integer *, integer *, integer *, doublereal
- *, integer *, doublereal *, doublereal *, integer *), dlasd8_(
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), dlamrg_(integer *, integer *,
- doublereal *, integer *, integer *, integer *);
- static integer isigma;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static doublereal orgnrm;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLASD6 computes the SVD of an updated upper bidiagonal matrix B
- obtained by merging two smaller ones by appending a row. This
- routine is used only for the problem which requires all singular
- values and optionally singular vector matrices in factored form.
- B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
- A related subroutine, DLASD1, handles the case in which all singular
- values and singular vectors of the bidiagonal matrix are desired.
-
- DLASD6 computes the SVD as follows:
-
- ( D1(in) 0 0 0 )
- B = U(in) * ( Z1' a Z2' b ) * VT(in)
- ( 0 0 D2(in) 0 )
-
- = U(out) * ( D(out) 0) * VT(out)
-
- where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
- with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
- elsewhere; and the entry b is empty if SQRE = 0.
-
- The singular values of B can be computed using D1, D2, the first
- components of all the right singular vectors of the lower block, and
- the last components of all the right singular vectors of the upper
- block. These components are stored and updated in VF and VL,
- respectively, in DLASD6. Hence U and VT are not explicitly
- referenced.
-
- The singular values are stored in D. The algorithm consists of two
- stages:
-
- The first stage consists of deflating the size of the problem
- when there are multiple singular values or if there is a zero
- in the Z vector. For each such occurence the dimension of the
- secular equation problem is reduced by one. This stage is
- performed by the routine DLASD7.
-
- The second stage consists of calculating the updated
- singular values. This is done by finding the roots of the
- secular equation via the routine DLASD4 (as called by DLASD8).
- This routine also updates VF and VL and computes the distances
- between the updated singular values and the old singular
- values.
-
- DLASD6 is called from DLASDA.
-
- Arguments
- =========
-
- ICOMPQ (input) INTEGER
- Specifies whether singular vectors are to be computed in
- factored form:
- = 0: Compute singular values only.
- = 1: Compute singular vectors in factored form as well.
-
- NL (input) INTEGER
- The row dimension of the upper block. NL >= 1.
-
- NR (input) INTEGER
- The row dimension of the lower block. NR >= 1.
-
- SQRE (input) INTEGER
- = 0: the lower block is an NR-by-NR square matrix.
- = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-
- The bidiagonal matrix has row dimension N = NL + NR + 1,
- and column dimension M = N + SQRE.
-
- D (input/output) DOUBLE PRECISION array, dimension ( NL+NR+1 ).
- On entry D(1:NL,1:NL) contains the singular values of the
- upper block, and D(NL+2:N) contains the singular values
- of the lower block. On exit D(1:N) contains the singular
- values of the modified matrix.
-
- VF (input/output) DOUBLE PRECISION array, dimension ( M )
- On entry, VF(1:NL+1) contains the first components of all
- right singular vectors of the upper block; and VF(NL+2:M)
- contains the first components of all right singular vectors
- of the lower block. On exit, VF contains the first components
- of all right singular vectors of the bidiagonal matrix.
-
- VL (input/output) DOUBLE PRECISION array, dimension ( M )
- On entry, VL(1:NL+1) contains the last components of all
- right singular vectors of the upper block; and VL(NL+2:M)
- contains the last components of all right singular vectors of
- the lower block. On exit, VL contains the last components of
- all right singular vectors of the bidiagonal matrix.
-
- ALPHA (input) DOUBLE PRECISION
- Contains the diagonal element associated with the added row.
-
- BETA (input) DOUBLE PRECISION
- Contains the off-diagonal element associated with the added
- row.
-
- IDXQ (output) INTEGER array, dimension ( N )
- This contains the permutation which will reintegrate the
- subproblem just solved back into sorted order, i.e.
- D( IDXQ( I = 1, N ) ) will be in ascending order.
-
- PERM (output) INTEGER array, dimension ( N )
- The permutations (from deflation and sorting) to be applied
- to each block. Not referenced if ICOMPQ = 0.
-
- GIVPTR (output) INTEGER
- The number of Givens rotations which took place in this
- subproblem. Not referenced if ICOMPQ = 0.
-
- GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
- Each pair of numbers indicates a pair of columns to take place
- in a Givens rotation. Not referenced if ICOMPQ = 0.
-
- LDGCOL (input) INTEGER
- leading dimension of GIVCOL, must be at least N.
-
- GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
- Each number indicates the C or S value to be used in the
- corresponding Givens rotation. Not referenced if ICOMPQ = 0.
-
- LDGNUM (input) INTEGER
- The leading dimension of GIVNUM and POLES, must be at least N.
-
- POLES (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
- On exit, POLES(1,*) is an array containing the new singular
- values obtained from solving the secular equation, and
- POLES(2,*) is an array containing the poles in the secular
- equation. Not referenced if ICOMPQ = 0.
-
- DIFL (output) DOUBLE PRECISION array, dimension ( N )
- On exit, DIFL(I) is the distance between I-th updated
- (undeflated) singular value and the I-th (undeflated) old
- singular value.
-
- DIFR (output) DOUBLE PRECISION array,
- dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and
- dimension ( N ) if ICOMPQ = 0.
- On exit, DIFR(I, 1) is the distance between I-th updated
- (undeflated) singular value and the I+1-th (undeflated) old
- singular value.
-
- If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
- normalizing factors for the right singular vector matrix.
-
- See DLASD8 for details on DIFL and DIFR.
-
- Z (output) DOUBLE PRECISION array, dimension ( M )
- The first elements of this array contain the components
- of the deflation-adjusted updating row vector.
-
- K (output) INTEGER
- Contains the dimension of the non-deflated matrix,
- This is the order of the related secular equation. 1 <= K <=N.
-
- C (output) DOUBLE PRECISION
- C contains garbage if SQRE =0 and the C-value of a Givens
- rotation related to the right null space if SQRE = 1.
-
- S (output) DOUBLE PRECISION
- S contains garbage if SQRE =0 and the S-value of a Givens
- rotation related to the right null space if SQRE = 1.
-
- WORK (workspace) DOUBLE PRECISION array, dimension ( 4 * M )
-
- IWORK (workspace) INTEGER array, dimension ( 3 * N )
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an singular value did not converge
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --vf;
- --vl;
- --idxq;
- --perm;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1 * 1;
- givcol -= givcol_offset;
- poles_dim1 = *ldgnum;
- poles_offset = 1 + poles_dim1 * 1;
- poles -= poles_offset;
- givnum_dim1 = *ldgnum;
- givnum_offset = 1 + givnum_dim1 * 1;
- givnum -= givnum_offset;
- --difl;
- --difr;
- --z__;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
- n = *nl + *nr + 1;
- m = n + *sqre;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*nl < 1) {
- *info = -2;
- } else if (*nr < 1) {
- *info = -3;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -4;
- } else if (*ldgcol < n) {
- *info = -14;
- } else if (*ldgnum < n) {
- *info = -16;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASD6", &i__1);
- return 0;
- }
-
-/*
- The following values are for bookkeeping purposes only. They are
- integer pointers which indicate the portion of the workspace
- used by a particular array in DLASD7 and DLASD8.
-*/
-
- isigma = 1;
- iw = isigma + n;
- ivfw = iw + m;
- ivlw = ivfw + m;
-
- idx = 1;
- idxc = idx + n;
- idxp = idxc + n;
-
-/*
- Scale.
-
- Computing MAX
-*/
- d__1 = abs(*alpha), d__2 = abs(*beta);
- orgnrm = max(d__1,d__2);
- d__[*nl + 1] = 0.;
- i__1 = n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
- orgnrm = (d__1 = d__[i__], abs(d__1));
- }
-/* L10: */
- }
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &n, &c__1, &d__[1], &n, info);
- *alpha /= orgnrm;
- *beta /= orgnrm;
-
-/* Sort and Deflate singular values. */
-
- dlasd7_(icompq, nl, nr, sqre, k, &d__[1], &z__[1], &work[iw], &vf[1], &
- work[ivfw], &vl[1], &work[ivlw], alpha, beta, &work[isigma], &
- iwork[idx], &iwork[idxp], &idxq[1], &perm[1], givptr, &givcol[
- givcol_offset], ldgcol, &givnum[givnum_offset], ldgnum, c__, s,
- info);
-
-/* Solve Secular Equation, compute DIFL, DIFR, and update VF, VL. */
-
- dlasd8_(icompq, k, &d__[1], &z__[1], &vf[1], &vl[1], &difl[1], &difr[1],
- ldgnum, &work[isigma], &work[iw], info);
-
-/* Save the poles if ICOMPQ = 1. */
-
- if (*icompq == 1) {
- dcopy_(k, &d__[1], &c__1, &poles[poles_dim1 + 1], &c__1);
- dcopy_(k, &work[isigma], &c__1, &poles[((poles_dim1) << (1)) + 1], &
- c__1);
- }
-
-/* Unscale. */
-
- dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, &n, &c__1, &d__[1], &n, info);
-
-/* Prepare the IDXQ sorting permutation. */
-
- n1 = *k;
- n2 = n - *k;
- dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
-
- return 0;
-
-/* End of DLASD6 */
-
-} /* dlasd6_ */
-
-/* Subroutine */ int dlasd7_(integer *icompq, integer *nl, integer *nr,
- integer *sqre, integer *k, doublereal *d__, doublereal *z__,
- doublereal *zw, doublereal *vf, doublereal *vfw, doublereal *vl,
- doublereal *vlw, doublereal *alpha, doublereal *beta, doublereal *
- dsigma, integer *idx, integer *idxp, integer *idxq, integer *perm,
- integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum,
- integer *ldgnum, doublereal *c__, doublereal *s, integer *info)
-{
- /* System generated locals */
- integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
- doublereal d__1, d__2;
-
- /* Local variables */
- static integer i__, j, m, n, k2;
- static doublereal z1;
- static integer jp;
- static doublereal eps, tau, tol;
- static integer nlp1, nlp2, idxi, idxj;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- static integer idxjp;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static integer jprev;
-
- extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), xerbla_(char *, integer *);
- static doublereal hlftol;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLASD7 merges the two sets of singular values together into a single
- sorted set. Then it tries to deflate the size of the problem. There
- are two ways in which deflation can occur: when two or more singular
- values are close together or if there is a tiny entry in the Z
- vector. For each such occurrence the order of the related
- secular equation problem is reduced by one.
-
- DLASD7 is called from DLASD6.
-
- Arguments
- =========
-
- ICOMPQ (input) INTEGER
- Specifies whether singular vectors are to be computed
- in compact form, as follows:
- = 0: Compute singular values only.
- = 1: Compute singular vectors of upper
- bidiagonal matrix in compact form.
-
- NL (input) INTEGER
- The row dimension of the upper block. NL >= 1.
-
- NR (input) INTEGER
- The row dimension of the lower block. NR >= 1.
-
- SQRE (input) INTEGER
- = 0: the lower block is an NR-by-NR square matrix.
- = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-
- The bidiagonal matrix has
- N = NL + NR + 1 rows and
- M = N + SQRE >= N columns.
-
- K (output) INTEGER
- Contains the dimension of the non-deflated matrix, this is
- the order of the related secular equation. 1 <= K <=N.
-
- D (input/output) DOUBLE PRECISION array, dimension ( N )
- On entry D contains the singular values of the two submatrices
- to be combined. On exit D contains the trailing (N-K) updated
- singular values (those which were deflated) sorted into
- increasing order.
-
- Z (output) DOUBLE PRECISION array, dimension ( M )
- On exit Z contains the updating row vector in the secular
- equation.
-
- ZW (workspace) DOUBLE PRECISION array, dimension ( M )
- Workspace for Z.
-
- VF (input/output) DOUBLE PRECISION array, dimension ( M )
- On entry, VF(1:NL+1) contains the first components of all
- right singular vectors of the upper block; and VF(NL+2:M)
- contains the first components of all right singular vectors
- of the lower block. On exit, VF contains the first components
- of all right singular vectors of the bidiagonal matrix.
-
- VFW (workspace) DOUBLE PRECISION array, dimension ( M )
- Workspace for VF.
-
- VL (input/output) DOUBLE PRECISION array, dimension ( M )
- On entry, VL(1:NL+1) contains the last components of all
- right singular vectors of the upper block; and VL(NL+2:M)
- contains the last components of all right singular vectors
- of the lower block. On exit, VL contains the last components
- of all right singular vectors of the bidiagonal matrix.
-
- VLW (workspace) DOUBLE PRECISION array, dimension ( M )
- Workspace for VL.
-
- ALPHA (input) DOUBLE PRECISION
- Contains the diagonal element associated with the added row.
-
- BETA (input) DOUBLE PRECISION
- Contains the off-diagonal element associated with the added
- row.
-
- DSIGMA (output) DOUBLE PRECISION array, dimension ( N )
- Contains a copy of the diagonal elements (K-1 singular values
- and one zero) in the secular equation.
-
- IDX (workspace) INTEGER array, dimension ( N )
- This will contain the permutation used to sort the contents of
- D into ascending order.
-
- IDXP (workspace) INTEGER array, dimension ( N )
- This will contain the permutation used to place deflated
- values of D at the end of the array. On output IDXP(2:K)
- points to the nondeflated D-values and IDXP(K+1:N)
- points to the deflated singular values.
-
- IDXQ (input) INTEGER array, dimension ( N )
- This contains the permutation which separately sorts the two
- sub-problems in D into ascending order. Note that entries in
- the first half of this permutation must first be moved one
- position backward; and entries in the second half
- must first have NL+1 added to their values.
-
- PERM (output) INTEGER array, dimension ( N )
- The permutations (from deflation and sorting) to be applied
- to each singular block. Not referenced if ICOMPQ = 0.
-
- GIVPTR (output) INTEGER
- The number of Givens rotations which took place in this
- subproblem. Not referenced if ICOMPQ = 0.
-
- GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
- Each pair of numbers indicates a pair of columns to take place
- in a Givens rotation. Not referenced if ICOMPQ = 0.
-
- LDGCOL (input) INTEGER
- The leading dimension of GIVCOL, must be at least N.
-
- GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
- Each number indicates the C or S value to be used in the
- corresponding Givens rotation. Not referenced if ICOMPQ = 0.
-
- LDGNUM (input) INTEGER
- The leading dimension of GIVNUM, must be at least N.
-
- C (output) DOUBLE PRECISION
- C contains garbage if SQRE =0 and the C-value of a Givens
- rotation related to the right null space if SQRE = 1.
-
- S (output) DOUBLE PRECISION
- S contains garbage if SQRE =0 and the S-value of a Givens
- rotation related to the right null space if SQRE = 1.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --z__;
- --zw;
- --vf;
- --vfw;
- --vl;
- --vlw;
- --dsigma;
- --idx;
- --idxp;
- --idxq;
- --perm;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1 * 1;
- givcol -= givcol_offset;
- givnum_dim1 = *ldgnum;
- givnum_offset = 1 + givnum_dim1 * 1;
- givnum -= givnum_offset;
-
- /* Function Body */
- *info = 0;
- n = *nl + *nr + 1;
- m = n + *sqre;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*nl < 1) {
- *info = -2;
- } else if (*nr < 1) {
- *info = -3;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -4;
- } else if (*ldgcol < n) {
- *info = -22;
- } else if (*ldgnum < n) {
- *info = -24;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASD7", &i__1);
- return 0;
- }
-
- nlp1 = *nl + 1;
- nlp2 = *nl + 2;
- if (*icompq == 1) {
- *givptr = 0;
- }
-
-/*
- Generate the first part of the vector Z and move the singular
- values in the first part of D one position backward.
-*/
-
- z1 = *alpha * vl[nlp1];
- vl[nlp1] = 0.;
- tau = vf[nlp1];
- for (i__ = *nl; i__ >= 1; --i__) {
- z__[i__ + 1] = *alpha * vl[i__];
- vl[i__] = 0.;
- vf[i__ + 1] = vf[i__];
- d__[i__ + 1] = d__[i__];
- idxq[i__ + 1] = idxq[i__] + 1;
-/* L10: */
- }
- vf[1] = tau;
-
-/* Generate the second part of the vector Z. */
-
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- z__[i__] = *beta * vf[i__];
- vf[i__] = 0.;
-/* L20: */
- }
-
-/* Sort the singular values into increasing order */
-
- i__1 = n;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- idxq[i__] += nlp1;
-/* L30: */
- }
-
-/* DSIGMA, IDXC, IDXC, and ZW are used as storage space. */
-
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- dsigma[i__] = d__[idxq[i__]];
- zw[i__] = z__[idxq[i__]];
- vfw[i__] = vf[idxq[i__]];
- vlw[i__] = vl[idxq[i__]];
-/* L40: */
- }
-
- dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
-
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- idxi = idx[i__] + 1;
- d__[i__] = dsigma[idxi];
- z__[i__] = zw[idxi];
- vf[i__] = vfw[idxi];
- vl[i__] = vlw[idxi];
-/* L50: */
- }
-
-/* Calculate the allowable deflation tolerence */
-
- eps = EPSILON;
-/* Computing MAX */
- d__1 = abs(*alpha), d__2 = abs(*beta);
- tol = max(d__1,d__2);
-/* Computing MAX */
- d__2 = (d__1 = d__[n], abs(d__1));
- tol = eps * 64. * max(d__2,tol);
-
-/*
- There are 2 kinds of deflation -- first a value in the z-vector
- is small, second two (or more) singular values are very close
- together (their difference is small).
-
- If the value in the z-vector is small, we simply permute the
- array so that the corresponding singular value is moved to the
- end.
-
- If two values in the D-vector are close, we perform a two-sided
- rotation designed to make one of the corresponding z-vector
- entries zero, and then permute the array so that the deflated
- singular value is moved to the end.
-
- If there are multiple singular values then the problem deflates.
- Here the number of equal singular values are found. As each equal
- singular value is found, an elementary reflector is computed to
- rotate the corresponding singular subspace so that the
- corresponding components of Z are zero in this new basis.
-*/
-
- *k = 1;
- k2 = n + 1;
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- if ((d__1 = z__[j], abs(d__1)) <= tol) {
-
-/* Deflate due to small z component. */
-
- --k2;
- idxp[k2] = j;
- if (j == n) {
- goto L100;
- }
- } else {
- jprev = j;
- goto L70;
- }
-/* L60: */
- }
-L70:
- j = jprev;
-L80:
- ++j;
- if (j > n) {
- goto L90;
- }
- if ((d__1 = z__[j], abs(d__1)) <= tol) {
-
-/* Deflate due to small z component. */
-
- --k2;
- idxp[k2] = j;
- } else {
-
-/* Check if singular values are close enough to allow deflation. */
-
- if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
-
-/* Deflation is possible. */
-
- *s = z__[jprev];
- *c__ = z__[j];
-
-/*
- Find sqrt(a**2+b**2) without overflow or
- destructive underflow.
-*/
-
- tau = dlapy2_(c__, s);
- z__[j] = tau;
- z__[jprev] = 0.;
- *c__ /= tau;
- *s = -(*s) / tau;
-
-/* Record the appropriate Givens rotation */
-
- if (*icompq == 1) {
- ++(*givptr);
- idxjp = idxq[idx[jprev] + 1];
- idxj = idxq[idx[j] + 1];
- if (idxjp <= nlp1) {
- --idxjp;
- }
- if (idxj <= nlp1) {
- --idxj;
- }
- givcol[*givptr + ((givcol_dim1) << (1))] = idxjp;
- givcol[*givptr + givcol_dim1] = idxj;
- givnum[*givptr + ((givnum_dim1) << (1))] = *c__;
- givnum[*givptr + givnum_dim1] = *s;
- }
- drot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
- drot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
- --k2;
- idxp[k2] = jprev;
- jprev = j;
- } else {
- ++(*k);
- zw[*k] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
- jprev = j;
- }
- }
- goto L80;
-L90:
-
-/* Record the last singular value. */
-
- ++(*k);
- zw[*k] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
-
-L100:
-
-/*
- Sort the singular values into DSIGMA. The singular values which
- were not deflated go into the first K slots of DSIGMA, except
- that DSIGMA(1) is treated separately.
-*/
-
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- dsigma[j] = d__[jp];
- vfw[j] = vf[jp];
- vlw[j] = vl[jp];
-/* L110: */
- }
- if (*icompq == 1) {
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- perm[j] = idxq[idx[jp] + 1];
- if (perm[j] <= nlp1) {
- --perm[j];
- }
-/* L120: */
- }
- }
-
-/*
- The deflated singular values go back into the last N - K slots of
- D.
-*/
-
- i__1 = n - *k;
- dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
-
-/*
- Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and
- VL(M).
-*/
-
- dsigma[1] = 0.;
- hlftol = tol / 2.;
- if (abs(dsigma[2]) <= hlftol) {
- dsigma[2] = hlftol;
- }
- if (m > n) {
- z__[1] = dlapy2_(&z1, &z__[m]);
- if (z__[1] <= tol) {
- *c__ = 1.;
- *s = 0.;
- z__[1] = tol;
- } else {
- *c__ = z1 / z__[1];
- *s = -z__[m] / z__[1];
- }
- drot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
- drot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
- } else {
- if (abs(z1) <= tol) {
- z__[1] = tol;
- } else {
- z__[1] = z1;
- }
- }
-
-/* Restore Z, VF, and VL. */
-
- i__1 = *k - 1;
- dcopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
- i__1 = n - 1;
- dcopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
- i__1 = n - 1;
- dcopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);
-
- return 0;
-
-/* End of DLASD7 */
-
-} /* dlasd7_ */
-
-/* Subroutine */ int dlasd8_(integer *icompq, integer *k, doublereal *d__,
- doublereal *z__, doublereal *vf, doublereal *vl, doublereal *difl,
- doublereal *difr, integer *lddifr, doublereal *dsigma, doublereal *
- work, integer *info)
-{
- /* System generated locals */
- integer difr_dim1, difr_offset, i__1, i__2;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static integer i__, j;
- static doublereal dj, rho;
- static integer iwk1, iwk2, iwk3;
- extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- static doublereal temp;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- static integer iwk2i, iwk3i;
- static doublereal diflj, difrj, dsigj;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- extern doublereal dlamc3_(doublereal *, doublereal *);
- extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *), dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), dlaset_(char *, integer *, integer
- *, doublereal *, doublereal *, doublereal *, integer *),
- xerbla_(char *, integer *);
- static doublereal dsigjp;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLASD8 finds the square roots of the roots of the secular equation,
- as defined by the values in DSIGMA and Z. It makes the appropriate
- calls to DLASD4, and stores, for each element in D, the distance
- to its two nearest poles (elements in DSIGMA). It also updates
- the arrays VF and VL, the first and last components of all the
- right singular vectors of the original bidiagonal matrix.
-
- DLASD8 is called from DLASD6.
-
- Arguments
- =========
-
- ICOMPQ (input) INTEGER
- Specifies whether singular vectors are to be computed in
- factored form in the calling routine:
- = 0: Compute singular values only.
- = 1: Compute singular vectors in factored form as well.
-
- K (input) INTEGER
- The number of terms in the rational function to be solved
- by DLASD4. K >= 1.
-
- D (output) DOUBLE PRECISION array, dimension ( K )
- On output, D contains the updated singular values.
-
- Z (input) DOUBLE PRECISION array, dimension ( K )
- The first K elements of this array contain the components
- of the deflation-adjusted updating row vector.
-
- VF (input/output) DOUBLE PRECISION array, dimension ( K )
- On entry, VF contains information passed through DBEDE8.
- On exit, VF contains the first K components of the first
- components of all right singular vectors of the bidiagonal
- matrix.
-
- VL (input/output) DOUBLE PRECISION array, dimension ( K )
- On entry, VL contains information passed through DBEDE8.
- On exit, VL contains the first K components of the last
- components of all right singular vectors of the bidiagonal
- matrix.
-
- DIFL (output) DOUBLE PRECISION array, dimension ( K )
- On exit, DIFL(I) = D(I) - DSIGMA(I).
-
- DIFR (output) DOUBLE PRECISION array,
- dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
- dimension ( K ) if ICOMPQ = 0.
- On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
- defined and will not be referenced.
-
- If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
- normalizing factors for the right singular vector matrix.
-
- LDDIFR (input) INTEGER
- The leading dimension of DIFR, must be at least K.
-
- DSIGMA (input) DOUBLE PRECISION array, dimension ( K )
- The first K elements of this array contain the old roots
- of the deflated updating problem. These are the poles
- of the secular equation.
-
- WORK (workspace) DOUBLE PRECISION array, dimension at least 3 * K
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an singular value did not converge
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --z__;
- --vf;
- --vl;
- --difl;
- difr_dim1 = *lddifr;
- difr_offset = 1 + difr_dim1 * 1;
- difr -= difr_offset;
- --dsigma;
- --work;
-
- /* Function Body */
- *info = 0;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*k < 1) {
- *info = -2;
- } else if (*lddifr < *k) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASD8", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*k == 1) {
- d__[1] = abs(z__[1]);
- difl[1] = d__[1];
- if (*icompq == 1) {
- difl[2] = 1.;
- difr[((difr_dim1) << (1)) + 1] = 1.;
- }
- return 0;
- }
-
-/*
- Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
- be computed with high relative accuracy (barring over/underflow).
- This is a problem on machines without a guard digit in
- add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
- The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
- which on any of these machines zeros out the bottommost
- bit of DSIGMA(I) if it is 1; this makes the subsequent
- subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
- occurs. On binary machines with a guard digit (almost all
- machines) it does not change DSIGMA(I) at all. On hexadecimal
- and decimal machines with a guard digit, it slightly
- changes the bottommost bits of DSIGMA(I). It does not account
- for hexadecimal or decimal machines without guard digits
- (we know of none). We use a subroutine call to compute
- 2*DLAMBDA(I) to prevent optimizing compilers from eliminating
- this code.
-*/
-
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
-/* L10: */
- }
-
-/* Book keeping. */
-
- iwk1 = 1;
- iwk2 = iwk1 + *k;
- iwk3 = iwk2 + *k;
- iwk2i = iwk2 - 1;
- iwk3i = iwk3 - 1;
-
-/* Normalize Z. */
-
- rho = dnrm2_(k, &z__[1], &c__1);
- dlascl_("G", &c__0, &c__0, &rho, &c_b15, k, &c__1, &z__[1], k, info);
- rho *= rho;
-
-/* Initialize WORK(IWK3). */
-
- dlaset_("A", k, &c__1, &c_b15, &c_b15, &work[iwk3], k);
-
-/*
- Compute the updated singular values, the arrays DIFL, DIFR,
- and the updated Z.
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dlasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[
- iwk2], info);
-
-/* If the root finder fails, the computation is terminated. */
-
- if (*info != 0) {
- return 0;
- }
- work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j];
- difl[j] = -work[j];
- difr[j + difr_dim1] = -work[j + 1];
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
- i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
- j]);
-/* L20: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
- i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
- j]);
-/* L30: */
- }
-/* L40: */
- }
-
-/* Compute updated Z. */
-
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__2 = sqrt((d__1 = work[iwk3i + i__], abs(d__1)));
- z__[i__] = d_sign(&d__2, &z__[i__]);
-/* L50: */
- }
-
-/* Update VF and VL. */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- diflj = difl[j];
- dj = d__[j];
- dsigj = -dsigma[j];
- if (j < *k) {
- difrj = -difr[j + difr_dim1];
- dsigjp = -dsigma[j + 1];
- }
- work[j] = -z__[j] / diflj / (dsigma[j] + dj);
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigj) - diflj) / (
- dsigma[i__] + dj);
-/* L60: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigjp) + difrj) /
- (dsigma[i__] + dj);
-/* L70: */
- }
- temp = dnrm2_(k, &work[1], &c__1);
- work[iwk2i + j] = ddot_(k, &work[1], &c__1, &vf[1], &c__1) / temp;
- work[iwk3i + j] = ddot_(k, &work[1], &c__1, &vl[1], &c__1) / temp;
- if (*icompq == 1) {
- difr[j + ((difr_dim1) << (1))] = temp;
- }
-/* L80: */
- }
-
- dcopy_(k, &work[iwk2], &c__1, &vf[1], &c__1);
- dcopy_(k, &work[iwk3], &c__1, &vl[1], &c__1);
-
- return 0;
-
-/* End of DLASD8 */
-
-} /* dlasd8_ */
-
-/* Subroutine */ int dlasda_(integer *icompq, integer *smlsiz, integer *n,
- integer *sqre, doublereal *d__, doublereal *e, doublereal *u, integer
- *ldu, doublereal *vt, integer *k, doublereal *difl, doublereal *difr,
- doublereal *z__, doublereal *poles, integer *givptr, integer *givcol,
- integer *ldgcol, integer *perm, doublereal *givnum, doublereal *c__,
- doublereal *s, doublereal *work, integer *iwork, integer *info)
-{
- /* System generated locals */
- integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
- difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
- poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
- z_dim1, z_offset, i__1, i__2;
-
- /* Builtin functions */
- integer pow_ii(integer *, integer *);
-
- /* Local variables */
- static integer i__, j, m, i1, ic, lf, nd, ll, nl, vf, nr, vl, im1, ncc,
- nlf, nrf, vfi, iwk, vli, lvl, nru, ndb1, nlp1, lvl2, nrp1;
- static doublereal beta;
- static integer idxq, nlvl;
- static doublereal alpha;
- static integer inode, ndiml, ndimr, idxqi, itemp;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static integer sqrei;
- extern /* Subroutine */ int dlasd6_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, integer *, integer *);
- static integer nwork1, nwork2;
- extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer
- *, integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *), dlasdt_(integer *, integer *,
- integer *, integer *, integer *, integer *, integer *), dlaset_(
- char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *), xerbla_(char *, integer *);
- static integer smlszp;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- Using a divide and conquer approach, DLASDA computes the singular
- value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
- B with diagonal D and offdiagonal E, where M = N + SQRE. The
- algorithm computes the singular values in the SVD B = U * S * VT.
- The orthogonal matrices U and VT are optionally computed in
- compact form.
-
- A related subroutine, DLASD0, computes the singular values and
- the singular vectors in explicit form.
-
- Arguments
- =========
-
- ICOMPQ (input) INTEGER
- Specifies whether singular vectors are to be computed
- in compact form, as follows
- = 0: Compute singular values only.
- = 1: Compute singular vectors of upper bidiagonal
- matrix in compact form.
-
- SMLSIZ (input) INTEGER
- The maximum size of the subproblems at the bottom of the
- computation tree.
-
- N (input) INTEGER
- The row dimension of the upper bidiagonal matrix. This is
- also the dimension of the main diagonal array D.
-
- SQRE (input) INTEGER
- Specifies the column dimension of the bidiagonal matrix.
- = 0: The bidiagonal matrix has column dimension M = N;
- = 1: The bidiagonal matrix has column dimension M = N + 1.
-
- D (input/output) DOUBLE PRECISION array, dimension ( N )
- On entry D contains the main diagonal of the bidiagonal
- matrix. On exit D, if INFO = 0, contains its singular values.
-
- E (input) DOUBLE PRECISION array, dimension ( M-1 )
- Contains the subdiagonal entries of the bidiagonal matrix.
- On exit, E has been destroyed.
-
- U (output) DOUBLE PRECISION array,
- dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
- if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
- singular vector matrices of all subproblems at the bottom
- level.
-
- LDU (input) INTEGER, LDU = > N.
- The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
- GIVNUM, and Z.
-
- VT (output) DOUBLE PRECISION array,
- dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
- if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
- singular vector matrices of all subproblems at the bottom
- level.
-
- K (output) INTEGER array,
- dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
- If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
- secular equation on the computation tree.
-
- DIFL (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ),
- where NLVL = floor(log_2 (N/SMLSIZ))).
-
- DIFR (output) DOUBLE PRECISION array,
- dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
- dimension ( N ) if ICOMPQ = 0.
- If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
- record distances between singular values on the I-th
- level and singular values on the (I -1)-th level, and
- DIFR(1:N, 2 * I ) contains the normalizing factors for
- the right singular vector matrix. See DLASD8 for details.
-
- Z (output) DOUBLE PRECISION array,
- dimension ( LDU, NLVL ) if ICOMPQ = 1 and
- dimension ( N ) if ICOMPQ = 0.
- The first K elements of Z(1, I) contain the components of
- the deflation-adjusted updating row vector for subproblems
- on the I-th level.
-
- POLES (output) DOUBLE PRECISION array,
- dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
- if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
- POLES(1, 2*I) contain the new and old singular values
- involved in the secular equations on the I-th level.
-
- GIVPTR (output) INTEGER array,
- dimension ( N ) if ICOMPQ = 1, and not referenced if
- ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
- the number of Givens rotations performed on the I-th
- problem on the computation tree.
-
- GIVCOL (output) INTEGER array,
- dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
- referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
- GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
- of Givens rotations performed on the I-th level on the
- computation tree.
-
- LDGCOL (input) INTEGER, LDGCOL = > N.
- The leading dimension of arrays GIVCOL and PERM.
-
- PERM (output) INTEGER array,
- dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
- if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
- permutations done on the I-th level of the computation tree.
-
- GIVNUM (output) DOUBLE PRECISION array,
- dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not
- referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
- GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
- values of Givens rotations performed on the I-th level on
- the computation tree.
-
- C (output) DOUBLE PRECISION array,
- dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
- If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
- C( I ) contains the C-value of a Givens rotation related to
- the right null space of the I-th subproblem.
-
- S (output) DOUBLE PRECISION array, dimension ( N ) if
- ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
- and the I-th subproblem is not square, on exit, S( I )
- contains the S-value of a Givens rotation related to
- the right null space of the I-th subproblem.
-
- WORK (workspace) DOUBLE PRECISION array, dimension
- (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
-
- IWORK (workspace) INTEGER array.
- Dimension must be at least (7 * N).
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an singular value did not converge
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- givnum_dim1 = *ldu;
- givnum_offset = 1 + givnum_dim1 * 1;
- givnum -= givnum_offset;
- poles_dim1 = *ldu;
- poles_offset = 1 + poles_dim1 * 1;
- poles -= poles_offset;
- z_dim1 = *ldu;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- difr_dim1 = *ldu;
- difr_offset = 1 + difr_dim1 * 1;
- difr -= difr_offset;
- difl_dim1 = *ldu;
- difl_offset = 1 + difl_dim1 * 1;
- difl -= difl_offset;
- vt_dim1 = *ldu;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- --k;
- --givptr;
- perm_dim1 = *ldgcol;
- perm_offset = 1 + perm_dim1 * 1;
- perm -= perm_offset;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1 * 1;
- givcol -= givcol_offset;
- --c__;
- --s;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*smlsiz < 3) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -4;
- } else if (*ldu < *n + *sqre) {
- *info = -8;
- } else if (*ldgcol < *n) {
- *info = -17;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASDA", &i__1);
- return 0;
- }
-
- m = *n + *sqre;
-
-/* If the input matrix is too small, call DLASDQ to find the SVD. */
-
- if (*n <= *smlsiz) {
- if (*icompq == 0) {
- dlasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
- vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &
- work[1], info);
- } else {
- dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
- , ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1],
- info);
- }
- return 0;
- }
-
-/* Book-keeping and set up the computation tree. */
-
- inode = 1;
- ndiml = inode + *n;
- ndimr = ndiml + *n;
- idxq = ndimr + *n;
- iwk = idxq + *n;
-
- ncc = 0;
- nru = 0;
-
- smlszp = *smlsiz + 1;
- vf = 1;
- vl = vf + m;
- nwork1 = vl + m;
- nwork2 = nwork1 + smlszp * smlszp;
-
- dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
- smlsiz);
-
-/*
- for the nodes on bottom level of the tree, solve
- their subproblems by DLASDQ.
-*/
-
- ndb1 = (nd + 1) / 2;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
-
-/*
- IC : center row of each node
- NL : number of rows of left subproblem
- NR : number of rows of right subproblem
- NLF: starting row of the left subproblem
- NRF: starting row of the right subproblem
-*/
-
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nlp1 = nl + 1;
- nr = iwork[ndimr + i1];
- nlf = ic - nl;
- nrf = ic + 1;
- idxqi = idxq + nlf - 2;
- vfi = vf + nlf - 1;
- vli = vl + nlf - 1;
- sqrei = 1;
- if (*icompq == 0) {
- dlaset_("A", &nlp1, &nlp1, &c_b29, &c_b15, &work[nwork1], &smlszp);
- dlasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], &
- work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2],
- &nl, &work[nwork2], info);
- itemp = nwork1 + nl * smlszp;
- dcopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1);
- dcopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1);
- } else {
- dlaset_("A", &nl, &nl, &c_b29, &c_b15, &u[nlf + u_dim1], ldu);
- dlaset_("A", &nlp1, &nlp1, &c_b29, &c_b15, &vt[nlf + vt_dim1],
- ldu);
- dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &
- vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf +
- u_dim1], ldu, &work[nwork1], info);
- dcopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1);
- dcopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1)
- ;
- }
- if (*info != 0) {
- return 0;
- }
- i__2 = nl;
- for (j = 1; j <= i__2; ++j) {
- iwork[idxqi + j] = j;
-/* L10: */
- }
- if ((i__ == nd && *sqre == 0)) {
- sqrei = 0;
- } else {
- sqrei = 1;
- }
- idxqi += nlp1;
- vfi += nlp1;
- vli += nlp1;
- nrp1 = nr + sqrei;
- if (*icompq == 0) {
- dlaset_("A", &nrp1, &nrp1, &c_b29, &c_b15, &work[nwork1], &smlszp);
- dlasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], &
- work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2],
- &nr, &work[nwork2], info);
- itemp = nwork1 + (nrp1 - 1) * smlszp;
- dcopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1);
- dcopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1);
- } else {
- dlaset_("A", &nr, &nr, &c_b29, &c_b15, &u[nrf + u_dim1], ldu);
- dlaset_("A", &nrp1, &nrp1, &c_b29, &c_b15, &vt[nrf + vt_dim1],
- ldu);
- dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &
- vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf +
- u_dim1], ldu, &work[nwork1], info);
- dcopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1);
- dcopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1)
- ;
- }
- if (*info != 0) {
- return 0;
- }
- i__2 = nr;
- for (j = 1; j <= i__2; ++j) {
- iwork[idxqi + j] = j;
-/* L20: */
- }
-/* L30: */
- }
-
-/* Now conquer each subproblem bottom-up. */
-
- j = pow_ii(&c__2, &nlvl);
- for (lvl = nlvl; lvl >= 1; --lvl) {
- lvl2 = ((lvl) << (1)) - 1;
-
-/*
- Find the first node LF and last node LL on
- the current level LVL.
-*/
-
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__1 = lvl - 1;
- lf = pow_ii(&c__2, &i__1);
- ll = ((lf) << (1)) - 1;
- }
- i__1 = ll;
- for (i__ = lf; i__ <= i__1; ++i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- nrf = ic + 1;
- if (i__ == ll) {
- sqrei = *sqre;
- } else {
- sqrei = 1;
- }
- vfi = vf + nlf - 1;
- vli = vl + nlf - 1;
- idxqi = idxq + nlf - 1;
- alpha = d__[ic];
- beta = e[ic];
- if (*icompq == 0) {
- dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
- work[vli], &alpha, &beta, &iwork[idxqi], &perm[
- perm_offset], &givptr[1], &givcol[givcol_offset],
- ldgcol, &givnum[givnum_offset], ldu, &poles[
- poles_offset], &difl[difl_offset], &difr[difr_offset],
- &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1],
- &iwork[iwk], info);
- } else {
- --j;
- dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
- work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf +
- lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 *
- givcol_dim1], ldgcol, &givnum[nlf + lvl2 *
- givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &
- difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 *
- difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j],
- &s[j], &work[nwork1], &iwork[iwk], info);
- }
- if (*info != 0) {
- return 0;
- }
-/* L40: */
- }
-/* L50: */
- }
-
- return 0;
-
-/* End of DLASDA */
-
-} /* dlasda_ */
-
-/* Subroutine */ int dlasdq_(char *uplo, integer *sqre, integer *n, integer *
- ncvt, integer *nru, integer *ncc, doublereal *d__, doublereal *e,
- doublereal *vt, integer *ldvt, doublereal *u, integer *ldu,
- doublereal *c__, integer *ldc, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
- i__2;
-
- /* Local variables */
- static integer i__, j;
- static doublereal r__, cs, sn;
- static integer np1, isub;
- static doublereal smin;
- static integer sqre1;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *
- , doublereal *, integer *);
- static integer iuplo;
- extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *), xerbla_(char *,
- integer *), dbdsqr_(char *, integer *, integer *, integer
- *, integer *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *);
- static logical rotate;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DLASDQ computes the singular value decomposition (SVD) of a real
- (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
- E, accumulating the transformations if desired. Letting B denote
- the input bidiagonal matrix, the algorithm computes orthogonal
- matrices Q and P such that B = Q * S * P' (P' denotes the transpose
- of P). The singular values S are overwritten on D.
-
- The input matrix U is changed to U * Q if desired.
- The input matrix VT is changed to P' * VT if desired.
- The input matrix C is changed to Q' * C if desired.
-
- See "Computing Small Singular Values of Bidiagonal Matrices With
- Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
- LAPACK Working Note #3, for a detailed description of the algorithm.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- On entry, UPLO specifies whether the input bidiagonal matrix
- is upper or lower bidiagonal, and wether it is square are
- not.
- UPLO = 'U' or 'u' B is upper bidiagonal.
- UPLO = 'L' or 'l' B is lower bidiagonal.
-
- SQRE (input) INTEGER
- = 0: then the input matrix is N-by-N.
- = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
- (N+1)-by-N if UPLU = 'L'.
-
- The bidiagonal matrix has
- N = NL + NR + 1 rows and
- M = N + SQRE >= N columns.
-
- N (input) INTEGER
- On entry, N specifies the number of rows and columns
- in the matrix. N must be at least 0.
-
- NCVT (input) INTEGER
- On entry, NCVT specifies the number of columns of
- the matrix VT. NCVT must be at least 0.
-
- NRU (input) INTEGER
- On entry, NRU specifies the number of rows of
- the matrix U. NRU must be at least 0.
-
- NCC (input) INTEGER
- On entry, NCC specifies the number of columns of
- the matrix C. NCC must be at least 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, D contains the diagonal entries of the
- bidiagonal matrix whose SVD is desired. On normal exit,
- D contains the singular values in ascending order.
-
- E (input/output) DOUBLE PRECISION array.
- dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
- On entry, the entries of E contain the offdiagonal entries
- of the bidiagonal matrix whose SVD is desired. On normal
- exit, E will contain 0. If the algorithm does not converge,
- D and E will contain the diagonal and superdiagonal entries
- of a bidiagonal matrix orthogonally equivalent to the one
- given as input.
-
- VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
- On entry, contains a matrix which on exit has been
- premultiplied by P', dimension N-by-NCVT if SQRE = 0
- and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
-
- LDVT (input) INTEGER
- On entry, LDVT specifies the leading dimension of VT as
- declared in the calling (sub) program. LDVT must be at
- least 1. If NCVT is nonzero LDVT must also be at least N.
-
- U (input/output) DOUBLE PRECISION array, dimension (LDU, N)
- On entry, contains a matrix which on exit has been
- postmultiplied by Q, dimension NRU-by-N if SQRE = 0
- and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
-
- LDU (input) INTEGER
- On entry, LDU specifies the leading dimension of U as
- declared in the calling (sub) program. LDU must be at
- least max( 1, NRU ) .
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
- On entry, contains an N-by-NCC matrix which on exit
- has been premultiplied by Q' dimension N-by-NCC if SQRE = 0
- and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
-
- LDC (input) INTEGER
- On entry, LDC specifies the leading dimension of C as
- declared in the calling (sub) program. LDC must be at
- least 1. If NCC is nonzero, LDC must also be at least N.
-
- WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
- Workspace. Only referenced if one of NCVT, NRU, or NCC is
- nonzero, and if N is at least 2.
-
- INFO (output) INTEGER
- On exit, a value of 0 indicates a successful exit.
- If INFO < 0, argument number -INFO is illegal.
- If INFO > 0, the algorithm did not converge, and INFO
- specifies how many superdiagonals did not converge.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- iuplo = 0;
- if (lsame_(uplo, "U")) {
- iuplo = 1;
- }
- if (lsame_(uplo, "L")) {
- iuplo = 2;
- }
- if (iuplo == 0) {
- *info = -1;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ncvt < 0) {
- *info = -4;
- } else if (*nru < 0) {
- *info = -5;
- } else if (*ncc < 0) {
- *info = -6;
- } else if ((*ncvt == 0 && *ldvt < 1) || (*ncvt > 0 && *ldvt < max(1,*n)))
- {
- *info = -10;
- } else if (*ldu < max(1,*nru)) {
- *info = -12;
- } else if ((*ncc == 0 && *ldc < 1) || (*ncc > 0 && *ldc < max(1,*n))) {
- *info = -14;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASDQ", &i__1);
- return 0;
- }
- if (*n == 0) {
- return 0;
- }
-
-/* ROTATE is true if any singular vectors desired, false otherwise */
-
- rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
- np1 = *n + 1;
- sqre1 = *sqre;
-
-/*
- If matrix non-square upper bidiagonal, rotate to be lower
- bidiagonal. The rotations are on the right.
-*/
-
- if ((iuplo == 1 && sqre1 == 1)) {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- if (rotate) {
- work[i__] = cs;
- work[*n + i__] = sn;
- }
-/* L10: */
- }
- dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
- d__[*n] = r__;
- e[*n] = 0.;
- if (rotate) {
- work[*n] = cs;
- work[*n + *n] = sn;
- }
- iuplo = 2;
- sqre1 = 0;
-
-/* Update singular vectors if desired. */
-
- if (*ncvt > 0) {
- dlasr_("L", "V", "F", &np1, ncvt, &work[1], &work[np1], &vt[
- vt_offset], ldvt);
- }
- }
-
-/*
- If matrix lower bidiagonal, rotate to be upper bidiagonal
- by applying Givens rotations on the left.
-*/
-
- if (iuplo == 2) {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- if (rotate) {
- work[i__] = cs;
- work[*n + i__] = sn;
- }
-/* L20: */
- }
-
-/*
- If matrix (N+1)-by-N lower bidiagonal, one additional
- rotation is needed.
-*/
-
- if (sqre1 == 1) {
- dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
- d__[*n] = r__;
- if (rotate) {
- work[*n] = cs;
- work[*n + *n] = sn;
- }
- }
-
-/* Update singular vectors if desired. */
-
- if (*nru > 0) {
- if (sqre1 == 0) {
- dlasr_("R", "V", "F", nru, n, &work[1], &work[np1], &u[
- u_offset], ldu);
- } else {
- dlasr_("R", "V", "F", nru, &np1, &work[1], &work[np1], &u[
- u_offset], ldu);
- }
- }
- if (*ncc > 0) {
- if (sqre1 == 0) {
- dlasr_("L", "V", "F", n, ncc, &work[1], &work[np1], &c__[
- c_offset], ldc);
- } else {
- dlasr_("L", "V", "F", &np1, ncc, &work[1], &work[np1], &c__[
- c_offset], ldc);
- }
- }
- }
-
-/*
- Call DBDSQR to compute the SVD of the reduced real
- N-by-N upper bidiagonal matrix.
-*/
-
- dbdsqr_("U", n, ncvt, nru, ncc, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[
- u_offset], ldu, &c__[c_offset], ldc, &work[1], info);
-
-/*
- Sort the singular values into ascending order (insertion sort on
- singular values, but only one transposition per singular vector)
-*/
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Scan for smallest D(I). */
-
- isub = i__;
- smin = d__[i__];
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- if (d__[j] < smin) {
- isub = j;
- smin = d__[j];
- }
-/* L30: */
- }
- if (isub != i__) {
-
-/* Swap singular values and vectors. */
-
- d__[isub] = d__[i__];
- d__[i__] = smin;
- if (*ncvt > 0) {
- dswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[i__ + vt_dim1],
- ldvt);
- }
- if (*nru > 0) {
- dswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[i__ * u_dim1 + 1]
- , &c__1);
- }
- if (*ncc > 0) {
- dswap_(ncc, &c__[isub + c_dim1], ldc, &c__[i__ + c_dim1], ldc)
- ;
- }
- }
-/* L40: */
- }
-
- return 0;
-
-/* End of DLASDQ */
-
-} /* dlasdq_ */
-
-/* Subroutine */ int dlasdt_(integer *n, integer *lvl, integer *nd, integer *
- inode, integer *ndiml, integer *ndimr, integer *msub)
-{
- /* System generated locals */
- integer i__1, i__2;
-
- /* Builtin functions */
- double log(doublereal);
-
- /* Local variables */
- static integer i__, il, ir, maxn;
- static doublereal temp;
- static integer nlvl, llst, ncrnt;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLASDT creates a tree of subproblems for bidiagonal divide and
- conquer.
-
- Arguments
- =========
-
- N (input) INTEGER
- On entry, the number of diagonal elements of the
- bidiagonal matrix.
-
- LVL (output) INTEGER
- On exit, the number of levels on the computation tree.
-
- ND (output) INTEGER
- On exit, the number of nodes on the tree.
-
- INODE (output) INTEGER array, dimension ( N )
- On exit, centers of subproblems.
-
- NDIML (output) INTEGER array, dimension ( N )
- On exit, row dimensions of left children.
-
- NDIMR (output) INTEGER array, dimension ( N )
- On exit, row dimensions of right children.
-
- MSUB (input) INTEGER.
- On entry, the maximum row dimension each subproblem at the
- bottom of the tree can be of.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Find the number of levels on the tree.
-*/
-
- /* Parameter adjustments */
- --ndimr;
- --ndiml;
- --inode;
-
- /* Function Body */
- maxn = max(1,*n);
- temp = log((doublereal) maxn / (doublereal) (*msub + 1)) / log(2.);
- *lvl = (integer) temp + 1;
-
- i__ = *n / 2;
- inode[1] = i__ + 1;
- ndiml[1] = i__;
- ndimr[1] = *n - i__ - 1;
- il = 0;
- ir = 1;
- llst = 1;
- i__1 = *lvl - 1;
- for (nlvl = 1; nlvl <= i__1; ++nlvl) {
-
-/*
- Constructing the tree at (NLVL+1)-st level. The number of
- nodes created on this level is LLST * 2.
-*/
-
- i__2 = llst - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- il += 2;
- ir += 2;
- ncrnt = llst + i__;
- ndiml[il] = ndiml[ncrnt] / 2;
- ndimr[il] = ndiml[ncrnt] - ndiml[il] - 1;
- inode[il] = inode[ncrnt] - ndimr[il] - 1;
- ndiml[ir] = ndimr[ncrnt] / 2;
- ndimr[ir] = ndimr[ncrnt] - ndiml[ir] - 1;
- inode[ir] = inode[ncrnt] + ndiml[ir] + 1;
-/* L10: */
- }
- llst <<= 1;
-/* L20: */
- }
- *nd = ((llst) << (1)) - 1;
-
- return 0;
-
-/* End of DLASDT */
-
-} /* dlasdt_ */
-
-/* Subroutine */ int dlaset_(char *uplo, integer *m, integer *n, doublereal *
- alpha, doublereal *beta, doublereal *a, integer *lda)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, j;
- extern logical lsame_(char *, char *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLASET initializes an m-by-n matrix A to BETA on the diagonal and
- ALPHA on the offdiagonals.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- Specifies the part of the matrix A to be set.
- = 'U': Upper triangular part is set; the strictly lower
- triangular part of A is not changed.
- = 'L': Lower triangular part is set; the strictly upper
- triangular part of A is not changed.
- Otherwise: All of the matrix A is set.
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- ALPHA (input) DOUBLE PRECISION
- The constant to which the offdiagonal elements are to be set.
-
- BETA (input) DOUBLE PRECISION
- The constant to which the diagonal elements are to be set.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On exit, the leading m-by-n submatrix of A is set as follows:
-
- if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n,
- if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n,
- otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j,
-
- and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n).
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- if (lsame_(uplo, "U")) {
-
-/*
- Set the strictly upper triangular or trapezoidal part of the
- array to ALPHA.
-*/
-
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = j - 1;
- i__2 = min(i__3,*m);
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = *alpha;
-/* L10: */
- }
-/* L20: */
- }
-
- } else if (lsame_(uplo, "L")) {
-
-/*
- Set the strictly lower triangular or trapezoidal part of the
- array to ALPHA.
-*/
-
- i__1 = min(*m,*n);
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = *alpha;
-/* L30: */
- }
-/* L40: */
- }
-
- } else {
-
-/* Set the leading m-by-n submatrix to ALPHA. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = *alpha;
-/* L50: */
- }
-/* L60: */
- }
- }
-
-/* Set the first min(M,N) diagonal elements to BETA. */
-
- i__1 = min(*m,*n);
- for (i__ = 1; i__ <= i__1; ++i__) {
- a[i__ + i__ * a_dim1] = *beta;
-/* L70: */
- }
-
- return 0;
-
-/* End of DLASET */
-
-} /* dlaset_ */
-
-/* Subroutine */ int dlasq1_(integer *n, doublereal *d__, doublereal *e,
- doublereal *work, integer *info)
-{
- /* System generated locals */
- integer i__1, i__2;
- doublereal d__1, d__2, d__3;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__;
- static doublereal eps;
- extern /* Subroutine */ int dlas2_(doublereal *, doublereal *, doublereal
- *, doublereal *, doublereal *);
- static doublereal scale;
- static integer iinfo;
- static doublereal sigmn;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static doublereal sigmx;
- extern /* Subroutine */ int dlasq2_(integer *, doublereal *, integer *);
-
- extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- static doublereal safmin;
- extern /* Subroutine */ int xerbla_(char *, integer *), dlasrt_(
- char *, integer *, doublereal *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DLASQ1 computes the singular values of a real N-by-N bidiagonal
- matrix with diagonal D and off-diagonal E. The singular values
- are computed to high relative accuracy, in the absence of
- denormalization, underflow and overflow. The algorithm was first
- presented in
-
- "Accurate singular values and differential qd algorithms" by K. V.
- Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
- 1994,
-
- and the present implementation is described in "An implementation of
- the dqds Algorithm (Positive Case)", LAPACK Working Note.
-
- Arguments
- =========
-
- N (input) INTEGER
- The number of rows and columns in the matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, D contains the diagonal elements of the
- bidiagonal matrix whose SVD is desired. On normal exit,
- D contains the singular values in decreasing order.
-
- E (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, elements E(1:N-1) contain the off-diagonal elements
- of the bidiagonal matrix whose SVD is desired.
- On exit, E is overwritten.
-
- WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: the algorithm failed
- = 1, a split was marked by a positive value in E
- = 2, current block of Z not diagonalized after 30*N
- iterations (in inner while loop)
- = 3, termination criterion of outer while loop not met
- (program created more than N unreduced blocks)
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --work;
- --e;
- --d__;
-
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -2;
- i__1 = -(*info);
- xerbla_("DLASQ1", &i__1);
- return 0;
- } else if (*n == 0) {
- return 0;
- } else if (*n == 1) {
- d__[1] = abs(d__[1]);
- return 0;
- } else if (*n == 2) {
- dlas2_(&d__[1], &e[1], &d__[2], &sigmn, &sigmx);
- d__[1] = sigmx;
- d__[2] = sigmn;
- return 0;
- }
-
-/* Estimate the largest singular value. */
-
- sigmx = 0.;
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = (d__1 = d__[i__], abs(d__1));
-/* Computing MAX */
- d__2 = sigmx, d__3 = (d__1 = e[i__], abs(d__1));
- sigmx = max(d__2,d__3);
-/* L10: */
- }
- d__[*n] = (d__1 = d__[*n], abs(d__1));
-
-/* Early return if SIGMX is zero (matrix is already diagonal). */
-
- if (sigmx == 0.) {
- dlasrt_("D", n, &d__[1], &iinfo);
- return 0;
- }
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-/* Computing MAX */
- d__1 = sigmx, d__2 = d__[i__];
- sigmx = max(d__1,d__2);
-/* L20: */
- }
-
-/*
- Copy D and E into WORK (in the Z format) and scale (squaring the
- input data makes scaling by a power of the radix pointless).
-*/
-
- eps = PRECISION;
- safmin = SAFEMINIMUM;
- scale = sqrt(eps / safmin);
- dcopy_(n, &d__[1], &c__1, &work[1], &c__2);
- i__1 = *n - 1;
- dcopy_(&i__1, &e[1], &c__1, &work[2], &c__2);
- i__1 = ((*n) << (1)) - 1;
- i__2 = ((*n) << (1)) - 1;
- dlascl_("G", &c__0, &c__0, &sigmx, &scale, &i__1, &c__1, &work[1], &i__2,
- &iinfo);
-
-/* Compute the q's and e's. */
-
- i__1 = ((*n) << (1)) - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
-/* Computing 2nd power */
- d__1 = work[i__];
- work[i__] = d__1 * d__1;
-/* L30: */
- }
- work[*n * 2] = 0.;
-
- dlasq2_(n, &work[1], info);
-
- if (*info == 0) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = sqrt(work[i__]);
-/* L40: */
- }
- dlascl_("G", &c__0, &c__0, &scale, &sigmx, n, &c__1, &d__[1], n, &
- iinfo);
- }
-
- return 0;
-
-/* End of DLASQ1 */
-
-} /* dlasq1_ */
-
-/* Subroutine */ int dlasq2_(integer *n, doublereal *z__, integer *info)
-{
- /* System generated locals */
- integer i__1, i__2, i__3;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal d__, e;
- static integer k;
- static doublereal s, t;
- static integer i0, i4, n0, pp;
- static doublereal eps, tol;
- static integer ipn4;
- static doublereal tol2;
- static logical ieee;
- static integer nbig;
- static doublereal dmin__, emin, emax;
- static integer ndiv, iter;
- static doublereal qmin, temp, qmax, zmax;
- static integer splt, nfail;
- static doublereal desig, trace, sigma;
- static integer iinfo;
- extern /* Subroutine */ int dlasq3_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, integer *, integer *, logical *);
-
- static integer iwhila, iwhilb;
- static doublereal oldemn, safmin;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
- integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DLASQ2 computes all the eigenvalues of the symmetric positive
- definite tridiagonal matrix associated with the qd array Z to high
- relative accuracy are computed to high relative accuracy, in the
- absence of denormalization, underflow and overflow.
-
- To see the relation of Z to the tridiagonal matrix, let L be a
- unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
- let U be an upper bidiagonal matrix with 1's above and diagonal
- Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
- symmetric tridiagonal to which it is similar.
-
- Note : DLASQ2 defines a logical variable, IEEE, which is true
- on machines which follow ieee-754 floating-point standard in their
- handling of infinities and NaNs, and false otherwise. This variable
- is passed to DLASQ3.
-
- Arguments
- =========
-
- N (input) INTEGER
- The number of rows and columns in the matrix. N >= 0.
-
- Z (workspace) DOUBLE PRECISION array, dimension ( 4*N )
- On entry Z holds the qd array. On exit, entries 1 to N hold
- the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
- trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
- N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
- holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
- shifts that failed.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if the i-th argument is a scalar and had an illegal
- value, then INFO = -i, if the i-th argument is an
- array and the j-entry had an illegal value, then
- INFO = -(i*100+j)
- > 0: the algorithm failed
- = 1, a split was marked by a positive value in E
- = 2, current block of Z not diagonalized after 30*N
- iterations (in inner while loop)
- = 3, termination criterion of outer while loop not met
- (program created more than N unreduced blocks)
-
- Further Details
- ===============
- Local Variables: I0:N0 defines a current unreduced segment of Z.
- The shifts are accumulated in SIGMA. Iteration count is in ITER.
- Ping-pong is controlled by PP (alternates between 0 and 1).
-
- =====================================================================
-
-
- Test the input arguments.
- (in case DLASQ2 is not called by DLASQ1)
-*/
-
- /* Parameter adjustments */
- --z__;
-
- /* Function Body */
- *info = 0;
- eps = PRECISION;
- safmin = SAFEMINIMUM;
- tol = eps * 100.;
-/* Computing 2nd power */
- d__1 = tol;
- tol2 = d__1 * d__1;
-
- if (*n < 0) {
- *info = -1;
- xerbla_("DLASQ2", &c__1);
- return 0;
- } else if (*n == 0) {
- return 0;
- } else if (*n == 1) {
-
-/* 1-by-1 case. */
-
- if (z__[1] < 0.) {
- *info = -201;
- xerbla_("DLASQ2", &c__2);
- }
- return 0;
- } else if (*n == 2) {
-
-/* 2-by-2 case. */
-
- if (z__[2] < 0. || z__[3] < 0.) {
- *info = -2;
- xerbla_("DLASQ2", &c__2);
- return 0;
- } else if (z__[3] > z__[1]) {
- d__ = z__[3];
- z__[3] = z__[1];
- z__[1] = d__;
- }
- z__[5] = z__[1] + z__[2] + z__[3];
- if (z__[2] > z__[3] * tol2) {
- t = (z__[1] - z__[3] + z__[2]) * .5;
- s = z__[3] * (z__[2] / t);
- if (s <= t) {
- s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.) + 1.)));
- } else {
- s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s)));
- }
- t = z__[1] + (s + z__[2]);
- z__[3] *= z__[1] / t;
- z__[1] = t;
- }
- z__[2] = z__[3];
- z__[6] = z__[2] + z__[1];
- return 0;
- }
-
-/* Check for negative data and compute sums of q's and e's. */
-
- z__[*n * 2] = 0.;
- emin = z__[2];
- qmax = 0.;
- zmax = 0.;
- d__ = 0.;
- e = 0.;
-
- i__1 = (*n - 1) << (1);
- for (k = 1; k <= i__1; k += 2) {
- if (z__[k] < 0.) {
- *info = -(k + 200);
- xerbla_("DLASQ2", &c__2);
- return 0;
- } else if (z__[k + 1] < 0.) {
- *info = -(k + 201);
- xerbla_("DLASQ2", &c__2);
- return 0;
- }
- d__ += z__[k];
- e += z__[k + 1];
-/* Computing MAX */
- d__1 = qmax, d__2 = z__[k];
- qmax = max(d__1,d__2);
-/* Computing MIN */
- d__1 = emin, d__2 = z__[k + 1];
- emin = min(d__1,d__2);
-/* Computing MAX */
- d__1 = max(qmax,zmax), d__2 = z__[k + 1];
- zmax = max(d__1,d__2);
-/* L10: */
- }
- if (z__[((*n) << (1)) - 1] < 0.) {
- *info = -(((*n) << (1)) + 199);
- xerbla_("DLASQ2", &c__2);
- return 0;
- }
- d__ += z__[((*n) << (1)) - 1];
-/* Computing MAX */
- d__1 = qmax, d__2 = z__[((*n) << (1)) - 1];
- qmax = max(d__1,d__2);
- zmax = max(qmax,zmax);
-
-/* Check for diagonality. */
-
- if (e == 0.) {
- i__1 = *n;
- for (k = 2; k <= i__1; ++k) {
- z__[k] = z__[((k) << (1)) - 1];
-/* L20: */
- }
- dlasrt_("D", n, &z__[1], &iinfo);
- z__[((*n) << (1)) - 1] = d__;
- return 0;
- }
-
- trace = d__ + e;
-
-/* Check for zero data. */
-
- if (trace == 0.) {
- z__[((*n) << (1)) - 1] = 0.;
- return 0;
- }
-
-/* Check whether the machine is IEEE conformable. */
-
- ieee = (ilaenv_(&c__10, "DLASQ2", "N", &c__1, &c__2, &c__3, &c__4, (
- ftnlen)6, (ftnlen)1) == 1 && ilaenv_(&c__11, "DLASQ2", "N", &c__1,
- &c__2, &c__3, &c__4, (ftnlen)6, (ftnlen)1) == 1);
-
-/* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */
-
- for (k = (*n) << (1); k >= 2; k += -2) {
- z__[k * 2] = 0.;
- z__[((k) << (1)) - 1] = z__[k];
- z__[((k) << (1)) - 2] = 0.;
- z__[((k) << (1)) - 3] = z__[k - 1];
-/* L30: */
- }
-
- i0 = 1;
- n0 = *n;
-
-/* Reverse the qd-array, if warranted. */
-
- if (z__[((i0) << (2)) - 3] * 1.5 < z__[((n0) << (2)) - 3]) {
- ipn4 = (i0 + n0) << (2);
- i__1 = (i0 + n0 - 1) << (1);
- for (i4 = (i0) << (2); i4 <= i__1; i4 += 4) {
- temp = z__[i4 - 3];
- z__[i4 - 3] = z__[ipn4 - i4 - 3];
- z__[ipn4 - i4 - 3] = temp;
- temp = z__[i4 - 1];
- z__[i4 - 1] = z__[ipn4 - i4 - 5];
- z__[ipn4 - i4 - 5] = temp;
-/* L40: */
- }
- }
-
-/* Initial split checking via dqd and Li's test. */
-
- pp = 0;
-
- for (k = 1; k <= 2; ++k) {
-
- d__ = z__[((n0) << (2)) + pp - 3];
- i__1 = ((i0) << (2)) + pp;
- for (i4 = ((n0 - 1) << (2)) + pp; i4 >= i__1; i4 += -4) {
- if (z__[i4 - 1] <= tol2 * d__) {
- z__[i4 - 1] = -0.;
- d__ = z__[i4 - 3];
- } else {
- d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1]));
- }
-/* L50: */
- }
-
-/* dqd maps Z to ZZ plus Li's test. */
-
- emin = z__[((i0) << (2)) + pp + 1];
- d__ = z__[((i0) << (2)) + pp - 3];
- i__1 = ((n0 - 1) << (2)) + pp;
- for (i4 = ((i0) << (2)) + pp; i4 <= i__1; i4 += 4) {
- z__[i4 - ((pp) << (1)) - 2] = d__ + z__[i4 - 1];
- if (z__[i4 - 1] <= tol2 * d__) {
- z__[i4 - 1] = -0.;
- z__[i4 - ((pp) << (1)) - 2] = d__;
- z__[i4 - ((pp) << (1))] = 0.;
- d__ = z__[i4 + 1];
- } else if ((safmin * z__[i4 + 1] < z__[i4 - ((pp) << (1)) - 2] &&
- safmin * z__[i4 - ((pp) << (1)) - 2] < z__[i4 + 1])) {
- temp = z__[i4 + 1] / z__[i4 - ((pp) << (1)) - 2];
- z__[i4 - ((pp) << (1))] = z__[i4 - 1] * temp;
- d__ *= temp;
- } else {
- z__[i4 - ((pp) << (1))] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4
- - ((pp) << (1)) - 2]);
- d__ = z__[i4 + 1] * (d__ / z__[i4 - ((pp) << (1)) - 2]);
- }
-/* Computing MIN */
- d__1 = emin, d__2 = z__[i4 - ((pp) << (1))];
- emin = min(d__1,d__2);
-/* L60: */
- }
- z__[((n0) << (2)) - pp - 2] = d__;
-
-/* Now find qmax. */
-
- qmax = z__[((i0) << (2)) - pp - 2];
- i__1 = ((n0) << (2)) - pp - 2;
- for (i4 = ((i0) << (2)) - pp + 2; i4 <= i__1; i4 += 4) {
-/* Computing MAX */
- d__1 = qmax, d__2 = z__[i4];
- qmax = max(d__1,d__2);
-/* L70: */
- }
-
-/* Prepare for the next iteration on K. */
-
- pp = 1 - pp;
-/* L80: */
- }
-
- iter = 2;
- nfail = 0;
- ndiv = (n0 - i0) << (1);
-
- i__1 = *n + 1;
- for (iwhila = 1; iwhila <= i__1; ++iwhila) {
- if (n0 < 1) {
- goto L150;
- }
-
-/*
- While array unfinished do
-
- E(N0) holds the value of SIGMA when submatrix in I0:N0
- splits from the rest of the array, but is negated.
-*/
-
- desig = 0.;
- if (n0 == *n) {
- sigma = 0.;
- } else {
- sigma = -z__[((n0) << (2)) - 1];
- }
- if (sigma < 0.) {
- *info = 1;
- return 0;
- }
-
-/*
- Find last unreduced submatrix's top index I0, find QMAX and
- EMIN. Find Gershgorin-type bound if Q's much greater than E's.
-*/
-
- emax = 0.;
- if (n0 > i0) {
- emin = (d__1 = z__[((n0) << (2)) - 5], abs(d__1));
- } else {
- emin = 0.;
- }
- qmin = z__[((n0) << (2)) - 3];
- qmax = qmin;
- for (i4 = (n0) << (2); i4 >= 8; i4 += -4) {
- if (z__[i4 - 5] <= 0.) {
- goto L100;
- }
- if (qmin >= emax * 4.) {
-/* Computing MIN */
- d__1 = qmin, d__2 = z__[i4 - 3];
- qmin = min(d__1,d__2);
-/* Computing MAX */
- d__1 = emax, d__2 = z__[i4 - 5];
- emax = max(d__1,d__2);
- }
-/* Computing MAX */
- d__1 = qmax, d__2 = z__[i4 - 7] + z__[i4 - 5];
- qmax = max(d__1,d__2);
-/* Computing MIN */
- d__1 = emin, d__2 = z__[i4 - 5];
- emin = min(d__1,d__2);
-/* L90: */
- }
- i4 = 4;
-
-L100:
- i0 = i4 / 4;
-
-/* Store EMIN for passing to DLASQ3. */
-
- z__[((n0) << (2)) - 1] = emin;
-
-/*
- Put -(initial shift) into DMIN.
-
- Computing MAX
-*/
- d__1 = 0., d__2 = qmin - sqrt(qmin) * 2. * sqrt(emax);
- dmin__ = -max(d__1,d__2);
-
-/* Now I0:N0 is unreduced. PP = 0 for ping, PP = 1 for pong. */
-
- pp = 0;
-
- nbig = (n0 - i0 + 1) * 30;
- i__2 = nbig;
- for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) {
- if (i0 > n0) {
- goto L130;
- }
-
-/* While submatrix unfinished take a good dqds step. */
-
- dlasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, &
- nfail, &iter, &ndiv, &ieee);
-
- pp = 1 - pp;
-
-/* When EMIN is very small check for splits. */
-
- if ((pp == 0 && n0 - i0 >= 3)) {
- if (z__[n0 * 4] <= tol2 * qmax || z__[((n0) << (2)) - 1] <=
- tol2 * sigma) {
- splt = i0 - 1;
- qmax = z__[((i0) << (2)) - 3];
- emin = z__[((i0) << (2)) - 1];
- oldemn = z__[i0 * 4];
- i__3 = (n0 - 3) << (2);
- for (i4 = (i0) << (2); i4 <= i__3; i4 += 4) {
- if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <=
- tol2 * sigma) {
- z__[i4 - 1] = -sigma;
- splt = i4 / 4;
- qmax = 0.;
- emin = z__[i4 + 3];
- oldemn = z__[i4 + 4];
- } else {
-/* Computing MAX */
- d__1 = qmax, d__2 = z__[i4 + 1];
- qmax = max(d__1,d__2);
-/* Computing MIN */
- d__1 = emin, d__2 = z__[i4 - 1];
- emin = min(d__1,d__2);
-/* Computing MIN */
- d__1 = oldemn, d__2 = z__[i4];
- oldemn = min(d__1,d__2);
- }
-/* L110: */
- }
- z__[((n0) << (2)) - 1] = emin;
- z__[n0 * 4] = oldemn;
- i0 = splt + 1;
- }
- }
-
-/* L120: */
- }
-
- *info = 2;
- return 0;
-
-/* end IWHILB */
-
-L130:
-
-/* L140: */
- ;
- }
-
- *info = 3;
- return 0;
-
-/* end IWHILA */
-
-L150:
-
-/* Move q's to the front. */
-
- i__1 = *n;
- for (k = 2; k <= i__1; ++k) {
- z__[k] = z__[((k) << (2)) - 3];
-/* L160: */
- }
-
-/* Sort and compute sum of eigenvalues. */
-
- dlasrt_("D", n, &z__[1], &iinfo);
-
- e = 0.;
- for (k = *n; k >= 1; --k) {
- e += z__[k];
-/* L170: */
- }
-
-/* Store trace, sum(eigenvalues) and information on performance. */
-
- z__[((*n) << (1)) + 1] = trace;
- z__[((*n) << (1)) + 2] = e;
- z__[((*n) << (1)) + 3] = (doublereal) iter;
-/* Computing 2nd power */
- i__1 = *n;
- z__[((*n) << (1)) + 4] = (doublereal) ndiv / (doublereal) (i__1 * i__1);
- z__[((*n) << (1)) + 5] = nfail * 100. / (doublereal) iter;
- return 0;
-
-/* End of DLASQ2 */
-
-} /* dlasq2_ */
-
-/* Subroutine */ int dlasq3_(integer *i0, integer *n0, doublereal *z__,
- integer *pp, doublereal *dmin__, doublereal *sigma, doublereal *desig,
- doublereal *qmax, integer *nfail, integer *iter, integer *ndiv,
- logical *ieee)
-{
- /* Initialized data */
-
- static integer ttype = 0;
- static doublereal dmin1 = 0.;
- static doublereal dmin2 = 0.;
- static doublereal dn = 0.;
- static doublereal dn1 = 0.;
- static doublereal dn2 = 0.;
- static doublereal tau = 0.;
-
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal s, t;
- static integer j4, nn;
- static doublereal eps, tol;
- static integer n0in, ipn4;
- static doublereal tol2, temp;
- extern /* Subroutine */ int dlasq4_(integer *, integer *, doublereal *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *)
- , dlasq5_(integer *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, logical *), dlasq6_(
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *);
-
- static doublereal safmin;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- May 17, 2000
-
-
- Purpose
- =======
-
- DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
- In case of failure it changes shifts, and tries again until output
- is positive.
-
- Arguments
- =========
-
- I0 (input) INTEGER
- First index.
-
- N0 (input) INTEGER
- Last index.
-
- Z (input) DOUBLE PRECISION array, dimension ( 4*N )
- Z holds the qd array.
-
- PP (input) INTEGER
- PP=0 for ping, PP=1 for pong.
-
- DMIN (output) DOUBLE PRECISION
- Minimum value of d.
-
- SIGMA (output) DOUBLE PRECISION
- Sum of shifts used in current segment.
-
- DESIG (input/output) DOUBLE PRECISION
- Lower order part of SIGMA
-
- QMAX (input) DOUBLE PRECISION
- Maximum value of q.
-
- NFAIL (output) INTEGER
- Number of times shift was too big.
-
- ITER (output) INTEGER
- Number of iterations.
-
- NDIV (output) INTEGER
- Number of divisions.
-
- TTYPE (output) INTEGER
- Shift type.
-
- IEEE (input) LOGICAL
- Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
-
- =====================================================================
-*/
-
- /* Parameter adjustments */
- --z__;
-
- /* Function Body */
-
- n0in = *n0;
- eps = PRECISION;
- safmin = SAFEMINIMUM;
- tol = eps * 100.;
-/* Computing 2nd power */
- d__1 = tol;
- tol2 = d__1 * d__1;
-
-/* Check for deflation. */
-
-L10:
-
- if (*n0 < *i0) {
- return 0;
- }
- if (*n0 == *i0) {
- goto L20;
- }
- nn = ((*n0) << (2)) + *pp;
- if (*n0 == *i0 + 1) {
- goto L40;
- }
-
-/* Check whether E(N0-1) is negligible, 1 eigenvalue. */
-
- if ((z__[nn - 5] > tol2 * (*sigma + z__[nn - 3]) && z__[nn - ((*pp) << (1)
- ) - 4] > tol2 * z__[nn - 7])) {
- goto L30;
- }
-
-L20:
-
- z__[((*n0) << (2)) - 3] = z__[((*n0) << (2)) + *pp - 3] + *sigma;
- --(*n0);
- goto L10;
-
-/* Check whether E(N0-2) is negligible, 2 eigenvalues. */
-
-L30:
-
- if ((z__[nn - 9] > tol2 * *sigma && z__[nn - ((*pp) << (1)) - 8] > tol2 *
- z__[nn - 11])) {
- goto L50;
- }
-
-L40:
-
- if (z__[nn - 3] > z__[nn - 7]) {
- s = z__[nn - 3];
- z__[nn - 3] = z__[nn - 7];
- z__[nn - 7] = s;
- }
- if (z__[nn - 5] > z__[nn - 3] * tol2) {
- t = (z__[nn - 7] - z__[nn - 3] + z__[nn - 5]) * .5;
- s = z__[nn - 3] * (z__[nn - 5] / t);
- if (s <= t) {
- s = z__[nn - 3] * (z__[nn - 5] / (t * (sqrt(s / t + 1.) + 1.)));
- } else {
- s = z__[nn - 3] * (z__[nn - 5] / (t + sqrt(t) * sqrt(t + s)));
- }
- t = z__[nn - 7] + (s + z__[nn - 5]);
- z__[nn - 3] *= z__[nn - 7] / t;
- z__[nn - 7] = t;
- }
- z__[((*n0) << (2)) - 7] = z__[nn - 7] + *sigma;
- z__[((*n0) << (2)) - 3] = z__[nn - 3] + *sigma;
- *n0 += -2;
- goto L10;
-
-L50:
-
-/* Reverse the qd-array, if warranted. */
-
- if (*dmin__ <= 0. || *n0 < n0in) {
- if (z__[((*i0) << (2)) + *pp - 3] * 1.5 < z__[((*n0) << (2)) + *pp -
- 3]) {
- ipn4 = (*i0 + *n0) << (2);
- i__1 = (*i0 + *n0 - 1) << (1);
- for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
- temp = z__[j4 - 3];
- z__[j4 - 3] = z__[ipn4 - j4 - 3];
- z__[ipn4 - j4 - 3] = temp;
- temp = z__[j4 - 2];
- z__[j4 - 2] = z__[ipn4 - j4 - 2];
- z__[ipn4 - j4 - 2] = temp;
- temp = z__[j4 - 1];
- z__[j4 - 1] = z__[ipn4 - j4 - 5];
- z__[ipn4 - j4 - 5] = temp;
- temp = z__[j4];
- z__[j4] = z__[ipn4 - j4 - 4];
- z__[ipn4 - j4 - 4] = temp;
-/* L60: */
- }
- if (*n0 - *i0 <= 4) {
- z__[((*n0) << (2)) + *pp - 1] = z__[((*i0) << (2)) + *pp - 1];
- z__[((*n0) << (2)) - *pp] = z__[((*i0) << (2)) - *pp];
- }
-/* Computing MIN */
- d__1 = dmin2, d__2 = z__[((*n0) << (2)) + *pp - 1];
- dmin2 = min(d__1,d__2);
-/* Computing MIN */
- d__1 = z__[((*n0) << (2)) + *pp - 1], d__2 = z__[((*i0) << (2)) +
- *pp - 1], d__1 = min(d__1,d__2), d__2 = z__[((*i0) << (2))
- + *pp + 3];
- z__[((*n0) << (2)) + *pp - 1] = min(d__1,d__2);
-/* Computing MIN */
- d__1 = z__[((*n0) << (2)) - *pp], d__2 = z__[((*i0) << (2)) - *pp]
- , d__1 = min(d__1,d__2), d__2 = z__[((*i0) << (2)) - *pp
- + 4];
- z__[((*n0) << (2)) - *pp] = min(d__1,d__2);
-/* Computing MAX */
- d__1 = *qmax, d__2 = z__[((*i0) << (2)) + *pp - 3], d__1 = max(
- d__1,d__2), d__2 = z__[((*i0) << (2)) + *pp + 1];
- *qmax = max(d__1,d__2);
- *dmin__ = -0.;
- }
- }
-
-/*
- L70:
-
- Computing MIN
-*/
- d__1 = z__[((*n0) << (2)) + *pp - 1], d__2 = z__[((*n0) << (2)) + *pp - 9]
- , d__1 = min(d__1,d__2), d__2 = dmin2 + z__[((*n0) << (2)) - *pp];
- if (*dmin__ < 0. || safmin * *qmax < min(d__1,d__2)) {
-
-/* Choose a shift. */
-
- dlasq4_(i0, n0, &z__[1], pp, &n0in, dmin__, &dmin1, &dmin2, &dn, &dn1,
- &dn2, &tau, &ttype);
-
-/* Call dqds until DMIN > 0. */
-
-L80:
-
- dlasq5_(i0, n0, &z__[1], pp, &tau, dmin__, &dmin1, &dmin2, &dn, &dn1,
- &dn2, ieee);
-
- *ndiv += *n0 - *i0 + 2;
- ++(*iter);
-
-/* Check status. */
-
- if ((*dmin__ >= 0. && dmin1 > 0.)) {
-
-/* Success. */
-
- goto L100;
-
- } else if ((((*dmin__ < 0. && dmin1 > 0.) && z__[((*n0 - 1) << (2)) -
- *pp] < tol * (*sigma + dn1)) && abs(dn) < tol * *sigma)) {
-
-/* Convergence hidden by negative DN. */
-
- z__[((*n0 - 1) << (2)) - *pp + 2] = 0.;
- *dmin__ = 0.;
- goto L100;
- } else if (*dmin__ < 0.) {
-
-/* TAU too big. Select new TAU and try again. */
-
- ++(*nfail);
- if (ttype < -22) {
-
-/* Failed twice. Play it safe. */
-
- tau = 0.;
- } else if (dmin1 > 0.) {
-
-/* Late failure. Gives excellent shift. */
-
- tau = (tau + *dmin__) * (1. - eps * 2.);
- ttype += -11;
- } else {
-
-/* Early failure. Divide by 4. */
-
- tau *= .25;
- ttype += -12;
- }
- goto L80;
- } else if (*dmin__ != *dmin__) {
-
-/* NaN. */
-
- tau = 0.;
- goto L80;
- } else {
-
-/* Possible underflow. Play it safe. */
-
- goto L90;
- }
- }
-
-/* Risk of underflow. */
-
-L90:
- dlasq6_(i0, n0, &z__[1], pp, dmin__, &dmin1, &dmin2, &dn, &dn1, &dn2);
- *ndiv += *n0 - *i0 + 2;
- ++(*iter);
- tau = 0.;
-
-L100:
- if (tau < *sigma) {
- *desig += tau;
- t = *sigma + *desig;
- *desig -= t - *sigma;
- } else {
- t = *sigma + tau;
- *desig = *sigma - (t - tau) + *desig;
- }
- *sigma = t;
-
- return 0;
-
-/* End of DLASQ3 */
-
-} /* dlasq3_ */
-
-/* Subroutine */ int dlasq4_(integer *i0, integer *n0, doublereal *z__,
- integer *pp, integer *n0in, doublereal *dmin__, doublereal *dmin1,
- doublereal *dmin2, doublereal *dn, doublereal *dn1, doublereal *dn2,
- doublereal *tau, integer *ttype)
-{
- /* Initialized data */
-
- static doublereal g = 0.;
-
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal s, a2, b1, b2;
- static integer i4, nn, np;
- static doublereal gam, gap1, gap2;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DLASQ4 computes an approximation TAU to the smallest eigenvalue
- using values of d from the previous transform.
-
- I0 (input) INTEGER
- First index.
-
- N0 (input) INTEGER
- Last index.
-
- Z (input) DOUBLE PRECISION array, dimension ( 4*N )
- Z holds the qd array.
-
- PP (input) INTEGER
- PP=0 for ping, PP=1 for pong.
-
- NOIN (input) INTEGER
- The value of N0 at start of EIGTEST.
-
- DMIN (input) DOUBLE PRECISION
- Minimum value of d.
-
- DMIN1 (input) DOUBLE PRECISION
- Minimum value of d, excluding D( N0 ).
-
- DMIN2 (input) DOUBLE PRECISION
- Minimum value of d, excluding D( N0 ) and D( N0-1 ).
-
- DN (input) DOUBLE PRECISION
- d(N)
-
- DN1 (input) DOUBLE PRECISION
- d(N-1)
-
- DN2 (input) DOUBLE PRECISION
- d(N-2)
-
- TAU (output) DOUBLE PRECISION
- This is the shift.
-
- TTYPE (output) INTEGER
- Shift type.
-
- Further Details
- ===============
- CNST1 = 9/16
-
- =====================================================================
-*/
-
- /* Parameter adjustments */
- --z__;
-
- /* Function Body */
-
-/*
- A negative DMIN forces the shift to take that absolute value
- TTYPE records the type of shift.
-*/
-
- if (*dmin__ <= 0.) {
- *tau = -(*dmin__);
- *ttype = -1;
- return 0;
- }
-
- nn = ((*n0) << (2)) + *pp;
- if (*n0in == *n0) {
-
-/* No eigenvalues deflated. */
-
- if (*dmin__ == *dn || *dmin__ == *dn1) {
-
- b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]);
- b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]);
- a2 = z__[nn - 7] + z__[nn - 5];
-
-/* Cases 2 and 3. */
-
- if ((*dmin__ == *dn && *dmin1 == *dn1)) {
- gap2 = *dmin2 - a2 - *dmin2 * .25;
- if ((gap2 > 0. && gap2 > b2)) {
- gap1 = a2 - *dn - b2 / gap2 * b2;
- } else {
- gap1 = a2 - *dn - (b1 + b2);
- }
- if ((gap1 > 0. && gap1 > b1)) {
-/* Computing MAX */
- d__1 = *dn - b1 / gap1 * b1, d__2 = *dmin__ * .5;
- s = max(d__1,d__2);
- *ttype = -2;
- } else {
- s = 0.;
- if (*dn > b1) {
- s = *dn - b1;
- }
- if (a2 > b1 + b2) {
-/* Computing MIN */
- d__1 = s, d__2 = a2 - (b1 + b2);
- s = min(d__1,d__2);
- }
-/* Computing MAX */
- d__1 = s, d__2 = *dmin__ * .333;
- s = max(d__1,d__2);
- *ttype = -3;
- }
- } else {
-
-/* Case 4. */
-
- *ttype = -4;
- s = *dmin__ * .25;
- if (*dmin__ == *dn) {
- gam = *dn;
- a2 = 0.;
- if (z__[nn - 5] > z__[nn - 7]) {
- return 0;
- }
- b2 = z__[nn - 5] / z__[nn - 7];
- np = nn - 9;
- } else {
- np = nn - ((*pp) << (1));
- b2 = z__[np - 2];
- gam = *dn1;
- if (z__[np - 4] > z__[np - 2]) {
- return 0;
- }
- a2 = z__[np - 4] / z__[np - 2];
- if (z__[nn - 9] > z__[nn - 11]) {
- return 0;
- }
- b2 = z__[nn - 9] / z__[nn - 11];
- np = nn - 13;
- }
-
-/* Approximate contribution to norm squared from I < NN-1. */
-
- a2 += b2;
- i__1 = ((*i0) << (2)) - 1 + *pp;
- for (i4 = np; i4 >= i__1; i4 += -4) {
- if (b2 == 0.) {
- goto L20;
- }
- b1 = b2;
- if (z__[i4] > z__[i4 - 2]) {
- return 0;
- }
- b2 *= z__[i4] / z__[i4 - 2];
- a2 += b2;
- if (max(b2,b1) * 100. < a2 || .563 < a2) {
- goto L20;
- }
-/* L10: */
- }
-L20:
- a2 *= 1.05;
-
-/* Rayleigh quotient residual bound. */
-
- if (a2 < .563) {
- s = gam * (1. - sqrt(a2)) / (a2 + 1.);
- }
- }
- } else if (*dmin__ == *dn2) {
-
-/* Case 5. */
-
- *ttype = -5;
- s = *dmin__ * .25;
-
-/* Compute contribution to norm squared from I > NN-2. */
-
- np = nn - ((*pp) << (1));
- b1 = z__[np - 2];
- b2 = z__[np - 6];
- gam = *dn2;
- if (z__[np - 8] > b2 || z__[np - 4] > b1) {
- return 0;
- }
- a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.);
-
-/* Approximate contribution to norm squared from I < NN-2. */
-
- if (*n0 - *i0 > 2) {
- b2 = z__[nn - 13] / z__[nn - 15];
- a2 += b2;
- i__1 = ((*i0) << (2)) - 1 + *pp;
- for (i4 = nn - 17; i4 >= i__1; i4 += -4) {
- if (b2 == 0.) {
- goto L40;
- }
- b1 = b2;
- if (z__[i4] > z__[i4 - 2]) {
- return 0;
- }
- b2 *= z__[i4] / z__[i4 - 2];
- a2 += b2;
- if (max(b2,b1) * 100. < a2 || .563 < a2) {
- goto L40;
- }
-/* L30: */
- }
-L40:
- a2 *= 1.05;
- }
-
- if (a2 < .563) {
- s = gam * (1. - sqrt(a2)) / (a2 + 1.);
- }
- } else {
-
-/* Case 6, no information to guide us. */
-
- if (*ttype == -6) {
- g += (1. - g) * .333;
- } else if (*ttype == -18) {
- g = .083250000000000005;
- } else {
- g = .25;
- }
- s = g * *dmin__;
- *ttype = -6;
- }
-
- } else if (*n0in == *n0 + 1) {
-
-/* One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */
-
- if ((*dmin1 == *dn1 && *dmin2 == *dn2)) {
-
-/* Cases 7 and 8. */
-
- *ttype = -7;
- s = *dmin1 * .333;
- if (z__[nn - 5] > z__[nn - 7]) {
- return 0;
- }
- b1 = z__[nn - 5] / z__[nn - 7];
- b2 = b1;
- if (b2 == 0.) {
- goto L60;
- }
- i__1 = ((*i0) << (2)) - 1 + *pp;
- for (i4 = ((*n0) << (2)) - 9 + *pp; i4 >= i__1; i4 += -4) {
- a2 = b1;
- if (z__[i4] > z__[i4 - 2]) {
- return 0;
- }
- b1 *= z__[i4] / z__[i4 - 2];
- b2 += b1;
- if (max(b1,a2) * 100. < b2) {
- goto L60;
- }
-/* L50: */
- }
-L60:
- b2 = sqrt(b2 * 1.05);
-/* Computing 2nd power */
- d__1 = b2;
- a2 = *dmin1 / (d__1 * d__1 + 1.);
- gap2 = *dmin2 * .5 - a2;
- if ((gap2 > 0. && gap2 > b2 * a2)) {
-/* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
- s = max(d__1,d__2);
- } else {
-/* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
- s = max(d__1,d__2);
- *ttype = -8;
- }
- } else {
-
-/* Case 9. */
-
- s = *dmin1 * .25;
- if (*dmin1 == *dn1) {
- s = *dmin1 * .5;
- }
- *ttype = -9;
- }
-
- } else if (*n0in == *n0 + 2) {
-
-/*
- Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN.
-
- Cases 10 and 11.
-*/
-
- if ((*dmin2 == *dn2 && z__[nn - 5] * 2. < z__[nn - 7])) {
- *ttype = -10;
- s = *dmin2 * .333;
- if (z__[nn - 5] > z__[nn - 7]) {
- return 0;
- }
- b1 = z__[nn - 5] / z__[nn - 7];
- b2 = b1;
- if (b2 == 0.) {
- goto L80;
- }
- i__1 = ((*i0) << (2)) - 1 + *pp;
- for (i4 = ((*n0) << (2)) - 9 + *pp; i4 >= i__1; i4 += -4) {
- if (z__[i4] > z__[i4 - 2]) {
- return 0;
- }
- b1 *= z__[i4] / z__[i4 - 2];
- b2 += b1;
- if (b1 * 100. < b2) {
- goto L80;
- }
-/* L70: */
- }
-L80:
- b2 = sqrt(b2 * 1.05);
-/* Computing 2nd power */
- d__1 = b2;
- a2 = *dmin2 / (d__1 * d__1 + 1.);
- gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[
- nn - 9]) - a2;
- if ((gap2 > 0. && gap2 > b2 * a2)) {
-/* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
- s = max(d__1,d__2);
- } else {
-/* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
- s = max(d__1,d__2);
- }
- } else {
- s = *dmin2 * .25;
- *ttype = -11;
- }
- } else if (*n0in > *n0 + 2) {
-
-/* Case 12, more than two eigenvalues deflated. No information. */
-
- s = 0.;
- *ttype = -12;
- }
-
- *tau = s;
- return 0;
-
-/* End of DLASQ4 */
-
-} /* dlasq4_ */
-
-/* Subroutine */ int dlasq5_(integer *i0, integer *n0, doublereal *z__,
- integer *pp, doublereal *tau, doublereal *dmin__, doublereal *dmin1,
- doublereal *dmin2, doublereal *dn, doublereal *dnm1, doublereal *dnm2,
- logical *ieee)
-{
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2;
-
- /* Local variables */
- static doublereal d__;
- static integer j4, j4p2;
- static doublereal emin, temp;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- May 17, 2000
-
-
- Purpose
- =======
-
- DLASQ5 computes one dqds transform in ping-pong form, one
- version for IEEE machines another for non IEEE machines.
-
- Arguments
- =========
-
- I0 (input) INTEGER
- First index.
-
- N0 (input) INTEGER
- Last index.
-
- Z (input) DOUBLE PRECISION array, dimension ( 4*N )
- Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
- an extra argument.
-
- PP (input) INTEGER
- PP=0 for ping, PP=1 for pong.
-
- TAU (input) DOUBLE PRECISION
- This is the shift.
-
- DMIN (output) DOUBLE PRECISION
- Minimum value of d.
-
- DMIN1 (output) DOUBLE PRECISION
- Minimum value of d, excluding D( N0 ).
-
- DMIN2 (output) DOUBLE PRECISION
- Minimum value of d, excluding D( N0 ) and D( N0-1 ).
-
- DN (output) DOUBLE PRECISION
- d(N0), the last value of d.
-
- DNM1 (output) DOUBLE PRECISION
- d(N0-1).
-
- DNM2 (output) DOUBLE PRECISION
- d(N0-2).
-
- IEEE (input) LOGICAL
- Flag for IEEE or non IEEE arithmetic.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --z__;
-
- /* Function Body */
- if (*n0 - *i0 - 1 <= 0) {
- return 0;
- }
-
- j4 = ((*i0) << (2)) + *pp - 3;
- emin = z__[j4 + 4];
- d__ = z__[j4] - *tau;
- *dmin__ = d__;
- *dmin1 = -z__[j4];
-
- if (*ieee) {
-
-/* Code for IEEE arithmetic. */
-
- if (*pp == 0) {
- i__1 = (*n0 - 3) << (2);
- for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
- z__[j4 - 2] = d__ + z__[j4 - 1];
- temp = z__[j4 + 1] / z__[j4 - 2];
- d__ = d__ * temp - *tau;
- *dmin__ = min(*dmin__,d__);
- z__[j4] = z__[j4 - 1] * temp;
-/* Computing MIN */
- d__1 = z__[j4];
- emin = min(d__1,emin);
-/* L10: */
- }
- } else {
- i__1 = (*n0 - 3) << (2);
- for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
- z__[j4 - 3] = d__ + z__[j4];
- temp = z__[j4 + 2] / z__[j4 - 3];
- d__ = d__ * temp - *tau;
- *dmin__ = min(*dmin__,d__);
- z__[j4 - 1] = z__[j4] * temp;
-/* Computing MIN */
- d__1 = z__[j4 - 1];
- emin = min(d__1,emin);
-/* L20: */
- }
- }
-
-/* Unroll last two steps. */
-
- *dnm2 = d__;
- *dmin2 = *dmin__;
- j4 = ((*n0 - 2) << (2)) - *pp;
- j4p2 = j4 + ((*pp) << (1)) - 1;
- z__[j4 - 2] = *dnm2 + z__[j4p2];
- z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
- *dnm1 = z__[j4p2 + 2] * (*dnm2 / z__[j4 - 2]) - *tau;
- *dmin__ = min(*dmin__,*dnm1);
-
- *dmin1 = *dmin__;
- j4 += 4;
- j4p2 = j4 + ((*pp) << (1)) - 1;
- z__[j4 - 2] = *dnm1 + z__[j4p2];
- z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
- *dn = z__[j4p2 + 2] * (*dnm1 / z__[j4 - 2]) - *tau;
- *dmin__ = min(*dmin__,*dn);
-
- } else {
-
-/* Code for non IEEE arithmetic. */
-
- if (*pp == 0) {
- i__1 = (*n0 - 3) << (2);
- for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
- z__[j4 - 2] = d__ + z__[j4 - 1];
- if (d__ < 0.) {
- return 0;
- } else {
- z__[j4] = z__[j4 + 1] * (z__[j4 - 1] / z__[j4 - 2]);
- d__ = z__[j4 + 1] * (d__ / z__[j4 - 2]) - *tau;
- }
- *dmin__ = min(*dmin__,d__);
-/* Computing MIN */
- d__1 = emin, d__2 = z__[j4];
- emin = min(d__1,d__2);
-/* L30: */
- }
- } else {
- i__1 = (*n0 - 3) << (2);
- for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
- z__[j4 - 3] = d__ + z__[j4];
- if (d__ < 0.) {
- return 0;
- } else {
- z__[j4 - 1] = z__[j4 + 2] * (z__[j4] / z__[j4 - 3]);
- d__ = z__[j4 + 2] * (d__ / z__[j4 - 3]) - *tau;
- }
- *dmin__ = min(*dmin__,d__);
-/* Computing MIN */
- d__1 = emin, d__2 = z__[j4 - 1];
- emin = min(d__1,d__2);
-/* L40: */
- }
- }
-
-/* Unroll last two steps. */
-
- *dnm2 = d__;
- *dmin2 = *dmin__;
- j4 = ((*n0 - 2) << (2)) - *pp;
- j4p2 = j4 + ((*pp) << (1)) - 1;
- z__[j4 - 2] = *dnm2 + z__[j4p2];
- if (*dnm2 < 0.) {
- return 0;
- } else {
- z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
- *dnm1 = z__[j4p2 + 2] * (*dnm2 / z__[j4 - 2]) - *tau;
- }
- *dmin__ = min(*dmin__,*dnm1);
-
- *dmin1 = *dmin__;
- j4 += 4;
- j4p2 = j4 + ((*pp) << (1)) - 1;
- z__[j4 - 2] = *dnm1 + z__[j4p2];
- if (*dnm1 < 0.) {
- return 0;
- } else {
- z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
- *dn = z__[j4p2 + 2] * (*dnm1 / z__[j4 - 2]) - *tau;
- }
- *dmin__ = min(*dmin__,*dn);
-
- }
-
- z__[j4 + 2] = *dn;
- z__[((*n0) << (2)) - *pp] = emin;
- return 0;
-
-/* End of DLASQ5 */
-
-} /* dlasq5_ */
-
-/* Subroutine */ int dlasq6_(integer *i0, integer *n0, doublereal *z__,
- integer *pp, doublereal *dmin__, doublereal *dmin1, doublereal *dmin2,
- doublereal *dn, doublereal *dnm1, doublereal *dnm2)
-{
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2;
-
- /* Local variables */
- static doublereal d__;
- static integer j4, j4p2;
- static doublereal emin, temp;
-
- static doublereal safmin;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- DLASQ6 computes one dqd (shift equal to zero) transform in
- ping-pong form, with protection against underflow and overflow.
-
- Arguments
- =========
-
- I0 (input) INTEGER
- First index.
-
- N0 (input) INTEGER
- Last index.
-
- Z (input) DOUBLE PRECISION array, dimension ( 4*N )
- Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
- an extra argument.
-
- PP (input) INTEGER
- PP=0 for ping, PP=1 for pong.
-
- DMIN (output) DOUBLE PRECISION
- Minimum value of d.
-
- DMIN1 (output) DOUBLE PRECISION
- Minimum value of d, excluding D( N0 ).
-
- DMIN2 (output) DOUBLE PRECISION
- Minimum value of d, excluding D( N0 ) and D( N0-1 ).
-
- DN (output) DOUBLE PRECISION
- d(N0), the last value of d.
-
- DNM1 (output) DOUBLE PRECISION
- d(N0-1).
-
- DNM2 (output) DOUBLE PRECISION
- d(N0-2).
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --z__;
-
- /* Function Body */
- if (*n0 - *i0 - 1 <= 0) {
- return 0;
- }
-
- safmin = SAFEMINIMUM;
- j4 = ((*i0) << (2)) + *pp - 3;
- emin = z__[j4 + 4];
- d__ = z__[j4];
- *dmin__ = d__;
-
- if (*pp == 0) {
- i__1 = (*n0 - 3) << (2);
- for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
- z__[j4 - 2] = d__ + z__[j4 - 1];
- if (z__[j4 - 2] == 0.) {
- z__[j4] = 0.;
- d__ = z__[j4 + 1];
- *dmin__ = d__;
- emin = 0.;
- } else if ((safmin * z__[j4 + 1] < z__[j4 - 2] && safmin * z__[j4
- - 2] < z__[j4 + 1])) {
- temp = z__[j4 + 1] / z__[j4 - 2];
- z__[j4] = z__[j4 - 1] * temp;
- d__ *= temp;
- } else {
- z__[j4] = z__[j4 + 1] * (z__[j4 - 1] / z__[j4 - 2]);
- d__ = z__[j4 + 1] * (d__ / z__[j4 - 2]);
- }
- *dmin__ = min(*dmin__,d__);
-/* Computing MIN */
- d__1 = emin, d__2 = z__[j4];
- emin = min(d__1,d__2);
-/* L10: */
- }
- } else {
- i__1 = (*n0 - 3) << (2);
- for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
- z__[j4 - 3] = d__ + z__[j4];
- if (z__[j4 - 3] == 0.) {
- z__[j4 - 1] = 0.;
- d__ = z__[j4 + 2];
- *dmin__ = d__;
- emin = 0.;
- } else if ((safmin * z__[j4 + 2] < z__[j4 - 3] && safmin * z__[j4
- - 3] < z__[j4 + 2])) {
- temp = z__[j4 + 2] / z__[j4 - 3];
- z__[j4 - 1] = z__[j4] * temp;
- d__ *= temp;
- } else {
- z__[j4 - 1] = z__[j4 + 2] * (z__[j4] / z__[j4 - 3]);
- d__ = z__[j4 + 2] * (d__ / z__[j4 - 3]);
- }
- *dmin__ = min(*dmin__,d__);
-/* Computing MIN */
- d__1 = emin, d__2 = z__[j4 - 1];
- emin = min(d__1,d__2);
-/* L20: */
- }
- }
-
-/* Unroll last two steps. */
-
- *dnm2 = d__;
- *dmin2 = *dmin__;
- j4 = ((*n0 - 2) << (2)) - *pp;
- j4p2 = j4 + ((*pp) << (1)) - 1;
- z__[j4 - 2] = *dnm2 + z__[j4p2];
- if (z__[j4 - 2] == 0.) {
- z__[j4] = 0.;
- *dnm1 = z__[j4p2 + 2];
- *dmin__ = *dnm1;
- emin = 0.;
- } else if ((safmin * z__[j4p2 + 2] < z__[j4 - 2] && safmin * z__[j4 - 2] <
- z__[j4p2 + 2])) {
- temp = z__[j4p2 + 2] / z__[j4 - 2];
- z__[j4] = z__[j4p2] * temp;
- *dnm1 = *dnm2 * temp;
- } else {
- z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
- *dnm1 = z__[j4p2 + 2] * (*dnm2 / z__[j4 - 2]);
- }
- *dmin__ = min(*dmin__,*dnm1);
-
- *dmin1 = *dmin__;
- j4 += 4;
- j4p2 = j4 + ((*pp) << (1)) - 1;
- z__[j4 - 2] = *dnm1 + z__[j4p2];
- if (z__[j4 - 2] == 0.) {
- z__[j4] = 0.;
- *dn = z__[j4p2 + 2];
- *dmin__ = *dn;
- emin = 0.;
- } else if ((safmin * z__[j4p2 + 2] < z__[j4 - 2] && safmin * z__[j4 - 2] <
- z__[j4p2 + 2])) {
- temp = z__[j4p2 + 2] / z__[j4 - 2];
- z__[j4] = z__[j4p2] * temp;
- *dn = *dnm1 * temp;
- } else {
- z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
- *dn = z__[j4p2 + 2] * (*dnm1 / z__[j4 - 2]);
- }
- *dmin__ = min(*dmin__,*dn);
-
- z__[j4 + 2] = *dn;
- z__[((*n0) << (2)) - *pp] = emin;
- return 0;
-
-/* End of DLASQ6 */
-
-} /* dlasq6_ */
-
-/* Subroutine */ int dlasr_(char *side, char *pivot, char *direct, integer *m,
- integer *n, doublereal *c__, doublereal *s, doublereal *a, integer *
- lda)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, j, info;
- static doublereal temp;
- extern logical lsame_(char *, char *);
- static doublereal ctemp, stemp;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLASR performs the transformation
-
- A := P*A, when SIDE = 'L' or 'l' ( Left-hand side )
-
- A := A*P', when SIDE = 'R' or 'r' ( Right-hand side )
-
- where A is an m by n real matrix and P is an orthogonal matrix,
- consisting of a sequence of plane rotations determined by the
- parameters PIVOT and DIRECT as follows ( z = m when SIDE = 'L' or 'l'
- and z = n when SIDE = 'R' or 'r' ):
-
- When DIRECT = 'F' or 'f' ( Forward sequence ) then
-
- P = P( z - 1 )*...*P( 2 )*P( 1 ),
-
- and when DIRECT = 'B' or 'b' ( Backward sequence ) then
-
- P = P( 1 )*P( 2 )*...*P( z - 1 ),
-
- where P( k ) is a plane rotation matrix for the following planes:
-
- when PIVOT = 'V' or 'v' ( Variable pivot ),
- the plane ( k, k + 1 )
-
- when PIVOT = 'T' or 't' ( Top pivot ),
- the plane ( 1, k + 1 )
-
- when PIVOT = 'B' or 'b' ( Bottom pivot ),
- the plane ( k, z )
-
- c( k ) and s( k ) must contain the cosine and sine that define the
- matrix P( k ). The two by two plane rotation part of the matrix
- P( k ), R( k ), is assumed to be of the form
-
- R( k ) = ( c( k ) s( k ) ).
- ( -s( k ) c( k ) )
-
- This version vectorises across rows of the array A when SIDE = 'L'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- Specifies whether the plane rotation matrix P is applied to
- A on the left or the right.
- = 'L': Left, compute A := P*A
- = 'R': Right, compute A:= A*P'
-
- DIRECT (input) CHARACTER*1
- Specifies whether P is a forward or backward sequence of
- plane rotations.
- = 'F': Forward, P = P( z - 1 )*...*P( 2 )*P( 1 )
- = 'B': Backward, P = P( 1 )*P( 2 )*...*P( z - 1 )
-
- PIVOT (input) CHARACTER*1
- Specifies the plane for which P(k) is a plane rotation
- matrix.
- = 'V': Variable pivot, the plane (k,k+1)
- = 'T': Top pivot, the plane (1,k+1)
- = 'B': Bottom pivot, the plane (k,z)
-
- M (input) INTEGER
- The number of rows of the matrix A. If m <= 1, an immediate
- return is effected.
-
- N (input) INTEGER
- The number of columns of the matrix A. If n <= 1, an
- immediate return is effected.
-
- C, S (input) DOUBLE PRECISION arrays, dimension
- (M-1) if SIDE = 'L'
- (N-1) if SIDE = 'R'
- c(k) and s(k) contain the cosine and sine that define the
- matrix P(k). The two by two plane rotation part of the
- matrix P(k), R(k), is assumed to be of the form
- R( k ) = ( c( k ) s( k ) ).
- ( -s( k ) c( k ) )
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- The m by n matrix A. On exit, A is overwritten by P*A if
- SIDE = 'R' or by A*P' if SIDE = 'L'.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- --c__;
- --s;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- info = 0;
- if (! (lsame_(side, "L") || lsame_(side, "R"))) {
- info = 1;
- } else if (! (lsame_(pivot, "V") || lsame_(pivot,
- "T") || lsame_(pivot, "B"))) {
- info = 2;
- } else if (! (lsame_(direct, "F") || lsame_(direct,
- "B"))) {
- info = 3;
- } else if (*m < 0) {
- info = 4;
- } else if (*n < 0) {
- info = 5;
- } else if (*lda < max(1,*m)) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("DLASR ", &info);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- return 0;
- }
- if (lsame_(side, "L")) {
-
-/* Form P * A */
-
- if (lsame_(pivot, "V")) {
- if (lsame_(direct, "F")) {
- i__1 = *m - 1;
- for (j = 1; j <= i__1; ++j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = a[j + 1 + i__ * a_dim1];
- a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp *
- a[j + i__ * a_dim1];
- a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j
- + i__ * a_dim1];
-/* L10: */
- }
- }
-/* L20: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *m - 1; j >= 1; --j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = a[j + 1 + i__ * a_dim1];
- a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp *
- a[j + i__ * a_dim1];
- a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j
- + i__ * a_dim1];
-/* L30: */
- }
- }
-/* L40: */
- }
- }
- } else if (lsame_(pivot, "T")) {
- if (lsame_(direct, "F")) {
- i__1 = *m;
- for (j = 2; j <= i__1; ++j) {
- ctemp = c__[j - 1];
- stemp = s[j - 1];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = a[j + i__ * a_dim1];
- a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
- i__ * a_dim1 + 1];
- a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
- i__ * a_dim1 + 1];
-/* L50: */
- }
- }
-/* L60: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *m; j >= 2; --j) {
- ctemp = c__[j - 1];
- stemp = s[j - 1];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = a[j + i__ * a_dim1];
- a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
- i__ * a_dim1 + 1];
- a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
- i__ * a_dim1 + 1];
-/* L70: */
- }
- }
-/* L80: */
- }
- }
- } else if (lsame_(pivot, "B")) {
- if (lsame_(direct, "F")) {
- i__1 = *m - 1;
- for (j = 1; j <= i__1; ++j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = a[j + i__ * a_dim1];
- a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
- + ctemp * temp;
- a[*m + i__ * a_dim1] = ctemp * a[*m + i__ *
- a_dim1] - stemp * temp;
-/* L90: */
- }
- }
-/* L100: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *m - 1; j >= 1; --j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = a[j + i__ * a_dim1];
- a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
- + ctemp * temp;
- a[*m + i__ * a_dim1] = ctemp * a[*m + i__ *
- a_dim1] - stemp * temp;
-/* L110: */
- }
- }
-/* L120: */
- }
- }
- }
- } else if (lsame_(side, "R")) {
-
-/* Form A * P' */
-
- if (lsame_(pivot, "V")) {
- if (lsame_(direct, "F")) {
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = a[i__ + (j + 1) * a_dim1];
- a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
- a[i__ + j * a_dim1];
- a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
- i__ + j * a_dim1];
-/* L130: */
- }
- }
-/* L140: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *n - 1; j >= 1; --j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = a[i__ + (j + 1) * a_dim1];
- a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
- a[i__ + j * a_dim1];
- a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
- i__ + j * a_dim1];
-/* L150: */
- }
- }
-/* L160: */
- }
- }
- } else if (lsame_(pivot, "T")) {
- if (lsame_(direct, "F")) {
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- ctemp = c__[j - 1];
- stemp = s[j - 1];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = a[i__ + j * a_dim1];
- a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
- i__ + a_dim1];
- a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ +
- a_dim1];
-/* L170: */
- }
- }
-/* L180: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *n; j >= 2; --j) {
- ctemp = c__[j - 1];
- stemp = s[j - 1];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = a[i__ + j * a_dim1];
- a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
- i__ + a_dim1];
- a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ +
- a_dim1];
-/* L190: */
- }
- }
-/* L200: */
- }
- }
- } else if (lsame_(pivot, "B")) {
- if (lsame_(direct, "F")) {
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = a[i__ + j * a_dim1];
- a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
- + ctemp * temp;
- a[i__ + *n * a_dim1] = ctemp * a[i__ + *n *
- a_dim1] - stemp * temp;
-/* L210: */
- }
- }
-/* L220: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *n - 1; j >= 1; --j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = a[i__ + j * a_dim1];
- a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
- + ctemp * temp;
- a[i__ + *n * a_dim1] = ctemp * a[i__ + *n *
- a_dim1] - stemp * temp;
-/* L230: */
- }
- }
-/* L240: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of DLASR */
-
-} /* dlasr_ */
-
-/* Subroutine */ int dlasrt_(char *id, integer *n, doublereal *d__, integer *
- info)
-{
- /* System generated locals */
- integer i__1, i__2;
-
- /* Local variables */
- static integer i__, j;
- static doublereal d1, d2, d3;
- static integer dir;
- static doublereal tmp;
- static integer endd;
- extern logical lsame_(char *, char *);
- static integer stack[64] /* was [2][32] */;
- static doublereal dmnmx;
- static integer start;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static integer stkpnt;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- Sort the numbers in D in increasing order (if ID = 'I') or
- in decreasing order (if ID = 'D' ).
-
- Use Quick Sort, reverting to Insertion sort on arrays of
- size <= 20. Dimension of STACK limits N to about 2**32.
-
- Arguments
- =========
-
- ID (input) CHARACTER*1
- = 'I': sort D in increasing order;
- = 'D': sort D in decreasing order.
-
- N (input) INTEGER
- The length of the array D.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the array to be sorted.
- On exit, D has been sorted into increasing order
- (D(1) <= ... <= D(N) ) or into decreasing order
- (D(1) >= ... >= D(N) ), depending on ID.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input paramters.
-*/
-
- /* Parameter adjustments */
- --d__;
-
- /* Function Body */
- *info = 0;
- dir = -1;
- if (lsame_(id, "D")) {
- dir = 0;
- } else if (lsame_(id, "I")) {
- dir = 1;
- }
- if (dir == -1) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASRT", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n <= 1) {
- return 0;
- }
-
- stkpnt = 1;
- stack[0] = 1;
- stack[1] = *n;
-L10:
- start = stack[((stkpnt) << (1)) - 2];
- endd = stack[((stkpnt) << (1)) - 1];
- --stkpnt;
- if ((endd - start <= 20 && endd - start > 0)) {
-
-/* Do Insertion sort on D( START:ENDD ) */
-
- if (dir == 0) {
-
-/* Sort into decreasing order */
-
- i__1 = endd;
- for (i__ = start + 1; i__ <= i__1; ++i__) {
- i__2 = start + 1;
- for (j = i__; j >= i__2; --j) {
- if (d__[j] > d__[j - 1]) {
- dmnmx = d__[j];
- d__[j] = d__[j - 1];
- d__[j - 1] = dmnmx;
- } else {
- goto L30;
- }
-/* L20: */
- }
-L30:
- ;
- }
-
- } else {
-
-/* Sort into increasing order */
-
- i__1 = endd;
- for (i__ = start + 1; i__ <= i__1; ++i__) {
- i__2 = start + 1;
- for (j = i__; j >= i__2; --j) {
- if (d__[j] < d__[j - 1]) {
- dmnmx = d__[j];
- d__[j] = d__[j - 1];
- d__[j - 1] = dmnmx;
- } else {
- goto L50;
- }
-/* L40: */
- }
-L50:
- ;
- }
-
- }
-
- } else if (endd - start > 20) {
-
-/*
- Partition D( START:ENDD ) and stack parts, largest one first
-
- Choose partition entry as median of 3
-*/
-
- d1 = d__[start];
- d2 = d__[endd];
- i__ = (start + endd) / 2;
- d3 = d__[i__];
- if (d1 < d2) {
- if (d3 < d1) {
- dmnmx = d1;
- } else if (d3 < d2) {
- dmnmx = d3;
- } else {
- dmnmx = d2;
- }
- } else {
- if (d3 < d2) {
- dmnmx = d2;
- } else if (d3 < d1) {
- dmnmx = d3;
- } else {
- dmnmx = d1;
- }
- }
-
- if (dir == 0) {
-
-/* Sort into decreasing order */
-
- i__ = start - 1;
- j = endd + 1;
-L60:
-L70:
- --j;
- if (d__[j] < dmnmx) {
- goto L70;
- }
-L80:
- ++i__;
- if (d__[i__] > dmnmx) {
- goto L80;
- }
- if (i__ < j) {
- tmp = d__[i__];
- d__[i__] = d__[j];
- d__[j] = tmp;
- goto L60;
- }
- if (j - start > endd - j - 1) {
- ++stkpnt;
- stack[((stkpnt) << (1)) - 2] = start;
- stack[((stkpnt) << (1)) - 1] = j;
- ++stkpnt;
- stack[((stkpnt) << (1)) - 2] = j + 1;
- stack[((stkpnt) << (1)) - 1] = endd;
- } else {
- ++stkpnt;
- stack[((stkpnt) << (1)) - 2] = j + 1;
- stack[((stkpnt) << (1)) - 1] = endd;
- ++stkpnt;
- stack[((stkpnt) << (1)) - 2] = start;
- stack[((stkpnt) << (1)) - 1] = j;
- }
- } else {
-
-/* Sort into increasing order */
-
- i__ = start - 1;
- j = endd + 1;
-L90:
-L100:
- --j;
- if (d__[j] > dmnmx) {
- goto L100;
- }
-L110:
- ++i__;
- if (d__[i__] < dmnmx) {
- goto L110;
- }
- if (i__ < j) {
- tmp = d__[i__];
- d__[i__] = d__[j];
- d__[j] = tmp;
- goto L90;
- }
- if (j - start > endd - j - 1) {
- ++stkpnt;
- stack[((stkpnt) << (1)) - 2] = start;
- stack[((stkpnt) << (1)) - 1] = j;
- ++stkpnt;
- stack[((stkpnt) << (1)) - 2] = j + 1;
- stack[((stkpnt) << (1)) - 1] = endd;
- } else {
- ++stkpnt;
- stack[((stkpnt) << (1)) - 2] = j + 1;
- stack[((stkpnt) << (1)) - 1] = endd;
- ++stkpnt;
- stack[((stkpnt) << (1)) - 2] = start;
- stack[((stkpnt) << (1)) - 1] = j;
- }
- }
- }
- if (stkpnt > 0) {
- goto L10;
- }
- return 0;
-
-/* End of DLASRT */
-
-} /* dlasrt_ */
-
-/* Subroutine */ int dlassq_(integer *n, doublereal *x, integer *incx,
- doublereal *scale, doublereal *sumsq)
-{
- /* System generated locals */
- integer i__1, i__2;
- doublereal d__1;
-
- /* Local variables */
- static integer ix;
- static doublereal absxi;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLASSQ returns the values scl and smsq such that
-
- ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
-
- where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
- assumed to be non-negative and scl returns the value
-
- scl = max( scale, abs( x( i ) ) ).
-
- scale and sumsq must be supplied in SCALE and SUMSQ and
- scl and smsq are overwritten on SCALE and SUMSQ respectively.
-
- The routine makes only one pass through the vector x.
-
- Arguments
- =========
-
- N (input) INTEGER
- The number of elements to be used from the vector X.
-
- X (input) DOUBLE PRECISION array, dimension (N)
- The vector for which a scaled sum of squares is computed.
- x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
-
- INCX (input) INTEGER
- The increment between successive values of the vector X.
- INCX > 0.
-
- SCALE (input/output) DOUBLE PRECISION
- On entry, the value scale in the equation above.
- On exit, SCALE is overwritten with scl , the scaling factor
- for the sum of squares.
-
- SUMSQ (input/output) DOUBLE PRECISION
- On entry, the value sumsq in the equation above.
- On exit, SUMSQ is overwritten with smsq , the basic sum of
- squares from which scl has been factored out.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --x;
-
- /* Function Body */
- if (*n > 0) {
- i__1 = (*n - 1) * *incx + 1;
- i__2 = *incx;
- for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
- if (x[ix] != 0.) {
- absxi = (d__1 = x[ix], abs(d__1));
- if (*scale < absxi) {
-/* Computing 2nd power */
- d__1 = *scale / absxi;
- *sumsq = *sumsq * (d__1 * d__1) + 1;
- *scale = absxi;
- } else {
-/* Computing 2nd power */
- d__1 = absxi / *scale;
- *sumsq += d__1 * d__1;
- }
- }
-/* L10: */
- }
- }
- return 0;
-
-/* End of DLASSQ */
-
-} /* dlassq_ */
-
-/* Subroutine */ int dlasv2_(doublereal *f, doublereal *g, doublereal *h__,
- doublereal *ssmin, doublereal *ssmax, doublereal *snr, doublereal *
- csr, doublereal *snl, doublereal *csl)
-{
- /* System generated locals */
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static doublereal a, d__, l, m, r__, s, t, fa, ga, ha, ft, gt, ht, mm, tt,
- clt, crt, slt, srt;
- static integer pmax;
- static doublereal temp;
- static logical swap;
- static doublereal tsign;
-
- static logical gasmal;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLASV2 computes the singular value decomposition of a 2-by-2
- triangular matrix
- [ F G ]
- [ 0 H ].
- On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
- smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
- right singular vectors for abs(SSMAX), giving the decomposition
-
- [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ]
- [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ].
-
- Arguments
- =========
-
- F (input) DOUBLE PRECISION
- The (1,1) element of the 2-by-2 matrix.
-
- G (input) DOUBLE PRECISION
- The (1,2) element of the 2-by-2 matrix.
-
- H (input) DOUBLE PRECISION
- The (2,2) element of the 2-by-2 matrix.
-
- SSMIN (output) DOUBLE PRECISION
- abs(SSMIN) is the smaller singular value.
-
- SSMAX (output) DOUBLE PRECISION
- abs(SSMAX) is the larger singular value.
-
- SNL (output) DOUBLE PRECISION
- CSL (output) DOUBLE PRECISION
- The vector (CSL, SNL) is a unit left singular vector for the
- singular value abs(SSMAX).
-
- SNR (output) DOUBLE PRECISION
- CSR (output) DOUBLE PRECISION
- The vector (CSR, SNR) is a unit right singular vector for the
- singular value abs(SSMAX).
-
- Further Details
- ===============
-
- Any input parameter may be aliased with any output parameter.
-
- Barring over/underflow and assuming a guard digit in subtraction, all
- output quantities are correct to within a few units in the last
- place (ulps).
-
- In IEEE arithmetic, the code works correctly if one matrix element is
- infinite.
-
- Overflow will not occur unless the largest singular value itself
- overflows or is within a few ulps of overflow. (On machines with
- partial overflow, like the Cray, overflow may occur if the largest
- singular value is within a factor of 2 of overflow.)
-
- Underflow is harmless if underflow is gradual. Otherwise, results
- may correspond to a matrix modified by perturbations of size near
- the underflow threshold.
-
- =====================================================================
-*/
-
-
- ft = *f;
- fa = abs(ft);
- ht = *h__;
- ha = abs(*h__);
-
-/*
- PMAX points to the maximum absolute element of matrix
- PMAX = 1 if F largest in absolute values
- PMAX = 2 if G largest in absolute values
- PMAX = 3 if H largest in absolute values
-*/
-
- pmax = 1;
- swap = ha > fa;
- if (swap) {
- pmax = 3;
- temp = ft;
- ft = ht;
- ht = temp;
- temp = fa;
- fa = ha;
- ha = temp;
-
-/* Now FA .ge. HA */
-
- }
- gt = *g;
- ga = abs(gt);
- if (ga == 0.) {
-
-/* Diagonal matrix */
-
- *ssmin = ha;
- *ssmax = fa;
- clt = 1.;
- crt = 1.;
- slt = 0.;
- srt = 0.;
- } else {
- gasmal = TRUE_;
- if (ga > fa) {
- pmax = 2;
- if (fa / ga < EPSILON) {
-
-/* Case of very large GA */
-
- gasmal = FALSE_;
- *ssmax = ga;
- if (ha > 1.) {
- *ssmin = fa / (ga / ha);
- } else {
- *ssmin = fa / ga * ha;
- }
- clt = 1.;
- slt = ht / gt;
- srt = 1.;
- crt = ft / gt;
- }
- }
- if (gasmal) {
-
-/* Normal case */
-
- d__ = fa - ha;
- if (d__ == fa) {
-
-/* Copes with infinite F or H */
-
- l = 1.;
- } else {
- l = d__ / fa;
- }
-
-/* Note that 0 .le. L .le. 1 */
-
- m = gt / ft;
-
-/* Note that abs(M) .le. 1/macheps */
-
- t = 2. - l;
-
-/* Note that T .ge. 1 */
-
- mm = m * m;
- tt = t * t;
- s = sqrt(tt + mm);
-
-/* Note that 1 .le. S .le. 1 + 1/macheps */
-
- if (l == 0.) {
- r__ = abs(m);
- } else {
- r__ = sqrt(l * l + mm);
- }
-
-/* Note that 0 .le. R .le. 1 + 1/macheps */
-
- a = (s + r__) * .5;
-
-/* Note that 1 .le. A .le. 1 + abs(M) */
-
- *ssmin = ha / a;
- *ssmax = fa * a;
- if (mm == 0.) {
-
-/* Note that M is very tiny */
-
- if (l == 0.) {
- t = d_sign(&c_b2804, &ft) * d_sign(&c_b15, &gt);
- } else {
- t = gt / d_sign(&d__, &ft) + m / t;
- }
- } else {
- t = (m / (s + t) + m / (r__ + l)) * (a + 1.);
- }
- l = sqrt(t * t + 4.);
- crt = 2. / l;
- srt = t / l;
- clt = (crt + srt * m) / a;
- slt = ht / ft * srt / a;
- }
- }
- if (swap) {
- *csl = srt;
- *snl = crt;
- *csr = slt;
- *snr = clt;
- } else {
- *csl = clt;
- *snl = slt;
- *csr = crt;
- *snr = srt;
- }
-
-/* Correct signs of SSMAX and SSMIN */
-
- if (pmax == 1) {
- tsign = d_sign(&c_b15, csr) * d_sign(&c_b15, csl) * d_sign(&c_b15, f);
- }
- if (pmax == 2) {
- tsign = d_sign(&c_b15, snr) * d_sign(&c_b15, csl) * d_sign(&c_b15, g);
- }
- if (pmax == 3) {
- tsign = d_sign(&c_b15, snr) * d_sign(&c_b15, snl) * d_sign(&c_b15,
- h__);
- }
- *ssmax = d_sign(ssmax, &tsign);
- d__1 = tsign * d_sign(&c_b15, f) * d_sign(&c_b15, h__);
- *ssmin = d_sign(ssmin, &d__1);
- return 0;
-
-/* End of DLASV2 */
-
-} /* dlasv2_ */
-
-/* Subroutine */ int dlaswp_(integer *n, doublereal *a, integer *lda, integer
- *k1, integer *k2, integer *ipiv, integer *incx)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__, j, k, i1, i2, n32, ip, ix, ix0, inc;
- static doublereal temp;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DLASWP performs a series of row interchanges on the matrix A.
- One row interchange is initiated for each of rows K1 through K2 of A.
-
- Arguments
- =========
-
- N (input) INTEGER
- The number of columns of the matrix A.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the matrix of column dimension N to which the row
- interchanges will be applied.
- On exit, the permuted matrix.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
-
- K1 (input) INTEGER
- The first element of IPIV for which a row interchange will
- be done.
-
- K2 (input) INTEGER
- The last element of IPIV for which a row interchange will
- be done.
-
- IPIV (input) INTEGER array, dimension (M*abs(INCX))
- The vector of pivot indices. Only the elements in positions
- K1 through K2 of IPIV are accessed.
- IPIV(K) = L implies rows K and L are to be interchanged.
-
- INCX (input) INTEGER
- The increment between successive values of IPIV. If IPIV
- is negative, the pivots are applied in reverse order.
-
- Further Details
- ===============
-
- Modified by
- R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
-
- =====================================================================
-
-
- Interchange row I with row IPIV(I) for each of rows K1 through K2.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
-
- /* Function Body */
- if (*incx > 0) {
- ix0 = *k1;
- i1 = *k1;
- i2 = *k2;
- inc = 1;
- } else if (*incx < 0) {
- ix0 = (1 - *k2) * *incx + 1;
- i1 = *k2;
- i2 = *k1;
- inc = -1;
- } else {
- return 0;
- }
-
- n32 = (*n / 32) << (5);
- if (n32 != 0) {
- i__1 = n32;
- for (j = 1; j <= i__1; j += 32) {
- ix = ix0;
- i__2 = i2;
- i__3 = inc;
- for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3)
- {
- ip = ipiv[ix];
- if (ip != i__) {
- i__4 = j + 31;
- for (k = j; k <= i__4; ++k) {
- temp = a[i__ + k * a_dim1];
- a[i__ + k * a_dim1] = a[ip + k * a_dim1];
- a[ip + k * a_dim1] = temp;
-/* L10: */
- }
- }
- ix += *incx;
-/* L20: */
- }
-/* L30: */
- }
- }
- if (n32 != *n) {
- ++n32;
- ix = ix0;
- i__1 = i2;
- i__3 = inc;
- for (i__ = i1; i__3 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__3) {
- ip = ipiv[ix];
- if (ip != i__) {
- i__2 = *n;
- for (k = n32; k <= i__2; ++k) {
- temp = a[i__ + k * a_dim1];
- a[i__ + k * a_dim1] = a[ip + k * a_dim1];
- a[ip + k * a_dim1] = temp;
-/* L40: */
- }
- }
- ix += *incx;
-/* L50: */
- }
- }
-
- return 0;
-
-/* End of DLASWP */
-
-} /* dlaswp_ */
-
-/* Subroutine */ int dlatrd_(char *uplo, integer *n, integer *nb, doublereal *
- a, integer *lda, doublereal *e, doublereal *tau, doublereal *w,
- integer *ldw)
-{
- /* System generated locals */
- integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, iw;
- extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- static doublereal alpha;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), daxpy_(integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *),
- dsymv_(char *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfg_(integer *, doublereal *, doublereal *, integer *,
- doublereal *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DLATRD reduces NB rows and columns of a real symmetric matrix A to
- symmetric tridiagonal form by an orthogonal similarity
- transformation Q' * A * Q, and returns the matrices V and W which are
- needed to apply the transformation to the unreduced part of A.
-
- If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
- matrix, of which the upper triangle is supplied;
- if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
- matrix, of which the lower triangle is supplied.
-
- This is an auxiliary routine called by DSYTRD.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER
- Specifies whether the upper or lower triangular part of the
- symmetric matrix A is stored:
- = 'U': Upper triangular
- = 'L': Lower triangular
-
- N (input) INTEGER
- The order of the matrix A.
-
- NB (input) INTEGER
- The number of rows and columns to be reduced.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the symmetric matrix A. If UPLO = 'U', the leading
- n-by-n upper triangular part of A contains the upper
- triangular part of the matrix A, and the strictly lower
- triangular part of A is not referenced. If UPLO = 'L', the
- leading n-by-n lower triangular part of A contains the lower
- triangular part of the matrix A, and the strictly upper
- triangular part of A is not referenced.
- On exit:
- if UPLO = 'U', the last NB columns have been reduced to
- tridiagonal form, with the diagonal elements overwriting
- the diagonal elements of A; the elements above the diagonal
- with the array TAU, represent the orthogonal matrix Q as a
- product of elementary reflectors;
- if UPLO = 'L', the first NB columns have been reduced to
- tridiagonal form, with the diagonal elements overwriting
- the diagonal elements of A; the elements below the diagonal
- with the array TAU, represent the orthogonal matrix Q as a
- product of elementary reflectors.
- See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= (1,N).
-
- E (output) DOUBLE PRECISION array, dimension (N-1)
- If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
- elements of the last NB columns of the reduced matrix;
- if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
- the first NB columns of the reduced matrix.
-
- TAU (output) DOUBLE PRECISION array, dimension (N-1)
- The scalar factors of the elementary reflectors, stored in
- TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
- See Further Details.
-
- W (output) DOUBLE PRECISION array, dimension (LDW,NB)
- The n-by-nb matrix W required to update the unreduced part
- of A.
-
- LDW (input) INTEGER
- The leading dimension of the array W. LDW >= max(1,N).
-
- Further Details
- ===============
-
- If UPLO = 'U', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(n) H(n-1) . . . H(n-nb+1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
- and tau in TAU(i-1).
-
- If UPLO = 'L', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(1) H(2) . . . H(nb).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
- and tau in TAU(i).
-
- The elements of the vectors v together form the n-by-nb matrix V
- which is needed, with W, to apply the transformation to the unreduced
- part of the matrix, using a symmetric rank-2k update of the form:
- A := A - V*W' - W*V'.
-
- The contents of A on exit are illustrated by the following examples
- with n = 5 and nb = 2:
-
- if UPLO = 'U': if UPLO = 'L':
-
- ( a a a v4 v5 ) ( d )
- ( a a v4 v5 ) ( 1 d )
- ( a 1 v5 ) ( v1 1 a )
- ( d 1 ) ( v1 v2 a a )
- ( d ) ( v1 v2 a a a )
-
- where d denotes a diagonal element of the reduced matrix, a denotes
- an element of the original matrix that is unchanged, and vi denotes
- an element of the vector defining H(i).
-
- =====================================================================
-
-
- Quick return if possible
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --e;
- --tau;
- w_dim1 = *ldw;
- w_offset = 1 + w_dim1 * 1;
- w -= w_offset;
-
- /* Function Body */
- if (*n <= 0) {
- return 0;
- }
-
- if (lsame_(uplo, "U")) {
-
-/* Reduce last NB columns of upper triangle */
-
- i__1 = *n - *nb + 1;
- for (i__ = *n; i__ >= i__1; --i__) {
- iw = i__ - *n + *nb;
- if (i__ < *n) {
-
-/* Update A(1:i,i) */
-
- i__2 = *n - i__;
- dgemv_("No transpose", &i__, &i__2, &c_b151, &a[(i__ + 1) *
- a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
- c_b15, &a[i__ * a_dim1 + 1], &c__1);
- i__2 = *n - i__;
- dgemv_("No transpose", &i__, &i__2, &c_b151, &w[(iw + 1) *
- w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
- c_b15, &a[i__ * a_dim1 + 1], &c__1);
- }
- if (i__ > 1) {
-
-/*
- Generate elementary reflector H(i) to annihilate
- A(1:i-2,i)
-*/
-
- i__2 = i__ - 1;
- dlarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 +
- 1], &c__1, &tau[i__ - 1]);
- e[i__ - 1] = a[i__ - 1 + i__ * a_dim1];
- a[i__ - 1 + i__ * a_dim1] = 1.;
-
-/* Compute W(1:i-1,i) */
-
- i__2 = i__ - 1;
- dsymv_("Upper", &i__2, &c_b15, &a[a_offset], lda, &a[i__ *
- a_dim1 + 1], &c__1, &c_b29, &w[iw * w_dim1 + 1], &
- c__1);
- if (i__ < *n) {
- i__2 = i__ - 1;
- i__3 = *n - i__;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &w[(iw + 1) *
- w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, &
- c_b29, &w[i__ + 1 + iw * w_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[(i__ + 1)
- * a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
- c__1, &c_b15, &w[iw * w_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[(i__ + 1) *
- a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &
- c_b29, &w[i__ + 1 + iw * w_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &w[(iw + 1)
- * w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
- c__1, &c_b15, &w[iw * w_dim1 + 1], &c__1);
- }
- i__2 = i__ - 1;
- dscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- alpha = tau[i__ - 1] * -.5 * ddot_(&i__2, &w[iw * w_dim1 + 1],
- &c__1, &a[i__ * a_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- daxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw *
- w_dim1 + 1], &c__1);
- }
-
-/* L10: */
- }
- } else {
-
-/* Reduce first NB columns of lower triangle */
-
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Update A(i:n,i) */
-
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[i__ + a_dim1],
- lda, &w[i__ + w_dim1], ldw, &c_b15, &a[i__ + i__ * a_dim1]
- , &c__1);
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &w[i__ + w_dim1],
- ldw, &a[i__ + a_dim1], lda, &c_b15, &a[i__ + i__ * a_dim1]
- , &c__1);
- if (i__ < *n) {
-
-/*
- Generate elementary reflector H(i) to annihilate
- A(i+2:n,i)
-*/
-
- i__2 = *n - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) +
- i__ * a_dim1], &c__1, &tau[i__]);
- e[i__] = a[i__ + 1 + i__ * a_dim1];
- a[i__ + 1 + i__ * a_dim1] = 1.;
-
-/* Compute W(i+1:n,i) */
-
- i__2 = *n - i__;
- dsymv_("Lower", &i__2, &c_b15, &a[i__ + 1 + (i__ + 1) *
- a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
- c_b29, &w[i__ + 1 + i__ * w_dim1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &w[i__ + 1 + w_dim1]
- , ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b29, &w[
- i__ * w_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[i__ + 1 +
- a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b15, &w[
- i__ + 1 + i__ * w_dim1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[i__ + 1 + a_dim1]
- , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b29, &w[
- i__ * w_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &w[i__ + 1 +
- w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b15, &w[
- i__ + 1 + i__ * w_dim1], &c__1);
- i__2 = *n - i__;
- dscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
- i__2 = *n - i__;
- alpha = tau[i__] * -.5 * ddot_(&i__2, &w[i__ + 1 + i__ *
- w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
- i__2 = *n - i__;
- daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
- i__ + 1 + i__ * w_dim1], &c__1);
- }
-
-/* L20: */
- }
- }
-
- return 0;
-
-/* End of DLATRD */
-
-} /* dlatrd_ */
-
-/* Subroutine */ int dorg2r_(integer *m, integer *n, integer *k, doublereal *
- a, integer *lda, doublereal *tau, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal d__1;
-
- /* Local variables */
- static integer i__, j, l;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *), dlarf_(char *, integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DORG2R generates an m by n real matrix Q with orthonormal columns,
- which is defined as the first n columns of a product of k elementary
- reflectors of order m
-
- Q = H(1) H(2) . . . H(k)
-
- as returned by DGEQRF.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix Q. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix Q. M >= N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines the
- matrix Q. N >= K >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the i-th column must contain the vector which
- defines the elementary reflector H(i), for i = 1,2,...,k, as
- returned by DGEQRF in the first k columns of its array
- argument A.
- On exit, the m-by-n matrix Q.
-
- LDA (input) INTEGER
- The first dimension of the array A. LDA >= max(1,M).
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DGEQRF.
-
- WORK (workspace) DOUBLE PRECISION array, dimension (N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument has an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0 || *n > *m) {
- *info = -2;
- } else if (*k < 0 || *k > *n) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORG2R", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n <= 0) {
- return 0;
- }
-
-/* Initialise columns k+1:n to columns of the unit matrix */
-
- i__1 = *n;
- for (j = *k + 1; j <= i__1; ++j) {
- i__2 = *m;
- for (l = 1; l <= i__2; ++l) {
- a[l + j * a_dim1] = 0.;
-/* L10: */
- }
- a[j + j * a_dim1] = 1.;
-/* L20: */
- }
-
- for (i__ = *k; i__ >= 1; --i__) {
-
-/* Apply H(i) to A(i:m,i:n) from the left */
-
- if (i__ < *n) {
- a[i__ + i__ * a_dim1] = 1.;
- i__1 = *m - i__ + 1;
- i__2 = *n - i__;
- dlarf_("Left", &i__1, &i__2, &a[i__ + i__ * a_dim1], &c__1, &tau[
- i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
- }
- if (i__ < *m) {
- i__1 = *m - i__;
- d__1 = -tau[i__];
- dscal_(&i__1, &d__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
- }
- a[i__ + i__ * a_dim1] = 1. - tau[i__];
-
-/* Set A(1:i-1,i) to zero */
-
- i__1 = i__ - 1;
- for (l = 1; l <= i__1; ++l) {
- a[l + i__ * a_dim1] = 0.;
-/* L30: */
- }
-/* L40: */
- }
- return 0;
-
-/* End of DORG2R */
-
-} /* dorg2r_ */
-
-/* Subroutine */ int dorgbr_(char *vect, integer *m, integer *n, integer *k,
- doublereal *a, integer *lda, doublereal *tau, doublereal *work,
- integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, j, nb, mn;
- extern logical lsame_(char *, char *);
- static integer iinfo;
- static logical wantq;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int dorglq_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *);
- static integer lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DORGBR generates one of the real orthogonal matrices Q or P**T
- determined by DGEBRD when reducing a real matrix A to bidiagonal
- form: A = Q * B * P**T. Q and P**T are defined as products of
- elementary reflectors H(i) or G(i) respectively.
-
- If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
- is of order M:
- if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
- columns of Q, where m >= n >= k;
- if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
- M-by-M matrix.
-
- If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
- is of order N:
- if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
- rows of P**T, where n >= m >= k;
- if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
- an N-by-N matrix.
-
- Arguments
- =========
-
- VECT (input) CHARACTER*1
- Specifies whether the matrix Q or the matrix P**T is
- required, as defined in the transformation applied by DGEBRD:
- = 'Q': generate Q;
- = 'P': generate P**T.
-
- M (input) INTEGER
- The number of rows of the matrix Q or P**T to be returned.
- M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix Q or P**T to be returned.
- N >= 0.
- If VECT = 'Q', M >= N >= min(M,K);
- if VECT = 'P', N >= M >= min(N,K).
-
- K (input) INTEGER
- If VECT = 'Q', the number of columns in the original M-by-K
- matrix reduced by DGEBRD.
- If VECT = 'P', the number of rows in the original K-by-N
- matrix reduced by DGEBRD.
- K >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the vectors which define the elementary reflectors,
- as returned by DGEBRD.
- On exit, the M-by-N matrix Q or P**T.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- TAU (input) DOUBLE PRECISION array, dimension
- (min(M,K)) if VECT = 'Q'
- (min(N,K)) if VECT = 'P'
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i) or G(i), which determines Q or P**T, as
- returned by DGEBRD in its array argument TAUQ or TAUP.
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,min(M,N)).
- For optimum performance LWORK >= min(M,N)*NB, where NB
- is the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- wantq = lsame_(vect, "Q");
- mn = min(*m,*n);
- lquery = *lwork == -1;
- if ((! wantq && ! lsame_(vect, "P"))) {
- *info = -1;
- } else if (*m < 0) {
- *info = -2;
- } else if (*n < 0 || (wantq && (*n > *m || *n < min(*m,*k))) || (! wantq
- && (*m > *n || *m < min(*n,*k)))) {
- *info = -3;
- } else if (*k < 0) {
- *info = -4;
- } else if (*lda < max(1,*m)) {
- *info = -6;
- } else if ((*lwork < max(1,mn) && ! lquery)) {
- *info = -9;
- }
-
- if (*info == 0) {
- if (wantq) {
- nb = ilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1, (ftnlen)6, (
- ftnlen)1);
- } else {
- nb = ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1, (ftnlen)6, (
- ftnlen)1);
- }
- lwkopt = max(1,mn) * nb;
- work[1] = (doublereal) lwkopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORGBR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- work[1] = 1.;
- return 0;
- }
-
- if (wantq) {
-
-/*
- Form Q, determined by a call to DGEBRD to reduce an m-by-k
- matrix
-*/
-
- if (*m >= *k) {
-
-/* If m >= k, assume m >= n >= k */
-
- dorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
- iinfo);
-
- } else {
-
-/*
- If m < k, assume m = n
-
- Shift the vectors which define the elementary reflectors one
- column to the right, and set the first row and column of Q
- to those of the unit matrix
-*/
-
- for (j = *m; j >= 2; --j) {
- a[j * a_dim1 + 1] = 0.;
- i__1 = *m;
- for (i__ = j + 1; i__ <= i__1; ++i__) {
- a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1];
-/* L10: */
- }
-/* L20: */
- }
- a[a_dim1 + 1] = 1.;
- i__1 = *m;
- for (i__ = 2; i__ <= i__1; ++i__) {
- a[i__ + a_dim1] = 0.;
-/* L30: */
- }
- if (*m > 1) {
-
-/* Form Q(2:m,2:m) */
-
- i__1 = *m - 1;
- i__2 = *m - 1;
- i__3 = *m - 1;
- dorgqr_(&i__1, &i__2, &i__3, &a[((a_dim1) << (1)) + 2], lda, &
- tau[1], &work[1], lwork, &iinfo);
- }
- }
- } else {
-
-/*
- Form P', determined by a call to DGEBRD to reduce a k-by-n
- matrix
-*/
-
- if (*k < *n) {
-
-/* If k < n, assume k <= m <= n */
-
- dorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
- iinfo);
-
- } else {
-
-/*
- If k >= n, assume m = n
-
- Shift the vectors which define the elementary reflectors one
- row downward, and set the first row and column of P' to
- those of the unit matrix
-*/
-
- a[a_dim1 + 1] = 1.;
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- a[i__ + a_dim1] = 0.;
-/* L40: */
- }
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- for (i__ = j - 1; i__ >= 2; --i__) {
- a[i__ + j * a_dim1] = a[i__ - 1 + j * a_dim1];
-/* L50: */
- }
- a[j * a_dim1 + 1] = 0.;
-/* L60: */
- }
- if (*n > 1) {
-
-/* Form P'(2:n,2:n) */
-
- i__1 = *n - 1;
- i__2 = *n - 1;
- i__3 = *n - 1;
- dorglq_(&i__1, &i__2, &i__3, &a[((a_dim1) << (1)) + 2], lda, &
- tau[1], &work[1], lwork, &iinfo);
- }
- }
- }
- work[1] = (doublereal) lwkopt;
- return 0;
-
-/* End of DORGBR */
-
-} /* dorgbr_ */
-
-/* Subroutine */ int dorghr_(integer *n, integer *ilo, integer *ihi,
- doublereal *a, integer *lda, doublereal *tau, doublereal *work,
- integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, j, nb, nh, iinfo;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *);
- static integer lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DORGHR generates a real orthogonal matrix Q which is defined as the
- product of IHI-ILO elementary reflectors of order N, as returned by
- DGEHRD:
-
- Q = H(ilo) H(ilo+1) . . . H(ihi-1).
-
- Arguments
- =========
-
- N (input) INTEGER
- The order of the matrix Q. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- ILO and IHI must have the same values as in the previous call
- of DGEHRD. Q is equal to the unit matrix except in the
- submatrix Q(ilo+1:ihi,ilo+1:ihi).
- 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the vectors which define the elementary reflectors,
- as returned by DGEHRD.
- On exit, the N-by-N orthogonal matrix Q.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- TAU (input) DOUBLE PRECISION array, dimension (N-1)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DGEHRD.
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= IHI-ILO.
- For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
- the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- nh = *ihi - *ilo;
- lquery = *lwork == -1;
- if (*n < 0) {
- *info = -1;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -2;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if ((*lwork < max(1,nh) && ! lquery)) {
- *info = -8;
- }
-
- if (*info == 0) {
- nb = ilaenv_(&c__1, "DORGQR", " ", &nh, &nh, &nh, &c_n1, (ftnlen)6, (
- ftnlen)1);
- lwkopt = max(1,nh) * nb;
- work[1] = (doublereal) lwkopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORGHR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- work[1] = 1.;
- return 0;
- }
-
-/*
- Shift the vectors which define the elementary reflectors one
- column to the right, and set the first ilo and the last n-ihi
- rows and columns to those of the unit matrix
-*/
-
- i__1 = *ilo + 1;
- for (j = *ihi; j >= i__1; --j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = 0.;
-/* L10: */
- }
- i__2 = *ihi;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1];
-/* L20: */
- }
- i__2 = *n;
- for (i__ = *ihi + 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = 0.;
-/* L30: */
- }
-/* L40: */
- }
- i__1 = *ilo;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = 0.;
-/* L50: */
- }
- a[j + j * a_dim1] = 1.;
-/* L60: */
- }
- i__1 = *n;
- for (j = *ihi + 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = 0.;
-/* L70: */
- }
- a[j + j * a_dim1] = 1.;
-/* L80: */
- }
-
- if (nh > 0) {
-
-/* Generate Q(ilo+1:ihi,ilo+1:ihi) */
-
- dorgqr_(&nh, &nh, &nh, &a[*ilo + 1 + (*ilo + 1) * a_dim1], lda, &tau[*
- ilo], &work[1], lwork, &iinfo);
- }
- work[1] = (doublereal) lwkopt;
- return 0;
-
-/* End of DORGHR */
-
-} /* dorghr_ */
-
-/* Subroutine */ int dorgl2_(integer *m, integer *n, integer *k, doublereal *
- a, integer *lda, doublereal *tau, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal d__1;
-
- /* Local variables */
- static integer i__, j, l;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *), dlarf_(char *, integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DORGL2 generates an m by n real matrix Q with orthonormal rows,
- which is defined as the first m rows of a product of k elementary
- reflectors of order n
-
- Q = H(k) . . . H(2) H(1)
-
- as returned by DGELQF.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix Q. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix Q. N >= M.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines the
- matrix Q. M >= K >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the i-th row must contain the vector which defines
- the elementary reflector H(i), for i = 1,2,...,k, as returned
- by DGELQF in the first k rows of its array argument A.
- On exit, the m-by-n matrix Q.
-
- LDA (input) INTEGER
- The first dimension of the array A. LDA >= max(1,M).
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DGELQF.
-
- WORK (workspace) DOUBLE PRECISION array, dimension (M)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument has an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < *m) {
- *info = -2;
- } else if (*k < 0 || *k > *m) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORGL2", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m <= 0) {
- return 0;
- }
-
- if (*k < *m) {
-
-/* Initialise rows k+1:m to rows of the unit matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (l = *k + 1; l <= i__2; ++l) {
- a[l + j * a_dim1] = 0.;
-/* L10: */
- }
- if ((j > *k && j <= *m)) {
- a[j + j * a_dim1] = 1.;
- }
-/* L20: */
- }
- }
-
- for (i__ = *k; i__ >= 1; --i__) {
-
-/* Apply H(i) to A(i:m,i:n) from the right */
-
- if (i__ < *n) {
- if (i__ < *m) {
- a[i__ + i__ * a_dim1] = 1.;
- i__1 = *m - i__;
- i__2 = *n - i__ + 1;
- dlarf_("Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &
- tau[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
- }
- i__1 = *n - i__;
- d__1 = -tau[i__];
- dscal_(&i__1, &d__1, &a[i__ + (i__ + 1) * a_dim1], lda);
- }
- a[i__ + i__ * a_dim1] = 1. - tau[i__];
-
-/* Set A(i,1:i-1) to zero */
-
- i__1 = i__ - 1;
- for (l = 1; l <= i__1; ++l) {
- a[i__ + l * a_dim1] = 0.;
-/* L30: */
- }
-/* L40: */
- }
- return 0;
-
-/* End of DORGL2 */
-
-} /* dorgl2_ */
-
-/* Subroutine */ int dorglq_(integer *m, integer *n, integer *k, doublereal *
- a, integer *lda, doublereal *tau, doublereal *work, integer *lwork,
- integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
- extern /* Subroutine */ int dorgl2_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *),
- dlarfb_(char *, char *, char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer ldwork, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DORGLQ generates an M-by-N real matrix Q with orthonormal rows,
- which is defined as the first M rows of a product of K elementary
- reflectors of order N
-
- Q = H(k) . . . H(2) H(1)
-
- as returned by DGELQF.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix Q. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix Q. N >= M.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines the
- matrix Q. M >= K >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the i-th row must contain the vector which defines
- the elementary reflector H(i), for i = 1,2,...,k, as returned
- by DGELQF in the first k rows of its array argument A.
- On exit, the M-by-N matrix Q.
-
- LDA (input) INTEGER
- The first dimension of the array A. LDA >= max(1,M).
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DGELQF.
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,M).
- For optimum performance LWORK >= M*NB, where NB is
- the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument has an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- nb = ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1);
- lwkopt = max(1,*m) * nb;
- work[1] = (doublereal) lwkopt;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < *m) {
- *info = -2;
- } else if (*k < 0 || *k > *m) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- } else if ((*lwork < max(1,*m) && ! lquery)) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORGLQ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m <= 0) {
- work[1] = 1.;
- return 0;
- }
-
- nbmin = 2;
- nx = 0;
- iws = *m;
- if ((nb > 1 && nb < *k)) {
-
-/*
- Determine when to cross over from blocked to unblocked code.
-
- Computing MAX
-*/
- i__1 = 0, i__2 = ilaenv_(&c__3, "DORGLQ", " ", m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < *k) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- ldwork = *m;
- iws = ldwork * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: reduce NB and
- determine the minimum value of NB.
-*/
-
- nb = *lwork / ldwork;
-/* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "DORGLQ", " ", m, n, k, &c_n1,
- (ftnlen)6, (ftnlen)1);
- nbmin = max(i__1,i__2);
- }
- }
- }
-
- if (((nb >= nbmin && nb < *k) && nx < *k)) {
-
-/*
- Use blocked code after the last block.
- The first kk rows are handled by the block method.
-*/
-
- ki = (*k - nx - 1) / nb * nb;
-/* Computing MIN */
- i__1 = *k, i__2 = ki + nb;
- kk = min(i__1,i__2);
-
-/* Set A(kk+1:m,1:kk) to zero. */
-
- i__1 = kk;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = kk + 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = 0.;
-/* L10: */
- }
-/* L20: */
- }
- } else {
- kk = 0;
- }
-
-/* Use unblocked code for the last or only block. */
-
- if (kk < *m) {
- i__1 = *m - kk;
- i__2 = *n - kk;
- i__3 = *k - kk;
- dorgl2_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
- tau[kk + 1], &work[1], &iinfo);
- }
-
- if (kk > 0) {
-
-/* Use blocked code */
-
- i__1 = -nb;
- for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
-/* Computing MIN */
- i__2 = nb, i__3 = *k - i__ + 1;
- ib = min(i__2,i__3);
- if (i__ + ib <= *m) {
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__2 = *n - i__ + 1;
- dlarft_("Forward", "Rowwise", &i__2, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], &work[1], &ldwork);
-
-/* Apply H' to A(i+ib:m,i:n) from the right */
-
- i__2 = *m - i__ - ib + 1;
- i__3 = *n - i__ + 1;
- dlarfb_("Right", "Transpose", "Forward", "Rowwise", &i__2, &
- i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
- ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib +
- 1], &ldwork);
- }
-
-/* Apply H' to columns i:n of current block */
-
- i__2 = *n - i__ + 1;
- dorgl2_(&ib, &i__2, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
- work[1], &iinfo);
-
-/* Set columns 1:i-1 of current block to zero */
-
- i__2 = i__ - 1;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + ib - 1;
- for (l = i__; l <= i__3; ++l) {
- a[l + j * a_dim1] = 0.;
-/* L30: */
- }
-/* L40: */
- }
-/* L50: */
- }
- }
-
- work[1] = (doublereal) iws;
- return 0;
-
-/* End of DORGLQ */
-
-} /* dorglq_ */
-
-/* Subroutine */ int dorgqr_(integer *m, integer *n, integer *k, doublereal *
- a, integer *lda, doublereal *tau, doublereal *work, integer *lwork,
- integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
- extern /* Subroutine */ int dorg2r_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *),
- dlarfb_(char *, char *, char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer ldwork, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DORGQR generates an M-by-N real matrix Q with orthonormal columns,
- which is defined as the first N columns of a product of K elementary
- reflectors of order M
-
- Q = H(1) H(2) . . . H(k)
-
- as returned by DGEQRF.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix Q. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix Q. M >= N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines the
- matrix Q. N >= K >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the i-th column must contain the vector which
- defines the elementary reflector H(i), for i = 1,2,...,k, as
- returned by DGEQRF in the first k columns of its array
- argument A.
- On exit, the M-by-N matrix Q.
-
- LDA (input) INTEGER
- The first dimension of the array A. LDA >= max(1,M).
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DGEQRF.
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,N).
- For optimum performance LWORK >= N*NB, where NB is the
- optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument has an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- nb = ilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1);
- lwkopt = max(1,*n) * nb;
- work[1] = (doublereal) lwkopt;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0 || *n > *m) {
- *info = -2;
- } else if (*k < 0 || *k > *n) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- } else if ((*lwork < max(1,*n) && ! lquery)) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORGQR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n <= 0) {
- work[1] = 1.;
- return 0;
- }
-
- nbmin = 2;
- nx = 0;
- iws = *n;
- if ((nb > 1 && nb < *k)) {
-
-/*
- Determine when to cross over from blocked to unblocked code.
-
- Computing MAX
-*/
- i__1 = 0, i__2 = ilaenv_(&c__3, "DORGQR", " ", m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < *k) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- ldwork = *n;
- iws = ldwork * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: reduce NB and
- determine the minimum value of NB.
-*/
-
- nb = *lwork / ldwork;
-/* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "DORGQR", " ", m, n, k, &c_n1,
- (ftnlen)6, (ftnlen)1);
- nbmin = max(i__1,i__2);
- }
- }
- }
-
- if (((nb >= nbmin && nb < *k) && nx < *k)) {
-
-/*
- Use blocked code after the last block.
- The first kk columns are handled by the block method.
-*/
-
- ki = (*k - nx - 1) / nb * nb;
-/* Computing MIN */
- i__1 = *k, i__2 = ki + nb;
- kk = min(i__1,i__2);
-
-/* Set A(1:kk,kk+1:n) to zero. */
-
- i__1 = *n;
- for (j = kk + 1; j <= i__1; ++j) {
- i__2 = kk;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = 0.;
-/* L10: */
- }
-/* L20: */
- }
- } else {
- kk = 0;
- }
-
-/* Use unblocked code for the last or only block. */
-
- if (kk < *n) {
- i__1 = *m - kk;
- i__2 = *n - kk;
- i__3 = *k - kk;
- dorg2r_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
- tau[kk + 1], &work[1], &iinfo);
- }
-
- if (kk > 0) {
-
-/* Use blocked code */
-
- i__1 = -nb;
- for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
-/* Computing MIN */
- i__2 = nb, i__3 = *k - i__ + 1;
- ib = min(i__2,i__3);
- if (i__ + ib <= *n) {
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__2 = *m - i__ + 1;
- dlarft_("Forward", "Columnwise", &i__2, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], &work[1], &ldwork);
-
-/* Apply H to A(i:m,i+ib:n) from the left */
-
- i__2 = *m - i__ + 1;
- i__3 = *n - i__ - ib + 1;
- dlarfb_("Left", "No transpose", "Forward", "Columnwise", &
- i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[
- 1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &
- work[ib + 1], &ldwork);
- }
-
-/* Apply H to rows i:m of current block */
-
- i__2 = *m - i__ + 1;
- dorg2r_(&i__2, &ib, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
- work[1], &iinfo);
-
-/* Set rows 1:i-1 of current block to zero */
-
- i__2 = i__ + ib - 1;
- for (j = i__; j <= i__2; ++j) {
- i__3 = i__ - 1;
- for (l = 1; l <= i__3; ++l) {
- a[l + j * a_dim1] = 0.;
-/* L30: */
- }
-/* L40: */
- }
-/* L50: */
- }
- }
-
- work[1] = (doublereal) iws;
- return 0;
-
-/* End of DORGQR */
-
-} /* dorgqr_ */
-
-/* Subroutine */ int dorm2l_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
- c__, integer *ldc, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, i1, i2, i3, mi, ni, nq;
- static doublereal aii;
- static logical left;
- extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical notran;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DORM2L overwrites the general real m by n matrix C with
-
- Q * C if SIDE = 'L' and TRANS = 'N', or
-
- Q'* C if SIDE = 'L' and TRANS = 'T', or
-
- C * Q if SIDE = 'R' and TRANS = 'N', or
-
- C * Q' if SIDE = 'R' and TRANS = 'T',
-
- where Q is a real orthogonal matrix defined as the product of k
- elementary reflectors
-
- Q = H(k) . . . H(2) H(1)
-
- as returned by DGEQLF. Q is of order m if SIDE = 'L' and of order n
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q' from the Left
- = 'R': apply Q or Q' from the Right
-
- TRANS (input) CHARACTER*1
- = 'N': apply Q (No transpose)
- = 'T': apply Q' (Transpose)
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,K)
- The i-th column must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- DGEQLF in the last k columns of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- If SIDE = 'L', LDA >= max(1,M);
- if SIDE = 'R', LDA >= max(1,N).
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DGEQLF.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the m by n matrix C.
- On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace) DOUBLE PRECISION array, dimension
- (N) if SIDE = 'L',
- (M) if SIDE = 'R'
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
-
-/* NQ is the order of Q */
-
- if (left) {
- nq = *m;
- } else {
- nq = *n;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "T"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,nq)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORM2L", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- return 0;
- }
-
- if ((left && notran) || (! left && ! notran)) {
- i1 = 1;
- i2 = *k;
- i3 = 1;
- } else {
- i1 = *k;
- i2 = 1;
- i3 = -1;
- }
-
- if (left) {
- ni = *n;
- } else {
- mi = *m;
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- if (left) {
-
-/* H(i) is applied to C(1:m-k+i,1:n) */
-
- mi = *m - *k + i__;
- } else {
-
-/* H(i) is applied to C(1:m,1:n-k+i) */
-
- ni = *n - *k + i__;
- }
-
-/* Apply H(i) */
-
- aii = a[nq - *k + i__ + i__ * a_dim1];
- a[nq - *k + i__ + i__ * a_dim1] = 1.;
- dlarf_(side, &mi, &ni, &a[i__ * a_dim1 + 1], &c__1, &tau[i__], &c__[
- c_offset], ldc, &work[1]);
- a[nq - *k + i__ + i__ * a_dim1] = aii;
-/* L10: */
- }
- return 0;
-
-/* End of DORM2L */
-
-} /* dorm2l_ */
-
-/* Subroutine */ int dorm2r_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
- c__, integer *ldc, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, i1, i2, i3, ic, jc, mi, ni, nq;
- static doublereal aii;
- static logical left;
- extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical notran;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DORM2R overwrites the general real m by n matrix C with
-
- Q * C if SIDE = 'L' and TRANS = 'N', or
-
- Q'* C if SIDE = 'L' and TRANS = 'T', or
-
- C * Q if SIDE = 'R' and TRANS = 'N', or
-
- C * Q' if SIDE = 'R' and TRANS = 'T',
-
- where Q is a real orthogonal matrix defined as the product of k
- elementary reflectors
-
- Q = H(1) H(2) . . . H(k)
-
- as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q' from the Left
- = 'R': apply Q or Q' from the Right
-
- TRANS (input) CHARACTER*1
- = 'N': apply Q (No transpose)
- = 'T': apply Q' (Transpose)
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,K)
- The i-th column must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- DGEQRF in the first k columns of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- If SIDE = 'L', LDA >= max(1,M);
- if SIDE = 'R', LDA >= max(1,N).
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DGEQRF.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the m by n matrix C.
- On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace) DOUBLE PRECISION array, dimension
- (N) if SIDE = 'L',
- (M) if SIDE = 'R'
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
-
-/* NQ is the order of Q */
-
- if (left) {
- nq = *m;
- } else {
- nq = *n;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "T"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,nq)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORM2R", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- return 0;
- }
-
- if ((left && ! notran) || (! left && notran)) {
- i1 = 1;
- i2 = *k;
- i3 = 1;
- } else {
- i1 = *k;
- i2 = 1;
- i3 = -1;
- }
-
- if (left) {
- ni = *n;
- jc = 1;
- } else {
- mi = *m;
- ic = 1;
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- if (left) {
-
-/* H(i) is applied to C(i:m,1:n) */
-
- mi = *m - i__ + 1;
- ic = i__;
- } else {
-
-/* H(i) is applied to C(1:m,i:n) */
-
- ni = *n - i__ + 1;
- jc = i__;
- }
-
-/* Apply H(i) */
-
- aii = a[i__ + i__ * a_dim1];
- a[i__ + i__ * a_dim1] = 1.;
- dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], &c__1, &tau[i__], &c__[
- ic + jc * c_dim1], ldc, &work[1]);
- a[i__ + i__ * a_dim1] = aii;
-/* L10: */
- }
- return 0;
-
-/* End of DORM2R */
-
-} /* dorm2r_ */
-
-/* Subroutine */ int dormbr_(char *vect, char *side, char *trans, integer *m,
- integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau,
- doublereal *c__, integer *ldc, doublereal *work, integer *lwork,
- integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2];
- char ch__1[2];
-
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i1, i2, nb, mi, ni, nq, nw;
- static logical left;
- extern logical lsame_(char *, char *);
- static integer iinfo;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- static logical notran;
- extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- static logical applyq;
- static char transt[1];
- static integer lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
- with
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': Q * C C * Q
- TRANS = 'T': Q**T * C C * Q**T
-
- If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
- with
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': P * C C * P
- TRANS = 'T': P**T * C C * P**T
-
- Here Q and P**T are the orthogonal matrices determined by DGEBRD when
- reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
- P**T are defined as products of elementary reflectors H(i) and G(i)
- respectively.
-
- Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
- order of the orthogonal matrix Q or P**T that is applied.
-
- If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
- if nq >= k, Q = H(1) H(2) . . . H(k);
- if nq < k, Q = H(1) H(2) . . . H(nq-1).
-
- If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
- if k < nq, P = G(1) G(2) . . . G(k);
- if k >= nq, P = G(1) G(2) . . . G(nq-1).
-
- Arguments
- =========
-
- VECT (input) CHARACTER*1
- = 'Q': apply Q or Q**T;
- = 'P': apply P or P**T.
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q, Q**T, P or P**T from the Left;
- = 'R': apply Q, Q**T, P or P**T from the Right.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q or P;
- = 'T': Transpose, apply Q**T or P**T.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- If VECT = 'Q', the number of columns in the original
- matrix reduced by DGEBRD.
- If VECT = 'P', the number of rows in the original
- matrix reduced by DGEBRD.
- K >= 0.
-
- A (input) DOUBLE PRECISION array, dimension
- (LDA,min(nq,K)) if VECT = 'Q'
- (LDA,nq) if VECT = 'P'
- The vectors which define the elementary reflectors H(i) and
- G(i), whose products determine the matrices Q and P, as
- returned by DGEBRD.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- If VECT = 'Q', LDA >= max(1,nq);
- if VECT = 'P', LDA >= max(1,min(nq,K)).
-
- TAU (input) DOUBLE PRECISION array, dimension (min(nq,K))
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i) or G(i) which determines Q or P, as returned
- by DGEBRD in the array argument TAUQ or TAUP.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
- or P*C or P**T*C or C*P or C*P**T.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If SIDE = 'L', LWORK >= max(1,N);
- if SIDE = 'R', LWORK >= max(1,M).
- For optimum performance LWORK >= N*NB if SIDE = 'L', and
- LWORK >= M*NB if SIDE = 'R', where NB is the optimal
- blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- applyq = lsame_(vect, "Q");
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
- lquery = *lwork == -1;
-
-/* NQ is the order of Q or P and NW is the minimum dimension of WORK */
-
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if ((! applyq && ! lsame_(vect, "P"))) {
- *info = -1;
- } else if ((! left && ! lsame_(side, "R"))) {
- *info = -2;
- } else if ((! notran && ! lsame_(trans, "T"))) {
- *info = -3;
- } else if (*m < 0) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*k < 0) {
- *info = -6;
- } else /* if(complicated condition) */ {
-/* Computing MAX */
- i__1 = 1, i__2 = min(nq,*k);
- if ((applyq && *lda < max(1,nq)) || (! applyq && *lda < max(i__1,i__2)
- )) {
- *info = -8;
- } else if (*ldc < max(1,*m)) {
- *info = -11;
- } else if ((*lwork < max(1,nw) && ! lquery)) {
- *info = -13;
- }
- }
-
- if (*info == 0) {
- if (applyq) {
- if (left) {
-/* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *m - 1;
- i__2 = *m - 1;
- nb = ilaenv_(&c__1, "DORMQR", ch__1, &i__1, n, &i__2, &c_n1, (
- ftnlen)6, (ftnlen)2);
- } else {
-/* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *n - 1;
- i__2 = *n - 1;
- nb = ilaenv_(&c__1, "DORMQR", ch__1, m, &i__1, &i__2, &c_n1, (
- ftnlen)6, (ftnlen)2);
- }
- } else {
- if (left) {
-/* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *m - 1;
- i__2 = *m - 1;
- nb = ilaenv_(&c__1, "DORMLQ", ch__1, &i__1, n, &i__2, &c_n1, (
- ftnlen)6, (ftnlen)2);
- } else {
-/* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *n - 1;
- i__2 = *n - 1;
- nb = ilaenv_(&c__1, "DORMLQ", ch__1, m, &i__1, &i__2, &c_n1, (
- ftnlen)6, (ftnlen)2);
- }
- }
- lwkopt = max(1,nw) * nb;
- work[1] = (doublereal) lwkopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORMBR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- work[1] = 1.;
- if (*m == 0 || *n == 0) {
- return 0;
- }
-
- if (applyq) {
-
-/* Apply Q */
-
- if (nq >= *k) {
-
-/* Q was determined by a call to DGEBRD with nq >= k */
-
- dormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], lwork, &iinfo);
- } else if (nq > 1) {
-
-/* Q was determined by a call to DGEBRD with nq < k */
-
- if (left) {
- mi = *m - 1;
- ni = *n;
- i1 = 2;
- i2 = 1;
- } else {
- mi = *m;
- ni = *n - 1;
- i1 = 1;
- i2 = 2;
- }
- i__1 = nq - 1;
- dormqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1]
- , &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
- }
- } else {
-
-/* Apply P */
-
- if (notran) {
- *(unsigned char *)transt = 'T';
- } else {
- *(unsigned char *)transt = 'N';
- }
- if (nq > *k) {
-
-/* P was determined by a call to DGEBRD with nq > k */
-
- dormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], lwork, &iinfo);
- } else if (nq > 1) {
-
-/* P was determined by a call to DGEBRD with nq <= k */
-
- if (left) {
- mi = *m - 1;
- ni = *n;
- i1 = 2;
- i2 = 1;
- } else {
- mi = *m;
- ni = *n - 1;
- i1 = 1;
- i2 = 2;
- }
- i__1 = nq - 1;
- dormlq_(side, transt, &mi, &ni, &i__1, &a[((a_dim1) << (1)) + 1],
- lda, &tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1],
- lwork, &iinfo);
- }
- }
- work[1] = (doublereal) lwkopt;
- return 0;
-
-/* End of DORMBR */
-
-} /* dormbr_ */
-
-/* Subroutine */ int dorml2_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
- c__, integer *ldc, doublereal *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
-
- /* Local variables */
- static integer i__, i1, i2, i3, ic, jc, mi, ni, nq;
- static doublereal aii;
- static logical left;
- extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static logical notran;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DORML2 overwrites the general real m by n matrix C with
-
- Q * C if SIDE = 'L' and TRANS = 'N', or
-
- Q'* C if SIDE = 'L' and TRANS = 'T', or
-
- C * Q if SIDE = 'R' and TRANS = 'N', or
-
- C * Q' if SIDE = 'R' and TRANS = 'T',
-
- where Q is a real orthogonal matrix defined as the product of k
- elementary reflectors
-
- Q = H(k) . . . H(2) H(1)
-
- as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q' from the Left
- = 'R': apply Q or Q' from the Right
-
- TRANS (input) CHARACTER*1
- = 'N': apply Q (No transpose)
- = 'T': apply Q' (Transpose)
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) DOUBLE PRECISION array, dimension
- (LDA,M) if SIDE = 'L',
- (LDA,N) if SIDE = 'R'
- The i-th row must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- DGELQF in the first k rows of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,K).
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DGELQF.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the m by n matrix C.
- On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace) DOUBLE PRECISION array, dimension
- (N) if SIDE = 'L',
- (M) if SIDE = 'R'
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
-
-/* NQ is the order of Q */
-
- if (left) {
- nq = *m;
- } else {
- nq = *n;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "T"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,*k)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORML2", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- return 0;
- }
-
- if ((left && notran) || (! left && ! notran)) {
- i1 = 1;
- i2 = *k;
- i3 = 1;
- } else {
- i1 = *k;
- i2 = 1;
- i3 = -1;
- }
-
- if (left) {
- ni = *n;
- jc = 1;
- } else {
- mi = *m;
- ic = 1;
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- if (left) {
-
-/* H(i) is applied to C(i:m,1:n) */
-
- mi = *m - i__ + 1;
- ic = i__;
- } else {
-
-/* H(i) is applied to C(1:m,i:n) */
-
- ni = *n - i__ + 1;
- jc = i__;
- }
-
-/* Apply H(i) */
-
- aii = a[i__ + i__ * a_dim1];
- a[i__ + i__ * a_dim1] = 1.;
- dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], lda, &tau[i__], &c__[
- ic + jc * c_dim1], ldc, &work[1]);
- a[i__ + i__ * a_dim1] = aii;
-/* L10: */
- }
- return 0;
-
-/* End of DORML2 */
-
-} /* dorml2_ */
-
-/* Subroutine */ int dormlq_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
- c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
- i__5;
- char ch__1[2];
-
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i__;
- static doublereal t[4160] /* was [65][64] */;
- static integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
- static logical left;
- extern logical lsame_(char *, char *);
- static integer nbmin, iinfo;
- extern /* Subroutine */ int dorml2_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *), dlarfb_(char
- *, char *, char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
- *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static logical notran;
- static integer ldwork;
- static char transt[1];
- static integer lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DORMLQ overwrites the general real M-by-N matrix C with
-
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': Q * C C * Q
- TRANS = 'T': Q**T * C C * Q**T
-
- where Q is a real orthogonal matrix defined as the product of k
- elementary reflectors
-
- Q = H(k) . . . H(2) H(1)
-
- as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q**T from the Left;
- = 'R': apply Q or Q**T from the Right.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q;
- = 'T': Transpose, apply Q**T.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) DOUBLE PRECISION array, dimension
- (LDA,M) if SIDE = 'L',
- (LDA,N) if SIDE = 'R'
- The i-th row must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- DGELQF in the first k rows of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,K).
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DGELQF.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If SIDE = 'L', LWORK >= max(1,N);
- if SIDE = 'R', LWORK >= max(1,M).
- For optimum performance LWORK >= N*NB if SIDE = 'L', and
- LWORK >= M*NB if SIDE = 'R', where NB is the optimal
- blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
- lquery = *lwork == -1;
-
-/* NQ is the order of Q and NW is the minimum dimension of WORK */
-
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "T"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,*k)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- } else if ((*lwork < max(1,nw) && ! lquery)) {
- *info = -12;
- }
-
- if (*info == 0) {
-
-/*
- Determine the block size. NB may be at most NBMAX, where NBMAX
- is used to define the local array T.
-
- Computing MIN
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 64, i__2 = ilaenv_(&c__1, "DORMLQ", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nb = min(i__1,i__2);
- lwkopt = max(1,nw) * nb;
- work[1] = (doublereal) lwkopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORMLQ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- work[1] = 1.;
- return 0;
- }
-
- nbmin = 2;
- ldwork = nw;
- if ((nb > 1 && nb < *k)) {
- iws = nw * nb;
- if (*lwork < iws) {
- nb = *lwork / ldwork;
-/*
- Computing MAX
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 2, i__2 = ilaenv_(&c__2, "DORMLQ", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nbmin = max(i__1,i__2);
- }
- } else {
- iws = nw;
- }
-
- if (nb < nbmin || nb >= *k) {
-
-/* Use unblocked code */
-
- dorml2_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], &iinfo);
- } else {
-
-/* Use blocked code */
-
- if ((left && notran) || (! left && ! notran)) {
- i1 = 1;
- i2 = *k;
- i3 = nb;
- } else {
- i1 = (*k - 1) / nb * nb + 1;
- i2 = 1;
- i3 = -nb;
- }
-
- if (left) {
- ni = *n;
- jc = 1;
- } else {
- mi = *m;
- ic = 1;
- }
-
- if (notran) {
- *(unsigned char *)transt = 'T';
- } else {
- *(unsigned char *)transt = 'N';
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__4 = nb, i__5 = *k - i__ + 1;
- ib = min(i__4,i__5);
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__4 = nq - i__ + 1;
- dlarft_("Forward", "Rowwise", &i__4, &ib, &a[i__ + i__ * a_dim1],
- lda, &tau[i__], t, &c__65);
- if (left) {
-
-/* H or H' is applied to C(i:m,1:n) */
-
- mi = *m - i__ + 1;
- ic = i__;
- } else {
-
-/* H or H' is applied to C(1:m,i:n) */
-
- ni = *n - i__ + 1;
- jc = i__;
- }
-
-/* Apply H or H' */
-
- dlarfb_(side, transt, "Forward", "Rowwise", &mi, &ni, &ib, &a[i__
- + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc * c_dim1],
- ldc, &work[1], &ldwork);
-/* L10: */
- }
- }
- work[1] = (doublereal) lwkopt;
- return 0;
-
-/* End of DORMLQ */
-
-} /* dormlq_ */
-
-/* Subroutine */ int dormql_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
- c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
- i__5;
- char ch__1[2];
-
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i__;
- static doublereal t[4160] /* was [65][64] */;
- static integer i1, i2, i3, ib, nb, mi, ni, nq, nw, iws;
- static logical left;
- extern logical lsame_(char *, char *);
- static integer nbmin, iinfo;
- extern /* Subroutine */ int dorm2l_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *), dlarfb_(char
- *, char *, char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
- *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static logical notran;
- static integer ldwork, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DORMQL overwrites the general real M-by-N matrix C with
-
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': Q * C C * Q
- TRANS = 'T': Q**T * C C * Q**T
-
- where Q is a real orthogonal matrix defined as the product of k
- elementary reflectors
-
- Q = H(k) . . . H(2) H(1)
-
- as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q**T from the Left;
- = 'R': apply Q or Q**T from the Right.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q;
- = 'T': Transpose, apply Q**T.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,K)
- The i-th column must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- DGEQLF in the last k columns of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- If SIDE = 'L', LDA >= max(1,M);
- if SIDE = 'R', LDA >= max(1,N).
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DGEQLF.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If SIDE = 'L', LWORK >= max(1,N);
- if SIDE = 'R', LWORK >= max(1,M).
- For optimum performance LWORK >= N*NB if SIDE = 'L', and
- LWORK >= M*NB if SIDE = 'R', where NB is the optimal
- blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
- lquery = *lwork == -1;
-
-/* NQ is the order of Q and NW is the minimum dimension of WORK */
-
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "T"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,nq)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- } else if ((*lwork < max(1,nw) && ! lquery)) {
- *info = -12;
- }
-
- if (*info == 0) {
-
-/*
- Determine the block size. NB may be at most NBMAX, where NBMAX
- is used to define the local array T.
-
- Computing MIN
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 64, i__2 = ilaenv_(&c__1, "DORMQL", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nb = min(i__1,i__2);
- lwkopt = max(1,nw) * nb;
- work[1] = (doublereal) lwkopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORMQL", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- work[1] = 1.;
- return 0;
- }
-
- nbmin = 2;
- ldwork = nw;
- if ((nb > 1 && nb < *k)) {
- iws = nw * nb;
- if (*lwork < iws) {
- nb = *lwork / ldwork;
-/*
- Computing MAX
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 2, i__2 = ilaenv_(&c__2, "DORMQL", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nbmin = max(i__1,i__2);
- }
- } else {
- iws = nw;
- }
-
- if (nb < nbmin || nb >= *k) {
-
-/* Use unblocked code */
-
- dorm2l_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], &iinfo);
- } else {
-
-/* Use blocked code */
-
- if ((left && notran) || (! left && ! notran)) {
- i1 = 1;
- i2 = *k;
- i3 = nb;
- } else {
- i1 = (*k - 1) / nb * nb + 1;
- i2 = 1;
- i3 = -nb;
- }
-
- if (left) {
- ni = *n;
- } else {
- mi = *m;
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__4 = nb, i__5 = *k - i__ + 1;
- ib = min(i__4,i__5);
-
-/*
- Form the triangular factor of the block reflector
- H = H(i+ib-1) . . . H(i+1) H(i)
-*/
-
- i__4 = nq - *k + i__ + ib - 1;
- dlarft_("Backward", "Columnwise", &i__4, &ib, &a[i__ * a_dim1 + 1]
- , lda, &tau[i__], t, &c__65);
- if (left) {
-
-/* H or H' is applied to C(1:m-k+i+ib-1,1:n) */
-
- mi = *m - *k + i__ + ib - 1;
- } else {
-
-/* H or H' is applied to C(1:m,1:n-k+i+ib-1) */
-
- ni = *n - *k + i__ + ib - 1;
- }
-
-/* Apply H or H' */
-
- dlarfb_(side, trans, "Backward", "Columnwise", &mi, &ni, &ib, &a[
- i__ * a_dim1 + 1], lda, t, &c__65, &c__[c_offset], ldc, &
- work[1], &ldwork);
-/* L10: */
- }
- }
- work[1] = (doublereal) lwkopt;
- return 0;
-
-/* End of DORMQL */
-
-} /* dormql_ */
-
-/* Subroutine */ int dormqr_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
- c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
- i__5;
- char ch__1[2];
-
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i__;
- static doublereal t[4160] /* was [65][64] */;
- static integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
- static logical left;
- extern logical lsame_(char *, char *);
- static integer nbmin, iinfo;
- extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *), dlarfb_(char
- *, char *, char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
- *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static logical notran;
- static integer ldwork, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DORMQR overwrites the general real M-by-N matrix C with
-
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': Q * C C * Q
- TRANS = 'T': Q**T * C C * Q**T
-
- where Q is a real orthogonal matrix defined as the product of k
- elementary reflectors
-
- Q = H(1) H(2) . . . H(k)
-
- as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q**T from the Left;
- = 'R': apply Q or Q**T from the Right.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q;
- = 'T': Transpose, apply Q**T.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,K)
- The i-th column must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- DGEQRF in the first k columns of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- If SIDE = 'L', LDA >= max(1,M);
- if SIDE = 'R', LDA >= max(1,N).
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DGEQRF.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If SIDE = 'L', LWORK >= max(1,N);
- if SIDE = 'R', LWORK >= max(1,M).
- For optimum performance LWORK >= N*NB if SIDE = 'L', and
- LWORK >= M*NB if SIDE = 'R', where NB is the optimal
- blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
- lquery = *lwork == -1;
-
-/* NQ is the order of Q and NW is the minimum dimension of WORK */
-
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "T"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,nq)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- } else if ((*lwork < max(1,nw) && ! lquery)) {
- *info = -12;
- }
-
- if (*info == 0) {
-
-/*
- Determine the block size. NB may be at most NBMAX, where NBMAX
- is used to define the local array T.
-
- Computing MIN
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 64, i__2 = ilaenv_(&c__1, "DORMQR", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nb = min(i__1,i__2);
- lwkopt = max(1,nw) * nb;
- work[1] = (doublereal) lwkopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DORMQR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- work[1] = 1.;
- return 0;
- }
-
- nbmin = 2;
- ldwork = nw;
- if ((nb > 1 && nb < *k)) {
- iws = nw * nb;
- if (*lwork < iws) {
- nb = *lwork / ldwork;
-/*
- Computing MAX
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 2, i__2 = ilaenv_(&c__2, "DORMQR", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nbmin = max(i__1,i__2);
- }
- } else {
- iws = nw;
- }
-
- if (nb < nbmin || nb >= *k) {
-
-/* Use unblocked code */
-
- dorm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], &iinfo);
- } else {
-
-/* Use blocked code */
-
- if ((left && ! notran) || (! left && notran)) {
- i1 = 1;
- i2 = *k;
- i3 = nb;
- } else {
- i1 = (*k - 1) / nb * nb + 1;
- i2 = 1;
- i3 = -nb;
- }
-
- if (left) {
- ni = *n;
- jc = 1;
- } else {
- mi = *m;
- ic = 1;
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__4 = nb, i__5 = *k - i__ + 1;
- ib = min(i__4,i__5);
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__4 = nq - i__ + 1;
- dlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], t, &c__65)
- ;
- if (left) {
-
-/* H or H' is applied to C(i:m,1:n) */
-
- mi = *m - i__ + 1;
- ic = i__;
- } else {
-
-/* H or H' is applied to C(1:m,i:n) */
-
- ni = *n - i__ + 1;
- jc = i__;
- }
-
-/* Apply H or H' */
-
- dlarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &a[
- i__ + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc *
- c_dim1], ldc, &work[1], &ldwork);
-/* L10: */
- }
- }
- work[1] = (doublereal) lwkopt;
- return 0;
-
-/* End of DORMQR */
-
-} /* dormqr_ */
-
-/* Subroutine */ int dormtr_(char *side, char *uplo, char *trans, integer *m,
- integer *n, doublereal *a, integer *lda, doublereal *tau, doublereal *
- c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2, i__3;
- char ch__1[2];
-
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i1, i2, nb, mi, ni, nq, nw;
- static logical left;
- extern logical lsame_(char *, char *);
- static integer iinfo;
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int dormql_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *),
- dormqr_(char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, integer *);
- static integer lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DORMTR overwrites the general real M-by-N matrix C with
-
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': Q * C C * Q
- TRANS = 'T': Q**T * C C * Q**T
-
- where Q is a real orthogonal matrix of order nq, with nq = m if
- SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
- nq-1 elementary reflectors, as returned by DSYTRD:
-
- if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
-
- if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q**T from the Left;
- = 'R': apply Q or Q**T from the Right.
-
- UPLO (input) CHARACTER*1
- = 'U': Upper triangle of A contains elementary reflectors
- from DSYTRD;
- = 'L': Lower triangle of A contains elementary reflectors
- from DSYTRD.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q;
- = 'T': Transpose, apply Q**T.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- A (input) DOUBLE PRECISION array, dimension
- (LDA,M) if SIDE = 'L'
- (LDA,N) if SIDE = 'R'
- The vectors which define the elementary reflectors, as
- returned by DSYTRD.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
-
- TAU (input) DOUBLE PRECISION array, dimension
- (M-1) if SIDE = 'L'
- (N-1) if SIDE = 'R'
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by DSYTRD.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If SIDE = 'L', LWORK >= max(1,N);
- if SIDE = 'R', LWORK >= max(1,M).
- For optimum performance LWORK >= N*NB if SIDE = 'L', and
- LWORK >= M*NB if SIDE = 'R', where NB is the optimal
- blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- upper = lsame_(uplo, "U");
- lquery = *lwork == -1;
-
-/* NQ is the order of Q and NW is the minimum dimension of WORK */
-
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! upper && ! lsame_(uplo, "L"))) {
- *info = -2;
- } else if ((! lsame_(trans, "N") && ! lsame_(trans,
- "T"))) {
- *info = -3;
- } else if (*m < 0) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*lda < max(1,nq)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- } else if ((*lwork < max(1,nw) && ! lquery)) {
- *info = -12;
- }
-
- if (*info == 0) {
- if (upper) {
- if (left) {
-/* Writing concatenation */
- i__1[0] = 1, a__1[0] = side;
- i__1[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- i__2 = *m - 1;
- i__3 = *m - 1;
- nb = ilaenv_(&c__1, "DORMQL", ch__1, &i__2, n, &i__3, &c_n1, (
- ftnlen)6, (ftnlen)2);
- } else {
-/* Writing concatenation */
- i__1[0] = 1, a__1[0] = side;
- i__1[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- i__2 = *n - 1;
- i__3 = *n - 1;
- nb = ilaenv_(&c__1, "DORMQL", ch__1, m, &i__2, &i__3, &c_n1, (
- ftnlen)6, (ftnlen)2);
- }
- } else {
- if (left) {
-/* Writing concatenation */
- i__1[0] = 1, a__1[0] = side;
- i__1[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- i__2 = *m - 1;
- i__3 = *m - 1;
- nb = ilaenv_(&c__1, "DORMQR", ch__1, &i__2, n, &i__3, &c_n1, (
- ftnlen)6, (ftnlen)2);
- } else {
-/* Writing concatenation */
- i__1[0] = 1, a__1[0] = side;
- i__1[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- i__2 = *n - 1;
- i__3 = *n - 1;
- nb = ilaenv_(&c__1, "DORMQR", ch__1, m, &i__2, &i__3, &c_n1, (
- ftnlen)6, (ftnlen)2);
- }
- }
- lwkopt = max(1,nw) * nb;
- work[1] = (doublereal) lwkopt;
- }
-
- if (*info != 0) {
- i__2 = -(*info);
- xerbla_("DORMTR", &i__2);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || nq == 1) {
- work[1] = 1.;
- return 0;
- }
-
- if (left) {
- mi = *m - 1;
- ni = *n;
- } else {
- mi = *m;
- ni = *n - 1;
- }
-
- if (upper) {
-
-/* Q was determined by a call to DSYTRD with UPLO = 'U' */
-
- i__2 = nq - 1;
- dormql_(side, trans, &mi, &ni, &i__2, &a[((a_dim1) << (1)) + 1], lda,
- &tau[1], &c__[c_offset], ldc, &work[1], lwork, &iinfo);
- } else {
-
-/* Q was determined by a call to DSYTRD with UPLO = 'L' */
-
- if (left) {
- i1 = 2;
- i2 = 1;
- } else {
- i1 = 1;
- i2 = 2;
- }
- i__2 = nq - 1;
- dormqr_(side, trans, &mi, &ni, &i__2, &a[a_dim1 + 2], lda, &tau[1], &
- c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
- }
- work[1] = (doublereal) lwkopt;
- return 0;
-
-/* End of DORMTR */
-
-} /* dormtr_ */
-
-/* Subroutine */ int dpotf2_(char *uplo, integer *n, doublereal *a, integer *
- lda, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer j;
- static doublereal ajj;
- extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- DPOTF2 computes the Cholesky factorization of a real symmetric
- positive definite matrix A.
-
- The factorization has the form
- A = U' * U , if UPLO = 'U', or
- A = L * L', if UPLO = 'L',
- where U is an upper triangular matrix and L is lower triangular.
-
- This is the unblocked version of the algorithm, calling Level 2 BLAS.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- Specifies whether the upper or lower triangular part of the
- symmetric matrix A is stored.
- = 'U': Upper triangular
- = 'L': Lower triangular
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the symmetric matrix A. If UPLO = 'U', the leading
- n by n upper triangular part of A contains the upper
- triangular part of the matrix A, and the strictly lower
- triangular part of A is not referenced. If UPLO = 'L', the
- leading n by n lower triangular part of A contains the lower
- triangular part of the matrix A, and the strictly upper
- triangular part of A is not referenced.
-
- On exit, if INFO = 0, the factor U or L from the Cholesky
- factorization A = U'*U or A = L*L'.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -k, the k-th argument had an illegal value
- > 0: if INFO = k, the leading minor of order k is not
- positive definite, and the factorization could not be
- completed.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- if ((! upper && ! lsame_(uplo, "L"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DPOTF2", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- if (upper) {
-
-/* Compute the Cholesky factorization A = U'*U. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-
-/* Compute U(J,J) and test for non-positive-definiteness. */
-
- i__2 = j - 1;
- ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j * a_dim1 + 1], &c__1,
- &a[j * a_dim1 + 1], &c__1);
- if (ajj <= 0.) {
- a[j + j * a_dim1] = ajj;
- goto L30;
- }
- ajj = sqrt(ajj);
- a[j + j * a_dim1] = ajj;
-
-/* Compute elements J+1:N of row J. */
-
- if (j < *n) {
- i__2 = j - 1;
- i__3 = *n - j;
- dgemv_("Transpose", &i__2, &i__3, &c_b151, &a[(j + 1) *
- a_dim1 + 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b15, &
- a[j + (j + 1) * a_dim1], lda);
- i__2 = *n - j;
- d__1 = 1. / ajj;
- dscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda);
- }
-/* L10: */
- }
- } else {
-
-/* Compute the Cholesky factorization A = L*L'. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-
-/* Compute L(J,J) and test for non-positive-definiteness. */
-
- i__2 = j - 1;
- ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j + a_dim1], lda, &a[j
- + a_dim1], lda);
- if (ajj <= 0.) {
- a[j + j * a_dim1] = ajj;
- goto L30;
- }
- ajj = sqrt(ajj);
- a[j + j * a_dim1] = ajj;
-
-/* Compute elements J+1:N of column J. */
-
- if (j < *n) {
- i__2 = *n - j;
- i__3 = j - 1;
- dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[j + 1 +
- a_dim1], lda, &a[j + a_dim1], lda, &c_b15, &a[j + 1 +
- j * a_dim1], &c__1);
- i__2 = *n - j;
- d__1 = 1. / ajj;
- dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
- }
-/* L20: */
- }
- }
- goto L40;
-
-L30:
- *info = j;
-
-L40:
- return 0;
-
-/* End of DPOTF2 */
-
-} /* dpotf2_ */
-
-/* Subroutine */ int dpotrf_(char *uplo, integer *n, doublereal *a, integer *
- lda, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer j, jb, nb;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *);
- static logical upper;
- extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- integer *), dpotf2_(char *, integer *,
- doublereal *, integer *, integer *), xerbla_(char *,
- integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- March 31, 1993
-
-
- Purpose
- =======
-
- DPOTRF computes the Cholesky factorization of a real symmetric
- positive definite matrix A.
-
- The factorization has the form
- A = U**T * U, if UPLO = 'U', or
- A = L * L**T, if UPLO = 'L',
- where U is an upper triangular matrix and L is lower triangular.
-
- This is the block version of the algorithm, calling Level 3 BLAS.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- = 'U': Upper triangle of A is stored;
- = 'L': Lower triangle of A is stored.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the symmetric matrix A. If UPLO = 'U', the leading
- N-by-N upper triangular part of A contains the upper
- triangular part of the matrix A, and the strictly lower
- triangular part of A is not referenced. If UPLO = 'L', the
- leading N-by-N lower triangular part of A contains the lower
- triangular part of the matrix A, and the strictly upper
- triangular part of A is not referenced.
-
- On exit, if INFO = 0, the factor U or L from the Cholesky
- factorization A = U**T*U or A = L*L**T.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, the leading minor of order i is not
- positive definite, and the factorization could not be
- completed.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- if ((! upper && ! lsame_(uplo, "L"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DPOTRF", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
-/* Determine the block size for this environment. */
-
- nb = ilaenv_(&c__1, "DPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)1);
- if (nb <= 1 || nb >= *n) {
-
-/* Use unblocked code. */
-
- dpotf2_(uplo, n, &a[a_offset], lda, info);
- } else {
-
-/* Use blocked code. */
-
- if (upper) {
-
-/* Compute the Cholesky factorization A = U'*U. */
-
- i__1 = *n;
- i__2 = nb;
- for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-
-/*
- Update and factorize the current diagonal block and test
- for non-positive-definiteness.
-
- Computing MIN
-*/
- i__3 = nb, i__4 = *n - j + 1;
- jb = min(i__3,i__4);
- i__3 = j - 1;
- dsyrk_("Upper", "Transpose", &jb, &i__3, &c_b151, &a[j *
- a_dim1 + 1], lda, &c_b15, &a[j + j * a_dim1], lda);
- dpotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info);
- if (*info != 0) {
- goto L30;
- }
- if (j + jb <= *n) {
-
-/* Compute the current block row. */
-
- i__3 = *n - j - jb + 1;
- i__4 = j - 1;
- dgemm_("Transpose", "No transpose", &jb, &i__3, &i__4, &
- c_b151, &a[j * a_dim1 + 1], lda, &a[(j + jb) *
- a_dim1 + 1], lda, &c_b15, &a[j + (j + jb) *
- a_dim1], lda);
- i__3 = *n - j - jb + 1;
- dtrsm_("Left", "Upper", "Transpose", "Non-unit", &jb, &
- i__3, &c_b15, &a[j + j * a_dim1], lda, &a[j + (j
- + jb) * a_dim1], lda);
- }
-/* L10: */
- }
-
- } else {
-
-/* Compute the Cholesky factorization A = L*L'. */
-
- i__2 = *n;
- i__1 = nb;
- for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
-
-/*
- Update and factorize the current diagonal block and test
- for non-positive-definiteness.
-
- Computing MIN
-*/
- i__3 = nb, i__4 = *n - j + 1;
- jb = min(i__3,i__4);
- i__3 = j - 1;
- dsyrk_("Lower", "No transpose", &jb, &i__3, &c_b151, &a[j +
- a_dim1], lda, &c_b15, &a[j + j * a_dim1], lda);
- dpotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info);
- if (*info != 0) {
- goto L30;
- }
- if (j + jb <= *n) {
-
-/* Compute the current block column. */
-
- i__3 = *n - j - jb + 1;
- i__4 = j - 1;
- dgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &
- c_b151, &a[j + jb + a_dim1], lda, &a[j + a_dim1],
- lda, &c_b15, &a[j + jb + j * a_dim1], lda);
- i__3 = *n - j - jb + 1;
- dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i__3, &
- jb, &c_b15, &a[j + j * a_dim1], lda, &a[j + jb +
- j * a_dim1], lda);
- }
-/* L20: */
- }
- }
- }
- goto L40;
-
-L30:
- *info = *info + j - 1;
-
-L40:
- return 0;
-
-/* End of DPOTRF */
-
-} /* dpotrf_ */
-
-/* Subroutine */ int dstedc_(char *compz, integer *n, doublereal *d__,
- doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
- integer *lwork, integer *iwork, integer *liwork, integer *info)
-{
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double log(doublereal);
- integer pow_ii(integer *, integer *);
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__, j, k, m;
- static doublereal p;
- static integer ii, end, lgn;
- static doublereal eps, tiny;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static integer lwmin;
- extern /* Subroutine */ int dlaed0_(integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- static integer start;
-
- extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), dlacpy_(char *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *),
- dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
- integer *), dlasrt_(char *, integer *, doublereal *, integer *);
- static integer liwmin, icompz;
- extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *);
- static doublereal orgnrm;
- static logical lquery;
- static integer smlsiz, dtrtrw, storez;
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
- symmetric tridiagonal matrix using the divide and conquer method.
- The eigenvectors of a full or band real symmetric matrix can also be
- found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
- matrix to tridiagonal form.
-
- This code makes very mild assumptions about floating point
- arithmetic. It will work on machines with a guard digit in
- add/subtract, or on those binary machines without guard digits
- which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
- It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none. See DLAED3 for details.
-
- Arguments
- =========
-
- COMPZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only.
- = 'I': Compute eigenvectors of tridiagonal matrix also.
- = 'V': Compute eigenvectors of original dense symmetric
- matrix also. On entry, Z contains the orthogonal
- matrix used to reduce the original matrix to
- tridiagonal form.
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the diagonal elements of the tridiagonal matrix.
- On exit, if INFO = 0, the eigenvalues in ascending order.
-
- E (input/output) DOUBLE PRECISION array, dimension (N-1)
- On entry, the subdiagonal elements of the tridiagonal matrix.
- On exit, E has been destroyed.
-
- Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
- On entry, if COMPZ = 'V', then Z contains the orthogonal
- matrix used in the reduction to tridiagonal form.
- On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
- orthonormal eigenvectors of the original symmetric matrix,
- and if COMPZ = 'I', Z contains the orthonormal eigenvectors
- of the symmetric tridiagonal matrix.
- If COMPZ = 'N', then Z is not referenced.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= 1.
- If eigenvectors are desired, then LDZ >= max(1,N).
-
- WORK (workspace/output) DOUBLE PRECISION array,
- dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
- If COMPZ = 'V' and N > 1 then LWORK must be at least
- ( 1 + 3*N + 2*N*lg N + 3*N**2 ),
- where lg( N ) = smallest integer k such
- that 2**k >= N.
- If COMPZ = 'I' and N > 1 then LWORK must be at least
- ( 1 + 4*N + N**2 ).
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- IWORK (workspace/output) INTEGER array, dimension (LIWORK)
- On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
-
- LIWORK (input) INTEGER
- The dimension of the array IWORK.
- If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
- If COMPZ = 'V' and N > 1 then LIWORK must be at least
- ( 6 + 6*N + 5*N*lg N ).
- If COMPZ = 'I' and N > 1 then LIWORK must be at least
- ( 3 + 5*N ).
-
- If LIWORK = -1, then a workspace query is assumed; the
- routine only calculates the optimal size of the IWORK array,
- returns this value as the first entry of the IWORK array, and
- no error message related to LIWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The algorithm failed to compute an eigenvalue while
- working on the submatrix lying in rows and columns
- INFO/(N+1) through mod(INFO,N+1).
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
- Modified by Francoise Tisseur, University of Tennessee.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1 || *liwork == -1;
-
- if (lsame_(compz, "N")) {
- icompz = 0;
- } else if (lsame_(compz, "V")) {
- icompz = 1;
- } else if (lsame_(compz, "I")) {
- icompz = 2;
- } else {
- icompz = -1;
- }
- if (*n <= 1 || icompz <= 0) {
- liwmin = 1;
- lwmin = 1;
- } else {
- lgn = (integer) (log((doublereal) (*n)) / log(2.));
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- if (icompz == 1) {
-/* Computing 2nd power */
- i__1 = *n;
- lwmin = *n * 3 + 1 + ((*n) << (1)) * lgn + i__1 * i__1 * 3;
- liwmin = *n * 6 + 6 + *n * 5 * lgn;
- } else if (icompz == 2) {
-/* Computing 2nd power */
- i__1 = *n;
- lwmin = ((*n) << (2)) + 1 + i__1 * i__1;
- liwmin = *n * 5 + 3;
- }
- }
- if (icompz < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*ldz < 1 || (icompz > 0 && *ldz < max(1,*n))) {
- *info = -6;
- } else if ((*lwork < lwmin && ! lquery)) {
- *info = -8;
- } else if ((*liwork < liwmin && ! lquery)) {
- *info = -10;
- }
-
- if (*info == 0) {
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DSTEDC", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- if (icompz != 0) {
- z__[z_dim1 + 1] = 1.;
- }
- return 0;
- }
-
- smlsiz = ilaenv_(&c__9, "DSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
- ftnlen)6, (ftnlen)1);
-
-/*
- If the following conditional clause is removed, then the routine
- will use the Divide and Conquer routine to compute only the
- eigenvalues, which requires (3N + 3N**2) real workspace and
- (2 + 5N + 2N lg(N)) integer workspace.
- Since on many architectures DSTERF is much faster than any other
- algorithm for finding eigenvalues only, it is used here
- as the default.
-
- If COMPZ = 'N', use DSTERF to compute the eigenvalues.
-*/
-
- if (icompz == 0) {
- dsterf_(n, &d__[1], &e[1], info);
- return 0;
- }
-
-/*
- If N is smaller than the minimum divide size (SMLSIZ+1), then
- solve the problem with another solver.
-*/
-
- if (*n <= smlsiz) {
- if (icompz == 0) {
- dsterf_(n, &d__[1], &e[1], info);
- return 0;
- } else if (icompz == 2) {
- dsteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1],
- info);
- return 0;
- } else {
- dsteqr_("V", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1],
- info);
- return 0;
- }
- }
-
-/*
- If COMPZ = 'V', the Z matrix must be stored elsewhere for later
- use.
-*/
-
- if (icompz == 1) {
- storez = *n * *n + 1;
- } else {
- storez = 1;
- }
-
- if (icompz == 2) {
- dlaset_("Full", n, n, &c_b29, &c_b15, &z__[z_offset], ldz);
- }
-
-/* Scale. */
-
- orgnrm = dlanst_("M", n, &d__[1], &e[1]);
- if (orgnrm == 0.) {
- return 0;
- }
-
- eps = EPSILON;
-
- start = 1;
-
-/* while ( START <= N ) */
-
-L10:
- if (start <= *n) {
-
-/*
- Let END be the position of the next subdiagonal entry such that
- E( END ) <= TINY or END = N if no such subdiagonal exists. The
- matrix identified by the elements between START and END
- constitutes an independent sub-problem.
-*/
-
- end = start;
-L20:
- if (end < *n) {
- tiny = eps * sqrt((d__1 = d__[end], abs(d__1))) * sqrt((d__2 =
- d__[end + 1], abs(d__2)));
- if ((d__1 = e[end], abs(d__1)) > tiny) {
- ++end;
- goto L20;
- }
- }
-
-/* (Sub) Problem determined. Compute its size and solve it. */
-
- m = end - start + 1;
- if (m == 1) {
- start = end + 1;
- goto L10;
- }
- if (m > smlsiz) {
- *info = smlsiz;
-
-/* Scale. */
-
- orgnrm = dlanst_("M", &m, &d__[start], &e[start]);
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &m, &c__1, &d__[start]
- , &m, info);
- i__1 = m - 1;
- i__2 = m - 1;
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &i__1, &c__1, &e[
- start], &i__2, info);
-
- if (icompz == 1) {
- dtrtrw = 1;
- } else {
- dtrtrw = start;
- }
- dlaed0_(&icompz, n, &m, &d__[start], &e[start], &z__[dtrtrw +
- start * z_dim1], ldz, &work[1], n, &work[storez], &iwork[
- 1], info);
- if (*info != 0) {
- *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info % (m
- + 1) + start - 1;
- return 0;
- }
-
-/* Scale back. */
-
- dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, &m, &c__1, &d__[start]
- , &m, info);
-
- } else {
- if (icompz == 1) {
-
-/*
- Since QR won't update a Z matrix which is larger than the
- length of D, we must solve the sub-problem in a workspace and
- then multiply back into Z.
-*/
-
- dsteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &work[
- m * m + 1], info);
- dlacpy_("A", n, &m, &z__[start * z_dim1 + 1], ldz, &work[
- storez], n);
- dgemm_("N", "N", n, &m, &m, &c_b15, &work[storez], ldz, &work[
- 1], &m, &c_b29, &z__[start * z_dim1 + 1], ldz);
- } else if (icompz == 2) {
- dsteqr_("I", &m, &d__[start], &e[start], &z__[start + start *
- z_dim1], ldz, &work[1], info);
- } else {
- dsterf_(&m, &d__[start], &e[start], info);
- }
- if (*info != 0) {
- *info = start * (*n + 1) + end;
- return 0;
- }
- }
-
- start = end + 1;
- goto L10;
- }
-
-/*
- endwhile
-
- If the problem split any number of times, then the eigenvalues
- will not be properly ordered. Here we permute the eigenvalues
- (and the associated eigenvectors) into ascending order.
-*/
-
- if (m != *n) {
- if (icompz == 0) {
-
-/* Use Quick Sort */
-
- dlasrt_("I", n, &d__[1], info);
-
- } else {
-
-/* Use Selection Sort to minimize swaps of eigenvectors */
-
- i__1 = *n;
- for (ii = 2; ii <= i__1; ++ii) {
- i__ = ii - 1;
- k = i__;
- p = d__[i__];
- i__2 = *n;
- for (j = ii; j <= i__2; ++j) {
- if (d__[j] < p) {
- k = j;
- p = d__[j];
- }
-/* L30: */
- }
- if (k != i__) {
- d__[k] = d__[i__];
- d__[i__] = p;
- dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1
- + 1], &c__1);
- }
-/* L40: */
- }
- }
- }
-
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
-
- return 0;
-
-/* End of DSTEDC */
-
-} /* dstedc_ */
-
-/* Subroutine */ int dsteqr_(char *compz, integer *n, doublereal *d__,
- doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
- integer *info)
-{
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static doublereal b, c__, f, g;
- static integer i__, j, k, l, m;
- static doublereal p, r__, s;
- static integer l1, ii, mm, lm1, mm1, nm1;
- static doublereal rt1, rt2, eps;
- static integer lsv;
- static doublereal tst, eps2;
- static integer lend, jtot;
- extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal
- *, doublereal *, doublereal *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *);
- static doublereal anorm;
- extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *), dlaev2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *);
- static integer lendm1, lendp1;
-
- static integer iscale;
- extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), dlaset_(char *, integer *, integer
- *, doublereal *, doublereal *, doublereal *, integer *);
- static doublereal safmin;
- extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
- static doublereal safmax;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
- integer *);
- static integer lendsv;
- static doublereal ssfmin;
- static integer nmaxit, icompz;
- static doublereal ssfmax;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
- symmetric tridiagonal matrix using the implicit QL or QR method.
- The eigenvectors of a full or band symmetric matrix can also be found
- if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
- tridiagonal form.
-
- Arguments
- =========
-
- COMPZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only.
- = 'V': Compute eigenvalues and eigenvectors of the original
- symmetric matrix. On entry, Z must contain the
- orthogonal matrix used to reduce the original matrix
- to tridiagonal form.
- = 'I': Compute eigenvalues and eigenvectors of the
- tridiagonal matrix. Z is initialized to the identity
- matrix.
-
- N (input) INTEGER
- The order of the matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the diagonal elements of the tridiagonal matrix.
- On exit, if INFO = 0, the eigenvalues in ascending order.
-
- E (input/output) DOUBLE PRECISION array, dimension (N-1)
- On entry, the (n-1) subdiagonal elements of the tridiagonal
- matrix.
- On exit, E has been destroyed.
-
- Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
- On entry, if COMPZ = 'V', then Z contains the orthogonal
- matrix used in the reduction to tridiagonal form.
- On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
- orthonormal eigenvectors of the original symmetric matrix,
- and if COMPZ = 'I', Z contains the orthonormal eigenvectors
- of the symmetric tridiagonal matrix.
- If COMPZ = 'N', then Z is not referenced.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= 1, and if
- eigenvectors are desired, then LDZ >= max(1,N).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
- If COMPZ = 'N', then WORK is not referenced.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: the algorithm has failed to find all the eigenvalues in
- a total of 30*N iterations; if INFO = i, then i
- elements of E have not converged to zero; on exit, D
- and E contain the elements of a symmetric tridiagonal
- matrix which is orthogonally similar to the original
- matrix.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- *info = 0;
-
- if (lsame_(compz, "N")) {
- icompz = 0;
- } else if (lsame_(compz, "V")) {
- icompz = 1;
- } else if (lsame_(compz, "I")) {
- icompz = 2;
- } else {
- icompz = -1;
- }
- if (icompz < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*ldz < 1 || (icompz > 0 && *ldz < max(1,*n))) {
- *info = -6;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DSTEQR", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- if (*n == 1) {
- if (icompz == 2) {
- z__[z_dim1 + 1] = 1.;
- }
- return 0;
- }
-
-/* Determine the unit roundoff and over/underflow thresholds. */
-
- eps = EPSILON;
-/* Computing 2nd power */
- d__1 = eps;
- eps2 = d__1 * d__1;
- safmin = SAFEMINIMUM;
- safmax = 1. / safmin;
- ssfmax = sqrt(safmax) / 3.;
- ssfmin = sqrt(safmin) / eps2;
-
-/*
- Compute the eigenvalues and eigenvectors of the tridiagonal
- matrix.
-*/
-
- if (icompz == 2) {
- dlaset_("Full", n, n, &c_b29, &c_b15, &z__[z_offset], ldz);
- }
-
- nmaxit = *n * 30;
- jtot = 0;
-
-/*
- Determine where the matrix splits and choose QL or QR iteration
- for each block, according to whether top or bottom diagonal
- element is smaller.
-*/
-
- l1 = 1;
- nm1 = *n - 1;
-
-L10:
- if (l1 > *n) {
- goto L160;
- }
- if (l1 > 1) {
- e[l1 - 1] = 0.;
- }
- if (l1 <= nm1) {
- i__1 = nm1;
- for (m = l1; m <= i__1; ++m) {
- tst = (d__1 = e[m], abs(d__1));
- if (tst == 0.) {
- goto L30;
- }
- if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m
- + 1], abs(d__2))) * eps) {
- e[m] = 0.;
- goto L30;
- }
-/* L20: */
- }
- }
- m = *n;
-
-L30:
- l = l1;
- lsv = l;
- lend = m;
- lendsv = lend;
- l1 = m + 1;
- if (lend == l) {
- goto L10;
- }
-
-/* Scale submatrix in rows and columns L to LEND */
-
- i__1 = lend - l + 1;
- anorm = dlanst_("I", &i__1, &d__[l], &e[l]);
- iscale = 0;
- if (anorm == 0.) {
- goto L10;
- }
- if (anorm > ssfmax) {
- iscale = 1;
- i__1 = lend - l + 1;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
- info);
- } else if (anorm < ssfmin) {
- iscale = 2;
- i__1 = lend - l + 1;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
- info);
- }
-
-/* Choose between QL and QR iteration */
-
- if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
- lend = lsv;
- l = lendsv;
- }
-
- if (lend > l) {
-
-/*
- QL Iteration
-
- Look for small subdiagonal element.
-*/
-
-L40:
- if (l != lend) {
- lendm1 = lend - 1;
- i__1 = lendm1;
- for (m = l; m <= i__1; ++m) {
-/* Computing 2nd power */
- d__2 = (d__1 = e[m], abs(d__1));
- tst = d__2 * d__2;
- if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
- + 1], abs(d__2)) + safmin) {
- goto L60;
- }
-/* L50: */
- }
- }
-
- m = lend;
-
-L60:
- if (m < lend) {
- e[m] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L80;
- }
-
-/*
- If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
- to compute its eigensystem.
-*/
-
- if (m == l + 1) {
- if (icompz > 0) {
- dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
- work[l] = c__;
- work[*n - 1 + l] = s;
- dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
- z__[l * z_dim1 + 1], ldz);
- } else {
- dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
- }
- d__[l] = rt1;
- d__[l + 1] = rt2;
- e[l] = 0.;
- l += 2;
- if (l <= lend) {
- goto L40;
- }
- goto L140;
- }
-
- if (jtot == nmaxit) {
- goto L140;
- }
- ++jtot;
-
-/* Form shift. */
-
- g = (d__[l + 1] - p) / (e[l] * 2.);
- r__ = dlapy2_(&g, &c_b15);
- g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
-
- s = 1.;
- c__ = 1.;
- p = 0.;
-
-/* Inner loop */
-
- mm1 = m - 1;
- i__1 = l;
- for (i__ = mm1; i__ >= i__1; --i__) {
- f = s * e[i__];
- b = c__ * e[i__];
- dlartg_(&g, &f, &c__, &s, &r__);
- if (i__ != m - 1) {
- e[i__ + 1] = r__;
- }
- g = d__[i__ + 1] - p;
- r__ = (d__[i__] - g) * s + c__ * 2. * b;
- p = s * r__;
- d__[i__ + 1] = g + p;
- g = c__ * r__ - b;
-
-/* If eigenvectors are desired, then save rotations. */
-
- if (icompz > 0) {
- work[i__] = c__;
- work[*n - 1 + i__] = -s;
- }
-
-/* L70: */
- }
-
-/* If eigenvectors are desired, then apply saved rotations. */
-
- if (icompz > 0) {
- mm = m - l + 1;
- dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l
- * z_dim1 + 1], ldz);
- }
-
- d__[l] -= p;
- e[l] = g;
- goto L40;
-
-/* Eigenvalue found. */
-
-L80:
- d__[l] = p;
-
- ++l;
- if (l <= lend) {
- goto L40;
- }
- goto L140;
-
- } else {
-
-/*
- QR Iteration
-
- Look for small superdiagonal element.
-*/
-
-L90:
- if (l != lend) {
- lendp1 = lend + 1;
- i__1 = lendp1;
- for (m = l; m >= i__1; --m) {
-/* Computing 2nd power */
- d__2 = (d__1 = e[m - 1], abs(d__1));
- tst = d__2 * d__2;
- if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
- - 1], abs(d__2)) + safmin) {
- goto L110;
- }
-/* L100: */
- }
- }
-
- m = lend;
-
-L110:
- if (m > lend) {
- e[m - 1] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L130;
- }
-
-/*
- If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
- to compute its eigensystem.
-*/
-
- if (m == l - 1) {
- if (icompz > 0) {
- dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
- ;
- work[m] = c__;
- work[*n - 1 + m] = s;
- dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
- z__[(l - 1) * z_dim1 + 1], ldz);
- } else {
- dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
- }
- d__[l - 1] = rt1;
- d__[l] = rt2;
- e[l - 1] = 0.;
- l += -2;
- if (l >= lend) {
- goto L90;
- }
- goto L140;
- }
-
- if (jtot == nmaxit) {
- goto L140;
- }
- ++jtot;
-
-/* Form shift. */
-
- g = (d__[l - 1] - p) / (e[l - 1] * 2.);
- r__ = dlapy2_(&g, &c_b15);
- g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
-
- s = 1.;
- c__ = 1.;
- p = 0.;
-
-/* Inner loop */
-
- lm1 = l - 1;
- i__1 = lm1;
- for (i__ = m; i__ <= i__1; ++i__) {
- f = s * e[i__];
- b = c__ * e[i__];
- dlartg_(&g, &f, &c__, &s, &r__);
- if (i__ != m) {
- e[i__ - 1] = r__;
- }
- g = d__[i__] - p;
- r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
- p = s * r__;
- d__[i__] = g + p;
- g = c__ * r__ - b;
-
-/* If eigenvectors are desired, then save rotations. */
-
- if (icompz > 0) {
- work[i__] = c__;
- work[*n - 1 + i__] = s;
- }
-
-/* L120: */
- }
-
-/* If eigenvectors are desired, then apply saved rotations. */
-
- if (icompz > 0) {
- mm = l - m + 1;
- dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m
- * z_dim1 + 1], ldz);
- }
-
- d__[l] -= p;
- e[lm1] = g;
- goto L90;
-
-/* Eigenvalue found. */
-
-L130:
- d__[l] = p;
-
- --l;
- if (l >= lend) {
- goto L90;
- }
- goto L140;
-
- }
-
-/* Undo scaling if necessary */
-
-L140:
- if (iscale == 1) {
- i__1 = lendsv - lsv + 1;
- dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- i__1 = lendsv - lsv;
- dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
- info);
- } else if (iscale == 2) {
- i__1 = lendsv - lsv + 1;
- dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- i__1 = lendsv - lsv;
- dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
- info);
- }
-
-/*
- Check for no convergence to an eigenvalue after a total
- of N*MAXIT iterations.
-*/
-
- if (jtot < nmaxit) {
- goto L10;
- }
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (e[i__] != 0.) {
- ++(*info);
- }
-/* L150: */
- }
- goto L190;
-
-/* Order eigenvalues and eigenvectors. */
-
-L160:
- if (icompz == 0) {
-
-/* Use Quick Sort */
-
- dlasrt_("I", n, &d__[1], info);
-
- } else {
-
-/* Use Selection Sort to minimize swaps of eigenvectors */
-
- i__1 = *n;
- for (ii = 2; ii <= i__1; ++ii) {
- i__ = ii - 1;
- k = i__;
- p = d__[i__];
- i__2 = *n;
- for (j = ii; j <= i__2; ++j) {
- if (d__[j] < p) {
- k = j;
- p = d__[j];
- }
-/* L170: */
- }
- if (k != i__) {
- d__[k] = d__[i__];
- d__[i__] = p;
- dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
- &c__1);
- }
-/* L180: */
- }
- }
-
-L190:
- return 0;
-
-/* End of DSTEQR */
-
-} /* dsteqr_ */
-
-/* Subroutine */ int dsterf_(integer *n, doublereal *d__, doublereal *e,
- integer *info)
-{
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2, d__3;
-
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static doublereal c__;
- static integer i__, l, m;
- static doublereal p, r__, s;
- static integer l1;
- static doublereal bb, rt1, rt2, eps, rte;
- static integer lsv;
- static doublereal eps2, oldc;
- static integer lend, jtot;
- extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal
- *, doublereal *, doublereal *);
- static doublereal gamma, alpha, sigma, anorm;
-
- static integer iscale;
- extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- static doublereal oldgam, safmin;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static doublereal safmax;
- extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
- integer *);
- static integer lendsv;
- static doublereal ssfmin;
- static integer nmaxit;
- static doublereal ssfmax;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
- using the Pal-Walker-Kahan variant of the QL or QR algorithm.
-
- Arguments
- =========
-
- N (input) INTEGER
- The order of the matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the n diagonal elements of the tridiagonal matrix.
- On exit, if INFO = 0, the eigenvalues in ascending order.
-
- E (input/output) DOUBLE PRECISION array, dimension (N-1)
- On entry, the (n-1) subdiagonal elements of the tridiagonal
- matrix.
- On exit, E has been destroyed.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: the algorithm failed to find all of the eigenvalues in
- a total of 30*N iterations; if INFO = i, then i
- elements of E have not converged to zero.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --e;
- --d__;
-
- /* Function Body */
- *info = 0;
-
-/* Quick return if possible */
-
- if (*n < 0) {
- *info = -1;
- i__1 = -(*info);
- xerbla_("DSTERF", &i__1);
- return 0;
- }
- if (*n <= 1) {
- return 0;
- }
-
-/* Determine the unit roundoff for this environment. */
-
- eps = EPSILON;
-/* Computing 2nd power */
- d__1 = eps;
- eps2 = d__1 * d__1;
- safmin = SAFEMINIMUM;
- safmax = 1. / safmin;
- ssfmax = sqrt(safmax) / 3.;
- ssfmin = sqrt(safmin) / eps2;
-
-/* Compute the eigenvalues of the tridiagonal matrix. */
-
- nmaxit = *n * 30;
- sigma = 0.;
- jtot = 0;
-
-/*
- Determine where the matrix splits and choose QL or QR iteration
- for each block, according to whether top or bottom diagonal
- element is smaller.
-*/
-
- l1 = 1;
-
-L10:
- if (l1 > *n) {
- goto L170;
- }
- if (l1 > 1) {
- e[l1 - 1] = 0.;
- }
- i__1 = *n - 1;
- for (m = l1; m <= i__1; ++m) {
- if ((d__3 = e[m], abs(d__3)) <= sqrt((d__1 = d__[m], abs(d__1))) *
- sqrt((d__2 = d__[m + 1], abs(d__2))) * eps) {
- e[m] = 0.;
- goto L30;
- }
-/* L20: */
- }
- m = *n;
-
-L30:
- l = l1;
- lsv = l;
- lend = m;
- lendsv = lend;
- l1 = m + 1;
- if (lend == l) {
- goto L10;
- }
-
-/* Scale submatrix in rows and columns L to LEND */
-
- i__1 = lend - l + 1;
- anorm = dlanst_("I", &i__1, &d__[l], &e[l]);
- iscale = 0;
- if (anorm > ssfmax) {
- iscale = 1;
- i__1 = lend - l + 1;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
- info);
- } else if (anorm < ssfmin) {
- iscale = 2;
- i__1 = lend - l + 1;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
- info);
- }
-
- i__1 = lend - 1;
- for (i__ = l; i__ <= i__1; ++i__) {
-/* Computing 2nd power */
- d__1 = e[i__];
- e[i__] = d__1 * d__1;
-/* L40: */
- }
-
-/* Choose between QL and QR iteration */
-
- if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
- lend = lsv;
- l = lendsv;
- }
-
- if (lend >= l) {
-
-/*
- QL Iteration
-
- Look for small subdiagonal element.
-*/
-
-L50:
- if (l != lend) {
- i__1 = lend - 1;
- for (m = l; m <= i__1; ++m) {
- if ((d__2 = e[m], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m
- + 1], abs(d__1))) {
- goto L70;
- }
-/* L60: */
- }
- }
- m = lend;
-
-L70:
- if (m < lend) {
- e[m] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L90;
- }
-
-/*
- If remaining matrix is 2 by 2, use DLAE2 to compute its
- eigenvalues.
-*/
-
- if (m == l + 1) {
- rte = sqrt(e[l]);
- dlae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);
- d__[l] = rt1;
- d__[l + 1] = rt2;
- e[l] = 0.;
- l += 2;
- if (l <= lend) {
- goto L50;
- }
- goto L150;
- }
-
- if (jtot == nmaxit) {
- goto L150;
- }
- ++jtot;
-
-/* Form shift. */
-
- rte = sqrt(e[l]);
- sigma = (d__[l + 1] - p) / (rte * 2.);
- r__ = dlapy2_(&sigma, &c_b15);
- sigma = p - rte / (sigma + d_sign(&r__, &sigma));
-
- c__ = 1.;
- s = 0.;
- gamma = d__[m] - sigma;
- p = gamma * gamma;
-
-/* Inner loop */
-
- i__1 = l;
- for (i__ = m - 1; i__ >= i__1; --i__) {
- bb = e[i__];
- r__ = p + bb;
- if (i__ != m - 1) {
- e[i__ + 1] = s * r__;
- }
- oldc = c__;
- c__ = p / r__;
- s = bb / r__;
- oldgam = gamma;
- alpha = d__[i__];
- gamma = c__ * (alpha - sigma) - s * oldgam;
- d__[i__ + 1] = oldgam + (alpha - gamma);
- if (c__ != 0.) {
- p = gamma * gamma / c__;
- } else {
- p = oldc * bb;
- }
-/* L80: */
- }
-
- e[l] = s * p;
- d__[l] = sigma + gamma;
- goto L50;
-
-/* Eigenvalue found. */
-
-L90:
- d__[l] = p;
-
- ++l;
- if (l <= lend) {
- goto L50;
- }
- goto L150;
-
- } else {
-
-/*
- QR Iteration
-
- Look for small superdiagonal element.
-*/
-
-L100:
- i__1 = lend + 1;
- for (m = l; m >= i__1; --m) {
- if ((d__2 = e[m - 1], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m
- - 1], abs(d__1))) {
- goto L120;
- }
-/* L110: */
- }
- m = lend;
-
-L120:
- if (m > lend) {
- e[m - 1] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L140;
- }
-
-/*
- If remaining matrix is 2 by 2, use DLAE2 to compute its
- eigenvalues.
-*/
-
- if (m == l - 1) {
- rte = sqrt(e[l - 1]);
- dlae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);
- d__[l] = rt1;
- d__[l - 1] = rt2;
- e[l - 1] = 0.;
- l += -2;
- if (l >= lend) {
- goto L100;
- }
- goto L150;
- }
-
- if (jtot == nmaxit) {
- goto L150;
- }
- ++jtot;
-
-/* Form shift. */
-
- rte = sqrt(e[l - 1]);
- sigma = (d__[l - 1] - p) / (rte * 2.);
- r__ = dlapy2_(&sigma, &c_b15);
- sigma = p - rte / (sigma + d_sign(&r__, &sigma));
-
- c__ = 1.;
- s = 0.;
- gamma = d__[m] - sigma;
- p = gamma * gamma;
-
-/* Inner loop */
-
- i__1 = l - 1;
- for (i__ = m; i__ <= i__1; ++i__) {
- bb = e[i__];
- r__ = p + bb;
- if (i__ != m) {
- e[i__ - 1] = s * r__;
- }
- oldc = c__;
- c__ = p / r__;
- s = bb / r__;
- oldgam = gamma;
- alpha = d__[i__ + 1];
- gamma = c__ * (alpha - sigma) - s * oldgam;
- d__[i__] = oldgam + (alpha - gamma);
- if (c__ != 0.) {
- p = gamma * gamma / c__;
- } else {
- p = oldc * bb;
- }
-/* L130: */
- }
-
- e[l - 1] = s * p;
- d__[l] = sigma + gamma;
- goto L100;
-
-/* Eigenvalue found. */
-
-L140:
- d__[l] = p;
-
- --l;
- if (l >= lend) {
- goto L100;
- }
- goto L150;
-
- }
-
-/* Undo scaling if necessary */
-
-L150:
- if (iscale == 1) {
- i__1 = lendsv - lsv + 1;
- dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- }
- if (iscale == 2) {
- i__1 = lendsv - lsv + 1;
- dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- }
-
-/*
- Check for no convergence to an eigenvalue after a total
- of N*MAXIT iterations.
-*/
-
- if (jtot < nmaxit) {
- goto L10;
- }
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (e[i__] != 0.) {
- ++(*info);
- }
-/* L160: */
- }
- goto L180;
-
-/* Sort eigenvalues in increasing order. */
-
-L170:
- dlasrt_("I", n, &d__[1], info);
-
-L180:
- return 0;
-
-/* End of DSTERF */
-
-} /* dsterf_ */
-
-/* Subroutine */ int dsyevd_(char *jobz, char *uplo, integer *n, doublereal *
- a, integer *lda, doublereal *w, doublereal *work, integer *lwork,
- integer *iwork, integer *liwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal eps;
- static integer inde;
- static doublereal anrm, rmin, rmax;
- static integer lopt;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- static doublereal sigma;
- extern logical lsame_(char *, char *);
- static integer iinfo, lwmin, liopt;
- static logical lower, wantz;
- static integer indwk2, llwrk2;
-
- static integer iscale;
- extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), dstedc_(char *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, integer *, integer *, integer *), dlacpy_(
- char *, integer *, integer *, doublereal *, integer *, doublereal
- *, integer *);
- static doublereal safmin;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static doublereal bignum;
- static integer indtau;
- extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
- integer *);
- extern doublereal dlansy_(char *, char *, integer *, doublereal *,
- integer *, doublereal *);
- static integer indwrk, liwmin;
- extern /* Subroutine */ int dormtr_(char *, char *, char *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *), dsytrd_(char *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *);
- static integer llwork;
- static doublereal smlnum;
- static logical lquery;
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
- real symmetric matrix A. If eigenvectors are desired, it uses a
- divide and conquer algorithm.
-
- The divide and conquer algorithm makes very mild assumptions about
- floating point arithmetic. It will work on machines with a guard
- digit in add/subtract, or on those binary machines without guard
- digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- Cray-2. It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none.
-
- Because of large use of BLAS of level 3, DSYEVD needs N**2 more
- workspace than DSYEVX.
-
- Arguments
- =========
-
- JOBZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only;
- = 'V': Compute eigenvalues and eigenvectors.
-
- UPLO (input) CHARACTER*1
- = 'U': Upper triangle of A is stored;
- = 'L': Lower triangle of A is stored.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
- On entry, the symmetric matrix A. If UPLO = 'U', the
- leading N-by-N upper triangular part of A contains the
- upper triangular part of the matrix A. If UPLO = 'L',
- the leading N-by-N lower triangular part of A contains
- the lower triangular part of the matrix A.
- On exit, if JOBZ = 'V', then if INFO = 0, A contains the
- orthonormal eigenvectors of the matrix A.
- If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
- or the upper triangle (if UPLO='U') of A, including the
- diagonal, is destroyed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- W (output) DOUBLE PRECISION array, dimension (N)
- If INFO = 0, the eigenvalues in ascending order.
-
- WORK (workspace/output) DOUBLE PRECISION array,
- dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If N <= 1, LWORK must be at least 1.
- If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
- If JOBZ = 'V' and N > 1, LWORK must be at least
- 1 + 6*N + 2*N**2.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- IWORK (workspace/output) INTEGER array, dimension (LIWORK)
- On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
-
- LIWORK (input) INTEGER
- The dimension of the array IWORK.
- If N <= 1, LIWORK must be at least 1.
- If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
- If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
-
- If LIWORK = -1, then a workspace query is assumed; the
- routine only calculates the optimal size of the IWORK array,
- returns this value as the first entry of the IWORK array, and
- no error message related to LIWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, the algorithm failed to converge; i
- off-diagonal elements of an intermediate tridiagonal
- form did not converge to zero.
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
- Modified by Francoise Tisseur, University of Tennessee.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --w;
- --work;
- --iwork;
-
- /* Function Body */
- wantz = lsame_(jobz, "V");
- lower = lsame_(uplo, "L");
- lquery = *lwork == -1 || *liwork == -1;
-
- *info = 0;
- if (*n <= 1) {
- liwmin = 1;
- lwmin = 1;
- lopt = lwmin;
- liopt = liwmin;
- } else {
- if (wantz) {
- liwmin = *n * 5 + 3;
-/* Computing 2nd power */
- i__1 = *n;
- lwmin = *n * 6 + 1 + ((i__1 * i__1) << (1));
- } else {
- liwmin = 1;
- lwmin = ((*n) << (1)) + 1;
- }
- lopt = lwmin;
- liopt = liwmin;
- }
- if (! (wantz || lsame_(jobz, "N"))) {
- *info = -1;
- } else if (! (lower || lsame_(uplo, "U"))) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if ((*lwork < lwmin && ! lquery)) {
- *info = -8;
- } else if ((*liwork < liwmin && ! lquery)) {
- *info = -10;
- }
-
- if (*info == 0) {
- work[1] = (doublereal) lopt;
- iwork[1] = liopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DSYEVD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- if (*n == 1) {
- w[1] = a[a_dim1 + 1];
- if (wantz) {
- a[a_dim1 + 1] = 1.;
- }
- return 0;
- }
-
-/* Get machine constants. */
-
- safmin = SAFEMINIMUM;
- eps = PRECISION;
- smlnum = safmin / eps;
- bignum = 1. / smlnum;
- rmin = sqrt(smlnum);
- rmax = sqrt(bignum);
-
-/* Scale matrix to allowable range, if necessary. */
-
- anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
- iscale = 0;
- if ((anrm > 0. && anrm < rmin)) {
- iscale = 1;
- sigma = rmin / anrm;
- } else if (anrm > rmax) {
- iscale = 1;
- sigma = rmax / anrm;
- }
- if (iscale == 1) {
- dlascl_(uplo, &c__0, &c__0, &c_b15, &sigma, n, n, &a[a_offset], lda,
- info);
- }
-
-/* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
-
- inde = 1;
- indtau = inde + *n;
- indwrk = indtau + *n;
- llwork = *lwork - indwrk + 1;
- indwk2 = indwrk + *n * *n;
- llwrk2 = *lwork - indwk2 + 1;
-
- dsytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], &
- work[indwrk], &llwork, &iinfo);
- lopt = (integer) (((*n) << (1)) + work[indwrk]);
-
-/*
- For eigenvalues only, call DSTERF. For eigenvectors, first call
- DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
- tridiagonal matrix, then call DORMTR to multiply it by the
- Householder transformations stored in A.
-*/
-
- if (! wantz) {
- dsterf_(n, &w[1], &work[inde], info);
- } else {
- dstedc_("I", n, &w[1], &work[inde], &work[indwrk], n, &work[indwk2], &
- llwrk2, &iwork[1], liwork, info);
- dormtr_("L", uplo, "N", n, n, &a[a_offset], lda, &work[indtau], &work[
- indwrk], n, &work[indwk2], &llwrk2, &iinfo);
- dlacpy_("A", n, n, &work[indwrk], n, &a[a_offset], lda);
-/*
- Computing MAX
- Computing 2nd power
-*/
- i__3 = *n;
- i__1 = lopt, i__2 = *n * 6 + 1 + ((i__3 * i__3) << (1));
- lopt = max(i__1,i__2);
- }
-
-/* If matrix was scaled, then rescale eigenvalues appropriately. */
-
- if (iscale == 1) {
- d__1 = 1. / sigma;
- dscal_(n, &d__1, &w[1], &c__1);
- }
-
- work[1] = (doublereal) lopt;
- iwork[1] = liopt;
-
- return 0;
-
-/* End of DSYEVD */
-
-} /* dsyevd_ */
-
-/* Subroutine */ int dsytd2_(char *uplo, integer *n, doublereal *a, integer *
- lda, doublereal *d__, doublereal *e, doublereal *tau, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__;
- extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- static doublereal taui;
- extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *);
- static doublereal alpha;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *);
- static logical upper;
- extern /* Subroutine */ int dsymv_(char *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), dlarfg_(integer *, doublereal *,
- doublereal *, integer *, doublereal *), xerbla_(char *, integer *
- );
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
- form T by an orthogonal similarity transformation: Q' * A * Q = T.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- Specifies whether the upper or lower triangular part of the
- symmetric matrix A is stored:
- = 'U': Upper triangular
- = 'L': Lower triangular
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the symmetric matrix A. If UPLO = 'U', the leading
- n-by-n upper triangular part of A contains the upper
- triangular part of the matrix A, and the strictly lower
- triangular part of A is not referenced. If UPLO = 'L', the
- leading n-by-n lower triangular part of A contains the lower
- triangular part of the matrix A, and the strictly upper
- triangular part of A is not referenced.
- On exit, if UPLO = 'U', the diagonal and first superdiagonal
- of A are overwritten by the corresponding elements of the
- tridiagonal matrix T, and the elements above the first
- superdiagonal, with the array TAU, represent the orthogonal
- matrix Q as a product of elementary reflectors; if UPLO
- = 'L', the diagonal and first subdiagonal of A are over-
- written by the corresponding elements of the tridiagonal
- matrix T, and the elements below the first subdiagonal, with
- the array TAU, represent the orthogonal matrix Q as a product
- of elementary reflectors. See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- D (output) DOUBLE PRECISION array, dimension (N)
- The diagonal elements of the tridiagonal matrix T:
- D(i) = A(i,i).
-
- E (output) DOUBLE PRECISION array, dimension (N-1)
- The off-diagonal elements of the tridiagonal matrix T:
- E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
-
- TAU (output) DOUBLE PRECISION array, dimension (N-1)
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- If UPLO = 'U', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(n-1) . . . H(2) H(1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
- A(1:i-1,i+1), and tau in TAU(i).
-
- If UPLO = 'L', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(1) H(2) . . . H(n-1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
- and tau in TAU(i).
-
- The contents of A on exit are illustrated by the following examples
- with n = 5:
-
- if UPLO = 'U': if UPLO = 'L':
-
- ( d e v2 v3 v4 ) ( d )
- ( d e v3 v4 ) ( e d )
- ( d e v4 ) ( v1 e d )
- ( d e ) ( v1 v2 e d )
- ( d ) ( v1 v2 v3 e d )
-
- where d and e denote diagonal and off-diagonal elements of T, and vi
- denotes an element of the vector defining H(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tau;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- if ((! upper && ! lsame_(uplo, "L"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DSYTD2", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n <= 0) {
- return 0;
- }
-
- if (upper) {
-
-/* Reduce the upper triangle of A */
-
- for (i__ = *n - 1; i__ >= 1; --i__) {
-
-/*
- Generate elementary reflector H(i) = I - tau * v * v'
- to annihilate A(1:i-1,i+1)
-*/
-
- dlarfg_(&i__, &a[i__ + (i__ + 1) * a_dim1], &a[(i__ + 1) * a_dim1
- + 1], &c__1, &taui);
- e[i__] = a[i__ + (i__ + 1) * a_dim1];
-
- if (taui != 0.) {
-
-/* Apply H(i) from both sides to A(1:i,1:i) */
-
- a[i__ + (i__ + 1) * a_dim1] = 1.;
-
-/* Compute x := tau * A * v storing x in TAU(1:i) */
-
- dsymv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) *
- a_dim1 + 1], &c__1, &c_b29, &tau[1], &c__1)
- ;
-
-/* Compute w := x - 1/2 * tau * (x'*v) * v */
-
- alpha = taui * -.5 * ddot_(&i__, &tau[1], &c__1, &a[(i__ + 1)
- * a_dim1 + 1], &c__1);
- daxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[
- 1], &c__1);
-
-/*
- Apply the transformation as a rank-2 update:
- A := A - v * w' - w * v'
-*/
-
- dsyr2_(uplo, &i__, &c_b151, &a[(i__ + 1) * a_dim1 + 1], &c__1,
- &tau[1], &c__1, &a[a_offset], lda);
-
- a[i__ + (i__ + 1) * a_dim1] = e[i__];
- }
- d__[i__ + 1] = a[i__ + 1 + (i__ + 1) * a_dim1];
- tau[i__] = taui;
-/* L10: */
- }
- d__[1] = a[a_dim1 + 1];
- } else {
-
-/* Reduce the lower triangle of A */
-
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/*
- Generate elementary reflector H(i) = I - tau * v * v'
- to annihilate A(i+2:n,i)
-*/
-
- i__2 = *n - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) + i__ *
- a_dim1], &c__1, &taui);
- e[i__] = a[i__ + 1 + i__ * a_dim1];
-
- if (taui != 0.) {
-
-/* Apply H(i) from both sides to A(i+1:n,i+1:n) */
-
- a[i__ + 1 + i__ * a_dim1] = 1.;
-
-/* Compute x := tau * A * v storing y in TAU(i:n-1) */
-
- i__2 = *n - i__;
- dsymv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1],
- lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b29, &tau[
- i__], &c__1);
-
-/* Compute w := x - 1/2 * tau * (x'*v) * v */
-
- i__2 = *n - i__;
- alpha = taui * -.5 * ddot_(&i__2, &tau[i__], &c__1, &a[i__ +
- 1 + i__ * a_dim1], &c__1);
- i__2 = *n - i__;
- daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
- i__], &c__1);
-
-/*
- Apply the transformation as a rank-2 update:
- A := A - v * w' - w * v'
-*/
-
- i__2 = *n - i__;
- dsyr2_(uplo, &i__2, &c_b151, &a[i__ + 1 + i__ * a_dim1], &
- c__1, &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) *
- a_dim1], lda);
-
- a[i__ + 1 + i__ * a_dim1] = e[i__];
- }
- d__[i__] = a[i__ + i__ * a_dim1];
- tau[i__] = taui;
-/* L20: */
- }
- d__[*n] = a[*n + *n * a_dim1];
- }
-
- return 0;
-
-/* End of DSYTD2 */
-
-} /* dsytd2_ */
-
-/* Subroutine */ int dsytrd_(char *uplo, integer *n, doublereal *a, integer *
- lda, doublereal *d__, doublereal *e, doublereal *tau, doublereal *
- work, integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, j, nb, kk, nx, iws;
- extern logical lsame_(char *, char *);
- static integer nbmin, iinfo;
- static logical upper;
- extern /* Subroutine */ int dsytd2_(char *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, integer *), dsyr2k_(char *, char *, integer *, integer *, doublereal
- *, doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), dlatrd_(char *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, integer *), xerbla_(char *,
- integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer ldwork, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DSYTRD reduces a real symmetric matrix A to real symmetric
- tridiagonal form T by an orthogonal similarity transformation:
- Q**T * A * Q = T.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- = 'U': Upper triangle of A is stored;
- = 'L': Lower triangle of A is stored.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the symmetric matrix A. If UPLO = 'U', the leading
- N-by-N upper triangular part of A contains the upper
- triangular part of the matrix A, and the strictly lower
- triangular part of A is not referenced. If UPLO = 'L', the
- leading N-by-N lower triangular part of A contains the lower
- triangular part of the matrix A, and the strictly upper
- triangular part of A is not referenced.
- On exit, if UPLO = 'U', the diagonal and first superdiagonal
- of A are overwritten by the corresponding elements of the
- tridiagonal matrix T, and the elements above the first
- superdiagonal, with the array TAU, represent the orthogonal
- matrix Q as a product of elementary reflectors; if UPLO
- = 'L', the diagonal and first subdiagonal of A are over-
- written by the corresponding elements of the tridiagonal
- matrix T, and the elements below the first subdiagonal, with
- the array TAU, represent the orthogonal matrix Q as a product
- of elementary reflectors. See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- D (output) DOUBLE PRECISION array, dimension (N)
- The diagonal elements of the tridiagonal matrix T:
- D(i) = A(i,i).
-
- E (output) DOUBLE PRECISION array, dimension (N-1)
- The off-diagonal elements of the tridiagonal matrix T:
- E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
-
- TAU (output) DOUBLE PRECISION array, dimension (N-1)
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= 1.
- For optimum performance LWORK >= N*NB, where NB is the
- optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- If UPLO = 'U', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(n-1) . . . H(2) H(1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
- A(1:i-1,i+1), and tau in TAU(i).
-
- If UPLO = 'L', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(1) H(2) . . . H(n-1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
- and tau in TAU(i).
-
- The contents of A on exit are illustrated by the following examples
- with n = 5:
-
- if UPLO = 'U': if UPLO = 'L':
-
- ( d e v2 v3 v4 ) ( d )
- ( d e v3 v4 ) ( e d )
- ( d e v4 ) ( v1 e d )
- ( d e ) ( v1 v2 e d )
- ( d ) ( v1 v2 v3 e d )
-
- where d and e denote diagonal and off-diagonal elements of T, and vi
- denotes an element of the vector defining H(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- lquery = *lwork == -1;
- if ((! upper && ! lsame_(uplo, "L"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- } else if ((*lwork < 1 && ! lquery)) {
- *info = -9;
- }
-
- if (*info == 0) {
-
-/* Determine the block size. */
-
- nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
- (ftnlen)1);
- lwkopt = *n * nb;
- work[1] = (doublereal) lwkopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DSYTRD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- work[1] = 1.;
- return 0;
- }
-
- nx = *n;
- iws = 1;
- if ((nb > 1 && nb < *n)) {
-
-/*
- Determine when to cross over from blocked to unblocked code
- (last block is always handled by unblocked code).
-
- Computing MAX
-*/
- i__1 = nb, i__2 = ilaenv_(&c__3, "DSYTRD", uplo, n, &c_n1, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < *n) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- ldwork = *n;
- iws = ldwork * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: determine the
- minimum value of NB, and reduce NB or force use of
- unblocked code by setting NX = N.
-
- Computing MAX
-*/
- i__1 = *lwork / ldwork;
- nb = max(i__1,1);
- nbmin = ilaenv_(&c__2, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- if (nb < nbmin) {
- nx = *n;
- }
- }
- } else {
- nx = *n;
- }
- } else {
- nb = 1;
- }
-
- if (upper) {
-
-/*
- Reduce the upper triangle of A.
- Columns 1:kk are handled by the unblocked method.
-*/
-
- kk = *n - (*n - nx + nb - 1) / nb * nb;
- i__1 = kk + 1;
- i__2 = -nb;
- for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
- i__2) {
-
-/*
- Reduce columns i:i+nb-1 to tridiagonal form and form the
- matrix W which is needed to update the unreduced part of
- the matrix
-*/
-
- i__3 = i__ + nb - 1;
- dlatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &
- work[1], &ldwork);
-
-/*
- Update the unreduced submatrix A(1:i-1,1:i-1), using an
- update of the form: A := A - V*W' - W*V'
-*/
-
- i__3 = i__ - 1;
- dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b151, &a[i__ *
- a_dim1 + 1], lda, &work[1], &ldwork, &c_b15, &a[a_offset],
- lda);
-
-/*
- Copy superdiagonal elements back into A, and diagonal
- elements into D
-*/
-
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- a[j - 1 + j * a_dim1] = e[j - 1];
- d__[j] = a[j + j * a_dim1];
-/* L10: */
- }
-/* L20: */
- }
-
-/* Use unblocked code to reduce the last or only block */
-
- dsytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);
- } else {
-
-/* Reduce the lower triangle of A */
-
- i__2 = *n - nx;
- i__1 = nb;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
-
-/*
- Reduce columns i:i+nb-1 to tridiagonal form and form the
- matrix W which is needed to update the unreduced part of
- the matrix
-*/
-
- i__3 = *n - i__ + 1;
- dlatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], &
- tau[i__], &work[1], &ldwork);
-
-/*
- Update the unreduced submatrix A(i+ib:n,i+ib:n), using
- an update of the form: A := A - V*W' - W*V'
-*/
-
- i__3 = *n - i__ - nb + 1;
- dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b151, &a[i__ + nb +
- i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b15, &a[
- i__ + nb + (i__ + nb) * a_dim1], lda);
-
-/*
- Copy subdiagonal elements back into A, and diagonal
- elements into D
-*/
-
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- a[j + 1 + j * a_dim1] = e[j];
- d__[j] = a[j + j * a_dim1];
-/* L30: */
- }
-/* L40: */
- }
-
-/* Use unblocked code to reduce the last or only block */
-
- i__1 = *n - i__ + 1;
- dsytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__],
- &tau[i__], &iinfo);
- }
-
- work[1] = (doublereal) lwkopt;
- return 0;
-
-/* End of DSYTRD */
-
-} /* dsytrd_ */
-
-/* Subroutine */ int dtrevc_(char *side, char *howmny, logical *select,
- integer *n, doublereal *t, integer *ldt, doublereal *vl, integer *
- ldvl, doublereal *vr, integer *ldvr, integer *mm, integer *m,
- doublereal *work, integer *info)
-{
- /* System generated locals */
- integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
- i__2, i__3;
- doublereal d__1, d__2, d__3, d__4;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__, j, k;
- static doublereal x[4] /* was [2][2] */;
- static integer j1, j2, n2, ii, ki, ip, is;
- static doublereal wi, wr, rec, ulp, beta, emax;
- static logical pair;
- extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- static logical allv;
- static integer ierr;
- static doublereal unfl, ovfl, smin;
- static logical over;
- static doublereal vmax;
- static integer jnxt;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- static doublereal scale;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- static doublereal remax;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static logical leftv, bothv;
- extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *);
- static doublereal vcrit;
- static logical somev;
- static doublereal xnorm;
- extern /* Subroutine */ int dlaln2_(logical *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *
- , doublereal *, integer *, doublereal *, doublereal *, integer *),
- dlabad_(doublereal *, doublereal *);
-
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static doublereal bignum;
- static logical rightv;
- static doublereal smlnum;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- DTREVC computes some or all of the right and/or left eigenvectors of
- a real upper quasi-triangular matrix T.
-
- The right eigenvector x and the left eigenvector y of T corresponding
- to an eigenvalue w are defined by:
-
- T*x = w*x, y'*T = w*y'
-
- where y' denotes the conjugate transpose of the vector y.
-
- If all eigenvectors are requested, the routine may either return the
- matrices X and/or Y of right or left eigenvectors of T, or the
- products Q*X and/or Q*Y, where Q is an input orthogonal
- matrix. If T was obtained from the real-Schur factorization of an
- original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of
- right or left eigenvectors of A.
-
- T must be in Schur canonical form (as returned by DHSEQR), that is,
- block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
- 2-by-2 diagonal block has its diagonal elements equal and its
- off-diagonal elements of opposite sign. Corresponding to each 2-by-2
- diagonal block is a complex conjugate pair of eigenvalues and
- eigenvectors; only one eigenvector of the pair is computed, namely
- the one corresponding to the eigenvalue with positive imaginary part.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'R': compute right eigenvectors only;
- = 'L': compute left eigenvectors only;
- = 'B': compute both right and left eigenvectors.
-
- HOWMNY (input) CHARACTER*1
- = 'A': compute all right and/or left eigenvectors;
- = 'B': compute all right and/or left eigenvectors,
- and backtransform them using the input matrices
- supplied in VR and/or VL;
- = 'S': compute selected right and/or left eigenvectors,
- specified by the logical array SELECT.
-
- SELECT (input/output) LOGICAL array, dimension (N)
- If HOWMNY = 'S', SELECT specifies the eigenvectors to be
- computed.
- If HOWMNY = 'A' or 'B', SELECT is not referenced.
- To select the real eigenvector corresponding to a real
- eigenvalue w(j), SELECT(j) must be set to .TRUE.. To select
- the complex eigenvector corresponding to a complex conjugate
- pair w(j) and w(j+1), either SELECT(j) or SELECT(j+1) must be
- set to .TRUE.; then on exit SELECT(j) is .TRUE. and
- SELECT(j+1) is .FALSE..
-
- N (input) INTEGER
- The order of the matrix T. N >= 0.
-
- T (input) DOUBLE PRECISION array, dimension (LDT,N)
- The upper quasi-triangular matrix T in Schur canonical form.
-
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= max(1,N).
-
- VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
- On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
- contain an N-by-N matrix Q (usually the orthogonal matrix Q
- of Schur vectors returned by DHSEQR).
- On exit, if SIDE = 'L' or 'B', VL contains:
- if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
- VL has the same quasi-lower triangular form
- as T'. If T(i,i) is a real eigenvalue, then
- the i-th column VL(i) of VL is its
- corresponding eigenvector. If T(i:i+1,i:i+1)
- is a 2-by-2 block whose eigenvalues are
- complex-conjugate eigenvalues of T, then
- VL(i)+sqrt(-1)*VL(i+1) is the complex
- eigenvector corresponding to the eigenvalue
- with positive real part.
- if HOWMNY = 'B', the matrix Q*Y;
- if HOWMNY = 'S', the left eigenvectors of T specified by
- SELECT, stored consecutively in the columns
- of VL, in the same order as their
- eigenvalues.
- A complex eigenvector corresponding to a complex eigenvalue
- is stored in two consecutive columns, the first holding the
- real part, and the second the imaginary part.
- If SIDE = 'R', VL is not referenced.
-
- LDVL (input) INTEGER
- The leading dimension of the array VL. LDVL >= max(1,N) if
- SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
-
- VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
- On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
- contain an N-by-N matrix Q (usually the orthogonal matrix Q
- of Schur vectors returned by DHSEQR).
- On exit, if SIDE = 'R' or 'B', VR contains:
- if HOWMNY = 'A', the matrix X of right eigenvectors of T;
- VR has the same quasi-upper triangular form
- as T. If T(i,i) is a real eigenvalue, then
- the i-th column VR(i) of VR is its
- corresponding eigenvector. If T(i:i+1,i:i+1)
- is a 2-by-2 block whose eigenvalues are
- complex-conjugate eigenvalues of T, then
- VR(i)+sqrt(-1)*VR(i+1) is the complex
- eigenvector corresponding to the eigenvalue
- with positive real part.
- if HOWMNY = 'B', the matrix Q*X;
- if HOWMNY = 'S', the right eigenvectors of T specified by
- SELECT, stored consecutively in the columns
- of VR, in the same order as their
- eigenvalues.
- A complex eigenvector corresponding to a complex eigenvalue
- is stored in two consecutive columns, the first holding the
- real part and the second the imaginary part.
- If SIDE = 'L', VR is not referenced.
-
- LDVR (input) INTEGER
- The leading dimension of the array VR. LDVR >= max(1,N) if
- SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
-
- MM (input) INTEGER
- The number of columns in the arrays VL and/or VR. MM >= M.
-
- M (output) INTEGER
- The number of columns in the arrays VL and/or VR actually
- used to store the eigenvectors.
- If HOWMNY = 'A' or 'B', M is set to N.
- Each selected real eigenvector occupies one column and each
- selected complex eigenvector occupies two columns.
-
- WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- The algorithm used in this program is basically backward (forward)
- substitution, with scaling to make the the code robust against
- possible overflow.
-
- Each eigenvector is normalized so that the element of largest
- magnitude has magnitude 1; here the magnitude of a complex number
- (x,y) is taken to be |x| + |y|.
-
- =====================================================================
-
-
- Decode and test the input parameters
-*/
-
- /* Parameter adjustments */
- --select;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --work;
-
- /* Function Body */
- bothv = lsame_(side, "B");
- rightv = lsame_(side, "R") || bothv;
- leftv = lsame_(side, "L") || bothv;
-
- allv = lsame_(howmny, "A");
- over = lsame_(howmny, "B");
- somev = lsame_(howmny, "S");
-
- *info = 0;
- if ((! rightv && ! leftv)) {
- *info = -1;
- } else if (((! allv && ! over) && ! somev)) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ldt < max(1,*n)) {
- *info = -6;
- } else if (*ldvl < 1 || (leftv && *ldvl < *n)) {
- *info = -8;
- } else if (*ldvr < 1 || (rightv && *ldvr < *n)) {
- *info = -10;
- } else {
-
-/*
- Set M to the number of columns required to store the selected
- eigenvectors, standardize the array SELECT if necessary, and
- test MM.
-*/
-
- if (somev) {
- *m = 0;
- pair = FALSE_;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (pair) {
- pair = FALSE_;
- select[j] = FALSE_;
- } else {
- if (j < *n) {
- if (t[j + 1 + j * t_dim1] == 0.) {
- if (select[j]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[j] || select[j + 1]) {
- select[j] = TRUE_;
- *m += 2;
- }
- }
- } else {
- if (select[*n]) {
- ++(*m);
- }
- }
- }
-/* L10: */
- }
- } else {
- *m = *n;
- }
-
- if (*mm < *m) {
- *info = -11;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DTREVC", &i__1);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
-/* Set the constants to control overflow. */
-
- unfl = SAFEMINIMUM;
- ovfl = 1. / unfl;
- dlabad_(&unfl, &ovfl);
- ulp = PRECISION;
- smlnum = unfl * (*n / ulp);
- bignum = (1. - ulp) / smlnum;
-
-/*
- Compute 1-norm of each column of strictly upper triangular
- part of T to control overflow in triangular solver.
-*/
-
- work[1] = 0.;
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- work[j] = 0.;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[j] += (d__1 = t[i__ + j * t_dim1], abs(d__1));
-/* L20: */
- }
-/* L30: */
- }
-
-/*
- Index IP is used to specify the real or complex eigenvalue:
- IP = 0, real eigenvalue,
- 1, first of conjugate complex pair: (wr,wi)
- -1, second of conjugate complex pair: (wr,wi)
-*/
-
- n2 = (*n) << (1);
-
- if (rightv) {
-
-/* Compute right eigenvectors. */
-
- ip = 0;
- is = *m;
- for (ki = *n; ki >= 1; --ki) {
-
- if (ip == 1) {
- goto L130;
- }
- if (ki == 1) {
- goto L40;
- }
- if (t[ki + (ki - 1) * t_dim1] == 0.) {
- goto L40;
- }
- ip = -1;
-
-L40:
- if (somev) {
- if (ip == 0) {
- if (! select[ki]) {
- goto L130;
- }
- } else {
- if (! select[ki - 1]) {
- goto L130;
- }
- }
- }
-
-/* Compute the KI-th eigenvalue (WR,WI). */
-
- wr = t[ki + ki * t_dim1];
- wi = 0.;
- if (ip != 0) {
- wi = sqrt((d__1 = t[ki + (ki - 1) * t_dim1], abs(d__1))) *
- sqrt((d__2 = t[ki - 1 + ki * t_dim1], abs(d__2)));
- }
-/* Computing MAX */
- d__1 = ulp * (abs(wr) + abs(wi));
- smin = max(d__1,smlnum);
-
- if (ip == 0) {
-
-/* Real right eigenvector */
-
- work[ki + *n] = 1.;
-
-/* Form right-hand side */
-
- i__1 = ki - 1;
- for (k = 1; k <= i__1; ++k) {
- work[k + *n] = -t[k + ki * t_dim1];
-/* L50: */
- }
-
-/*
- Solve the upper quasi-triangular system:
- (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK.
-*/
-
- jnxt = ki - 1;
- for (j = ki - 1; j >= 1; --j) {
- if (j > jnxt) {
- goto L60;
- }
- j1 = j;
- j2 = j;
- jnxt = j - 1;
- if (j > 1) {
- if (t[j + (j - 1) * t_dim1] != 0.) {
- j1 = j - 1;
- jnxt = j - 2;
- }
- }
-
- if (j1 == j2) {
-
-/* 1-by-1 diagonal block */
-
- dlaln2_(&c_false, &c__1, &c__1, &smin, &c_b15, &t[j +
- j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
- n], n, &wr, &c_b29, x, &c__2, &scale, &xnorm,
- &ierr);
-
-/*
- Scale X(1,1) to avoid overflow when updating
- the right-hand side.
-*/
-
- if (xnorm > 1.) {
- if (work[j] > bignum / xnorm) {
- x[0] /= xnorm;
- scale /= xnorm;
- }
- }
-
-/* Scale if necessary */
-
- if (scale != 1.) {
- dscal_(&ki, &scale, &work[*n + 1], &c__1);
- }
- work[j + *n] = x[0];
-
-/* Update right-hand side */
-
- i__1 = j - 1;
- d__1 = -x[0];
- daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- *n + 1], &c__1);
-
- } else {
-
-/* 2-by-2 diagonal block */
-
- dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b15, &t[j -
- 1 + (j - 1) * t_dim1], ldt, &c_b15, &c_b15, &
- work[j - 1 + *n], n, &wr, &c_b29, x, &c__2, &
- scale, &xnorm, &ierr);
-
-/*
- Scale X(1,1) and X(2,1) to avoid overflow when
- updating the right-hand side.
-*/
-
- if (xnorm > 1.) {
-/* Computing MAX */
- d__1 = work[j - 1], d__2 = work[j];
- beta = max(d__1,d__2);
- if (beta > bignum / xnorm) {
- x[0] /= xnorm;
- x[1] /= xnorm;
- scale /= xnorm;
- }
- }
-
-/* Scale if necessary */
-
- if (scale != 1.) {
- dscal_(&ki, &scale, &work[*n + 1], &c__1);
- }
- work[j - 1 + *n] = x[0];
- work[j + *n] = x[1];
-
-/* Update right-hand side */
-
- i__1 = j - 2;
- d__1 = -x[0];
- daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1,
- &work[*n + 1], &c__1);
- i__1 = j - 2;
- d__1 = -x[1];
- daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- *n + 1], &c__1);
- }
-L60:
- ;
- }
-
-/* Copy the vector x or Q*x to VR and normalize. */
-
- if (! over) {
- dcopy_(&ki, &work[*n + 1], &c__1, &vr[is * vr_dim1 + 1], &
- c__1);
-
- ii = idamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
- remax = 1. / (d__1 = vr[ii + is * vr_dim1], abs(d__1));
- dscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
-
- i__1 = *n;
- for (k = ki + 1; k <= i__1; ++k) {
- vr[k + is * vr_dim1] = 0.;
-/* L70: */
- }
- } else {
- if (ki > 1) {
- i__1 = ki - 1;
- dgemv_("N", n, &i__1, &c_b15, &vr[vr_offset], ldvr, &
- work[*n + 1], &c__1, &work[ki + *n], &vr[ki *
- vr_dim1 + 1], &c__1);
- }
-
- ii = idamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
- remax = 1. / (d__1 = vr[ii + ki * vr_dim1], abs(d__1));
- dscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
- }
-
- } else {
-
-/*
- Complex right eigenvector.
-
- Initial solve
- [ (T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I* WI)]*X = 0.
- [ (T(KI,KI-1) T(KI,KI) ) ]
-*/
-
- if ((d__1 = t[ki - 1 + ki * t_dim1], abs(d__1)) >= (d__2 = t[
- ki + (ki - 1) * t_dim1], abs(d__2))) {
- work[ki - 1 + *n] = 1.;
- work[ki + n2] = wi / t[ki - 1 + ki * t_dim1];
- } else {
- work[ki - 1 + *n] = -wi / t[ki + (ki - 1) * t_dim1];
- work[ki + n2] = 1.;
- }
- work[ki + *n] = 0.;
- work[ki - 1 + n2] = 0.;
-
-/* Form right-hand side */
-
- i__1 = ki - 2;
- for (k = 1; k <= i__1; ++k) {
- work[k + *n] = -work[ki - 1 + *n] * t[k + (ki - 1) *
- t_dim1];
- work[k + n2] = -work[ki + n2] * t[k + ki * t_dim1];
-/* L80: */
- }
-
-/*
- Solve upper quasi-triangular system:
- (T(1:KI-2,1:KI-2) - (WR+i*WI))*X = SCALE*(WORK+i*WORK2)
-*/
-
- jnxt = ki - 2;
- for (j = ki - 2; j >= 1; --j) {
- if (j > jnxt) {
- goto L90;
- }
- j1 = j;
- j2 = j;
- jnxt = j - 1;
- if (j > 1) {
- if (t[j + (j - 1) * t_dim1] != 0.) {
- j1 = j - 1;
- jnxt = j - 2;
- }
- }
-
- if (j1 == j2) {
-
-/* 1-by-1 diagonal block */
-
- dlaln2_(&c_false, &c__1, &c__2, &smin, &c_b15, &t[j +
- j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
- n], n, &wr, &wi, x, &c__2, &scale, &xnorm, &
- ierr);
-
-/*
- Scale X(1,1) and X(1,2) to avoid overflow when
- updating the right-hand side.
-*/
-
- if (xnorm > 1.) {
- if (work[j] > bignum / xnorm) {
- x[0] /= xnorm;
- x[2] /= xnorm;
- scale /= xnorm;
- }
- }
-
-/* Scale if necessary */
-
- if (scale != 1.) {
- dscal_(&ki, &scale, &work[*n + 1], &c__1);
- dscal_(&ki, &scale, &work[n2 + 1], &c__1);
- }
- work[j + *n] = x[0];
- work[j + n2] = x[2];
-
-/* Update the right-hand side */
-
- i__1 = j - 1;
- d__1 = -x[0];
- daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- *n + 1], &c__1);
- i__1 = j - 1;
- d__1 = -x[2];
- daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- n2 + 1], &c__1);
-
- } else {
-
-/* 2-by-2 diagonal block */
-
- dlaln2_(&c_false, &c__2, &c__2, &smin, &c_b15, &t[j -
- 1 + (j - 1) * t_dim1], ldt, &c_b15, &c_b15, &
- work[j - 1 + *n], n, &wr, &wi, x, &c__2, &
- scale, &xnorm, &ierr);
-
-/*
- Scale X to avoid overflow when updating
- the right-hand side.
-*/
-
- if (xnorm > 1.) {
-/* Computing MAX */
- d__1 = work[j - 1], d__2 = work[j];
- beta = max(d__1,d__2);
- if (beta > bignum / xnorm) {
- rec = 1. / xnorm;
- x[0] *= rec;
- x[2] *= rec;
- x[1] *= rec;
- x[3] *= rec;
- scale *= rec;
- }
- }
-
-/* Scale if necessary */
-
- if (scale != 1.) {
- dscal_(&ki, &scale, &work[*n + 1], &c__1);
- dscal_(&ki, &scale, &work[n2 + 1], &c__1);
- }
- work[j - 1 + *n] = x[0];
- work[j + *n] = x[1];
- work[j - 1 + n2] = x[2];
- work[j + n2] = x[3];
-
-/* Update the right-hand side */
-
- i__1 = j - 2;
- d__1 = -x[0];
- daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1,
- &work[*n + 1], &c__1);
- i__1 = j - 2;
- d__1 = -x[1];
- daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- *n + 1], &c__1);
- i__1 = j - 2;
- d__1 = -x[2];
- daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1,
- &work[n2 + 1], &c__1);
- i__1 = j - 2;
- d__1 = -x[3];
- daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- n2 + 1], &c__1);
- }
-L90:
- ;
- }
-
-/* Copy the vector x or Q*x to VR and normalize. */
-
- if (! over) {
- dcopy_(&ki, &work[*n + 1], &c__1, &vr[(is - 1) * vr_dim1
- + 1], &c__1);
- dcopy_(&ki, &work[n2 + 1], &c__1, &vr[is * vr_dim1 + 1], &
- c__1);
-
- emax = 0.;
- i__1 = ki;
- for (k = 1; k <= i__1; ++k) {
-/* Computing MAX */
- d__3 = emax, d__4 = (d__1 = vr[k + (is - 1) * vr_dim1]
- , abs(d__1)) + (d__2 = vr[k + is * vr_dim1],
- abs(d__2));
- emax = max(d__3,d__4);
-/* L100: */
- }
-
- remax = 1. / emax;
- dscal_(&ki, &remax, &vr[(is - 1) * vr_dim1 + 1], &c__1);
- dscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
-
- i__1 = *n;
- for (k = ki + 1; k <= i__1; ++k) {
- vr[k + (is - 1) * vr_dim1] = 0.;
- vr[k + is * vr_dim1] = 0.;
-/* L110: */
- }
-
- } else {
-
- if (ki > 2) {
- i__1 = ki - 2;
- dgemv_("N", n, &i__1, &c_b15, &vr[vr_offset], ldvr, &
- work[*n + 1], &c__1, &work[ki - 1 + *n], &vr[(
- ki - 1) * vr_dim1 + 1], &c__1);
- i__1 = ki - 2;
- dgemv_("N", n, &i__1, &c_b15, &vr[vr_offset], ldvr, &
- work[n2 + 1], &c__1, &work[ki + n2], &vr[ki *
- vr_dim1 + 1], &c__1);
- } else {
- dscal_(n, &work[ki - 1 + *n], &vr[(ki - 1) * vr_dim1
- + 1], &c__1);
- dscal_(n, &work[ki + n2], &vr[ki * vr_dim1 + 1], &
- c__1);
- }
-
- emax = 0.;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
-/* Computing MAX */
- d__3 = emax, d__4 = (d__1 = vr[k + (ki - 1) * vr_dim1]
- , abs(d__1)) + (d__2 = vr[k + ki * vr_dim1],
- abs(d__2));
- emax = max(d__3,d__4);
-/* L120: */
- }
- remax = 1. / emax;
- dscal_(n, &remax, &vr[(ki - 1) * vr_dim1 + 1], &c__1);
- dscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
- }
- }
-
- --is;
- if (ip != 0) {
- --is;
- }
-L130:
- if (ip == 1) {
- ip = 0;
- }
- if (ip == -1) {
- ip = 1;
- }
-/* L140: */
- }
- }
-
- if (leftv) {
-
-/* Compute left eigenvectors. */
-
- ip = 0;
- is = 1;
- i__1 = *n;
- for (ki = 1; ki <= i__1; ++ki) {
-
- if (ip == -1) {
- goto L250;
- }
- if (ki == *n) {
- goto L150;
- }
- if (t[ki + 1 + ki * t_dim1] == 0.) {
- goto L150;
- }
- ip = 1;
-
-L150:
- if (somev) {
- if (! select[ki]) {
- goto L250;
- }
- }
-
-/* Compute the KI-th eigenvalue (WR,WI). */
-
- wr = t[ki + ki * t_dim1];
- wi = 0.;
- if (ip != 0) {
- wi = sqrt((d__1 = t[ki + (ki + 1) * t_dim1], abs(d__1))) *
- sqrt((d__2 = t[ki + 1 + ki * t_dim1], abs(d__2)));
- }
-/* Computing MAX */
- d__1 = ulp * (abs(wr) + abs(wi));
- smin = max(d__1,smlnum);
-
- if (ip == 0) {
-
-/* Real left eigenvector. */
-
- work[ki + *n] = 1.;
-
-/* Form right-hand side */
-
- i__2 = *n;
- for (k = ki + 1; k <= i__2; ++k) {
- work[k + *n] = -t[ki + k * t_dim1];
-/* L160: */
- }
-
-/*
- Solve the quasi-triangular system:
- (T(KI+1:N,KI+1:N) - WR)'*X = SCALE*WORK
-*/
-
- vmax = 1.;
- vcrit = bignum;
-
- jnxt = ki + 1;
- i__2 = *n;
- for (j = ki + 1; j <= i__2; ++j) {
- if (j < jnxt) {
- goto L170;
- }
- j1 = j;
- j2 = j;
- jnxt = j + 1;
- if (j < *n) {
- if (t[j + 1 + j * t_dim1] != 0.) {
- j2 = j + 1;
- jnxt = j + 2;
- }
- }
-
- if (j1 == j2) {
-
-/*
- 1-by-1 diagonal block
-
- Scale if necessary to avoid overflow when forming
- the right-hand side.
-*/
-
- if (work[j] > vcrit) {
- rec = 1. / vmax;
- i__3 = *n - ki + 1;
- dscal_(&i__3, &rec, &work[ki + *n], &c__1);
- vmax = 1.;
- vcrit = bignum;
- }
-
- i__3 = j - ki - 1;
- work[j + *n] -= ddot_(&i__3, &t[ki + 1 + j * t_dim1],
- &c__1, &work[ki + 1 + *n], &c__1);
-
-/* Solve (T(J,J)-WR)'*X = WORK */
-
- dlaln2_(&c_false, &c__1, &c__1, &smin, &c_b15, &t[j +
- j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
- n], n, &wr, &c_b29, x, &c__2, &scale, &xnorm,
- &ierr);
-
-/* Scale if necessary */
-
- if (scale != 1.) {
- i__3 = *n - ki + 1;
- dscal_(&i__3, &scale, &work[ki + *n], &c__1);
- }
- work[j + *n] = x[0];
-/* Computing MAX */
- d__2 = (d__1 = work[j + *n], abs(d__1));
- vmax = max(d__2,vmax);
- vcrit = bignum / vmax;
-
- } else {
-
-/*
- 2-by-2 diagonal block
-
- Scale if necessary to avoid overflow when forming
- the right-hand side.
-
- Computing MAX
-*/
- d__1 = work[j], d__2 = work[j + 1];
- beta = max(d__1,d__2);
- if (beta > vcrit) {
- rec = 1. / vmax;
- i__3 = *n - ki + 1;
- dscal_(&i__3, &rec, &work[ki + *n], &c__1);
- vmax = 1.;
- vcrit = bignum;
- }
-
- i__3 = j - ki - 1;
- work[j + *n] -= ddot_(&i__3, &t[ki + 1 + j * t_dim1],
- &c__1, &work[ki + 1 + *n], &c__1);
-
- i__3 = j - ki - 1;
- work[j + 1 + *n] -= ddot_(&i__3, &t[ki + 1 + (j + 1) *
- t_dim1], &c__1, &work[ki + 1 + *n], &c__1);
-
-/*
- Solve
- [T(J,J)-WR T(J,J+1) ]'* X = SCALE*( WORK1 )
- [T(J+1,J) T(J+1,J+1)-WR] ( WORK2 )
-*/
-
- dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b15, &t[j +
- j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
- n], n, &wr, &c_b29, x, &c__2, &scale, &xnorm,
- &ierr);
-
-/* Scale if necessary */
-
- if (scale != 1.) {
- i__3 = *n - ki + 1;
- dscal_(&i__3, &scale, &work[ki + *n], &c__1);
- }
- work[j + *n] = x[0];
- work[j + 1 + *n] = x[1];
-
-/* Computing MAX */
- d__3 = (d__1 = work[j + *n], abs(d__1)), d__4 = (d__2
- = work[j + 1 + *n], abs(d__2)), d__3 = max(
- d__3,d__4);
- vmax = max(d__3,vmax);
- vcrit = bignum / vmax;
-
- }
-L170:
- ;
- }
-
-/* Copy the vector x or Q*x to VL and normalize. */
-
- if (! over) {
- i__2 = *n - ki + 1;
- dcopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is *
- vl_dim1], &c__1);
-
- i__2 = *n - ki + 1;
- ii = idamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki -
- 1;
- remax = 1. / (d__1 = vl[ii + is * vl_dim1], abs(d__1));
- i__2 = *n - ki + 1;
- dscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
-
- i__2 = ki - 1;
- for (k = 1; k <= i__2; ++k) {
- vl[k + is * vl_dim1] = 0.;
-/* L180: */
- }
-
- } else {
-
- if (ki < *n) {
- i__2 = *n - ki;
- dgemv_("N", n, &i__2, &c_b15, &vl[(ki + 1) * vl_dim1
- + 1], ldvl, &work[ki + 1 + *n], &c__1, &work[
- ki + *n], &vl[ki * vl_dim1 + 1], &c__1);
- }
-
- ii = idamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
- remax = 1. / (d__1 = vl[ii + ki * vl_dim1], abs(d__1));
- dscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
-
- }
-
- } else {
-
-/*
- Complex left eigenvector.
-
- Initial solve:
- ((T(KI,KI) T(KI,KI+1) )' - (WR - I* WI))*X = 0.
- ((T(KI+1,KI) T(KI+1,KI+1)) )
-*/
-
- if ((d__1 = t[ki + (ki + 1) * t_dim1], abs(d__1)) >= (d__2 =
- t[ki + 1 + ki * t_dim1], abs(d__2))) {
- work[ki + *n] = wi / t[ki + (ki + 1) * t_dim1];
- work[ki + 1 + n2] = 1.;
- } else {
- work[ki + *n] = 1.;
- work[ki + 1 + n2] = -wi / t[ki + 1 + ki * t_dim1];
- }
- work[ki + 1 + *n] = 0.;
- work[ki + n2] = 0.;
-
-/* Form right-hand side */
-
- i__2 = *n;
- for (k = ki + 2; k <= i__2; ++k) {
- work[k + *n] = -work[ki + *n] * t[ki + k * t_dim1];
- work[k + n2] = -work[ki + 1 + n2] * t[ki + 1 + k * t_dim1]
- ;
-/* L190: */
- }
-
-/*
- Solve complex quasi-triangular system:
- ( T(KI+2,N:KI+2,N) - (WR-i*WI) )*X = WORK1+i*WORK2
-*/
-
- vmax = 1.;
- vcrit = bignum;
-
- jnxt = ki + 2;
- i__2 = *n;
- for (j = ki + 2; j <= i__2; ++j) {
- if (j < jnxt) {
- goto L200;
- }
- j1 = j;
- j2 = j;
- jnxt = j + 1;
- if (j < *n) {
- if (t[j + 1 + j * t_dim1] != 0.) {
- j2 = j + 1;
- jnxt = j + 2;
- }
- }
-
- if (j1 == j2) {
-
-/*
- 1-by-1 diagonal block
-
- Scale if necessary to avoid overflow when
- forming the right-hand side elements.
-*/
-
- if (work[j] > vcrit) {
- rec = 1. / vmax;
- i__3 = *n - ki + 1;
- dscal_(&i__3, &rec, &work[ki + *n], &c__1);
- i__3 = *n - ki + 1;
- dscal_(&i__3, &rec, &work[ki + n2], &c__1);
- vmax = 1.;
- vcrit = bignum;
- }
-
- i__3 = j - ki - 2;
- work[j + *n] -= ddot_(&i__3, &t[ki + 2 + j * t_dim1],
- &c__1, &work[ki + 2 + *n], &c__1);
- i__3 = j - ki - 2;
- work[j + n2] -= ddot_(&i__3, &t[ki + 2 + j * t_dim1],
- &c__1, &work[ki + 2 + n2], &c__1);
-
-/* Solve (T(J,J)-(WR-i*WI))*(X11+i*X12)= WK+I*WK2 */
-
- d__1 = -wi;
- dlaln2_(&c_false, &c__1, &c__2, &smin, &c_b15, &t[j +
- j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
- n], n, &wr, &d__1, x, &c__2, &scale, &xnorm, &
- ierr);
-
-/* Scale if necessary */
-
- if (scale != 1.) {
- i__3 = *n - ki + 1;
- dscal_(&i__3, &scale, &work[ki + *n], &c__1);
- i__3 = *n - ki + 1;
- dscal_(&i__3, &scale, &work[ki + n2], &c__1);
- }
- work[j + *n] = x[0];
- work[j + n2] = x[2];
-/* Computing MAX */
- d__3 = (d__1 = work[j + *n], abs(d__1)), d__4 = (d__2
- = work[j + n2], abs(d__2)), d__3 = max(d__3,
- d__4);
- vmax = max(d__3,vmax);
- vcrit = bignum / vmax;
-
- } else {
-
-/*
- 2-by-2 diagonal block
-
- Scale if necessary to avoid overflow when forming
- the right-hand side elements.
-
- Computing MAX
-*/
- d__1 = work[j], d__2 = work[j + 1];
- beta = max(d__1,d__2);
- if (beta > vcrit) {
- rec = 1. / vmax;
- i__3 = *n - ki + 1;
- dscal_(&i__3, &rec, &work[ki + *n], &c__1);
- i__3 = *n - ki + 1;
- dscal_(&i__3, &rec, &work[ki + n2], &c__1);
- vmax = 1.;
- vcrit = bignum;
- }
-
- i__3 = j - ki - 2;
- work[j + *n] -= ddot_(&i__3, &t[ki + 2 + j * t_dim1],
- &c__1, &work[ki + 2 + *n], &c__1);
-
- i__3 = j - ki - 2;
- work[j + n2] -= ddot_(&i__3, &t[ki + 2 + j * t_dim1],
- &c__1, &work[ki + 2 + n2], &c__1);
-
- i__3 = j - ki - 2;
- work[j + 1 + *n] -= ddot_(&i__3, &t[ki + 2 + (j + 1) *
- t_dim1], &c__1, &work[ki + 2 + *n], &c__1);
-
- i__3 = j - ki - 2;
- work[j + 1 + n2] -= ddot_(&i__3, &t[ki + 2 + (j + 1) *
- t_dim1], &c__1, &work[ki + 2 + n2], &c__1);
-
-/*
- Solve 2-by-2 complex linear equation
- ([T(j,j) T(j,j+1) ]'-(wr-i*wi)*I)*X = SCALE*B
- ([T(j+1,j) T(j+1,j+1)] )
-*/
-
- d__1 = -wi;
- dlaln2_(&c_true, &c__2, &c__2, &smin, &c_b15, &t[j +
- j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
- n], n, &wr, &d__1, x, &c__2, &scale, &xnorm, &
- ierr);
-
-/* Scale if necessary */
-
- if (scale != 1.) {
- i__3 = *n - ki + 1;
- dscal_(&i__3, &scale, &work[ki + *n], &c__1);
- i__3 = *n - ki + 1;
- dscal_(&i__3, &scale, &work[ki + n2], &c__1);
- }
- work[j + *n] = x[0];
- work[j + n2] = x[2];
- work[j + 1 + *n] = x[1];
- work[j + 1 + n2] = x[3];
-/* Computing MAX */
- d__1 = abs(x[0]), d__2 = abs(x[2]), d__1 = max(d__1,
- d__2), d__2 = abs(x[1]), d__1 = max(d__1,d__2)
- , d__2 = abs(x[3]), d__1 = max(d__1,d__2);
- vmax = max(d__1,vmax);
- vcrit = bignum / vmax;
-
- }
-L200:
- ;
- }
-
-/*
- Copy the vector x or Q*x to VL and normalize.
-
- L210:
-*/
- if (! over) {
- i__2 = *n - ki + 1;
- dcopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is *
- vl_dim1], &c__1);
- i__2 = *n - ki + 1;
- dcopy_(&i__2, &work[ki + n2], &c__1, &vl[ki + (is + 1) *
- vl_dim1], &c__1);
-
- emax = 0.;
- i__2 = *n;
- for (k = ki; k <= i__2; ++k) {
-/* Computing MAX */
- d__3 = emax, d__4 = (d__1 = vl[k + is * vl_dim1], abs(
- d__1)) + (d__2 = vl[k + (is + 1) * vl_dim1],
- abs(d__2));
- emax = max(d__3,d__4);
-/* L220: */
- }
- remax = 1. / emax;
- i__2 = *n - ki + 1;
- dscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
- i__2 = *n - ki + 1;
- dscal_(&i__2, &remax, &vl[ki + (is + 1) * vl_dim1], &c__1)
- ;
-
- i__2 = ki - 1;
- for (k = 1; k <= i__2; ++k) {
- vl[k + is * vl_dim1] = 0.;
- vl[k + (is + 1) * vl_dim1] = 0.;
-/* L230: */
- }
- } else {
- if (ki < *n - 1) {
- i__2 = *n - ki - 1;
- dgemv_("N", n, &i__2, &c_b15, &vl[(ki + 2) * vl_dim1
- + 1], ldvl, &work[ki + 2 + *n], &c__1, &work[
- ki + *n], &vl[ki * vl_dim1 + 1], &c__1);
- i__2 = *n - ki - 1;
- dgemv_("N", n, &i__2, &c_b15, &vl[(ki + 2) * vl_dim1
- + 1], ldvl, &work[ki + 2 + n2], &c__1, &work[
- ki + 1 + n2], &vl[(ki + 1) * vl_dim1 + 1], &
- c__1);
- } else {
- dscal_(n, &work[ki + *n], &vl[ki * vl_dim1 + 1], &
- c__1);
- dscal_(n, &work[ki + 1 + n2], &vl[(ki + 1) * vl_dim1
- + 1], &c__1);
- }
-
- emax = 0.;
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
-/* Computing MAX */
- d__3 = emax, d__4 = (d__1 = vl[k + ki * vl_dim1], abs(
- d__1)) + (d__2 = vl[k + (ki + 1) * vl_dim1],
- abs(d__2));
- emax = max(d__3,d__4);
-/* L240: */
- }
- remax = 1. / emax;
- dscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
- dscal_(n, &remax, &vl[(ki + 1) * vl_dim1 + 1], &c__1);
-
- }
-
- }
-
- ++is;
- if (ip != 0) {
- ++is;
- }
-L250:
- if (ip == -1) {
- ip = 0;
- }
- if (ip == 1) {
- ip = -1;
- }
-
-/* L260: */
- }
-
- }
-
- return 0;
-
-/* End of DTREVC */
-
-} /* dtrevc_ */
-
-integer ieeeck_(integer *ispec, real *zero, real *one)
-{
- /* System generated locals */
- integer ret_val;
-
- /* Local variables */
- static real nan1, nan2, nan3, nan4, nan5, nan6, neginf, posinf, negzro,
- newzro;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1998
-
-
- Purpose
- =======
-
- IEEECK is called from the ILAENV to verify that Infinity and
- possibly NaN arithmetic is safe (i.e. will not trap).
-
- Arguments
- =========
-
- ISPEC (input) INTEGER
- Specifies whether to test just for inifinity arithmetic
- or whether to test for infinity and NaN arithmetic.
- = 0: Verify infinity arithmetic only.
- = 1: Verify infinity and NaN arithmetic.
-
- ZERO (input) REAL
- Must contain the value 0.0
- This is passed to prevent the compiler from optimizing
- away this code.
-
- ONE (input) REAL
- Must contain the value 1.0
- This is passed to prevent the compiler from optimizing
- away this code.
-
- RETURN VALUE: INTEGER
- = 0: Arithmetic failed to produce the correct answers
- = 1: Arithmetic produced the correct answers
-*/
-
- ret_val = 1;
-
- posinf = *one / *zero;
- if (posinf <= *one) {
- ret_val = 0;
- return ret_val;
- }
-
- neginf = -(*one) / *zero;
- if (neginf >= *zero) {
- ret_val = 0;
- return ret_val;
- }
-
- negzro = *one / (neginf + *one);
- if (negzro != *zero) {
- ret_val = 0;
- return ret_val;
- }
-
- neginf = *one / negzro;
- if (neginf >= *zero) {
- ret_val = 0;
- return ret_val;
- }
-
- newzro = negzro + *zero;
- if (newzro != *zero) {
- ret_val = 0;
- return ret_val;
- }
-
- posinf = *one / newzro;
- if (posinf <= *one) {
- ret_val = 0;
- return ret_val;
- }
-
- neginf *= posinf;
- if (neginf >= *zero) {
- ret_val = 0;
- return ret_val;
- }
-
- posinf *= posinf;
- if (posinf <= *one) {
- ret_val = 0;
- return ret_val;
- }
-
-
-/* Return if we were only asked to check infinity arithmetic */
-
- if (*ispec == 0) {
- return ret_val;
- }
-
- nan1 = posinf + neginf;
-
- nan2 = posinf / neginf;
-
- nan3 = posinf / posinf;
-
- nan4 = posinf * *zero;
-
- nan5 = neginf * negzro;
-
- nan6 = nan5 * 0.f;
-
- if (nan1 == nan1) {
- ret_val = 0;
- return ret_val;
- }
-
- if (nan2 == nan2) {
- ret_val = 0;
- return ret_val;
- }
-
- if (nan3 == nan3) {
- ret_val = 0;
- return ret_val;
- }
-
- if (nan4 == nan4) {
- ret_val = 0;
- return ret_val;
- }
-
- if (nan5 == nan5) {
- ret_val = 0;
- return ret_val;
- }
-
- if (nan6 == nan6) {
- ret_val = 0;
- return ret_val;
- }
-
- return ret_val;
-} /* ieeeck_ */
-
-integer ilaenv_(integer *ispec, char *name__, char *opts, integer *n1,
- integer *n2, integer *n3, integer *n4, ftnlen name_len, ftnlen
- opts_len)
-{
- /* System generated locals */
- integer ret_val;
-
- /* Builtin functions */
- /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
- integer s_cmp(char *, char *, ftnlen, ftnlen);
-
- /* Local variables */
- static integer i__;
- static char c1[1], c2[2], c3[3], c4[2];
- static integer ic, nb, iz, nx;
- static logical cname, sname;
- static integer nbmin;
- extern integer ieeeck_(integer *, real *, real *);
- static char subnam[6];
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ILAENV is called from the LAPACK routines to choose problem-dependent
- parameters for the local environment. See ISPEC for a description of
- the parameters.
-
- This version provides a set of parameters which should give good,
- but not optimal, performance on many of the currently available
- computers. Users are encouraged to modify this subroutine to set
- the tuning parameters for their particular machine using the option
- and problem size information in the arguments.
-
- This routine will not function correctly if it is converted to all
- lower case. Converting it to all upper case is allowed.
-
- Arguments
- =========
-
- ISPEC (input) INTEGER
- Specifies the parameter to be returned as the value of
- ILAENV.
- = 1: the optimal blocksize; if this value is 1, an unblocked
- algorithm will give the best performance.
- = 2: the minimum block size for which the block routine
- should be used; if the usable block size is less than
- this value, an unblocked routine should be used.
- = 3: the crossover point (in a block routine, for N less
- than this value, an unblocked routine should be used)
- = 4: the number of shifts, used in the nonsymmetric
- eigenvalue routines
- = 5: the minimum column dimension for blocking to be used;
- rectangular blocks must have dimension at least k by m,
- where k is given by ILAENV(2,...) and m by ILAENV(5,...)
- = 6: the crossover point for the SVD (when reducing an m by n
- matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
- this value, a QR factorization is used first to reduce
- the matrix to a triangular form.)
- = 7: the number of processors
- = 8: the crossover point for the multishift QR and QZ methods
- for nonsymmetric eigenvalue problems.
- = 9: maximum size of the subproblems at the bottom of the
- computation tree in the divide-and-conquer algorithm
- (used by xGELSD and xGESDD)
- =10: ieee NaN arithmetic can be trusted not to trap
- =11: infinity arithmetic can be trusted not to trap
-
- NAME (input) CHARACTER*(*)
- The name of the calling subroutine, in either upper case or
- lower case.
-
- OPTS (input) CHARACTER*(*)
- The character options to the subroutine NAME, concatenated
- into a single character string. For example, UPLO = 'U',
- TRANS = 'T', and DIAG = 'N' for a triangular routine would
- be specified as OPTS = 'UTN'.
-
- N1 (input) INTEGER
- N2 (input) INTEGER
- N3 (input) INTEGER
- N4 (input) INTEGER
- Problem dimensions for the subroutine NAME; these may not all
- be required.
-
- (ILAENV) (output) INTEGER
- >= 0: the value of the parameter specified by ISPEC
- < 0: if ILAENV = -k, the k-th argument had an illegal value.
-
- Further Details
- ===============
-
- The following conventions have been used when calling ILAENV from the
- LAPACK routines:
- 1) OPTS is a concatenation of all of the character options to
- subroutine NAME, in the same order that they appear in the
- argument list for NAME, even if they are not used in determining
- the value of the parameter specified by ISPEC.
- 2) The problem dimensions N1, N2, N3, N4 are specified in the order
- that they appear in the argument list for NAME. N1 is used
- first, N2 second, and so on, and unused problem dimensions are
- passed a value of -1.
- 3) The parameter value returned by ILAENV is checked for validity in
- the calling subroutine. For example, ILAENV is used to retrieve
- the optimal blocksize for STRTRI as follows:
-
- NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
- IF( NB.LE.1 ) NB = MAX( 1, N )
-
- =====================================================================
-*/
-
-
- switch (*ispec) {
- case 1: goto L100;
- case 2: goto L100;
- case 3: goto L100;
- case 4: goto L400;
- case 5: goto L500;
- case 6: goto L600;
- case 7: goto L700;
- case 8: goto L800;
- case 9: goto L900;
- case 10: goto L1000;
- case 11: goto L1100;
- }
-
-/* Invalid value for ISPEC */
-
- ret_val = -1;
- return ret_val;
-
-L100:
-
-/* Convert NAME to upper case if the first character is lower case. */
-
- ret_val = 1;
- s_copy(subnam, name__, (ftnlen)6, name_len);
- ic = *(unsigned char *)subnam;
- iz = 'Z';
- if (iz == 90 || iz == 122) {
-
-/* ASCII character set */
-
- if ((ic >= 97 && ic <= 122)) {
- *(unsigned char *)subnam = (char) (ic - 32);
- for (i__ = 2; i__ <= 6; ++i__) {
- ic = *(unsigned char *)&subnam[i__ - 1];
- if ((ic >= 97 && ic <= 122)) {
- *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
- }
-/* L10: */
- }
- }
-
- } else if (iz == 233 || iz == 169) {
-
-/* EBCDIC character set */
-
- if ((ic >= 129 && ic <= 137) || (ic >= 145 && ic <= 153) || (ic >=
- 162 && ic <= 169)) {
- *(unsigned char *)subnam = (char) (ic + 64);
- for (i__ = 2; i__ <= 6; ++i__) {
- ic = *(unsigned char *)&subnam[i__ - 1];
- if ((ic >= 129 && ic <= 137) || (ic >= 145 && ic <= 153) || (
- ic >= 162 && ic <= 169)) {
- *(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64);
- }
-/* L20: */
- }
- }
-
- } else if (iz == 218 || iz == 250) {
-
-/* Prime machines: ASCII+128 */
-
- if ((ic >= 225 && ic <= 250)) {
- *(unsigned char *)subnam = (char) (ic - 32);
- for (i__ = 2; i__ <= 6; ++i__) {
- ic = *(unsigned char *)&subnam[i__ - 1];
- if ((ic >= 225 && ic <= 250)) {
- *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
- }
-/* L30: */
- }
- }
- }
-
- *(unsigned char *)c1 = *(unsigned char *)subnam;
- sname = *(unsigned char *)c1 == 'S' || *(unsigned char *)c1 == 'D';
- cname = *(unsigned char *)c1 == 'C' || *(unsigned char *)c1 == 'Z';
- if (! (cname || sname)) {
- return ret_val;
- }
- s_copy(c2, subnam + 1, (ftnlen)2, (ftnlen)2);
- s_copy(c3, subnam + 3, (ftnlen)3, (ftnlen)3);
- s_copy(c4, c3 + 1, (ftnlen)2, (ftnlen)2);
-
- switch (*ispec) {
- case 1: goto L110;
- case 2: goto L200;
- case 3: goto L300;
- }
-
-L110:
-
-/*
- ISPEC = 1: block size
-
- In these examples, separate code is provided for setting NB for
- real and complex. We assume that NB will take the same value in
- single or double precision.
-*/
-
- nb = 1;
-
- if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
- if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nb = 64;
- } else {
- nb = 64;
- }
- } else if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3,
- "RQF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)
- 3, (ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3)
- == 0) {
- if (sname) {
- nb = 32;
- } else {
- nb = 32;
- }
- } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nb = 32;
- } else {
- nb = 32;
- }
- } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nb = 32;
- } else {
- nb = 32;
- }
- } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nb = 64;
- } else {
- nb = 64;
- }
- }
- } else if (s_cmp(c2, "PO", (ftnlen)2, (ftnlen)2) == 0) {
- if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nb = 64;
- } else {
- nb = 64;
- }
- }
- } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
- if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nb = 64;
- } else {
- nb = 64;
- }
- } else if ((sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0)) {
- nb = 32;
- } else if ((sname && s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0)) {
- nb = 64;
- }
- } else if ((cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0)) {
- if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
- nb = 64;
- } else if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
- nb = 32;
- } else if (s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
- nb = 64;
- }
- } else if ((sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0)) {
- if (*(unsigned char *)c3 == 'G') {
- if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
- (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
- ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
- 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
- c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
- ftnlen)2, (ftnlen)2) == 0) {
- nb = 32;
- }
- } else if (*(unsigned char *)c3 == 'M') {
- if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
- (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
- ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
- 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
- c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
- ftnlen)2, (ftnlen)2) == 0) {
- nb = 32;
- }
- }
- } else if ((cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0)) {
- if (*(unsigned char *)c3 == 'G') {
- if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
- (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
- ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
- 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
- c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
- ftnlen)2, (ftnlen)2) == 0) {
- nb = 32;
- }
- } else if (*(unsigned char *)c3 == 'M') {
- if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
- (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
- ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
- 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
- c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
- ftnlen)2, (ftnlen)2) == 0) {
- nb = 32;
- }
- }
- } else if (s_cmp(c2, "GB", (ftnlen)2, (ftnlen)2) == 0) {
- if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- if (*n4 <= 64) {
- nb = 1;
- } else {
- nb = 32;
- }
- } else {
- if (*n4 <= 64) {
- nb = 1;
- } else {
- nb = 32;
- }
- }
- }
- } else if (s_cmp(c2, "PB", (ftnlen)2, (ftnlen)2) == 0) {
- if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- if (*n2 <= 64) {
- nb = 1;
- } else {
- nb = 32;
- }
- } else {
- if (*n2 <= 64) {
- nb = 1;
- } else {
- nb = 32;
- }
- }
- }
- } else if (s_cmp(c2, "TR", (ftnlen)2, (ftnlen)2) == 0) {
- if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nb = 64;
- } else {
- nb = 64;
- }
- }
- } else if (s_cmp(c2, "LA", (ftnlen)2, (ftnlen)2) == 0) {
- if (s_cmp(c3, "UUM", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nb = 64;
- } else {
- nb = 64;
- }
- }
- } else if ((sname && s_cmp(c2, "ST", (ftnlen)2, (ftnlen)2) == 0)) {
- if (s_cmp(c3, "EBZ", (ftnlen)3, (ftnlen)3) == 0) {
- nb = 1;
- }
- }
- ret_val = nb;
- return ret_val;
-
-L200:
-
-/* ISPEC = 2: minimum block size */
-
- nbmin = 2;
- if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
- if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
- ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
- ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
- {
- if (sname) {
- nbmin = 2;
- } else {
- nbmin = 2;
- }
- } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nbmin = 2;
- } else {
- nbmin = 2;
- }
- } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nbmin = 2;
- } else {
- nbmin = 2;
- }
- } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nbmin = 2;
- } else {
- nbmin = 2;
- }
- }
- } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
- if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nbmin = 8;
- } else {
- nbmin = 8;
- }
- } else if ((sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0)) {
- nbmin = 2;
- }
- } else if ((cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0)) {
- if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
- nbmin = 2;
- }
- } else if ((sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0)) {
- if (*(unsigned char *)c3 == 'G') {
- if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
- (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
- ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
- 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
- c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
- ftnlen)2, (ftnlen)2) == 0) {
- nbmin = 2;
- }
- } else if (*(unsigned char *)c3 == 'M') {
- if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
- (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
- ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
- 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
- c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
- ftnlen)2, (ftnlen)2) == 0) {
- nbmin = 2;
- }
- }
- } else if ((cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0)) {
- if (*(unsigned char *)c3 == 'G') {
- if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
- (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
- ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
- 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
- c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
- ftnlen)2, (ftnlen)2) == 0) {
- nbmin = 2;
- }
- } else if (*(unsigned char *)c3 == 'M') {
- if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
- (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
- ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
- 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
- c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
- ftnlen)2, (ftnlen)2) == 0) {
- nbmin = 2;
- }
- }
- }
- ret_val = nbmin;
- return ret_val;
-
-L300:
-
-/* ISPEC = 3: crossover point */
-
- nx = 0;
- if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
- if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
- ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
- ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
- {
- if (sname) {
- nx = 128;
- } else {
- nx = 128;
- }
- } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nx = 128;
- } else {
- nx = 128;
- }
- } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
- if (sname) {
- nx = 128;
- } else {
- nx = 128;
- }
- }
- } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
- if ((sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0)) {
- nx = 32;
- }
- } else if ((cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0)) {
- if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
- nx = 32;
- }
- } else if ((sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0)) {
- if (*(unsigned char *)c3 == 'G') {
- if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
- (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
- ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
- 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
- c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
- ftnlen)2, (ftnlen)2) == 0) {
- nx = 128;
- }
- }
- } else if ((cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0)) {
- if (*(unsigned char *)c3 == 'G') {
- if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
- (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
- ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
- 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
- c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
- ftnlen)2, (ftnlen)2) == 0) {
- nx = 128;
- }
- }
- }
- ret_val = nx;
- return ret_val;
-
-L400:
-
-/* ISPEC = 4: number of shifts (used by xHSEQR) */
-
- ret_val = 6;
- return ret_val;
-
-L500:
-
-/* ISPEC = 5: minimum column dimension (not used) */
-
- ret_val = 2;
- return ret_val;
-
-L600:
-
-/* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD) */
-
- ret_val = (integer) ((real) min(*n1,*n2) * 1.6f);
- return ret_val;
-
-L700:
-
-/* ISPEC = 7: number of processors (not used) */
-
- ret_val = 1;
- return ret_val;
-
-L800:
-
-/* ISPEC = 8: crossover point for multishift (used by xHSEQR) */
-
- ret_val = 50;
- return ret_val;
-
-L900:
-
-/*
- ISPEC = 9: maximum size of the subproblems at the bottom of the
- computation tree in the divide-and-conquer algorithm
- (used by xGELSD and xGESDD)
-*/
-
- ret_val = 25;
- return ret_val;
-
-L1000:
-
-/*
- ISPEC = 10: ieee NaN arithmetic can be trusted not to trap
-
- ILAENV = 0
-*/
- ret_val = 1;
- if (ret_val == 1) {
- ret_val = ieeeck_(&c__0, &c_b3825, &c_b3826);
- }
- return ret_val;
-
-L1100:
-
-/*
- ISPEC = 11: infinity arithmetic can be trusted not to trap
-
- ILAENV = 0
-*/
- ret_val = 1;
- if (ret_val == 1) {
- ret_val = ieeeck_(&c__1, &c_b3825, &c_b3826);
- }
- return ret_val;
-
-/* End of ILAENV */
-
-} /* ilaenv_ */
-
diff --git a/numpy/linalg/f2c.h b/numpy/linalg/f2c.h
deleted file mode 100644
index e27d7ae57..000000000
--- a/numpy/linalg/f2c.h
+++ /dev/null
@@ -1,217 +0,0 @@
-/* f2c.h -- Standard Fortran to C header file */
-
-/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
-
- - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
-
-#ifndef F2C_INCLUDE
-#define F2C_INCLUDE
-
-typedef int integer;
-typedef char *address;
-typedef short int shortint;
-typedef float real;
-typedef double doublereal;
-typedef struct { real r, i; } complex;
-typedef struct { doublereal r, i; } doublecomplex;
-typedef int logical;
-typedef short int shortlogical;
-typedef char logical1;
-typedef char integer1;
-
-#define TRUE_ (1)
-#define FALSE_ (0)
-
-/* Extern is for use with -E */
-#ifndef Extern
-#define Extern extern
-#endif
-
-/* I/O stuff */
-
-#ifdef f2c_i2
-/* for -i2 */
-typedef short flag;
-typedef short ftnlen;
-typedef short ftnint;
-#else
-typedef int flag;
-typedef int ftnlen;
-typedef int ftnint;
-#endif
-
-/*external read, write*/
-typedef struct
-{ flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
-} cilist;
-
-/*internal read, write*/
-typedef struct
-{ flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
-} icilist;
-
-/*open*/
-typedef struct
-{ flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
-} olist;
-
-/*close*/
-typedef struct
-{ flag cerr;
- ftnint cunit;
- char *csta;
-} cllist;
-
-/*rewind, backspace, endfile*/
-typedef struct
-{ flag aerr;
- ftnint aunit;
-} alist;
-
-/* inquire */
-typedef struct
-{ flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
-} inlist;
-
-#define VOID void
-
-union Multitype { /* for multiple entry points */
- shortint h;
- integer i;
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
-typedef union Multitype Multitype;
-
-typedef long Long; /* No longer used; formerly in Namelist */
-
-struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
-typedef struct Vardesc Vardesc;
-
-struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
-typedef struct Namelist Namelist;
-
-#ifndef abs
-#define abs(x) ((x) >= 0 ? (x) : -(x))
-#endif
-#define dabs(x) (doublereal)abs(x)
-#ifndef min
-#define min(a,b) ((a) <= (b) ? (a) : (b))
-#endif
-#ifndef max
-#define max(a,b) ((a) >= (b) ? (a) : (b))
-#endif
-#define dmin(a,b) (doublereal)min(a,b)
-#define dmax(a,b) (doublereal)max(a,b)
-
-/* procedure parameter types for -A and -C++ */
-
-#define F2C_proc_par_types 1
-#ifdef __cplusplus
-typedef int /* Unknown procedure type */ (*U_fp)(...);
-typedef shortint (*J_fp)(...);
-typedef integer (*I_fp)(...);
-typedef real (*R_fp)(...);
-typedef doublereal (*D_fp)(...), (*E_fp)(...);
-typedef /* Complex */ VOID (*C_fp)(...);
-typedef /* Double Complex */ VOID (*Z_fp)(...);
-typedef logical (*L_fp)(...);
-typedef shortlogical (*K_fp)(...);
-typedef /* Character */ VOID (*H_fp)(...);
-typedef /* Subroutine */ int (*S_fp)(...);
-#else
-typedef int /* Unknown procedure type */ (*U_fp)(void);
-typedef shortint (*J_fp)(void);
-typedef integer (*I_fp)(void);
-typedef real (*R_fp)(void);
-typedef doublereal (*D_fp)(void), (*E_fp)(void);
-typedef /* Complex */ VOID (*C_fp)(void);
-typedef /* Double Complex */ VOID (*Z_fp)(void);
-typedef logical (*L_fp)(void);
-typedef shortlogical (*K_fp)(void);
-typedef /* Character */ VOID (*H_fp)(void);
-typedef /* Subroutine */ int (*S_fp)(void);
-#endif
-/* E_fp is for real functions when -R is not specified */
-typedef VOID C_f; /* complex function */
-typedef VOID H_f; /* character function */
-typedef VOID Z_f; /* double complex function */
-typedef doublereal E_f; /* real function with -R not specified */
-
-/* undef any lower-case symbols that your C compiler predefines, e.g.: */
-
-#ifndef Skip_f2c_Undefs
-#undef cray
-#undef gcos
-#undef mc68010
-#undef mc68020
-#undef mips
-#undef pdp11
-#undef sgi
-#undef sparc
-#undef sun
-#undef sun2
-#undef sun3
-#undef sun4
-#undef u370
-#undef u3b
-#undef u3b2
-#undef u3b5
-#undef unix
-#undef vax
-#endif
-#endif
diff --git a/numpy/linalg/f2c_lite.c b/numpy/linalg/f2c_lite.c
deleted file mode 100644
index 6402271c9..000000000
--- a/numpy/linalg/f2c_lite.c
+++ /dev/null
@@ -1,492 +0,0 @@
-#include <math.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include "f2c.h"
-
-
-extern void s_wsfe(cilist *f) {;}
-extern void e_wsfe(void) {;}
-extern void do_fio(integer *c, char *s, ftnlen l) {;}
-
-/* You'll want this if you redo the *_lite.c files with the -C option
- * to f2c for checking array subscripts. (It's not suggested you do that
- * for production use, of course.) */
-extern int
-s_rnge(char *var, int index, char *routine, int lineno)
-{
- fprintf(stderr, "array index out-of-bounds for %s[%d] in routine %s:%d\n",
- var, index, routine, lineno);
- fflush(stderr);
- abort();
-}
-
-
-#ifdef KR_headers
-extern double sqrt();
-double f__cabs(real, imag) double real, imag;
-#else
-#undef abs
-
-double f__cabs(double real, double imag)
-#endif
-{
-double temp;
-
-if(real < 0)
- real = -real;
-if(imag < 0)
- imag = -imag;
-if(imag > real){
- temp = real;
- real = imag;
- imag = temp;
-}
-if((imag+real) == real)
- return((double)real);
-
-temp = imag/real;
-temp = real*sqrt(1.0 + temp*temp); /*overflow!!*/
-return(temp);
-}
-
-
- VOID
-#ifdef KR_headers
-d_cnjg(r, z) doublecomplex *r, *z;
-#else
-d_cnjg(doublecomplex *r, doublecomplex *z)
-#endif
-{
-r->r = z->r;
-r->i = - z->i;
-}
-
-
-#ifdef KR_headers
-double d_imag(z) doublecomplex *z;
-#else
-double d_imag(doublecomplex *z)
-#endif
-{
-return(z->i);
-}
-
-
-#define log10e 0.43429448190325182765
-
-#ifdef KR_headers
-double log();
-double d_lg10(x) doublereal *x;
-#else
-#undef abs
-
-double d_lg10(doublereal *x)
-#endif
-{
-return( log10e * log(*x) );
-}
-
-
-#ifdef KR_headers
-double d_sign(a,b) doublereal *a, *b;
-#else
-double d_sign(doublereal *a, doublereal *b)
-#endif
-{
-double x;
-x = (*a >= 0 ? *a : - *a);
-return( *b >= 0 ? x : -x);
-}
-
-
-#ifdef KR_headers
-double floor();
-integer i_dnnt(x) doublereal *x;
-#else
-#undef abs
-
-integer i_dnnt(doublereal *x)
-#endif
-{
-return( (*x)>=0 ?
- floor(*x + .5) : -floor(.5 - *x) );
-}
-
-
-#ifdef KR_headers
-double pow();
-double pow_dd(ap, bp) doublereal *ap, *bp;
-#else
-#undef abs
-
-double pow_dd(doublereal *ap, doublereal *bp)
-#endif
-{
-return(pow(*ap, *bp) );
-}
-
-
-#ifdef KR_headers
-double pow_di(ap, bp) doublereal *ap; integer *bp;
-#else
-double pow_di(doublereal *ap, integer *bp)
-#endif
-{
-double pow, x;
-integer n;
-unsigned long u;
-
-pow = 1;
-x = *ap;
-n = *bp;
-
-if(n != 0)
- {
- if(n < 0)
- {
- n = -n;
- x = 1/x;
- }
- for(u = n; ; )
- {
- if(u & 01)
- pow *= x;
- if(u >>= 1)
- x *= x;
- else
- break;
- }
- }
-return(pow);
-}
-/* Unless compiled with -DNO_OVERWRITE, this variant of s_cat allows the
- * target of a concatenation to appear on its right-hand side (contrary
- * to the Fortran 77 Standard, but in accordance with Fortran 90).
- */
-#define NO_OVERWRITE
-
-
-#ifndef NO_OVERWRITE
-
-#undef abs
-#ifdef KR_headers
- extern char *F77_aloc();
- extern void free();
- extern void exit_();
-#else
-
- extern char *F77_aloc(ftnlen, char*);
-#endif
-
-#endif /* NO_OVERWRITE */
-
- VOID
-#ifdef KR_headers
-s_cat(lp, rpp, rnp, np, ll) char *lp, *rpp[]; ftnlen rnp[], *np, ll;
-#else
-s_cat(char *lp, char *rpp[], ftnlen rnp[], ftnlen *np, ftnlen ll)
-#endif
-{
- ftnlen i, nc;
- char *rp;
- ftnlen n = *np;
-#ifndef NO_OVERWRITE
- ftnlen L, m;
- char *lp0, *lp1;
-
- lp0 = 0;
- lp1 = lp;
- L = ll;
- i = 0;
- while(i < n) {
- rp = rpp[i];
- m = rnp[i++];
- if (rp >= lp1 || rp + m <= lp) {
- if ((L -= m) <= 0) {
- n = i;
- break;
- }
- lp1 += m;
- continue;
- }
- lp0 = lp;
- lp = lp1 = F77_aloc(L = ll, "s_cat");
- break;
- }
- lp1 = lp;
-#endif /* NO_OVERWRITE */
- for(i = 0 ; i < n ; ++i) {
- nc = ll;
- if(rnp[i] < nc)
- nc = rnp[i];
- ll -= nc;
- rp = rpp[i];
- while(--nc >= 0)
- *lp++ = *rp++;
- }
- while(--ll >= 0)
- *lp++ = ' ';
-#ifndef NO_OVERWRITE
- if (lp0) {
- memmove(lp0, lp1, L);
- free(lp1);
- }
-#endif
- }
-
-
-/* compare two strings */
-
-#ifdef KR_headers
-integer s_cmp(a0, b0, la, lb) char *a0, *b0; ftnlen la, lb;
-#else
-integer s_cmp(char *a0, char *b0, ftnlen la, ftnlen lb)
-#endif
-{
-register unsigned char *a, *aend, *b, *bend;
-a = (unsigned char *)a0;
-b = (unsigned char *)b0;
-aend = a + la;
-bend = b + lb;
-
-if(la <= lb)
- {
- while(a < aend)
- if(*a != *b)
- return( *a - *b );
- else
- { ++a; ++b; }
-
- while(b < bend)
- if(*b != ' ')
- return( ' ' - *b );
- else ++b;
- }
-
-else
- {
- while(b < bend)
- if(*a == *b)
- { ++a; ++b; }
- else
- return( *a - *b );
- while(a < aend)
- if(*a != ' ')
- return(*a - ' ');
- else ++a;
- }
-return(0);
-}
-/* Unless compiled with -DNO_OVERWRITE, this variant of s_copy allows the
- * target of an assignment to appear on its right-hand side (contrary
- * to the Fortran 77 Standard, but in accordance with Fortran 90),
- * as in a(2:5) = a(4:7) .
- */
-
-
-
-/* assign strings: a = b */
-
-#ifdef KR_headers
-VOID s_copy(a, b, la, lb) register char *a, *b; ftnlen la, lb;
-#else
-void s_copy(register char *a, register char *b, ftnlen la, ftnlen lb)
-#endif
-{
- register char *aend, *bend;
-
- aend = a + la;
-
- if(la <= lb)
-#ifndef NO_OVERWRITE
- if (a <= b || a >= b + la)
-#endif
- while(a < aend)
- *a++ = *b++;
-#ifndef NO_OVERWRITE
- else
- for(b += la; a < aend; )
- *--aend = *--b;
-#endif
-
- else {
- bend = b + lb;
-#ifndef NO_OVERWRITE
- if (a <= b || a >= bend)
-#endif
- while(b < bend)
- *a++ = *b++;
-#ifndef NO_OVERWRITE
- else {
- a += lb;
- while(b < bend)
- *--a = *--bend;
- a += lb;
- }
-#endif
- while(a < aend)
- *a++ = ' ';
- }
- }
-
-
-#ifdef KR_headers
-double f__cabs();
-double z_abs(z) doublecomplex *z;
-#else
-double f__cabs(double, double);
-double z_abs(doublecomplex *z)
-#endif
-{
-return( f__cabs( z->r, z->i ) );
-}
-
-
-#ifdef KR_headers
-extern void sig_die();
-VOID z_div(c, a, b) doublecomplex *a, *b, *c;
-#else
-extern void sig_die(char*, int);
-void z_div(doublecomplex *c, doublecomplex *a, doublecomplex *b)
-#endif
-{
-double ratio, den;
-double abr, abi;
-
-if( (abr = b->r) < 0.)
- abr = - abr;
-if( (abi = b->i) < 0.)
- abi = - abi;
-if( abr <= abi )
- {
- /*Let IEEE Infinties handle this ;( */
- /*if(abi == 0)
- sig_die("complex division by zero", 1);*/
- ratio = b->r / b->i ;
- den = b->i * (1 + ratio*ratio);
- c->r = (a->r*ratio + a->i) / den;
- c->i = (a->i*ratio - a->r) / den;
- }
-
-else
- {
- ratio = b->i / b->r ;
- den = b->r * (1 + ratio*ratio);
- c->r = (a->r + a->i*ratio) / den;
- c->i = (a->i - a->r*ratio) / den;
- }
-
-}
-
-
-#ifdef KR_headers
-double sqrt(), f__cabs();
-VOID z_sqrt(r, z) doublecomplex *r, *z;
-#else
-#undef abs
-
-extern double f__cabs(double, double);
-void z_sqrt(doublecomplex *r, doublecomplex *z)
-#endif
-{
-double mag;
-
-if( (mag = f__cabs(z->r, z->i)) == 0.)
- r->r = r->i = 0.;
-else if(z->r > 0)
- {
- r->r = sqrt(0.5 * (mag + z->r) );
- r->i = z->i / r->r / 2;
- }
-else
- {
- r->i = sqrt(0.5 * (mag - z->r) );
- if(z->i < 0)
- r->i = - r->i;
- r->r = z->i / r->i / 2;
- }
-}
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#ifdef KR_headers
-integer pow_ii(ap, bp) integer *ap, *bp;
-#else
-integer pow_ii(integer *ap, integer *bp)
-#endif
-{
- integer pow, x, n;
- unsigned long u;
-
- x = *ap;
- n = *bp;
-
- if (n <= 0) {
- if (n == 0 || x == 1)
- return 1;
- if (x != -1)
- return x == 0 ? 1/x : 0;
- n = -n;
- }
- u = n;
- for(pow = 1; ; )
- {
- if(u & 01)
- pow *= x;
- if(u >>= 1)
- x *= x;
- else
- break;
- }
- return(pow);
- }
-#ifdef __cplusplus
-}
-#endif
-
-#ifdef KR_headers
-extern void f_exit();
-VOID s_stop(s, n) char *s; ftnlen n;
-#else
-#undef abs
-#undef min
-#undef max
-#ifdef __cplusplus
-extern "C" {
-#endif
-#ifdef __cplusplus
-extern "C" {
-#endif
-void f_exit(void);
-
-int s_stop(char *s, ftnlen n)
-#endif
-{
-int i;
-
-if(n > 0)
- {
- fprintf(stderr, "STOP ");
- for(i = 0; i<n ; ++i)
- putc(*s++, stderr);
- fprintf(stderr, " statement executed\n");
- }
-#ifdef NO_ONEXIT
-f_exit();
-#endif
-exit(0);
-
-/* We cannot avoid (useless) compiler diagnostics here: */
-/* some compilers complain if there is no return statement, */
-/* and others complain that this one cannot be reached. */
-
-return 0; /* NOT REACHED */
-}
-#ifdef __cplusplus
-}
-#endif
-#ifdef __cplusplus
-}
-#endif
diff --git a/numpy/core/src/umath/gufuncs_linalg_contents.rst b/numpy/linalg/gufuncs_linalg_contents.rst
index 424c5f214..424c5f214 100644
--- a/numpy/core/src/umath/gufuncs_linalg_contents.rst
+++ b/numpy/linalg/gufuncs_linalg_contents.rst
diff --git a/numpy/core/src/umath/lapack_lite/blas_lite.c b/numpy/linalg/lapack_lite/blas_lite.c
index bd24768c3..bd24768c3 100644
--- a/numpy/core/src/umath/lapack_lite/blas_lite.c
+++ b/numpy/linalg/lapack_lite/blas_lite.c
diff --git a/numpy/core/src/umath/lapack_lite/dlamch.c b/numpy/linalg/lapack_lite/dlamch.c
index bf1dfdb05..bf1dfdb05 100644
--- a/numpy/core/src/umath/lapack_lite/dlamch.c
+++ b/numpy/linalg/lapack_lite/dlamch.c
diff --git a/numpy/core/src/umath/lapack_lite/dlapack_lite.c b/numpy/linalg/lapack_lite/dlapack_lite.c
index 6a36fe6a8..6a36fe6a8 100644
--- a/numpy/core/src/umath/lapack_lite/dlapack_lite.c
+++ b/numpy/linalg/lapack_lite/dlapack_lite.c
diff --git a/numpy/core/src/umath/lapack_lite/f2c.h b/numpy/linalg/lapack_lite/f2c.h
index e27d7ae57..e27d7ae57 100644
--- a/numpy/core/src/umath/lapack_lite/f2c.h
+++ b/numpy/linalg/lapack_lite/f2c.h
diff --git a/numpy/core/src/umath/lapack_lite/f2c_lite.c b/numpy/linalg/lapack_lite/f2c_lite.c
index c0814b3bf..c0814b3bf 100644
--- a/numpy/core/src/umath/lapack_lite/f2c_lite.c
+++ b/numpy/linalg/lapack_lite/f2c_lite.c
diff --git a/numpy/core/src/umath/lapack_lite/python_xerbla.c b/numpy/linalg/lapack_lite/python_xerbla.c
index 4e5a68413..4e5a68413 100644
--- a/numpy/core/src/umath/lapack_lite/python_xerbla.c
+++ b/numpy/linalg/lapack_lite/python_xerbla.c
diff --git a/numpy/core/src/umath/lapack_lite/zlapack_lite.c b/numpy/linalg/lapack_lite/zlapack_lite.c
index 1b43c6270..1b43c6270 100644
--- a/numpy/core/src/umath/lapack_lite/zlapack_lite.c
+++ b/numpy/linalg/lapack_lite/zlapack_lite.c
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index 370476fab..b0d43a531 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -24,12 +24,10 @@ from numpy.core import array, asarray, zeros, empty, transpose, \
maximum, flatnonzero, diagonal, arange, fastCopyAndTranspose, sum, \
isfinite, size, finfo, absolute, log, exp, errstate, geterrobj
from numpy.lib import triu
-from numpy.linalg import lapack_lite
+from numpy.linalg import lapack_lite, _umath_linalg
from numpy.matrixlib.defmatrix import matrix_power
from numpy.compat import asbytes
-from numpy.core import _umath_linalg, errstate, geterrobj
-
# For Python2/3 compatibility
_N = asbytes('N')
_V = asbytes('V')
diff --git a/numpy/linalg/python_xerbla.c b/numpy/linalg/python_xerbla.c
deleted file mode 100644
index 4e5a68413..000000000
--- a/numpy/linalg/python_xerbla.c
+++ /dev/null
@@ -1,37 +0,0 @@
-#include "Python.h"
-#include "f2c.h"
-
-/*
- From the original manpage:
- --------------------------
- XERBLA is an error handler for the LAPACK routines.
- It is called by an LAPACK routine if an input parameter has an invalid value.
- A message is printed and execution stops.
-
- Instead of printing a message and stopping the execution, a
- ValueError is raised with the message.
-
- Parameters:
- -----------
- srname: Subroutine name to use in error message, maximum six characters.
- Spaces at the end are skipped.
- info: Number of the invalid parameter.
-*/
-
-int xerbla_(char *srname, integer *info)
-{
- const char* format = "On entry to %.*s" \
- " parameter number %d had an illegal value";
- char buf[57 + 6 + 4]; /* 57 for strlen(format),
- 6 for name, 4 for param. num. */
-
- int len = 0; /* length of subroutine name*/
- while( len<6 && srname[len]!='\0' )
- len++;
- while( len && srname[len-1]==' ' )
- len--;
-
- snprintf(buf, sizeof(buf), format, len, srname, *info);
- PyErr_SetString(PyExc_ValueError, buf);
- return 0;
-}
diff --git a/numpy/linalg/setup.py b/numpy/linalg/setup.py
index 21181dcb5..1c73c86d3 100644
--- a/numpy/linalg/setup.py
+++ b/numpy/linalg/setup.py
@@ -1,5 +1,6 @@
from __future__ import division, print_function
+import os
import sys
def configuration(parent_package='',top_path=None):
@@ -10,6 +11,18 @@ def configuration(parent_package='',top_path=None):
config.add_data_dir('tests')
# Configure lapack_lite
+
+ src_dir = 'lapack_lite'
+ lapack_lite_src = [
+ os.path.join(src_dir, 'python_xerbla.c'),
+ os.path.join(src_dir, 'zlapack_lite.c'),
+ os.path.join(src_dir, 'dlapack_lite.c'),
+ os.path.join(src_dir, 'blas_lite.c'),
+ os.path.join(src_dir, 'dlamch.c'),
+ os.path.join(src_dir, 'f2c_lite.c'),
+ os.path.join(src_dir, 'f2c.h'),
+ ]
+
lapack_info = get_info('lapack_opt',0) # and {}
def get_lapack_lite_sources(ext, build_dir):
if not lapack_info:
@@ -23,14 +36,19 @@ def configuration(parent_package='',top_path=None):
config.add_extension('lapack_lite',
sources = [get_lapack_lite_sources],
- depends= ['lapack_litemodule.c',
- 'python_xerbla.c',
- 'zlapack_lite.c', 'dlapack_lite.c',
- 'blas_lite.c', 'dlamch.c',
- 'f2c_lite.c','f2c.h'],
+ depends = ['lapack_litemodule.c'] + lapack_lite_src,
extra_info = lapack_info
)
+ # umath_linalg module
+
+ config.add_extension('_umath_linalg',
+ sources = [get_lapack_lite_sources],
+ depends = ['umath_linalg.c.src'] + lapack_lite_src,
+ extra_info = lapack_info,
+ libraries = ['npymath'],
+ )
+
return config
if __name__ == '__main__':
diff --git a/numpy/core/tests/test_gufuncs_linalg.py b/numpy/linalg/tests/test_gufuncs_linalg.py
index f2d407871..096d48a1d 100644
--- a/numpy/core/tests/test_gufuncs_linalg.py
+++ b/numpy/linalg/tests/test_gufuncs_linalg.py
@@ -58,7 +58,7 @@ from numpy.testing import (TestCase, assert_, assert_equal, assert_raises,
from numpy import array, single, double, csingle, cdouble, dot, identity
from numpy import multiply, inf
-import numpy.core._gufuncs_linalg as gula
+import numpy.linalg._gufuncs_linalg as gula
old_assert_almost_equal = assert_almost_equal
diff --git a/numpy/core/src/umath/umath_linalg.c.src b/numpy/linalg/umath_linalg.c.src
index c9d55f635..c9d55f635 100644
--- a/numpy/core/src/umath/umath_linalg.c.src
+++ b/numpy/linalg/umath_linalg.c.src
diff --git a/numpy/linalg/zlapack_lite.c b/numpy/linalg/zlapack_lite.c
deleted file mode 100644
index 4549f68b5..000000000
--- a/numpy/linalg/zlapack_lite.c
+++ /dev/null
@@ -1,26018 +0,0 @@
-/*
-NOTE: This is generated code. Look in Misc/lapack_lite for information on
- remaking this file.
-*/
-#include "f2c.h"
-
-#ifdef HAVE_CONFIG
-#include "config.h"
-#else
-extern doublereal dlamch_(char *);
-#define EPSILON dlamch_("Epsilon")
-#define SAFEMINIMUM dlamch_("Safe minimum")
-#define PRECISION dlamch_("Precision")
-#define BASE dlamch_("Base")
-#endif
-
-extern doublereal dlapy2_(doublereal *x, doublereal *y);
-
-
-
-/* Table of constant values */
-
-static integer c__1 = 1;
-static doublecomplex c_b59 = {0.,0.};
-static doublecomplex c_b60 = {1.,0.};
-static integer c_n1 = -1;
-static integer c__3 = 3;
-static integer c__2 = 2;
-static integer c__0 = 0;
-static integer c__8 = 8;
-static integer c__4 = 4;
-static integer c__65 = 65;
-static integer c__6 = 6;
-static integer c__9 = 9;
-static doublereal c_b324 = 0.;
-static doublereal c_b1015 = 1.;
-static integer c__15 = 15;
-static logical c_false = FALSE_;
-static doublereal c_b1294 = -1.;
-static doublereal c_b2210 = .5;
-
-/* Subroutine */ int zdrot_(integer *n, doublecomplex *cx, integer *incx,
- doublecomplex *cy, integer *incy, doublereal *c__, doublereal *s)
-{
- /* System generated locals */
- integer i__1, i__2, i__3, i__4;
- doublecomplex z__1, z__2, z__3;
-
- /* Local variables */
- static integer i__, ix, iy;
- static doublecomplex ctemp;
-
-
-/*
- applies a plane rotation, where the cos and sin (c and s) are real
- and the vectors cx and cy are complex.
- jack dongarra, linpack, 3/11/78.
-
-
- =====================================================================
-*/
-
- /* Parameter adjustments */
- --cy;
- --cx;
-
- /* Function Body */
- if (*n <= 0) {
- return 0;
- }
- if ((*incx == 1 && *incy == 1)) {
- goto L20;
- }
-
-/*
- code for unequal increments or equal increments not equal
- to 1
-*/
-
- ix = 1;
- iy = 1;
- if (*incx < 0) {
- ix = (-(*n) + 1) * *incx + 1;
- }
- if (*incy < 0) {
- iy = (-(*n) + 1) * *incy + 1;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = ix;
- z__2.r = *c__ * cx[i__2].r, z__2.i = *c__ * cx[i__2].i;
- i__3 = iy;
- z__3.r = *s * cy[i__3].r, z__3.i = *s * cy[i__3].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- ctemp.r = z__1.r, ctemp.i = z__1.i;
- i__2 = iy;
- i__3 = iy;
- z__2.r = *c__ * cy[i__3].r, z__2.i = *c__ * cy[i__3].i;
- i__4 = ix;
- z__3.r = *s * cx[i__4].r, z__3.i = *s * cx[i__4].i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
- cy[i__2].r = z__1.r, cy[i__2].i = z__1.i;
- i__2 = ix;
- cx[i__2].r = ctemp.r, cx[i__2].i = ctemp.i;
- ix += *incx;
- iy += *incy;
-/* L10: */
- }
- return 0;
-
-/* code for both increments equal to 1 */
-
-L20:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- z__2.r = *c__ * cx[i__2].r, z__2.i = *c__ * cx[i__2].i;
- i__3 = i__;
- z__3.r = *s * cy[i__3].r, z__3.i = *s * cy[i__3].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- ctemp.r = z__1.r, ctemp.i = z__1.i;
- i__2 = i__;
- i__3 = i__;
- z__2.r = *c__ * cy[i__3].r, z__2.i = *c__ * cy[i__3].i;
- i__4 = i__;
- z__3.r = *s * cx[i__4].r, z__3.i = *s * cx[i__4].i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
- cy[i__2].r = z__1.r, cy[i__2].i = z__1.i;
- i__2 = i__;
- cx[i__2].r = ctemp.r, cx[i__2].i = ctemp.i;
-/* L30: */
- }
- return 0;
-} /* zdrot_ */
-
-/* Subroutine */ int zgebak_(char *job, char *side, integer *n, integer *ilo,
- integer *ihi, doublereal *scale, integer *m, doublecomplex *v,
- integer *ldv, integer *info)
-{
- /* System generated locals */
- integer v_dim1, v_offset, i__1;
-
- /* Local variables */
- static integer i__, k;
- static doublereal s;
- static integer ii;
- extern logical lsame_(char *, char *);
- static logical leftv;
- extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), xerbla_(char *, integer *),
- zdscal_(integer *, doublereal *, doublecomplex *, integer *);
- static logical rightv;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZGEBAK forms the right or left eigenvectors of a complex general
- matrix by backward transformation on the computed eigenvectors of the
- balanced matrix output by ZGEBAL.
-
- Arguments
- =========
-
- JOB (input) CHARACTER*1
- Specifies the type of backward transformation required:
- = 'N', do nothing, return immediately;
- = 'P', do backward transformation for permutation only;
- = 'S', do backward transformation for scaling only;
- = 'B', do backward transformations for both permutation and
- scaling.
- JOB must be the same as the argument JOB supplied to ZGEBAL.
-
- SIDE (input) CHARACTER*1
- = 'R': V contains right eigenvectors;
- = 'L': V contains left eigenvectors.
-
- N (input) INTEGER
- The number of rows of the matrix V. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- The integers ILO and IHI determined by ZGEBAL.
- 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
-
- SCALE (input) DOUBLE PRECISION array, dimension (N)
- Details of the permutation and scaling factors, as returned
- by ZGEBAL.
-
- M (input) INTEGER
- The number of columns of the matrix V. M >= 0.
-
- V (input/output) COMPLEX*16 array, dimension (LDV,M)
- On entry, the matrix of right or left eigenvectors to be
- transformed, as returned by ZHSEIN or ZTREVC.
- On exit, V is overwritten by the transformed eigenvectors.
-
- LDV (input) INTEGER
- The leading dimension of the array V. LDV >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- =====================================================================
-
-
- Decode and Test the input parameters
-*/
-
- /* Parameter adjustments */
- --scale;
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
-
- /* Function Body */
- rightv = lsame_(side, "R");
- leftv = lsame_(side, "L");
-
- *info = 0;
- if ((((! lsame_(job, "N") && ! lsame_(job, "P")) && ! lsame_(job, "S"))
- && ! lsame_(job, "B"))) {
- *info = -1;
- } else if ((! rightv && ! leftv)) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -4;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -5;
- } else if (*m < 0) {
- *info = -7;
- } else if (*ldv < max(1,*n)) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGEBAK", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
- if (*m == 0) {
- return 0;
- }
- if (lsame_(job, "N")) {
- return 0;
- }
-
- if (*ilo == *ihi) {
- goto L30;
- }
-
-/* Backward balance */
-
- if (lsame_(job, "S") || lsame_(job, "B")) {
-
- if (rightv) {
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- s = scale[i__];
- zdscal_(m, &s, &v[i__ + v_dim1], ldv);
-/* L10: */
- }
- }
-
- if (leftv) {
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- s = 1. / scale[i__];
- zdscal_(m, &s, &v[i__ + v_dim1], ldv);
-/* L20: */
- }
- }
-
- }
-
-/*
- Backward permutation
-
- For I = ILO-1 step -1 until 1,
- IHI+1 step 1 until N do --
-*/
-
-L30:
- if (lsame_(job, "P") || lsame_(job, "B")) {
- if (rightv) {
- i__1 = *n;
- for (ii = 1; ii <= i__1; ++ii) {
- i__ = ii;
- if ((i__ >= *ilo && i__ <= *ihi)) {
- goto L40;
- }
- if (i__ < *ilo) {
- i__ = *ilo - ii;
- }
- k = (integer) scale[i__];
- if (k == i__) {
- goto L40;
- }
- zswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
-L40:
- ;
- }
- }
-
- if (leftv) {
- i__1 = *n;
- for (ii = 1; ii <= i__1; ++ii) {
- i__ = ii;
- if ((i__ >= *ilo && i__ <= *ihi)) {
- goto L50;
- }
- if (i__ < *ilo) {
- i__ = *ilo - ii;
- }
- k = (integer) scale[i__];
- if (k == i__) {
- goto L50;
- }
- zswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
-L50:
- ;
- }
- }
- }
-
- return 0;
-
-/* End of ZGEBAK */
-
-} /* zgebak_ */
-
-/* Subroutine */ int zgebal_(char *job, integer *n, doublecomplex *a, integer
- *lda, integer *ilo, integer *ihi, doublereal *scale, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double d_imag(doublecomplex *), z_abs(doublecomplex *);
-
- /* Local variables */
- static doublereal c__, f, g;
- static integer i__, j, k, l, m;
- static doublereal r__, s, ca, ra;
- static integer ica, ira, iexc;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- static doublereal sfmin1, sfmin2, sfmax1, sfmax2;
-
- extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
- integer *, doublereal *, doublecomplex *, integer *);
- extern integer izamax_(integer *, doublecomplex *, integer *);
- static logical noconv;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZGEBAL balances a general complex matrix A. This involves, first,
- permuting A by a similarity transformation to isolate eigenvalues
- in the first 1 to ILO-1 and last IHI+1 to N elements on the
- diagonal; and second, applying a diagonal similarity transformation
- to rows and columns ILO to IHI to make the rows and columns as
- close in norm as possible. Both steps are optional.
-
- Balancing may reduce the 1-norm of the matrix, and improve the
- accuracy of the computed eigenvalues and/or eigenvectors.
-
- Arguments
- =========
-
- JOB (input) CHARACTER*1
- Specifies the operations to be performed on A:
- = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
- for i = 1,...,N;
- = 'P': permute only;
- = 'S': scale only;
- = 'B': both permute and scale.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the input matrix A.
- On exit, A is overwritten by the balanced matrix.
- If JOB = 'N', A is not referenced.
- See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- ILO (output) INTEGER
- IHI (output) INTEGER
- ILO and IHI are set to integers such that on exit
- A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
- If JOB = 'N' or 'S', ILO = 1 and IHI = N.
-
- SCALE (output) DOUBLE PRECISION array, dimension (N)
- Details of the permutations and scaling factors applied to
- A. If P(j) is the index of the row and column interchanged
- with row and column j and D(j) is the scaling factor
- applied to row and column j, then
- SCALE(j) = P(j) for j = 1,...,ILO-1
- = D(j) for j = ILO,...,IHI
- = P(j) for j = IHI+1,...,N.
- The order in which the interchanges are made is N to IHI+1,
- then 1 to ILO-1.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- The permutations consist of row and column interchanges which put
- the matrix in the form
-
- ( T1 X Y )
- P A P = ( 0 B Z )
- ( 0 0 T2 )
-
- where T1 and T2 are upper triangular matrices whose eigenvalues lie
- along the diagonal. The column indices ILO and IHI mark the starting
- and ending columns of the submatrix B. Balancing consists of applying
- a diagonal similarity transformation inv(D) * B * D to make the
- 1-norms of each row of B and its corresponding column nearly equal.
- The output matrix is
-
- ( T1 X*D Y )
- ( 0 inv(D)*B*D inv(D)*Z ).
- ( 0 0 T2 )
-
- Information about the permutations P and the diagonal matrix D is
- returned in the vector SCALE.
-
- This subroutine is based on the EISPACK routine CBAL.
-
- Modified by Tzu-Yi Chen, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --scale;
-
- /* Function Body */
- *info = 0;
- if ((((! lsame_(job, "N") && ! lsame_(job, "P")) && ! lsame_(job, "S"))
- && ! lsame_(job, "B"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGEBAL", &i__1);
- return 0;
- }
-
- k = 1;
- l = *n;
-
- if (*n == 0) {
- goto L210;
- }
-
- if (lsame_(job, "N")) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- scale[i__] = 1.;
-/* L10: */
- }
- goto L210;
- }
-
- if (lsame_(job, "S")) {
- goto L120;
- }
-
-/* Permutation to isolate eigenvalues if possible */
-
- goto L50;
-
-/* Row and column exchange. */
-
-L20:
- scale[m] = (doublereal) j;
- if (j == m) {
- goto L30;
- }
-
- zswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
- i__1 = *n - k + 1;
- zswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);
-
-L30:
- switch (iexc) {
- case 1: goto L40;
- case 2: goto L80;
- }
-
-/* Search for rows isolating an eigenvalue and push them down. */
-
-L40:
- if (l == 1) {
- goto L210;
- }
- --l;
-
-L50:
- for (j = l; j >= 1; --j) {
-
- i__1 = l;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (i__ == j) {
- goto L60;
- }
- i__2 = j + i__ * a_dim1;
- if (a[i__2].r != 0. || d_imag(&a[j + i__ * a_dim1]) != 0.) {
- goto L70;
- }
-L60:
- ;
- }
-
- m = l;
- iexc = 1;
- goto L20;
-L70:
- ;
- }
-
- goto L90;
-
-/* Search for columns isolating an eigenvalue and push them left. */
-
-L80:
- ++k;
-
-L90:
- i__1 = l;
- for (j = k; j <= i__1; ++j) {
-
- i__2 = l;
- for (i__ = k; i__ <= i__2; ++i__) {
- if (i__ == j) {
- goto L100;
- }
- i__3 = i__ + j * a_dim1;
- if (a[i__3].r != 0. || d_imag(&a[i__ + j * a_dim1]) != 0.) {
- goto L110;
- }
-L100:
- ;
- }
-
- m = k;
- iexc = 2;
- goto L20;
-L110:
- ;
- }
-
-L120:
- i__1 = l;
- for (i__ = k; i__ <= i__1; ++i__) {
- scale[i__] = 1.;
-/* L130: */
- }
-
- if (lsame_(job, "P")) {
- goto L210;
- }
-
-/*
- Balance the submatrix in rows K to L.
-
- Iterative loop for norm reduction
-*/
-
- sfmin1 = SAFEMINIMUM / PRECISION;
- sfmax1 = 1. / sfmin1;
- sfmin2 = sfmin1 * 8.;
- sfmax2 = 1. / sfmin2;
-L140:
- noconv = FALSE_;
-
- i__1 = l;
- for (i__ = k; i__ <= i__1; ++i__) {
- c__ = 0.;
- r__ = 0.;
-
- i__2 = l;
- for (j = k; j <= i__2; ++j) {
- if (j == i__) {
- goto L150;
- }
- i__3 = j + i__ * a_dim1;
- c__ += (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[j + i__ *
- a_dim1]), abs(d__2));
- i__3 = i__ + j * a_dim1;
- r__ += (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j *
- a_dim1]), abs(d__2));
-L150:
- ;
- }
- ica = izamax_(&l, &a[i__ * a_dim1 + 1], &c__1);
- ca = z_abs(&a[ica + i__ * a_dim1]);
- i__2 = *n - k + 1;
- ira = izamax_(&i__2, &a[i__ + k * a_dim1], lda);
- ra = z_abs(&a[i__ + (ira + k - 1) * a_dim1]);
-
-/* Guard against zero C or R due to underflow. */
-
- if (c__ == 0. || r__ == 0.) {
- goto L200;
- }
- g = r__ / 8.;
- f = 1.;
- s = c__ + r__;
-L160:
-/* Computing MAX */
- d__1 = max(f,c__);
-/* Computing MIN */
- d__2 = min(r__,g);
- if (c__ >= g || max(d__1,ca) >= sfmax2 || min(d__2,ra) <= sfmin2) {
- goto L170;
- }
- f *= 8.;
- c__ *= 8.;
- ca *= 8.;
- r__ /= 8.;
- g /= 8.;
- ra /= 8.;
- goto L160;
-
-L170:
- g = c__ / 8.;
-L180:
-/* Computing MIN */
- d__1 = min(f,c__), d__1 = min(d__1,g);
- if (g < r__ || max(r__,ra) >= sfmax2 || min(d__1,ca) <= sfmin2) {
- goto L190;
- }
- f /= 8.;
- c__ /= 8.;
- g /= 8.;
- ca /= 8.;
- r__ *= 8.;
- ra *= 8.;
- goto L180;
-
-/* Now balance. */
-
-L190:
- if (c__ + r__ >= s * .95) {
- goto L200;
- }
- if ((f < 1. && scale[i__] < 1.)) {
- if (f * scale[i__] <= sfmin1) {
- goto L200;
- }
- }
- if ((f > 1. && scale[i__] > 1.)) {
- if (scale[i__] >= sfmax1 / f) {
- goto L200;
- }
- }
- g = 1. / f;
- scale[i__] *= f;
- noconv = TRUE_;
-
- i__2 = *n - k + 1;
- zdscal_(&i__2, &g, &a[i__ + k * a_dim1], lda);
- zdscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1);
-
-L200:
- ;
- }
-
- if (noconv) {
- goto L140;
- }
-
-L210:
- *ilo = k;
- *ihi = l;
-
- return 0;
-
-/* End of ZGEBAL */
-
-} /* zgebal_ */
-
-/* Subroutine */ int zgebd2_(integer *m, integer *n, doublecomplex *a,
- integer *lda, doublereal *d__, doublereal *e, doublecomplex *tauq,
- doublecomplex *taup, doublecomplex *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- doublecomplex z__1;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__;
- static doublecomplex alpha;
- extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), xerbla_(char *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), zlacgv_(integer *, doublecomplex *,
- integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZGEBD2 reduces a complex general m by n matrix A to upper or lower
- real bidiagonal form B by a unitary transformation: Q' * A * P = B.
-
- If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows in the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns in the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the m by n general matrix to be reduced.
- On exit,
- if m >= n, the diagonal and the first superdiagonal are
- overwritten with the upper bidiagonal matrix B; the
- elements below the diagonal, with the array TAUQ, represent
- the unitary matrix Q as a product of elementary
- reflectors, and the elements above the first superdiagonal,
- with the array TAUP, represent the unitary matrix P as
- a product of elementary reflectors;
- if m < n, the diagonal and the first subdiagonal are
- overwritten with the lower bidiagonal matrix B; the
- elements below the first subdiagonal, with the array TAUQ,
- represent the unitary matrix Q as a product of
- elementary reflectors, and the elements above the diagonal,
- with the array TAUP, represent the unitary matrix P as
- a product of elementary reflectors.
- See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- D (output) DOUBLE PRECISION array, dimension (min(M,N))
- The diagonal elements of the bidiagonal matrix B:
- D(i) = A(i,i).
-
- E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
- The off-diagonal elements of the bidiagonal matrix B:
- if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
- if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
-
- TAUQ (output) COMPLEX*16 array dimension (min(M,N))
- The scalar factors of the elementary reflectors which
- represent the unitary matrix Q. See Further Details.
-
- TAUP (output) COMPLEX*16 array, dimension (min(M,N))
- The scalar factors of the elementary reflectors which
- represent the unitary matrix P. See Further Details.
-
- WORK (workspace) COMPLEX*16 array, dimension (max(M,N))
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- The matrices Q and P are represented as products of elementary
- reflectors:
-
- If m >= n,
-
- Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
-
- Each H(i) and G(i) has the form:
-
- H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-
- where tauq and taup are complex scalars, and v and u are complex
- vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
- A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
- A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- If m < n,
-
- Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
-
- Each H(i) and G(i) has the form:
-
- H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-
- where tauq and taup are complex scalars, v and u are complex vectors;
- v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
- u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
- tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- The contents of A on exit are illustrated by the following examples:
-
- m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
-
- ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
- ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
- ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
- ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
- ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
- ( v1 v2 v3 v4 v5 )
-
- where d and e denote diagonal and off-diagonal elements of B, vi
- denotes an element of the vector defining H(i), and ui an element of
- the vector defining G(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tauq;
- --taup;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info < 0) {
- i__1 = -(*info);
- xerbla_("ZGEBD2", &i__1);
- return 0;
- }
-
- if (*m >= *n) {
-
-/* Reduce to upper bidiagonal form */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
-
- i__2 = i__ + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *m - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- zlarfg_(&i__2, &alpha, &a[min(i__3,*m) + i__ * a_dim1], &c__1, &
- tauq[i__]);
- i__2 = i__;
- d__[i__2] = alpha.r;
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Apply H(i)' to A(i:m,i+1:n) from the left */
-
- i__2 = *m - i__ + 1;
- i__3 = *n - i__;
- d_cnjg(&z__1, &tauq[i__]);
- zlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &z__1,
- &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
- i__2 = i__ + i__ * a_dim1;
- i__3 = i__;
- a[i__2].r = d__[i__3], a[i__2].i = 0.;
-
- if (i__ < *n) {
-
-/*
- Generate elementary reflector G(i) to annihilate
- A(i,i+2:n)
-*/
-
- i__2 = *n - i__;
- zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
- i__2 = i__ + (i__ + 1) * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *n - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- zlarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, &
- taup[i__]);
- i__2 = i__;
- e[i__2] = alpha.r;
- i__2 = i__ + (i__ + 1) * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Apply G(i) to A(i+1:m,i+1:n) from the right */
-
- i__2 = *m - i__;
- i__3 = *n - i__;
- zlarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1],
- lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1],
- lda, &work[1]);
- i__2 = *n - i__;
- zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
- i__2 = i__ + (i__ + 1) * a_dim1;
- i__3 = i__;
- a[i__2].r = e[i__3], a[i__2].i = 0.;
- } else {
- i__2 = i__;
- taup[i__2].r = 0., taup[i__2].i = 0.;
- }
-/* L10: */
- }
- } else {
-
-/* Reduce to lower bidiagonal form */
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Generate elementary reflector G(i) to annihilate A(i,i+1:n) */
-
- i__2 = *n - i__ + 1;
- zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
- i__2 = i__ + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *n - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- zlarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, &
- taup[i__]);
- i__2 = i__;
- d__[i__2] = alpha.r;
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Apply G(i) to A(i+1:m,i:n) from the right */
-
- i__2 = *m - i__;
- i__3 = *n - i__ + 1;
-/* Computing MIN */
- i__4 = i__ + 1;
- zlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &taup[
- i__], &a[min(i__4,*m) + i__ * a_dim1], lda, &work[1]);
- i__2 = *n - i__ + 1;
- zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
- i__2 = i__ + i__ * a_dim1;
- i__3 = i__;
- a[i__2].r = d__[i__3], a[i__2].i = 0.;
-
- if (i__ < *m) {
-
-/*
- Generate elementary reflector H(i) to annihilate
- A(i+2:m,i)
-*/
-
- i__2 = i__ + 1 + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *m - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- zlarfg_(&i__2, &alpha, &a[min(i__3,*m) + i__ * a_dim1], &c__1,
- &tauq[i__]);
- i__2 = i__;
- e[i__2] = alpha.r;
- i__2 = i__ + 1 + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Apply H(i)' to A(i+1:m,i+1:n) from the left */
-
- i__2 = *m - i__;
- i__3 = *n - i__;
- d_cnjg(&z__1, &tauq[i__]);
- zlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &
- c__1, &z__1, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &
- work[1]);
- i__2 = i__ + 1 + i__ * a_dim1;
- i__3 = i__;
- a[i__2].r = e[i__3], a[i__2].i = 0.;
- } else {
- i__2 = i__;
- tauq[i__2].r = 0., tauq[i__2].i = 0.;
- }
-/* L20: */
- }
- }
- return 0;
-
-/* End of ZGEBD2 */
-
-} /* zgebd2_ */
-
-/* Subroutine */ int zgebrd_(integer *m, integer *n, doublecomplex *a,
- integer *lda, doublereal *d__, doublereal *e, doublecomplex *tauq,
- doublecomplex *taup, doublecomplex *work, integer *lwork, integer *
- info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1;
- doublecomplex z__1;
-
- /* Local variables */
- static integer i__, j, nb, nx;
- static doublereal ws;
- static integer nbmin, iinfo, minmn;
- extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *), zgebd2_(integer *, integer *,
- doublecomplex *, integer *, doublereal *, doublereal *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *),
- xerbla_(char *, integer *), zlabrd_(integer *, integer *,
- integer *, doublecomplex *, integer *, doublereal *, doublereal *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer ldwrkx, ldwrky, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZGEBRD reduces a general complex M-by-N matrix A to upper or lower
- bidiagonal form B by a unitary transformation: Q**H * A * P = B.
-
- If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows in the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns in the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the M-by-N general matrix to be reduced.
- On exit,
- if m >= n, the diagonal and the first superdiagonal are
- overwritten with the upper bidiagonal matrix B; the
- elements below the diagonal, with the array TAUQ, represent
- the unitary matrix Q as a product of elementary
- reflectors, and the elements above the first superdiagonal,
- with the array TAUP, represent the unitary matrix P as
- a product of elementary reflectors;
- if m < n, the diagonal and the first subdiagonal are
- overwritten with the lower bidiagonal matrix B; the
- elements below the first subdiagonal, with the array TAUQ,
- represent the unitary matrix Q as a product of
- elementary reflectors, and the elements above the diagonal,
- with the array TAUP, represent the unitary matrix P as
- a product of elementary reflectors.
- See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- D (output) DOUBLE PRECISION array, dimension (min(M,N))
- The diagonal elements of the bidiagonal matrix B:
- D(i) = A(i,i).
-
- E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
- The off-diagonal elements of the bidiagonal matrix B:
- if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
- if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
-
- TAUQ (output) COMPLEX*16 array dimension (min(M,N))
- The scalar factors of the elementary reflectors which
- represent the unitary matrix Q. See Further Details.
-
- TAUP (output) COMPLEX*16 array, dimension (min(M,N))
- The scalar factors of the elementary reflectors which
- represent the unitary matrix P. See Further Details.
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The length of the array WORK. LWORK >= max(1,M,N).
- For optimum performance LWORK >= (M+N)*NB, where NB
- is the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- The matrices Q and P are represented as products of elementary
- reflectors:
-
- If m >= n,
-
- Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
-
- Each H(i) and G(i) has the form:
-
- H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-
- where tauq and taup are complex scalars, and v and u are complex
- vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
- A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
- A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- If m < n,
-
- Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
-
- Each H(i) and G(i) has the form:
-
- H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-
- where tauq and taup are complex scalars, and v and u are complex
- vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
- A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
- A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- The contents of A on exit are illustrated by the following examples:
-
- m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
-
- ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
- ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
- ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
- ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
- ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
- ( v1 v2 v3 v4 v5 )
-
- where d and e denote diagonal and off-diagonal elements of B, vi
- denotes an element of the vector defining H(i), and ui an element of
- the vector defining G(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tauq;
- --taup;
- --work;
-
- /* Function Body */
- *info = 0;
-/* Computing MAX */
- i__1 = 1, i__2 = ilaenv_(&c__1, "ZGEBRD", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nb = max(i__1,i__2);
- lwkopt = (*m + *n) * nb;
- d__1 = (doublereal) lwkopt;
- work[1].r = d__1, work[1].i = 0.;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- } else /* if(complicated condition) */ {
-/* Computing MAX */
- i__1 = max(1,*m);
- if ((*lwork < max(i__1,*n) && ! lquery)) {
- *info = -10;
- }
- }
- if (*info < 0) {
- i__1 = -(*info);
- xerbla_("ZGEBRD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- minmn = min(*m,*n);
- if (minmn == 0) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- ws = (doublereal) max(*m,*n);
- ldwrkx = *m;
- ldwrky = *n;
-
- if ((nb > 1 && nb < minmn)) {
-
-/*
- Set the crossover point NX.
-
- Computing MAX
-*/
- i__1 = nb, i__2 = ilaenv_(&c__3, "ZGEBRD", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
-
-/* Determine when to switch from blocked to unblocked code. */
-
- if (nx < minmn) {
- ws = (doublereal) ((*m + *n) * nb);
- if ((doublereal) (*lwork) < ws) {
-
-/*
- Not enough work space for the optimal NB, consider using
- a smaller block size.
-*/
-
- nbmin = ilaenv_(&c__2, "ZGEBRD", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- if (*lwork >= (*m + *n) * nbmin) {
- nb = *lwork / (*m + *n);
- } else {
- nb = 1;
- nx = minmn;
- }
- }
- }
- } else {
- nx = minmn;
- }
-
- i__1 = minmn - nx;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-
-/*
- Reduce rows and columns i:i+ib-1 to bidiagonal form and return
- the matrices X and Y which are needed to update the unreduced
- part of the matrix
-*/
-
- i__3 = *m - i__ + 1;
- i__4 = *n - i__ + 1;
- zlabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[
- i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx
- * nb + 1], &ldwrky);
-
-/*
- Update the trailing submatrix A(i+ib:m,i+ib:n), using
- an update of the form A := A - V*Y' - X*U'
-*/
-
- i__3 = *m - i__ - nb + 1;
- i__4 = *n - i__ - nb + 1;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("No transpose", "Conjugate transpose", &i__3, &i__4, &nb, &
- z__1, &a[i__ + nb + i__ * a_dim1], lda, &work[ldwrkx * nb +
- nb + 1], &ldwrky, &c_b60, &a[i__ + nb + (i__ + nb) * a_dim1],
- lda);
- i__3 = *m - i__ - nb + 1;
- i__4 = *n - i__ - nb + 1;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &z__1, &
- work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, &
- c_b60, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
-
-/* Copy diagonal and off-diagonal elements of B back into A */
-
- if (*m >= *n) {
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- i__4 = j + j * a_dim1;
- i__5 = j;
- a[i__4].r = d__[i__5], a[i__4].i = 0.;
- i__4 = j + (j + 1) * a_dim1;
- i__5 = j;
- a[i__4].r = e[i__5], a[i__4].i = 0.;
-/* L10: */
- }
- } else {
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- i__4 = j + j * a_dim1;
- i__5 = j;
- a[i__4].r = d__[i__5], a[i__4].i = 0.;
- i__4 = j + 1 + j * a_dim1;
- i__5 = j;
- a[i__4].r = e[i__5], a[i__4].i = 0.;
-/* L20: */
- }
- }
-/* L30: */
- }
-
-/* Use unblocked code to reduce the remainder of the matrix */
-
- i__2 = *m - i__ + 1;
- i__1 = *n - i__ + 1;
- zgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &
- tauq[i__], &taup[i__], &work[1], &iinfo);
- work[1].r = ws, work[1].i = 0.;
- return 0;
-
-/* End of ZGEBRD */
-
-} /* zgebrd_ */
-
-/* Subroutine */ int zgeev_(char *jobvl, char *jobvr, integer *n,
- doublecomplex *a, integer *lda, doublecomplex *w, doublecomplex *vl,
- integer *ldvl, doublecomplex *vr, integer *ldvr, doublecomplex *work,
- integer *lwork, doublereal *rwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
- i__2, i__3, i__4;
- doublereal d__1, d__2;
- doublecomplex z__1, z__2;
-
- /* Builtin functions */
- double sqrt(doublereal), d_imag(doublecomplex *);
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, k, ihi;
- static doublereal scl;
- static integer ilo;
- static doublereal dum[1], eps;
- static doublecomplex tmp;
- static integer ibal;
- static char side[1];
- static integer maxb;
- static doublereal anrm;
- static integer ierr, itau, iwrk, nout;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
- extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
- static logical scalea;
-
- static doublereal cscale;
- extern /* Subroutine */ int zgebak_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublecomplex *, integer *,
- integer *), zgebal_(char *, integer *,
- doublecomplex *, integer *, integer *, integer *, doublereal *,
- integer *);
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static logical select[1];
- extern /* Subroutine */ int zdscal_(integer *, doublereal *,
- doublecomplex *, integer *);
- static doublereal bignum;
- extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
- integer *, doublereal *);
- extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, integer *), zlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublecomplex *,
- integer *, integer *), zlacpy_(char *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *, integer *);
- static integer minwrk, maxwrk;
- static logical wantvl;
- static doublereal smlnum;
- static integer hswork, irwork;
- extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *, integer *), ztrevc_(char *, char *, logical *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, integer *, integer *, doublecomplex *,
- doublereal *, integer *);
- static logical lquery, wantvr;
- extern /* Subroutine */ int zunghr_(integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, integer *);
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
- eigenvalues and, optionally, the left and/or right eigenvectors.
-
- The right eigenvector v(j) of A satisfies
- A * v(j) = lambda(j) * v(j)
- where lambda(j) is its eigenvalue.
- The left eigenvector u(j) of A satisfies
- u(j)**H * A = lambda(j) * u(j)**H
- where u(j)**H denotes the conjugate transpose of u(j).
-
- The computed eigenvectors are normalized to have Euclidean norm
- equal to 1 and largest component real.
-
- Arguments
- =========
-
- JOBVL (input) CHARACTER*1
- = 'N': left eigenvectors of A are not computed;
- = 'V': left eigenvectors of are computed.
-
- JOBVR (input) CHARACTER*1
- = 'N': right eigenvectors of A are not computed;
- = 'V': right eigenvectors of A are computed.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the N-by-N matrix A.
- On exit, A has been overwritten.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- W (output) COMPLEX*16 array, dimension (N)
- W contains the computed eigenvalues.
-
- VL (output) COMPLEX*16 array, dimension (LDVL,N)
- If JOBVL = 'V', the left eigenvectors u(j) are stored one
- after another in the columns of VL, in the same order
- as their eigenvalues.
- If JOBVL = 'N', VL is not referenced.
- u(j) = VL(:,j), the j-th column of VL.
-
- LDVL (input) INTEGER
- The leading dimension of the array VL. LDVL >= 1; if
- JOBVL = 'V', LDVL >= N.
-
- VR (output) COMPLEX*16 array, dimension (LDVR,N)
- If JOBVR = 'V', the right eigenvectors v(j) are stored one
- after another in the columns of VR, in the same order
- as their eigenvalues.
- If JOBVR = 'N', VR is not referenced.
- v(j) = VR(:,j), the j-th column of VR.
-
- LDVR (input) INTEGER
- The leading dimension of the array VR. LDVR >= 1; if
- JOBVR = 'V', LDVR >= N.
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,2*N).
- For good performance, LWORK must generally be larger.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- RWORK (workspace) DOUBLE PRECISION array, dimension (2*N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = i, the QR algorithm failed to compute all the
- eigenvalues, and no eigenvectors have been computed;
- elements and i+1:N of W contain eigenvalues which have
- converged.
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --w;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --work;
- --rwork;
-
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1;
- wantvl = lsame_(jobvl, "V");
- wantvr = lsame_(jobvr, "V");
- if ((! wantvl && ! lsame_(jobvl, "N"))) {
- *info = -1;
- } else if ((! wantvr && ! lsame_(jobvr, "N"))) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if (*ldvl < 1 || (wantvl && *ldvl < *n)) {
- *info = -8;
- } else if (*ldvr < 1 || (wantvr && *ldvr < *n)) {
- *info = -10;
- }
-
-/*
- Compute workspace
- (Note: Comments in the code beginning "Workspace:" describe the
- minimal amount of workspace needed at that point in the code,
- as well as the preferred amount for good performance.
- CWorkspace refers to complex workspace, and RWorkspace to real
- workspace. NB refers to the optimal block size for the
- immediately following subroutine, as returned by ILAENV.
- HSWORK refers to the workspace preferred by ZHSEQR, as
- calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
- the worst case.)
-*/
-
- minwrk = 1;
- if ((*info == 0 && (*lwork >= 1 || lquery))) {
- maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, &c__0, (
- ftnlen)6, (ftnlen)1);
- if ((! wantvl && ! wantvr)) {
-/* Computing MAX */
- i__1 = 1, i__2 = (*n) << (1);
- minwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = ilaenv_(&c__8, "ZHSEQR", "EN", n, &c__1, n, &c_n1, (ftnlen)
- 6, (ftnlen)2);
- maxb = max(i__1,2);
-/*
- Computing MIN
- Computing MAX
-*/
- i__3 = 2, i__4 = ilaenv_(&c__4, "ZHSEQR", "EN", n, &c__1, n, &
- c_n1, (ftnlen)6, (ftnlen)2);
- i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
- k = min(i__1,i__2);
-/* Computing MAX */
- i__1 = k * (k + 2), i__2 = (*n) << (1);
- hswork = max(i__1,i__2);
- maxwrk = max(maxwrk,hswork);
- } else {
-/* Computing MAX */
- i__1 = 1, i__2 = (*n) << (1);
- minwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR",
- " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = ilaenv_(&c__8, "ZHSEQR", "SV", n, &c__1, n, &c_n1, (ftnlen)
- 6, (ftnlen)2);
- maxb = max(i__1,2);
-/*
- Computing MIN
- Computing MAX
-*/
- i__3 = 2, i__4 = ilaenv_(&c__4, "ZHSEQR", "SV", n, &c__1, n, &
- c_n1, (ftnlen)6, (ftnlen)2);
- i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
- k = min(i__1,i__2);
-/* Computing MAX */
- i__1 = k * (k + 2), i__2 = (*n) << (1);
- hswork = max(i__1,i__2);
-/* Computing MAX */
- i__1 = max(maxwrk,hswork), i__2 = (*n) << (1);
- maxwrk = max(i__1,i__2);
- }
- work[1].r = (doublereal) maxwrk, work[1].i = 0.;
- }
- if ((*lwork < minwrk && ! lquery)) {
- *info = -12;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGEEV ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
-/* Get machine constants */
-
- eps = PRECISION;
- smlnum = SAFEMINIMUM;
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
- smlnum = sqrt(smlnum) / eps;
- bignum = 1. / smlnum;
-
-/* Scale A if max element outside range [SMLNUM,BIGNUM] */
-
- anrm = zlange_("M", n, n, &a[a_offset], lda, dum);
- scalea = FALSE_;
- if ((anrm > 0. && anrm < smlnum)) {
- scalea = TRUE_;
- cscale = smlnum;
- } else if (anrm > bignum) {
- scalea = TRUE_;
- cscale = bignum;
- }
- if (scalea) {
- zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
- ierr);
- }
-
-/*
- Balance the matrix
- (CWorkspace: none)
- (RWorkspace: need N)
-*/
-
- ibal = 1;
- zgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);
-
-/*
- Reduce to upper Hessenberg form
- (CWorkspace: need 2*N, prefer N+N*NB)
- (RWorkspace: none)
-*/
-
- itau = 1;
- iwrk = itau + *n;
- i__1 = *lwork - iwrk + 1;
- zgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
- &ierr);
-
- if (wantvl) {
-
-/*
- Want left eigenvectors
- Copy Householder vectors to VL
-*/
-
- *(unsigned char *)side = 'L';
- zlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
- ;
-
-/*
- Generate unitary matrix in VL
- (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
- (RWorkspace: none)
-*/
-
- i__1 = *lwork - iwrk + 1;
- zunghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk],
- &i__1, &ierr);
-
-/*
- Perform QR iteration, accumulating Schur vectors in VL
- (CWorkspace: need 1, prefer HSWORK (see comments) )
- (RWorkspace: none)
-*/
-
- iwrk = itau;
- i__1 = *lwork - iwrk + 1;
- zhseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vl[
- vl_offset], ldvl, &work[iwrk], &i__1, info);
-
- if (wantvr) {
-
-/*
- Want left and right eigenvectors
- Copy Schur vectors to VR
-*/
-
- *(unsigned char *)side = 'B';
- zlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
- }
-
- } else if (wantvr) {
-
-/*
- Want right eigenvectors
- Copy Householder vectors to VR
-*/
-
- *(unsigned char *)side = 'R';
- zlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
- ;
-
-/*
- Generate unitary matrix in VR
- (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
- (RWorkspace: none)
-*/
-
- i__1 = *lwork - iwrk + 1;
- zunghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk],
- &i__1, &ierr);
-
-/*
- Perform QR iteration, accumulating Schur vectors in VR
- (CWorkspace: need 1, prefer HSWORK (see comments) )
- (RWorkspace: none)
-*/
-
- iwrk = itau;
- i__1 = *lwork - iwrk + 1;
- zhseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[
- vr_offset], ldvr, &work[iwrk], &i__1, info);
-
- } else {
-
-/*
- Compute eigenvalues only
- (CWorkspace: need 1, prefer HSWORK (see comments) )
- (RWorkspace: none)
-*/
-
- iwrk = itau;
- i__1 = *lwork - iwrk + 1;
- zhseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[
- vr_offset], ldvr, &work[iwrk], &i__1, info);
- }
-
-/* If INFO > 0 from ZHSEQR, then quit */
-
- if (*info > 0) {
- goto L50;
- }
-
- if (wantvl || wantvr) {
-
-/*
- Compute left and/or right eigenvectors
- (CWorkspace: need 2*N)
- (RWorkspace: need 2*N)
-*/
-
- irwork = ibal + *n;
- ztrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
- &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &rwork[irwork],
- &ierr);
- }
-
- if (wantvl) {
-
-/*
- Undo balancing of left eigenvectors
- (CWorkspace: none)
- (RWorkspace: need N)
-*/
-
- zgebak_("B", "L", n, &ilo, &ihi, &rwork[ibal], n, &vl[vl_offset],
- ldvl, &ierr);
-
-/* Normalize left eigenvectors and make largest component real */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- scl = 1. / dznrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
- zdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- i__3 = k + i__ * vl_dim1;
-/* Computing 2nd power */
- d__1 = vl[i__3].r;
-/* Computing 2nd power */
- d__2 = d_imag(&vl[k + i__ * vl_dim1]);
- rwork[irwork + k - 1] = d__1 * d__1 + d__2 * d__2;
-/* L10: */
- }
- k = idamax_(n, &rwork[irwork], &c__1);
- d_cnjg(&z__2, &vl[k + i__ * vl_dim1]);
- d__1 = sqrt(rwork[irwork + k - 1]);
- z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1;
- tmp.r = z__1.r, tmp.i = z__1.i;
- zscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
- i__2 = k + i__ * vl_dim1;
- i__3 = k + i__ * vl_dim1;
- d__1 = vl[i__3].r;
- z__1.r = d__1, z__1.i = 0.;
- vl[i__2].r = z__1.r, vl[i__2].i = z__1.i;
-/* L20: */
- }
- }
-
- if (wantvr) {
-
-/*
- Undo balancing of right eigenvectors
- (CWorkspace: none)
- (RWorkspace: need N)
-*/
-
- zgebak_("B", "R", n, &ilo, &ihi, &rwork[ibal], n, &vr[vr_offset],
- ldvr, &ierr);
-
-/* Normalize right eigenvectors and make largest component real */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- scl = 1. / dznrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
- zdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- i__3 = k + i__ * vr_dim1;
-/* Computing 2nd power */
- d__1 = vr[i__3].r;
-/* Computing 2nd power */
- d__2 = d_imag(&vr[k + i__ * vr_dim1]);
- rwork[irwork + k - 1] = d__1 * d__1 + d__2 * d__2;
-/* L30: */
- }
- k = idamax_(n, &rwork[irwork], &c__1);
- d_cnjg(&z__2, &vr[k + i__ * vr_dim1]);
- d__1 = sqrt(rwork[irwork + k - 1]);
- z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1;
- tmp.r = z__1.r, tmp.i = z__1.i;
- zscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
- i__2 = k + i__ * vr_dim1;
- i__3 = k + i__ * vr_dim1;
- d__1 = vr[i__3].r;
- z__1.r = d__1, z__1.i = 0.;
- vr[i__2].r = z__1.r, vr[i__2].i = z__1.i;
-/* L40: */
- }
- }
-
-/* Undo scaling if necessary */
-
-L50:
- if (scalea) {
- i__1 = *n - *info;
-/* Computing MAX */
- i__3 = *n - *info;
- i__2 = max(i__3,1);
- zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
- , &i__2, &ierr);
- if (*info > 0) {
- i__1 = ilo - 1;
- zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n,
- &ierr);
- }
- }
-
- work[1].r = (doublereal) maxwrk, work[1].i = 0.;
- return 0;
-
-/* End of ZGEEV */
-
-} /* zgeev_ */
-
-/* Subroutine */ int zgehd2_(integer *n, integer *ilo, integer *ihi,
- doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
- work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublecomplex z__1;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__;
- static doublecomplex alpha;
- extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), xerbla_(char *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H
- by a unitary similarity transformation: Q' * A * Q = H .
-
- Arguments
- =========
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- It is assumed that A is already upper triangular in rows
- and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
- set by a previous call to ZGEBAL; otherwise they should be
- set to 1 and N respectively. See Further Details.
- 1 <= ILO <= IHI <= max(1,N).
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the n by n general matrix to be reduced.
- On exit, the upper triangle and the first subdiagonal of A
- are overwritten with the upper Hessenberg matrix H, and the
- elements below the first subdiagonal, with the array TAU,
- represent the unitary matrix Q as a product of elementary
- reflectors. See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- TAU (output) COMPLEX*16 array, dimension (N-1)
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace) COMPLEX*16 array, dimension (N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of (ihi-ilo) elementary
- reflectors
-
- Q = H(ilo) H(ilo+1) . . . H(ihi-1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
- exit in A(i+2:ihi,i), and tau in TAU(i).
-
- The contents of A are illustrated by the following example, with
- n = 7, ilo = 2 and ihi = 6:
-
- on entry, on exit,
-
- ( a a a a a a a ) ( a a h h h h a )
- ( a a a a a a ) ( a h h h h a )
- ( a a a a a a ) ( h h h h h h )
- ( a a a a a a ) ( v2 h h h h h )
- ( a a a a a a ) ( v2 v3 h h h h )
- ( a a a a a a ) ( v2 v3 v4 h h h )
- ( a ) ( a )
-
- where a denotes an element of the original matrix A, h denotes a
- modified element of the upper Hessenberg matrix H, and vi denotes an
- element of the vector defining H(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -2;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGEHD2", &i__1);
- return 0;
- }
-
- i__1 = *ihi - 1;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
-
-/* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */
-
- i__2 = i__ + 1 + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *ihi - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[
- i__]);
- i__2 = i__ + 1 + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Apply H(i) to A(1:ihi,i+1:ihi) from the right */
-
- i__2 = *ihi - i__;
- zlarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
- i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]);
-
-/* Apply H(i)' to A(i+1:ihi,i+1:n) from the left */
-
- i__2 = *ihi - i__;
- i__3 = *n - i__;
- d_cnjg(&z__1, &tau[i__]);
- zlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &z__1,
- &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]);
-
- i__2 = i__ + 1 + i__ * a_dim1;
- a[i__2].r = alpha.r, a[i__2].i = alpha.i;
-/* L10: */
- }
-
- return 0;
-
-/* End of ZGEHD2 */
-
-} /* zgehd2_ */
-
-/* Subroutine */ int zgehrd_(integer *n, integer *ilo, integer *ihi,
- doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
- work, integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- doublecomplex z__1;
-
- /* Local variables */
- static integer i__;
- static doublecomplex t[4160] /* was [65][64] */;
- static integer ib;
- static doublecomplex ei;
- static integer nb, nh, nx, iws, nbmin, iinfo;
- extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *), zgehd2_(integer *, integer *, integer
- *, doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *),
- zlahrd_(integer *, integer *, integer *, doublecomplex *, integer
- *, doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *);
- static integer ldwork, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZGEHRD reduces a complex general matrix A to upper Hessenberg form H
- by a unitary similarity transformation: Q' * A * Q = H .
-
- Arguments
- =========
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- It is assumed that A is already upper triangular in rows
- and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
- set by a previous call to ZGEBAL; otherwise they should be
- set to 1 and N respectively. See Further Details.
- 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the N-by-N general matrix to be reduced.
- On exit, the upper triangle and the first subdiagonal of A
- are overwritten with the upper Hessenberg matrix H, and the
- elements below the first subdiagonal, with the array TAU,
- represent the unitary matrix Q as a product of elementary
- reflectors. See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- TAU (output) COMPLEX*16 array, dimension (N-1)
- The scalar factors of the elementary reflectors (see Further
- Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
- zero.
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The length of the array WORK. LWORK >= max(1,N).
- For optimum performance LWORK >= N*NB, where NB is the
- optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of (ihi-ilo) elementary
- reflectors
-
- Q = H(ilo) H(ilo+1) . . . H(ihi-1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
- exit in A(i+2:ihi,i), and tau in TAU(i).
-
- The contents of A are illustrated by the following example, with
- n = 7, ilo = 2 and ihi = 6:
-
- on entry, on exit,
-
- ( a a a a a a a ) ( a a h h h h a )
- ( a a a a a a ) ( a h h h h a )
- ( a a a a a a ) ( h h h h h h )
- ( a a a a a a ) ( v2 h h h h h )
- ( a a a a a a ) ( v2 v3 h h h h )
- ( a a a a a a ) ( v2 v3 v4 h h h )
- ( a ) ( a )
-
- where a denotes an element of the original matrix A, h denotes a
- modified element of the upper Hessenberg matrix H, and vi denotes an
- element of the vector defining H(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
-/* Computing MIN */
- i__1 = 64, i__2 = ilaenv_(&c__1, "ZGEHRD", " ", n, ilo, ihi, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nb = min(i__1,i__2);
- lwkopt = *n * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- lquery = *lwork == -1;
- if (*n < 0) {
- *info = -1;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -2;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if ((*lwork < max(1,*n) && ! lquery)) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGEHRD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */
-
- i__1 = *ilo - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- tau[i__2].r = 0., tau[i__2].i = 0.;
-/* L10: */
- }
- i__1 = *n - 1;
- for (i__ = max(1,*ihi); i__ <= i__1; ++i__) {
- i__2 = i__;
- tau[i__2].r = 0., tau[i__2].i = 0.;
-/* L20: */
- }
-
-/* Quick return if possible */
-
- nh = *ihi - *ilo + 1;
- if (nh <= 1) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- nbmin = 2;
- iws = 1;
- if ((nb > 1 && nb < nh)) {
-
-/*
- Determine when to cross over from blocked to unblocked code
- (last block is always handled by unblocked code).
-
- Computing MAX
-*/
- i__1 = nb, i__2 = ilaenv_(&c__3, "ZGEHRD", " ", n, ilo, ihi, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < nh) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- iws = *n * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: determine the
- minimum value of NB, and reduce NB or force use of
- unblocked code.
-
- Computing MAX
-*/
- i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEHRD", " ", n, ilo, ihi, &
- c_n1, (ftnlen)6, (ftnlen)1);
- nbmin = max(i__1,i__2);
- if (*lwork >= *n * nbmin) {
- nb = *lwork / *n;
- } else {
- nb = 1;
- }
- }
- }
- }
- ldwork = *n;
-
- if (nb < nbmin || nb >= nh) {
-
-/* Use unblocked code below */
-
- i__ = *ilo;
-
- } else {
-
-/* Use blocked code */
-
- i__1 = *ihi - 1 - nx;
- i__2 = nb;
- for (i__ = *ilo; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__3 = nb, i__4 = *ihi - i__;
- ib = min(i__3,i__4);
-
-/*
- Reduce columns i:i+ib-1 to Hessenberg form, returning the
- matrices V and T of the block reflector H = I - V*T*V'
- which performs the reduction, and also the matrix Y = A*V*T
-*/
-
- zlahrd_(ihi, &i__, &ib, &a[i__ * a_dim1 + 1], lda, &tau[i__], t, &
- c__65, &work[1], &ldwork);
-
-/*
- Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
- right, computing A := A - Y * V'. V(i+ib,ib-1) must be set
- to 1.
-*/
-
- i__3 = i__ + ib + (i__ + ib - 1) * a_dim1;
- ei.r = a[i__3].r, ei.i = a[i__3].i;
- i__3 = i__ + ib + (i__ + ib - 1) * a_dim1;
- a[i__3].r = 1., a[i__3].i = 0.;
- i__3 = *ihi - i__ - ib + 1;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("No transpose", "Conjugate transpose", ihi, &i__3, &ib, &
- z__1, &work[1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda,
- &c_b60, &a[(i__ + ib) * a_dim1 + 1], lda);
- i__3 = i__ + ib + (i__ + ib - 1) * a_dim1;
- a[i__3].r = ei.r, a[i__3].i = ei.i;
-
-/*
- Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
- left
-*/
-
- i__3 = *ihi - i__;
- i__4 = *n - i__ - ib + 1;
- zlarfb_("Left", "Conjugate transpose", "Forward", "Columnwise", &
- i__3, &i__4, &ib, &a[i__ + 1 + i__ * a_dim1], lda, t, &
- c__65, &a[i__ + 1 + (i__ + ib) * a_dim1], lda, &work[1], &
- ldwork);
-/* L30: */
- }
- }
-
-/* Use unblocked code to reduce the rest of the matrix */
-
- zgehd2_(n, &i__, ihi, &a[a_offset], lda, &tau[1], &work[1], &iinfo);
- work[1].r = (doublereal) iws, work[1].i = 0.;
-
- return 0;
-
-/* End of ZGEHRD */
-
-} /* zgehrd_ */
-
-/* Subroutine */ int zgelq2_(integer *m, integer *n, doublecomplex *a,
- integer *lda, doublecomplex *tau, doublecomplex *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, k;
- static doublecomplex alpha;
- extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), xerbla_(char *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), zlacgv_(integer *, doublecomplex *,
- integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZGELQ2 computes an LQ factorization of a complex m by n matrix A:
- A = L * Q.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the m by n matrix A.
- On exit, the elements on and below the diagonal of the array
- contain the m by min(m,n) lower trapezoidal matrix L (L is
- lower triangular if m <= n); the elements above the diagonal,
- with the array TAU, represent the unitary matrix Q as a
- product of elementary reflectors (see Further Details).
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- TAU (output) COMPLEX*16 array, dimension (min(M,N))
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace) COMPLEX*16 array, dimension (M)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of elementary reflectors
-
- Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
- A(i,i+1:n), and tau in TAU(i).
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGELQ2", &i__1);
- return 0;
- }
-
- k = min(*m,*n);
-
- i__1 = k;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Generate elementary reflector H(i) to annihilate A(i,i+1:n) */
-
- i__2 = *n - i__ + 1;
- zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
- i__2 = i__ + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *n - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- zlarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, &tau[i__]
- );
- if (i__ < *m) {
-
-/* Apply H(i) to A(i+1:m,i:n) from the right */
-
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
- i__2 = *m - i__;
- i__3 = *n - i__ + 1;
- zlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[
- i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
- }
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = alpha.r, a[i__2].i = alpha.i;
- i__2 = *n - i__ + 1;
- zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
-/* L10: */
- }
- return 0;
-
-/* End of ZGELQ2 */
-
-} /* zgelq2_ */
-
-/* Subroutine */ int zgelqf_(integer *m, integer *n, doublecomplex *a,
- integer *lda, doublecomplex *tau, doublecomplex *work, integer *lwork,
- integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
- extern /* Subroutine */ int zgelq2_(integer *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *), xerbla_(
- char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- static integer ldwork;
- extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *);
- static integer lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZGELQF computes an LQ factorization of a complex M-by-N matrix A:
- A = L * Q.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the M-by-N matrix A.
- On exit, the elements on and below the diagonal of the array
- contain the m-by-min(m,n) lower trapezoidal matrix L (L is
- lower triangular if m <= n); the elements above the diagonal,
- with the array TAU, represent the unitary matrix Q as a
- product of elementary reflectors (see Further Details).
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- TAU (output) COMPLEX*16 array, dimension (min(M,N))
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,M).
- For optimum performance LWORK >= M*NB, where NB is the
- optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of elementary reflectors
-
- Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
- A(i,i+1:n), and tau in TAU(i).
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- nb = ilaenv_(&c__1, "ZGELQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- lwkopt = *m * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- } else if ((*lwork < max(1,*m) && ! lquery)) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGELQF", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- k = min(*m,*n);
- if (k == 0) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- nbmin = 2;
- nx = 0;
- iws = *m;
- if ((nb > 1 && nb < k)) {
-
-/*
- Determine when to cross over from blocked to unblocked code.
-
- Computing MAX
-*/
- i__1 = 0, i__2 = ilaenv_(&c__3, "ZGELQF", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < k) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- ldwork = *m;
- iws = ldwork * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: reduce NB and
- determine the minimum value of NB.
-*/
-
- nb = *lwork / ldwork;
-/* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "ZGELQF", " ", m, n, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- nbmin = max(i__1,i__2);
- }
- }
- }
-
- if (((nb >= nbmin && nb < k) && nx < k)) {
-
-/* Use blocked code initially */
-
- i__1 = k - nx;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__3 = k - i__ + 1;
- ib = min(i__3,nb);
-
-/*
- Compute the LQ factorization of the current block
- A(i:i+ib-1,i:n)
-*/
-
- i__3 = *n - i__ + 1;
- zgelq2_(&ib, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
- 1], &iinfo);
- if (i__ + ib <= *m) {
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__3 = *n - i__ + 1;
- zlarft_("Forward", "Rowwise", &i__3, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], &work[1], &ldwork);
-
-/* Apply H to A(i+ib:m,i:n) from the right */
-
- i__3 = *m - i__ - ib + 1;
- i__4 = *n - i__ + 1;
- zlarfb_("Right", "No transpose", "Forward", "Rowwise", &i__3,
- &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
- ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib +
- 1], &ldwork);
- }
-/* L10: */
- }
- } else {
- i__ = 1;
- }
-
-/* Use unblocked code to factor the last or only block. */
-
- if (i__ <= k) {
- i__2 = *m - i__ + 1;
- i__1 = *n - i__ + 1;
- zgelq2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
- , &iinfo);
- }
-
- work[1].r = (doublereal) iws, work[1].i = 0.;
- return 0;
-
-/* End of ZGELQF */
-
-} /* zgelqf_ */
-
-/* Subroutine */ int zgelsd_(integer *m, integer *n, integer *nrhs,
- doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
- doublereal *s, doublereal *rcond, integer *rank, doublecomplex *work,
- integer *lwork, doublereal *rwork, integer *iwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
- doublereal d__1;
- doublecomplex z__1;
-
- /* Local variables */
- static integer ie, il, mm;
- static doublereal eps, anrm, bnrm;
- static integer itau, iascl, ibscl;
- static doublereal sfmin;
- static integer minmn, maxmn, itaup, itauq, mnthr, nwork;
- extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
-
- extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), dlaset_(char *, integer *, integer
- *, doublereal *, doublereal *, doublereal *, integer *),
- xerbla_(char *, integer *), zgebrd_(integer *, integer *,
- doublecomplex *, integer *, doublereal *, doublereal *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *,
- integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
- integer *, doublereal *);
- static doublereal bignum;
- extern /* Subroutine */ int zgelqf_(integer *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *, integer *
- ), zlalsd_(char *, integer *, integer *, integer *, doublereal *,
- doublereal *, doublecomplex *, integer *, doublereal *, integer *,
- doublecomplex *, doublereal *, integer *, integer *),
- zlascl_(char *, integer *, integer *, doublereal *, doublereal *,
- integer *, integer *, doublecomplex *, integer *, integer *), zgeqrf_(integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, doublecomplex *, integer *, integer *);
- static integer ldwork;
- extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *),
- zlaset_(char *, integer *, integer *, doublecomplex *,
- doublecomplex *, doublecomplex *, integer *);
- static integer minwrk, maxwrk;
- static doublereal smlnum;
- extern /* Subroutine */ int zunmbr_(char *, char *, char *, integer *,
- integer *, integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *, integer *
- );
- static logical lquery;
- static integer nrwork, smlsiz;
- extern /* Subroutine */ int zunmlq_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmqr_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *, integer *);
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- ZGELSD computes the minimum-norm solution to a real linear least
- squares problem:
- minimize 2-norm(| b - A*x |)
- using the singular value decomposition (SVD) of A. A is an M-by-N
- matrix which may be rank-deficient.
-
- Several right hand side vectors b and solution vectors x can be
- handled in a single call; they are stored as the columns of the
- M-by-NRHS right hand side matrix B and the N-by-NRHS solution
- matrix X.
-
- The problem is solved in three steps:
- (1) Reduce the coefficient matrix A to bidiagonal form with
- Householder tranformations, reducing the original problem
- into a "bidiagonal least squares problem" (BLS)
- (2) Solve the BLS using a divide and conquer approach.
- (3) Apply back all the Householder tranformations to solve
- the original least squares problem.
-
- The effective rank of A is determined by treating as zero those
- singular values which are less than RCOND times the largest singular
- value.
-
- The divide and conquer algorithm makes very mild assumptions about
- floating point arithmetic. It will work on machines with a guard
- digit in add/subtract, or on those binary machines without guard
- digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- Cray-2. It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- NRHS (input) INTEGER
- The number of right hand sides, i.e., the number of columns
- of the matrices B and X. NRHS >= 0.
-
- A (input) COMPLEX*16 array, dimension (LDA,N)
- On entry, the M-by-N matrix A.
- On exit, A has been destroyed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
- On entry, the M-by-NRHS right hand side matrix B.
- On exit, B is overwritten by the N-by-NRHS solution matrix X.
- If m >= n and RANK = n, the residual sum-of-squares for
- the solution in the i-th column is given by the sum of
- squares of elements n+1:m in that column.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,M,N).
-
- S (output) DOUBLE PRECISION array, dimension (min(M,N))
- The singular values of A in decreasing order.
- The condition number of A in the 2-norm = S(1)/S(min(m,n)).
-
- RCOND (input) DOUBLE PRECISION
- RCOND is used to determine the effective rank of A.
- Singular values S(i) <= RCOND*S(1) are treated as zero.
- If RCOND < 0, machine precision is used instead.
-
- RANK (output) INTEGER
- The effective rank of A, i.e., the number of singular values
- which are greater than RCOND*S(1).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK must be at least 1.
- The exact minimum amount of workspace needed depends on M,
- N and NRHS. As long as LWORK is at least
- 2 * N + N * NRHS
- if M is greater than or equal to N or
- 2 * M + M * NRHS
- if M is less than N, the code will execute correctly.
- For good performance, LWORK should generally be larger.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- RWORK (workspace) DOUBLE PRECISION array, dimension at least
- 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
- (SMLSIZ+1)**2
- if M is greater than or equal to N or
- 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
- (SMLSIZ+1)**2
- if M is less than N, the code will execute correctly.
- SMLSIZ is returned by ILAENV and is equal to the maximum
- size of the subproblems at the bottom of the computation
- tree (usually about 25), and
- NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
-
- IWORK (workspace) INTEGER array, dimension (LIWORK)
- LIWORK >= 3 * MINMN * NLVL + 11 * MINMN,
- where MINMN = MIN( M,N ).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: the algorithm for computing the SVD failed to converge;
- if INFO = i, i off-diagonal elements of an intermediate
- bidiagonal form did not converge to zero.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Ren-Cang Li, Computer Science Division, University of
- California at Berkeley, USA
- Osni Marques, LBNL/NERSC, USA
-
- =====================================================================
-
-
- Test the input arguments.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --s;
- --work;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
- minmn = min(*m,*n);
- maxmn = max(*m,*n);
- mnthr = ilaenv_(&c__6, "ZGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)6, (
- ftnlen)1);
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*nrhs < 0) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- } else if (*ldb < max(1,maxmn)) {
- *info = -7;
- }
-
- smlsiz = ilaenv_(&c__9, "ZGELSD", " ", &c__0, &c__0, &c__0, &c__0, (
- ftnlen)6, (ftnlen)1);
-
-/*
- Compute workspace.
- (Note: Comments in the code beginning "Workspace:" describe the
- minimal amount of workspace needed at that point in the code,
- as well as the preferred amount for good performance.
- NB refers to the optimal block size for the immediately
- following subroutine, as returned by ILAENV.)
-*/
-
- minwrk = 1;
- if (*info == 0) {
- maxwrk = 0;
- mm = *m;
- if ((*m >= *n && *m >= mnthr)) {
-
-/* Path 1a - overdetermined, with many more rows than columns. */
-
- mm = *n;
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *n * ilaenv_(&c__1, "ZGEQRF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *nrhs * ilaenv_(&c__1, "ZUNMQR", "LC", m,
- nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
- maxwrk = max(i__1,i__2);
- }
- if (*m >= *n) {
-
-/*
- Path 1 - overdetermined or exactly determined.
-
- Computing MAX
-*/
- i__1 = maxwrk, i__2 = ((*n) << (1)) + (mm + *n) * ilaenv_(&c__1,
- "ZGEBRD", " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1)
- ;
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *nrhs * ilaenv_(&c__1,
- "ZUNMBR", "QLC", &mm, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)
- 3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + (*n - 1) * ilaenv_(&c__1,
- "ZUNMBR", "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *n * *nrhs;
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = ((*n) << (1)) + mm, i__2 = ((*n) << (1)) + *n * *nrhs;
- minwrk = max(i__1,i__2);
- }
- if (*n > *m) {
- if (*n >= mnthr) {
-
-/*
- Path 2a - underdetermined, with many more columns
- than rows.
-*/
-
- maxwrk = *m + *m * ilaenv_(&c__1, "ZGELQF", " ", m, n, &c_n1,
- &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + ((*m) << (1))
- * ilaenv_(&c__1, "ZGEBRD", " ", m, m, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + *nrhs *
- ilaenv_(&c__1, "ZUNMBR", "QLC", m, nrhs, m, &c_n1, (
- ftnlen)6, (ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + (*m - 1) *
- ilaenv_(&c__1, "ZUNMLQ", "LC", n, nrhs, m, &c_n1, (
- ftnlen)6, (ftnlen)2);
- maxwrk = max(i__1,i__2);
- if (*nrhs > 1) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
- maxwrk = max(i__1,i__2);
- } else {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + ((*m) << (1));
- maxwrk = max(i__1,i__2);
- }
-/* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + *m * *nrhs;
- maxwrk = max(i__1,i__2);
- } else {
-
-/* Path 2 - underdetermined. */
-
- maxwrk = ((*m) << (1)) + (*n + *m) * ilaenv_(&c__1, "ZGEBRD",
- " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *nrhs * ilaenv_(&c__1,
- "ZUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNMBR", "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * *nrhs;
- maxwrk = max(i__1,i__2);
- }
-/* Computing MAX */
- i__1 = ((*m) << (1)) + *n, i__2 = ((*m) << (1)) + *m * *nrhs;
- minwrk = max(i__1,i__2);
- }
- minwrk = min(minwrk,maxwrk);
- d__1 = (doublereal) maxwrk;
- z__1.r = d__1, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- if ((*lwork < minwrk && ! lquery)) {
- *info = -12;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGELSD", &i__1);
- return 0;
- } else if (lquery) {
- goto L10;
- }
-
-/* Quick return if possible. */
-
- if (*m == 0 || *n == 0) {
- *rank = 0;
- return 0;
- }
-
-/* Get machine parameters. */
-
- eps = PRECISION;
- sfmin = SAFEMINIMUM;
- smlnum = sfmin / eps;
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
-
-/* Scale A if max entry outside range [SMLNUM,BIGNUM]. */
-
- anrm = zlange_("M", m, n, &a[a_offset], lda, &rwork[1]);
- iascl = 0;
- if ((anrm > 0. && anrm < smlnum)) {
-
-/* Scale matrix norm up to SMLNUM */
-
- zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
- info);
- iascl = 1;
- } else if (anrm > bignum) {
-
-/* Scale matrix norm down to BIGNUM. */
-
- zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
- info);
- iascl = 2;
- } else if (anrm == 0.) {
-
-/* Matrix all zero. Return zero solution. */
-
- i__1 = max(*m,*n);
- zlaset_("F", &i__1, nrhs, &c_b59, &c_b59, &b[b_offset], ldb);
- dlaset_("F", &minmn, &c__1, &c_b324, &c_b324, &s[1], &c__1)
- ;
- *rank = 0;
- goto L10;
- }
-
-/* Scale B if max entry outside range [SMLNUM,BIGNUM]. */
-
- bnrm = zlange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
- ibscl = 0;
- if ((bnrm > 0. && bnrm < smlnum)) {
-
-/* Scale matrix norm up to SMLNUM. */
-
- zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 1;
- } else if (bnrm > bignum) {
-
-/* Scale matrix norm down to BIGNUM. */
-
- zlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 2;
- }
-
-/* If M < N make sure B(M+1:N,:) = 0 */
-
- if (*m < *n) {
- i__1 = *n - *m;
- zlaset_("F", &i__1, nrhs, &c_b59, &c_b59, &b[*m + 1 + b_dim1], ldb);
- }
-
-/* Overdetermined case. */
-
- if (*m >= *n) {
-
-/* Path 1 - overdetermined or exactly determined. */
-
- mm = *m;
- if (*m >= mnthr) {
-
-/* Path 1a - overdetermined, with many more rows than columns */
-
- mm = *n;
- itau = 1;
- nwork = itau + *n;
-
-/*
- Compute A=Q*R.
- (RWorkspace: need N)
- (CWorkspace: need N, prefer N*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
- info);
-
-/*
- Multiply B by transpose(Q).
- (RWorkspace: need N)
- (CWorkspace: need NRHS, prefer NRHS*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- zunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
- b_offset], ldb, &work[nwork], &i__1, info);
-
-/* Zero out below R. */
-
- if (*n > 1) {
- i__1 = *n - 1;
- i__2 = *n - 1;
- zlaset_("L", &i__1, &i__2, &c_b59, &c_b59, &a[a_dim1 + 2],
- lda);
- }
- }
-
- itauq = 1;
- itaup = itauq + *n;
- nwork = itaup + *n;
- ie = 1;
- nrwork = ie + *n;
-
-/*
- Bidiagonalize R in A.
- (RWorkspace: need N)
- (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
- work[itaup], &work[nwork], &i__1, info);
-
-/*
- Multiply B by transpose of left bidiagonalizing vectors of R.
- (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
- &b[b_offset], ldb, &work[nwork], &i__1, info);
-
-/* Solve the bidiagonal least squares problem. */
-
- zlalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb,
- rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
- if (*info != 0) {
- goto L10;
- }
-
-/* Multiply B by right bidiagonalizing vectors of R. */
-
- i__1 = *lwork - nwork + 1;
- zunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
- b[b_offset], ldb, &work[nwork], &i__1, info);
-
- } else /* if(complicated condition) */ {
-/* Computing MAX */
- i__1 = *m, i__2 = ((*m) << (1)) - 4, i__1 = max(i__1,i__2), i__1 =
- max(i__1,*nrhs), i__2 = *n - *m * 3;
- if ((*n >= mnthr && *lwork >= ((*m) << (2)) + *m * *m + max(i__1,i__2)
- )) {
-
-/*
- Path 2a - underdetermined, with many more columns than rows
- and sufficient workspace for an efficient algorithm.
-*/
-
- ldwork = *m;
-/*
- Computing MAX
- Computing MAX
-*/
- i__3 = *m, i__4 = ((*m) << (1)) - 4, i__3 = max(i__3,i__4), i__3 =
- max(i__3,*nrhs), i__4 = *n - *m * 3;
- i__1 = ((*m) << (2)) + *m * *lda + max(i__3,i__4), i__2 = *m * *
- lda + *m + *m * *nrhs;
- if (*lwork >= max(i__1,i__2)) {
- ldwork = *lda;
- }
- itau = 1;
- nwork = *m + 1;
-
-/*
- Compute A=L*Q.
- (CWorkspace: need 2*M, prefer M+M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
- info);
- il = nwork;
-
-/* Copy L to WORK(IL), zeroing out above its diagonal. */
-
- zlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
- i__1 = *m - 1;
- i__2 = *m - 1;
- zlaset_("U", &i__1, &i__2, &c_b59, &c_b59, &work[il + ldwork], &
- ldwork);
- itauq = il + ldwork * *m;
- itaup = itauq + *m;
- nwork = itaup + *m;
- ie = 1;
- nrwork = ie + *m;
-
-/*
- Bidiagonalize L in WORK(IL).
- (RWorkspace: need M)
- (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
- &work[itaup], &work[nwork], &i__1, info);
-
-/*
- Multiply B by transpose of left bidiagonalizing vectors of L.
- (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
- itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
-
-/* Solve the bidiagonal least squares problem. */
-
- zlalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
- ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
- info);
- if (*info != 0) {
- goto L10;
- }
-
-/* Multiply B by right bidiagonalizing vectors of L. */
-
- i__1 = *lwork - nwork + 1;
- zunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
- itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
-
-/* Zero out below first M rows of B. */
-
- i__1 = *n - *m;
- zlaset_("F", &i__1, nrhs, &c_b59, &c_b59, &b[*m + 1 + b_dim1],
- ldb);
- nwork = itau + *m;
-
-/*
- Multiply transpose(Q) by B.
- (CWorkspace: need NRHS, prefer NRHS*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- zunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
- b_offset], ldb, &work[nwork], &i__1, info);
-
- } else {
-
-/* Path 2 - remaining underdetermined cases. */
-
- itauq = 1;
- itaup = itauq + *m;
- nwork = itaup + *m;
- ie = 1;
- nrwork = ie + *m;
-
-/*
- Bidiagonalize A.
- (RWorkspace: need M)
- (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
- &work[itaup], &work[nwork], &i__1, info);
-
-/*
- Multiply B by transpose of left bidiagonalizing vectors.
- (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
-*/
-
- i__1 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
- , &b[b_offset], ldb, &work[nwork], &i__1, info);
-
-/* Solve the bidiagonal least squares problem. */
-
- zlalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
- ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
- info);
- if (*info != 0) {
- goto L10;
- }
-
-/* Multiply B by right bidiagonalizing vectors of A. */
-
- i__1 = *lwork - nwork + 1;
- zunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
- , &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- }
- }
-
-/* Undo scaling. */
-
- if (iascl == 1) {
- zlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
- info);
- dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
- minmn, info);
- } else if (iascl == 2) {
- zlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
- info);
- dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
- minmn, info);
- }
- if (ibscl == 1) {
- zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- } else if (ibscl == 2) {
- zlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- }
-
-L10:
- d__1 = (doublereal) maxwrk;
- z__1.r = d__1, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- return 0;
-
-/* End of ZGELSD */
-
-} /* zgelsd_ */
-
-/* Subroutine */ int zgeqr2_(integer *m, integer *n, doublecomplex *a,
- integer *lda, doublecomplex *tau, doublecomplex *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublecomplex z__1;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, k;
- static doublecomplex alpha;
- extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), xerbla_(char *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZGEQR2 computes a QR factorization of a complex m by n matrix A:
- A = Q * R.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the m by n matrix A.
- On exit, the elements on and above the diagonal of the array
- contain the min(m,n) by n upper trapezoidal matrix R (R is
- upper triangular if m >= n); the elements below the diagonal,
- with the array TAU, represent the unitary matrix Q as a
- product of elementary reflectors (see Further Details).
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- TAU (output) COMPLEX*16 array, dimension (min(M,N))
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace) COMPLEX*16 array, dimension (N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of elementary reflectors
-
- Q = H(1) H(2) . . . H(k), where k = min(m,n).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
- and tau in TAU(i).
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGEQR2", &i__1);
- return 0;
- }
-
- k = min(*m,*n);
-
- i__1 = k;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
-
- i__2 = *m - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- zlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1]
- , &c__1, &tau[i__]);
- if (i__ < *n) {
-
-/* Apply H(i)' to A(i:m,i+1:n) from the left */
-
- i__2 = i__ + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
- i__2 = *m - i__ + 1;
- i__3 = *n - i__;
- d_cnjg(&z__1, &tau[i__]);
- zlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &z__1,
- &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = alpha.r, a[i__2].i = alpha.i;
- }
-/* L10: */
- }
- return 0;
-
-/* End of ZGEQR2 */
-
-} /* zgeqr2_ */
-
-/* Subroutine */ int zgeqrf_(integer *m, integer *n, doublecomplex *a,
- integer *lda, doublecomplex *tau, doublecomplex *work, integer *lwork,
- integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
- extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *), xerbla_(
- char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- static integer ldwork;
- extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *);
- static integer lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZGEQRF computes a QR factorization of a complex M-by-N matrix A:
- A = Q * R.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the M-by-N matrix A.
- On exit, the elements on and above the diagonal of the array
- contain the min(M,N)-by-N upper trapezoidal matrix R (R is
- upper triangular if m >= n); the elements below the diagonal,
- with the array TAU, represent the unitary matrix Q as a
- product of min(m,n) elementary reflectors (see Further
- Details).
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- TAU (output) COMPLEX*16 array, dimension (min(M,N))
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,N).
- For optimum performance LWORK >= N*NB, where NB is
- the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of elementary reflectors
-
- Q = H(1) H(2) . . . H(k), where k = min(m,n).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
- and tau in TAU(i).
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- lwkopt = *n * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- } else if ((*lwork < max(1,*n) && ! lquery)) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGEQRF", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- k = min(*m,*n);
- if (k == 0) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- nbmin = 2;
- nx = 0;
- iws = *n;
- if ((nb > 1 && nb < k)) {
-
-/*
- Determine when to cross over from blocked to unblocked code.
-
- Computing MAX
-*/
- i__1 = 0, i__2 = ilaenv_(&c__3, "ZGEQRF", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < k) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- ldwork = *n;
- iws = ldwork * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: reduce NB and
- determine the minimum value of NB.
-*/
-
- nb = *lwork / ldwork;
-/* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEQRF", " ", m, n, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- nbmin = max(i__1,i__2);
- }
- }
- }
-
- if (((nb >= nbmin && nb < k) && nx < k)) {
-
-/* Use blocked code initially */
-
- i__1 = k - nx;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__3 = k - i__ + 1;
- ib = min(i__3,nb);
-
-/*
- Compute the QR factorization of the current block
- A(i:m,i:i+ib-1)
-*/
-
- i__3 = *m - i__ + 1;
- zgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
- 1], &iinfo);
- if (i__ + ib <= *n) {
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__3 = *m - i__ + 1;
- zlarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], &work[1], &ldwork);
-
-/* Apply H' to A(i:m,i+ib:n) from the left */
-
- i__3 = *m - i__ + 1;
- i__4 = *n - i__ - ib + 1;
- zlarfb_("Left", "Conjugate transpose", "Forward", "Columnwise"
- , &i__3, &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &
- work[1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda,
- &work[ib + 1], &ldwork);
- }
-/* L10: */
- }
- } else {
- i__ = 1;
- }
-
-/* Use unblocked code to factor the last or only block. */
-
- if (i__ <= k) {
- i__2 = *m - i__ + 1;
- i__1 = *n - i__ + 1;
- zgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
- , &iinfo);
- }
-
- work[1].r = (doublereal) iws, work[1].i = 0.;
- return 0;
-
-/* End of ZGEQRF */
-
-} /* zgeqrf_ */
-
-/* Subroutine */ int zgesdd_(char *jobz, integer *m, integer *n,
- doublecomplex *a, integer *lda, doublereal *s, doublecomplex *u,
- integer *ldu, doublecomplex *vt, integer *ldvt, doublecomplex *work,
- integer *lwork, doublereal *rwork, integer *iwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
- i__2, i__3;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__, ie, il, ir, iu, blk;
- static doublereal dum[1], eps;
- static integer iru, ivt, iscl;
- static doublereal anrm;
- static integer idum[1], ierr, itau, irvt;
- extern logical lsame_(char *, char *);
- static integer chunk, minmn;
- extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *);
- static integer wrkbl, itaup, itauq;
- static logical wntqa;
- static integer nwork;
- static logical wntqn, wntqo, wntqs;
- extern /* Subroutine */ int zlacp2_(char *, integer *, integer *,
- doublereal *, integer *, doublecomplex *, integer *);
- static integer mnthr1, mnthr2;
- extern /* Subroutine */ int dbdsdc_(char *, char *, integer *, doublereal
- *, doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *);
-
- extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), xerbla_(char *, integer *),
- zgebrd_(integer *, integer *, doublecomplex *, integer *,
- doublereal *, doublereal *, doublecomplex *, doublecomplex *,
- doublecomplex *, integer *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static doublereal bignum;
- extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
- integer *, doublereal *);
- extern /* Subroutine */ int zgelqf_(integer *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *, integer *
- ), zlacrm_(integer *, integer *, doublecomplex *, integer *,
- doublereal *, integer *, doublecomplex *, integer *, doublereal *)
- , zlarcm_(integer *, integer *, doublereal *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublereal *), zlascl_(char *, integer *, integer *, doublereal *,
- doublereal *, integer *, integer *, doublecomplex *, integer *,
- integer *), zgeqrf_(integer *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *, integer *
- );
- static integer ldwrkl;
- extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *),
- zlaset_(char *, integer *, integer *, doublecomplex *,
- doublecomplex *, doublecomplex *, integer *);
- static integer ldwrkr, minwrk, ldwrku, maxwrk;
- extern /* Subroutine */ int zungbr_(char *, integer *, integer *, integer
- *, doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, integer *);
- static integer ldwkvt;
- static doublereal smlnum;
- static logical wntqas;
- extern /* Subroutine */ int zunmbr_(char *, char *, char *, integer *,
- integer *, integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *, integer *
- ), zunglq_(integer *, integer *, integer *
- , doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, integer *);
- static logical lquery;
- static integer nrwork;
- extern /* Subroutine */ int zungqr_(integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, integer *);
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- ZGESDD computes the singular value decomposition (SVD) of a complex
- M-by-N matrix A, optionally computing the left and/or right singular
- vectors, by using divide-and-conquer method. The SVD is written
-
- A = U * SIGMA * conjugate-transpose(V)
-
- where SIGMA is an M-by-N matrix which is zero except for its
- min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
- V is an N-by-N unitary matrix. The diagonal elements of SIGMA
- are the singular values of A; they are real and non-negative, and
- are returned in descending order. The first min(m,n) columns of
- U and V are the left and right singular vectors of A.
-
- Note that the routine returns VT = V**H, not V.
-
- The divide and conquer algorithm makes very mild assumptions about
- floating point arithmetic. It will work on machines with a guard
- digit in add/subtract, or on those binary machines without guard
- digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- Cray-2. It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none.
-
- Arguments
- =========
-
- JOBZ (input) CHARACTER*1
- Specifies options for computing all or part of the matrix U:
- = 'A': all M columns of U and all N rows of V**H are
- returned in the arrays U and VT;
- = 'S': the first min(M,N) columns of U and the first
- min(M,N) rows of V**H are returned in the arrays U
- and VT;
- = 'O': If M >= N, the first N columns of U are overwritten
- on the array A and all rows of V**H are returned in
- the array VT;
- otherwise, all columns of U are returned in the
- array U and the first M rows of V**H are overwritten
- in the array VT;
- = 'N': no columns of U or rows of V**H are computed.
-
- M (input) INTEGER
- The number of rows of the input matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the input matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the M-by-N matrix A.
- On exit,
- if JOBZ = 'O', A is overwritten with the first N columns
- of U (the left singular vectors, stored
- columnwise) if M >= N;
- A is overwritten with the first M rows
- of V**H (the right singular vectors, stored
- rowwise) otherwise.
- if JOBZ .ne. 'O', the contents of A are destroyed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- S (output) DOUBLE PRECISION array, dimension (min(M,N))
- The singular values of A, sorted so that S(i) >= S(i+1).
-
- U (output) COMPLEX*16 array, dimension (LDU,UCOL)
- UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
- UCOL = min(M,N) if JOBZ = 'S'.
- If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
- unitary matrix U;
- if JOBZ = 'S', U contains the first min(M,N) columns of U
- (the left singular vectors, stored columnwise);
- if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= 1; if
- JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
-
- VT (output) COMPLEX*16 array, dimension (LDVT,N)
- If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
- N-by-N unitary matrix V**H;
- if JOBZ = 'S', VT contains the first min(M,N) rows of
- V**H (the right singular vectors, stored rowwise);
- if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
-
- LDVT (input) INTEGER
- The leading dimension of the array VT. LDVT >= 1; if
- JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
- if JOBZ = 'S', LDVT >= min(M,N).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= 1.
- if JOBZ = 'N', LWORK >= 2*min(M,N)+max(M,N).
- if JOBZ = 'O',
- LWORK >= 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
- if JOBZ = 'S' or 'A',
- LWORK >= min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
- For good performance, LWORK should generally be larger.
- If LWORK < 0 but other input arguments are legal, WORK(1)
- returns the optimal LWORK.
-
- RWORK (workspace) DOUBLE PRECISION array, dimension (LRWORK)
- If JOBZ = 'N', LRWORK >= 7*min(M,N).
- Otherwise, LRWORK >= 5*min(M,N)*min(M,N) + 5*min(M,N)
-
- IWORK (workspace) INTEGER array, dimension (8*min(M,N))
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The updating process of DBDSDC did not converge.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --s;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- --work;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
- minmn = min(*m,*n);
- mnthr1 = (integer) (minmn * 17. / 9.);
- mnthr2 = (integer) (minmn * 5. / 3.);
- wntqa = lsame_(jobz, "A");
- wntqs = lsame_(jobz, "S");
- wntqas = wntqa || wntqs;
- wntqo = lsame_(jobz, "O");
- wntqn = lsame_(jobz, "N");
- minwrk = 1;
- maxwrk = 1;
- lquery = *lwork == -1;
-
- if (! (wntqa || wntqs || wntqo || wntqn)) {
- *info = -1;
- } else if (*m < 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- } else if (*ldu < 1 || (wntqas && *ldu < *m) || ((wntqo && *m < *n) && *
- ldu < *m)) {
- *info = -8;
- } else if (*ldvt < 1 || (wntqa && *ldvt < *n) || (wntqs && *ldvt < minmn)
- || ((wntqo && *m >= *n) && *ldvt < *n)) {
- *info = -10;
- }
-
-/*
- Compute workspace
- (Note: Comments in the code beginning "Workspace:" describe the
- minimal amount of workspace needed at that point in the code,
- as well as the preferred amount for good performance.
- CWorkspace refers to complex workspace, and RWorkspace to
- real workspace. NB refers to the optimal block size for the
- immediately following subroutine, as returned by ILAENV.)
-*/
-
- if (((*info == 0 && *m > 0) && *n > 0)) {
- if (*m >= *n) {
-
-/*
- There is no complex work space needed for bidiagonal SVD
- The real work space needed for bidiagonal SVD is BDSPAC,
- BDSPAC = 3*N*N + 4*N
-*/
-
- if (*m >= mnthr1) {
- if (wntqn) {
-
-/* Path 1 (M much larger than N, JOBZ='N') */
-
- wrkbl = *n + *n * ilaenv_(&c__1, "ZGEQRF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*n) << (1)) + ((*n) << (1)) *
- ilaenv_(&c__1, "ZGEBRD", " ", n, n, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
- maxwrk = wrkbl;
- minwrk = *n * 3;
- } else if (wntqo) {
-
-/* Path 2 (M much larger than N, JOBZ='O') */
-
- wrkbl = *n + *n * ilaenv_(&c__1, "ZGEQRF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "ZUNGQR",
- " ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*n) << (1)) + ((*n) << (1)) *
- ilaenv_(&c__1, "ZGEBRD", " ", n, n, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNMBR", "QLN", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
- maxwrk = *m * *n + *n * *n + wrkbl;
- minwrk = ((*n) << (1)) * *n + *n * 3;
- } else if (wntqs) {
-
-/* Path 3 (M much larger than N, JOBZ='S') */
-
- wrkbl = *n + *n * ilaenv_(&c__1, "ZGEQRF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "ZUNGQR",
- " ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*n) << (1)) + ((*n) << (1)) *
- ilaenv_(&c__1, "ZGEBRD", " ", n, n, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNMBR", "QLN", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
- maxwrk = *n * *n + wrkbl;
- minwrk = *n * *n + *n * 3;
- } else if (wntqa) {
-
-/* Path 4 (M much larger than N, JOBZ='A') */
-
- wrkbl = *n + *n * ilaenv_(&c__1, "ZGEQRF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *n + *m * ilaenv_(&c__1, "ZUNGQR",
- " ", m, m, n, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*n) << (1)) + ((*n) << (1)) *
- ilaenv_(&c__1, "ZGEBRD", " ", n, n, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNMBR", "QLN", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
- maxwrk = *n * *n + wrkbl;
- minwrk = *n * *n + ((*n) << (1)) + *m;
- }
- } else if (*m >= mnthr2) {
-
-/* Path 5 (M much larger than N, but not as much as MNTHR1) */
-
- maxwrk = ((*n) << (1)) + (*m + *n) * ilaenv_(&c__1, "ZGEBRD",
- " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- minwrk = ((*n) << (1)) + *m;
- if (wntqo) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNGBR", "P", n, n, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNGBR", "Q", m, n, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
- maxwrk += *m * *n;
- minwrk += *n * *n;
- } else if (wntqs) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNGBR", "P", n, n, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNGBR", "Q", m, n, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
- } else if (wntqa) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNGBR", "P", n, n, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *m * ilaenv_(&c__1,
- "ZUNGBR", "Q", m, m, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
- }
- } else {
-
-/* Path 6 (M at least N, but not much larger) */
-
- maxwrk = ((*n) << (1)) + (*m + *n) * ilaenv_(&c__1, "ZGEBRD",
- " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- minwrk = ((*n) << (1)) + *m;
- if (wntqo) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNMBR", "QLN", m, n, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
- maxwrk += *m * *n;
- minwrk += *n * *n;
- } else if (wntqs) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNMBR", "QLN", m, n, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
- } else if (wntqa) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *n * ilaenv_(&c__1,
- "ZUNGBR", "PRC", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*n) << (1)) + *m * ilaenv_(&c__1,
- "ZUNGBR", "QLN", m, m, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
- }
- }
- } else {
-
-/*
- There is no complex work space needed for bidiagonal SVD
- The real work space needed for bidiagonal SVD is BDSPAC,
- BDSPAC = 3*M*M + 4*M
-*/
-
- if (*n >= mnthr1) {
- if (wntqn) {
-
-/* Path 1t (N much larger than M, JOBZ='N') */
-
- maxwrk = *m + *m * ilaenv_(&c__1, "ZGELQF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + ((*m) << (1)) *
- ilaenv_(&c__1, "ZGEBRD", " ", m, m, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- maxwrk = max(i__1,i__2);
- minwrk = *m * 3;
- } else if (wntqo) {
-
-/* Path 2t (N much larger than M, JOBZ='O') */
-
- wrkbl = *m + *m * ilaenv_(&c__1, "ZGELQF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "ZUNGLQ",
- " ", m, n, m, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*m) << (1)) + ((*m) << (1)) *
- ilaenv_(&c__1, "ZGEBRD", " ", m, m, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNMBR", "PRC", m, m, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNMBR", "QLN", m, m, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
- maxwrk = *m * *n + *m * *m + wrkbl;
- minwrk = ((*m) << (1)) * *m + *m * 3;
- } else if (wntqs) {
-
-/* Path 3t (N much larger than M, JOBZ='S') */
-
- wrkbl = *m + *m * ilaenv_(&c__1, "ZGELQF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "ZUNGLQ",
- " ", m, n, m, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*m) << (1)) + ((*m) << (1)) *
- ilaenv_(&c__1, "ZGEBRD", " ", m, m, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNMBR", "PRC", m, m, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNMBR", "QLN", m, m, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
- maxwrk = *m * *m + wrkbl;
- minwrk = *m * *m + *m * 3;
- } else if (wntqa) {
-
-/* Path 4t (N much larger than M, JOBZ='A') */
-
- wrkbl = *m + *m * ilaenv_(&c__1, "ZGELQF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = *m + *n * ilaenv_(&c__1, "ZUNGLQ",
- " ", n, n, m, &c_n1, (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*m) << (1)) + ((*m) << (1)) *
- ilaenv_(&c__1, "ZGEBRD", " ", m, m, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNMBR", "PRC", m, m, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
-/* Computing MAX */
- i__1 = wrkbl, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNMBR", "QLN", m, m, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- wrkbl = max(i__1,i__2);
- maxwrk = *m * *m + wrkbl;
- minwrk = *m * *m + ((*m) << (1)) + *n;
- }
- } else if (*n >= mnthr2) {
-
-/* Path 5t (N much larger than M, but not as much as MNTHR1) */
-
- maxwrk = ((*m) << (1)) + (*m + *n) * ilaenv_(&c__1, "ZGEBRD",
- " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- minwrk = ((*m) << (1)) + *n;
- if (wntqo) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNGBR", "P", m, n, m, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNGBR", "Q", m, m, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
- maxwrk += *m * *n;
- minwrk += *m * *m;
- } else if (wntqs) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNGBR", "P", m, n, m, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNGBR", "Q", m, m, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
- } else if (wntqa) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *n * ilaenv_(&c__1,
- "ZUNGBR", "P", n, n, m, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNGBR", "Q", m, m, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = max(i__1,i__2);
- }
- } else {
-
-/* Path 6t (N greater than M, but not much larger) */
-
- maxwrk = ((*m) << (1)) + (*m + *n) * ilaenv_(&c__1, "ZGEBRD",
- " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- minwrk = ((*m) << (1)) + *n;
- if (wntqo) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNMBR", "PRC", m, n, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNMBR", "QLN", m, m, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
- maxwrk += *m * *n;
- minwrk += *m * *m;
- } else if (wntqs) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNGBR", "PRC", m, n, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNGBR", "QLN", m, m, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
- } else if (wntqa) {
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *n * ilaenv_(&c__1,
- "ZUNGBR", "PRC", n, n, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
-/* Computing MAX */
- i__1 = maxwrk, i__2 = ((*m) << (1)) + *m * ilaenv_(&c__1,
- "ZUNGBR", "QLN", m, m, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = max(i__1,i__2);
- }
- }
- }
- maxwrk = max(maxwrk,minwrk);
- work[1].r = (doublereal) maxwrk, work[1].i = 0.;
- }
-
- if ((*lwork < minwrk && ! lquery)) {
- *info = -13;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGESDD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- if (*lwork >= 1) {
- work[1].r = 1., work[1].i = 0.;
- }
- return 0;
- }
-
-/* Get machine constants */
-
- eps = PRECISION;
- smlnum = sqrt(SAFEMINIMUM) / eps;
- bignum = 1. / smlnum;
-
-/* Scale A if max element outside range [SMLNUM,BIGNUM] */
-
- anrm = zlange_("M", m, n, &a[a_offset], lda, dum);
- iscl = 0;
- if ((anrm > 0. && anrm < smlnum)) {
- iscl = 1;
- zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
- ierr);
- } else if (anrm > bignum) {
- iscl = 1;
- zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
- ierr);
- }
-
- if (*m >= *n) {
-
-/*
- A has at least as many rows as columns. If A has sufficiently
- more rows than columns, first reduce using the QR
- decomposition (if sufficient workspace available)
-*/
-
- if (*m >= mnthr1) {
-
- if (wntqn) {
-
-/*
- Path 1 (M much larger than N, JOBZ='N')
- No singular vectors to be computed
-*/
-
- itau = 1;
- nwork = itau + *n;
-
-/*
- Compute A=Q*R
- (CWorkspace: need 2*N, prefer N+N*NB)
- (RWorkspace: need 0)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__1, &ierr);
-
-/* Zero out below R */
-
- i__1 = *n - 1;
- i__2 = *n - 1;
- zlaset_("L", &i__1, &i__2, &c_b59, &c_b59, &a[a_dim1 + 2],
- lda);
- ie = 1;
- itauq = 1;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize R in A
- (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- (RWorkspace: need N)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__1, &ierr);
- nrwork = ie + *n;
-
-/*
- Perform bidiagonal SVD, compute singular values only
- (CWorkspace: 0)
- (RWorkspace: need BDSPAC)
-*/
-
- dbdsdc_("U", "N", n, &s[1], &rwork[ie], dum, &c__1, dum, &
- c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
-
- } else if (wntqo) {
-
-/*
- Path 2 (M much larger than N, JOBZ='O')
- N left singular vectors to be overwritten on A and
- N right singular vectors to be computed in VT
-*/
-
- iu = 1;
-
-/* WORK(IU) is N by N */
-
- ldwrku = *n;
- ir = iu + ldwrku * *n;
- if (*lwork >= *m * *n + *n * *n + *n * 3) {
-
-/* WORK(IR) is M by N */
-
- ldwrkr = *m;
- } else {
- ldwrkr = (*lwork - *n * *n - *n * 3) / *n;
- }
- itau = ir + ldwrkr * *n;
- nwork = itau + *n;
-
-/*
- Compute A=Q*R
- (CWorkspace: need N*N+2*N, prefer M*N+N+N*NB)
- (RWorkspace: 0)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__1, &ierr);
-
-/* Copy R to WORK( IR ), zeroing out below it */
-
- zlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
- i__1 = *n - 1;
- i__2 = *n - 1;
- zlaset_("L", &i__1, &i__2, &c_b59, &c_b59, &work[ir + 1], &
- ldwrkr);
-
-/*
- Generate Q in A
- (CWorkspace: need 2*N, prefer N+N*NB)
- (RWorkspace: 0)
-*/
-
- i__1 = *lwork - nwork + 1;
- zungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
- &i__1, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize R in WORK(IR)
- (CWorkspace: need N*N+3*N, prefer M*N+2*N+2*N*NB)
- (RWorkspace: need N)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__1, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of R in WORK(IRU) and computing right singular vectors
- of R in WORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- iru = ie + *n;
- irvt = iru + *n * *n;
- nrwork = irvt + *n * *n;
- dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
- rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- Overwrite WORK(IU) by the left singular vectors of R
- (CWorkspace: need 2*N*N+3*N, prefer M*N+N*N+2*N+N*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", n, n, &rwork[iru], n, &work[iu], &ldwrku);
- i__1 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
- itauq], &work[iu], &ldwrku, &work[nwork], &i__1, &
- ierr);
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix VT
- Overwrite VT by the right singular vectors of R
- (CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
- i__1 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", n, n, n, &work[ir], &ldwrkr, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
- ierr);
-
-/*
- Multiply Q in A by left singular vectors of R in
- WORK(IU), storing result in WORK(IR) and copying to A
- (CWorkspace: need 2*N*N, prefer N*N+M*N)
- (RWorkspace: 0)
-*/
-
- i__1 = *m;
- i__2 = ldwrkr;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
- i__2) {
-/* Computing MIN */
- i__3 = *m - i__ + 1;
- chunk = min(i__3,ldwrkr);
- zgemm_("N", "N", &chunk, n, n, &c_b60, &a[i__ + a_dim1],
- lda, &work[iu], &ldwrku, &c_b59, &work[ir], &
- ldwrkr);
- zlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
- a_dim1], lda);
-/* L10: */
- }
-
- } else if (wntqs) {
-
-/*
- Path 3 (M much larger than N, JOBZ='S')
- N left singular vectors to be computed in U and
- N right singular vectors to be computed in VT
-*/
-
- ir = 1;
-
-/* WORK(IR) is N by N */
-
- ldwrkr = *n;
- itau = ir + ldwrkr * *n;
- nwork = itau + *n;
-
-/*
- Compute A=Q*R
- (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- (RWorkspace: 0)
-*/
-
- i__2 = *lwork - nwork + 1;
- zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__2, &ierr);
-
-/* Copy R to WORK(IR), zeroing out below it */
-
- zlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
- i__2 = *n - 1;
- i__1 = *n - 1;
- zlaset_("L", &i__2, &i__1, &c_b59, &c_b59, &work[ir + 1], &
- ldwrkr);
-
-/*
- Generate Q in A
- (CWorkspace: need 2*N, prefer N+N*NB)
- (RWorkspace: 0)
-*/
-
- i__2 = *lwork - nwork + 1;
- zungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
- &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize R in WORK(IR)
- (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- (RWorkspace: need N)
-*/
-
- i__2 = *lwork - nwork + 1;
- zgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__2, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- iru = ie + *n;
- irvt = iru + *n * *n;
- nrwork = irvt + *n * *n;
- dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
- rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix U
- Overwrite U by left singular vectors of R
- (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", n, n, &rwork[iru], n, &u[u_offset], ldu);
- i__2 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix VT
- Overwrite VT by right singular vectors of R
- (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
- i__2 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", n, n, n, &work[ir], &ldwrkr, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
- ierr);
-
-/*
- Multiply Q in A by left singular vectors of R in
- WORK(IR), storing result in U
- (CWorkspace: need N*N)
- (RWorkspace: 0)
-*/
-
- zlacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr);
- zgemm_("N", "N", m, n, n, &c_b60, &a[a_offset], lda, &work[ir]
- , &ldwrkr, &c_b59, &u[u_offset], ldu);
-
- } else if (wntqa) {
-
-/*
- Path 4 (M much larger than N, JOBZ='A')
- M left singular vectors to be computed in U and
- N right singular vectors to be computed in VT
-*/
-
- iu = 1;
-
-/* WORK(IU) is N by N */
-
- ldwrku = *n;
- itau = iu + ldwrku * *n;
- nwork = itau + *n;
-
-/*
- Compute A=Q*R, copying result to U
- (CWorkspace: need 2*N, prefer N+N*NB)
- (RWorkspace: 0)
-*/
-
- i__2 = *lwork - nwork + 1;
- zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__2, &ierr);
- zlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
-
-/*
- Generate Q in U
- (CWorkspace: need N+M, prefer N+M*NB)
- (RWorkspace: 0)
-*/
-
- i__2 = *lwork - nwork + 1;
- zungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork],
- &i__2, &ierr);
-
-/* Produce R in A, zeroing out below it */
-
- i__2 = *n - 1;
- i__1 = *n - 1;
- zlaset_("L", &i__2, &i__1, &c_b59, &c_b59, &a[a_dim1 + 2],
- lda);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize R in A
- (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- (RWorkspace: need N)
-*/
-
- i__2 = *lwork - nwork + 1;
- zgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__2, &ierr);
- iru = ie + *n;
- irvt = iru + *n * *n;
- nrwork = irvt + *n * *n;
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
- rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- Overwrite WORK(IU) by left singular vectors of R
- (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", n, n, &rwork[iru], n, &work[iu], &ldwrku);
- i__2 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[
- itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
- ierr);
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix VT
- Overwrite VT by right singular vectors of R
- (CWorkspace: need 3*N, prefer 2*N+N*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
- i__2 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
- ierr);
-
-/*
- Multiply Q in U by left singular vectors of R in
- WORK(IU), storing result in A
- (CWorkspace: need N*N)
- (RWorkspace: 0)
-*/
-
- zgemm_("N", "N", m, n, n, &c_b60, &u[u_offset], ldu, &work[iu]
- , &ldwrku, &c_b59, &a[a_offset], lda);
-
-/* Copy left singular vectors of A from A to U */
-
- zlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
-
- }
-
- } else if (*m >= mnthr2) {
-
-/*
- MNTHR2 <= M < MNTHR1
-
- Path 5 (M much larger than N, but not as much as MNTHR1)
- Reduce to bidiagonal form without QR decomposition, use
- ZUNGBR and matrix multiplication to compute singular vectors
-*/
-
- ie = 1;
- nrwork = ie + *n;
- itauq = 1;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize A
- (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
- (RWorkspace: need N)
-*/
-
- i__2 = *lwork - nwork + 1;
- zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
- &work[itaup], &work[nwork], &i__2, &ierr);
- if (wntqn) {
-
-/*
- Compute singular values only
- (Cworkspace: 0)
- (Rworkspace: need BDSPAC)
-*/
-
- dbdsdc_("U", "N", n, &s[1], &rwork[ie], dum, &c__1, dum, &
- c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
- } else if (wntqo) {
- iu = nwork;
- iru = nrwork;
- irvt = iru + *n * *n;
- nrwork = irvt + *n * *n;
-
-/*
- Copy A to VT, generate P**H
- (Cworkspace: need 2*N, prefer N+N*NB)
- (Rworkspace: 0)
-*/
-
- zlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
- i__2 = *lwork - nwork + 1;
- zungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], &
- work[nwork], &i__2, &ierr);
-
-/*
- Generate Q in A
- (CWorkspace: need 2*N, prefer N+N*NB)
- (RWorkspace: 0)
-*/
-
- i__2 = *lwork - nwork + 1;
- zungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &work[
- nwork], &i__2, &ierr);
-
- if (*lwork >= *m * *n + *n * 3) {
-
-/* WORK( IU ) is M by N */
-
- ldwrku = *m;
- } else {
-
-/* WORK(IU) is LDWRKU by N */
-
- ldwrku = (*lwork - *n * 3) / *n;
- }
- nwork = iu + ldwrku * *n;
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
- rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Multiply real matrix RWORK(IRVT) by P**H in VT,
- storing the result in WORK(IU), copying to VT
- (Cworkspace: need 0)
- (Rworkspace: need 3*N*N)
-*/
-
- zlarcm_(n, n, &rwork[irvt], n, &vt[vt_offset], ldvt, &work[iu]
- , &ldwrku, &rwork[nrwork]);
- zlacpy_("F", n, n, &work[iu], &ldwrku, &vt[vt_offset], ldvt);
-
-/*
- Multiply Q in A by real matrix RWORK(IRU), storing the
- result in WORK(IU), copying to A
- (CWorkspace: need N*N, prefer M*N)
- (Rworkspace: need 3*N*N, prefer N*N+2*M*N)
-*/
-
- nrwork = irvt;
- i__2 = *m;
- i__1 = ldwrku;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
- i__1) {
-/* Computing MIN */
- i__3 = *m - i__ + 1;
- chunk = min(i__3,ldwrku);
- zlacrm_(&chunk, n, &a[i__ + a_dim1], lda, &rwork[iru], n,
- &work[iu], &ldwrku, &rwork[nrwork]);
- zlacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ +
- a_dim1], lda);
-/* L20: */
- }
-
- } else if (wntqs) {
-
-/*
- Copy A to VT, generate P**H
- (Cworkspace: need 2*N, prefer N+N*NB)
- (Rworkspace: 0)
-*/
-
- zlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
- i__1 = *lwork - nwork + 1;
- zungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], &
- work[nwork], &i__1, &ierr);
-
-/*
- Copy A to U, generate Q
- (Cworkspace: need 2*N, prefer N+N*NB)
- (Rworkspace: 0)
-*/
-
- zlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
- i__1 = *lwork - nwork + 1;
- zungbr_("Q", m, n, n, &u[u_offset], ldu, &work[itauq], &work[
- nwork], &i__1, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- iru = nrwork;
- irvt = iru + *n * *n;
- nrwork = irvt + *n * *n;
- dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
- rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Multiply real matrix RWORK(IRVT) by P**H in VT,
- storing the result in A, copying to VT
- (Cworkspace: need 0)
- (Rworkspace: need 3*N*N)
-*/
-
- zlarcm_(n, n, &rwork[irvt], n, &vt[vt_offset], ldvt, &a[
- a_offset], lda, &rwork[nrwork]);
- zlacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
-
-/*
- Multiply Q in U by real matrix RWORK(IRU), storing the
- result in A, copying to U
- (CWorkspace: need 0)
- (Rworkspace: need N*N+2*M*N)
-*/
-
- nrwork = irvt;
- zlacrm_(m, n, &u[u_offset], ldu, &rwork[iru], n, &a[a_offset],
- lda, &rwork[nrwork]);
- zlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
- } else {
-
-/*
- Copy A to VT, generate P**H
- (Cworkspace: need 2*N, prefer N+N*NB)
- (Rworkspace: 0)
-*/
-
- zlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
- i__1 = *lwork - nwork + 1;
- zungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], &
- work[nwork], &i__1, &ierr);
-
-/*
- Copy A to U, generate Q
- (Cworkspace: need 2*N, prefer N+N*NB)
- (Rworkspace: 0)
-*/
-
- zlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
- i__1 = *lwork - nwork + 1;
- zungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[
- nwork], &i__1, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- iru = nrwork;
- irvt = iru + *n * *n;
- nrwork = irvt + *n * *n;
- dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
- rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Multiply real matrix RWORK(IRVT) by P**H in VT,
- storing the result in A, copying to VT
- (Cworkspace: need 0)
- (Rworkspace: need 3*N*N)
-*/
-
- zlarcm_(n, n, &rwork[irvt], n, &vt[vt_offset], ldvt, &a[
- a_offset], lda, &rwork[nrwork]);
- zlacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
-
-/*
- Multiply Q in U by real matrix RWORK(IRU), storing the
- result in A, copying to U
- (CWorkspace: 0)
- (Rworkspace: need 3*N*N)
-*/
-
- nrwork = irvt;
- zlacrm_(m, n, &u[u_offset], ldu, &rwork[iru], n, &a[a_offset],
- lda, &rwork[nrwork]);
- zlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
- }
-
- } else {
-
-/*
- M .LT. MNTHR2
-
- Path 6 (M at least N, but not much larger)
- Reduce to bidiagonal form without QR decomposition
- Use ZUNMBR to compute singular vectors
-*/
-
- ie = 1;
- nrwork = ie + *n;
- itauq = 1;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
-/*
- Bidiagonalize A
- (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
- (RWorkspace: need N)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
- &work[itaup], &work[nwork], &i__1, &ierr);
- if (wntqn) {
-
-/*
- Compute singular values only
- (Cworkspace: 0)
- (Rworkspace: need BDSPAC)
-*/
-
- dbdsdc_("U", "N", n, &s[1], &rwork[ie], dum, &c__1, dum, &
- c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
- } else if (wntqo) {
- iu = nwork;
- iru = nrwork;
- irvt = iru + *n * *n;
- nrwork = irvt + *n * *n;
- if (*lwork >= *m * *n + *n * 3) {
-
-/* WORK( IU ) is M by N */
-
- ldwrku = *m;
- } else {
-
-/* WORK( IU ) is LDWRKU by N */
-
- ldwrku = (*lwork - *n * 3) / *n;
- }
- nwork = iu + ldwrku * *n;
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
- rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix VT
- Overwrite VT by right singular vectors of A
- (Cworkspace: need 2*N, prefer N+N*NB)
- (Rworkspace: need 0)
-*/
-
- zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
- i__1 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
- ierr);
-
- if (*lwork >= *m * *n + *n * 3) {
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- Overwrite WORK(IU) by left singular vectors of A, copying
- to A
- (Cworkspace: need M*N+2*N, prefer M*N+N+N*NB)
- (Rworkspace: need 0)
-*/
-
- zlaset_("F", m, n, &c_b59, &c_b59, &work[iu], &ldwrku);
- zlacp2_("F", n, n, &rwork[iru], n, &work[iu], &ldwrku);
- i__1 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
- itauq], &work[iu], &ldwrku, &work[nwork], &i__1, &
- ierr);
- zlacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda);
- } else {
-
-/*
- Generate Q in A
- (Cworkspace: need 2*N, prefer N+N*NB)
- (Rworkspace: need 0)
-*/
-
- i__1 = *lwork - nwork + 1;
- zungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
- work[nwork], &i__1, &ierr);
-
-/*
- Multiply Q in A by real matrix RWORK(IRU), storing the
- result in WORK(IU), copying to A
- (CWorkspace: need N*N, prefer M*N)
- (Rworkspace: need 3*N*N, prefer N*N+2*M*N)
-*/
-
- nrwork = irvt;
- i__1 = *m;
- i__2 = ldwrku;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
- i__2) {
-/* Computing MIN */
- i__3 = *m - i__ + 1;
- chunk = min(i__3,ldwrku);
- zlacrm_(&chunk, n, &a[i__ + a_dim1], lda, &rwork[iru],
- n, &work[iu], &ldwrku, &rwork[nrwork]);
- zlacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ +
- a_dim1], lda);
-/* L30: */
- }
- }
-
- } else if (wntqs) {
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- iru = nrwork;
- irvt = iru + *n * *n;
- nrwork = irvt + *n * *n;
- dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
- rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix U
- Overwrite U by left singular vectors of A
- (CWorkspace: need 3*N, prefer 2*N+N*NB)
- (RWorkspace: 0)
-*/
-
- zlaset_("F", m, n, &c_b59, &c_b59, &u[u_offset], ldu);
- zlacp2_("F", n, n, &rwork[iru], n, &u[u_offset], ldu);
- i__2 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix VT
- Overwrite VT by right singular vectors of A
- (CWorkspace: need 3*N, prefer 2*N+N*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
- i__2 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
- ierr);
- } else {
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- iru = nrwork;
- irvt = iru + *n * *n;
- nrwork = irvt + *n * *n;
- dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
- rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/* Set the right corner of U to identity matrix */
-
- zlaset_("F", m, m, &c_b59, &c_b59, &u[u_offset], ldu);
- i__2 = *m - *n;
- i__1 = *m - *n;
- zlaset_("F", &i__2, &i__1, &c_b59, &c_b60, &u[*n + 1 + (*n +
- 1) * u_dim1], ldu);
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix U
- Overwrite U by left singular vectors of A
- (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", n, n, &rwork[iru], n, &u[u_offset], ldu);
- i__2 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix VT
- Overwrite VT by right singular vectors of A
- (CWorkspace: need 3*N, prefer 2*N+N*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
- i__2 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
- ierr);
- }
-
- }
-
- } else {
-
-/*
- A has more columns than rows. If A has sufficiently more
- columns than rows, first reduce using the LQ decomposition
- (if sufficient workspace available)
-*/
-
- if (*n >= mnthr1) {
-
- if (wntqn) {
-
-/*
- Path 1t (N much larger than M, JOBZ='N')
- No singular vectors to be computed
-*/
-
- itau = 1;
- nwork = itau + *m;
-
-/*
- Compute A=L*Q
- (CWorkspace: need 2*M, prefer M+M*NB)
- (RWorkspace: 0)
-*/
-
- i__2 = *lwork - nwork + 1;
- zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__2, &ierr);
-
-/* Zero out above L */
-
- i__2 = *m - 1;
- i__1 = *m - 1;
- zlaset_("U", &i__2, &i__1, &c_b59, &c_b59, &a[((a_dim1) << (1)
- ) + 1], lda);
- ie = 1;
- itauq = 1;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize L in A
- (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- (RWorkspace: need M)
-*/
-
- i__2 = *lwork - nwork + 1;
- zgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__2, &ierr);
- nrwork = ie + *m;
-
-/*
- Perform bidiagonal SVD, compute singular values only
- (CWorkspace: 0)
- (RWorkspace: need BDSPAC)
-*/
-
- dbdsdc_("U", "N", m, &s[1], &rwork[ie], dum, &c__1, dum, &
- c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
-
- } else if (wntqo) {
-
-/*
- Path 2t (N much larger than M, JOBZ='O')
- M right singular vectors to be overwritten on A and
- M left singular vectors to be computed in U
-*/
-
- ivt = 1;
- ldwkvt = *m;
-
-/* WORK(IVT) is M by M */
-
- il = ivt + ldwkvt * *m;
- if (*lwork >= *m * *n + *m * *m + *m * 3) {
-
-/* WORK(IL) M by N */
-
- ldwrkl = *m;
- chunk = *n;
- } else {
-
-/* WORK(IL) is M by CHUNK */
-
- ldwrkl = *m;
- chunk = (*lwork - *m * *m - *m * 3) / *m;
- }
- itau = il + ldwrkl * chunk;
- nwork = itau + *m;
-
-/*
- Compute A=L*Q
- (CWorkspace: need 2*M, prefer M+M*NB)
- (RWorkspace: 0)
-*/
-
- i__2 = *lwork - nwork + 1;
- zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__2, &ierr);
-
-/* Copy L to WORK(IL), zeroing about above it */
-
- zlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
- i__2 = *m - 1;
- i__1 = *m - 1;
- zlaset_("U", &i__2, &i__1, &c_b59, &c_b59, &work[il + ldwrkl],
- &ldwrkl);
-
-/*
- Generate Q in A
- (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- (RWorkspace: 0)
-*/
-
- i__2 = *lwork - nwork + 1;
- zunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
- &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize L in WORK(IL)
- (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- (RWorkspace: need M)
-*/
-
- i__2 = *lwork - nwork + 1;
- zgebrd_(m, m, &work[il], &ldwrkl, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__2, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- iru = ie + *m;
- irvt = iru + *m * *m;
- nrwork = irvt + *m * *m;
- dbdsdc_("U", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
- rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- Overwrite WORK(IU) by the left singular vectors of L
- (CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
- i__2 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
- Overwrite WORK(IVT) by the right singular vectors of L
- (CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", m, m, &rwork[irvt], m, &work[ivt], &ldwkvt);
- i__2 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", m, m, m, &work[il], &ldwrkl, &work[
- itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, &
- ierr);
-
-/*
- Multiply right singular vectors of L in WORK(IL) by Q
- in A, storing result in WORK(IL) and copying to A
- (CWorkspace: need 2*M*M, prefer M*M+M*N))
- (RWorkspace: 0)
-*/
-
- i__2 = *n;
- i__1 = chunk;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
- i__1) {
-/* Computing MIN */
- i__3 = *n - i__ + 1;
- blk = min(i__3,chunk);
- zgemm_("N", "N", m, &blk, m, &c_b60, &work[ivt], m, &a[
- i__ * a_dim1 + 1], lda, &c_b59, &work[il], &
- ldwrkl);
- zlacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1
- + 1], lda);
-/* L40: */
- }
-
- } else if (wntqs) {
-
-/*
- Path 3t (N much larger than M, JOBZ='S')
- M right singular vectors to be computed in VT and
- M left singular vectors to be computed in U
-*/
-
- il = 1;
-
-/* WORK(IL) is M by M */
-
- ldwrkl = *m;
- itau = il + ldwrkl * *m;
- nwork = itau + *m;
-
-/*
- Compute A=L*Q
- (CWorkspace: need 2*M, prefer M+M*NB)
- (RWorkspace: 0)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__1, &ierr);
-
-/* Copy L to WORK(IL), zeroing out above it */
-
- zlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
- i__1 = *m - 1;
- i__2 = *m - 1;
- zlaset_("U", &i__1, &i__2, &c_b59, &c_b59, &work[il + ldwrkl],
- &ldwrkl);
-
-/*
- Generate Q in A
- (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- (RWorkspace: 0)
-*/
-
- i__1 = *lwork - nwork + 1;
- zunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
- &i__1, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize L in WORK(IL)
- (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- (RWorkspace: need M)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgebrd_(m, m, &work[il], &ldwrkl, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__1, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- iru = ie + *m;
- irvt = iru + *m * *m;
- nrwork = irvt + *m * *m;
- dbdsdc_("U", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
- rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix U
- Overwrite U by left singular vectors of L
- (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
- i__1 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix VT
- Overwrite VT by left singular vectors of L
- (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", m, m, &rwork[irvt], m, &vt[vt_offset], ldvt);
- i__1 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", m, m, m, &work[il], &ldwrkl, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
- ierr);
-
-/*
- Copy VT to WORK(IL), multiply right singular vectors of L
- in WORK(IL) by Q in A, storing result in VT
- (CWorkspace: need M*M)
- (RWorkspace: 0)
-*/
-
- zlacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl);
- zgemm_("N", "N", m, n, m, &c_b60, &work[il], &ldwrkl, &a[
- a_offset], lda, &c_b59, &vt[vt_offset], ldvt);
-
- } else if (wntqa) {
-
-/*
- Path 9t (N much larger than M, JOBZ='A')
- N right singular vectors to be computed in VT and
- M left singular vectors to be computed in U
-*/
-
- ivt = 1;
-
-/* WORK(IVT) is M by M */
-
- ldwkvt = *m;
- itau = ivt + ldwkvt * *m;
- nwork = itau + *m;
-
-/*
- Compute A=L*Q, copying result to VT
- (CWorkspace: need 2*M, prefer M+M*NB)
- (RWorkspace: 0)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
- i__1, &ierr);
- zlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
-
-/*
- Generate Q in VT
- (CWorkspace: need M+N, prefer M+N*NB)
- (RWorkspace: 0)
-*/
-
- i__1 = *lwork - nwork + 1;
- zunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[
- nwork], &i__1, &ierr);
-
-/* Produce L in A, zeroing out above it */
-
- i__1 = *m - 1;
- i__2 = *m - 1;
- zlaset_("U", &i__1, &i__2, &c_b59, &c_b59, &a[((a_dim1) << (1)
- ) + 1], lda);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize L in A
- (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- (RWorkspace: need M)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[nwork], &i__1, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- iru = ie + *m;
- irvt = iru + *m * *m;
- nrwork = irvt + *m * *m;
- dbdsdc_("U", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
- rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix U
- Overwrite U by left singular vectors of L
- (CWorkspace: need 3*M, prefer 2*M+M*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
- i__1 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
- Overwrite WORK(IVT) by right singular vectors of L
- (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
- (RWorkspace: 0)
-*/
-
- zlacp2_("F", m, m, &rwork[irvt], m, &work[ivt], &ldwkvt);
- i__1 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", m, m, m, &a[a_offset], lda, &work[
- itaup], &work[ivt], &ldwkvt, &work[nwork], &i__1, &
- ierr);
-
-/*
- Multiply right singular vectors of L in WORK(IVT) by
- Q in VT, storing result in A
- (CWorkspace: need M*M)
- (RWorkspace: 0)
-*/
-
- zgemm_("N", "N", m, n, m, &c_b60, &work[ivt], &ldwkvt, &vt[
- vt_offset], ldvt, &c_b59, &a[a_offset], lda);
-
-/* Copy right singular vectors of A from A to VT */
-
- zlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
-
- }
-
- } else if (*n >= mnthr2) {
-
-/*
- MNTHR2 <= N < MNTHR1
-
- Path 5t (N much larger than M, but not as much as MNTHR1)
- Reduce to bidiagonal form without QR decomposition, use
- ZUNGBR and matrix multiplication to compute singular vectors
-*/
-
-
- ie = 1;
- nrwork = ie + *m;
- itauq = 1;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize A
- (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
- (RWorkspace: M)
-*/
-
- i__1 = *lwork - nwork + 1;
- zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
- &work[itaup], &work[nwork], &i__1, &ierr);
-
- if (wntqn) {
-
-/*
- Compute singular values only
- (Cworkspace: 0)
- (Rworkspace: need BDSPAC)
-*/
-
- dbdsdc_("L", "N", m, &s[1], &rwork[ie], dum, &c__1, dum, &
- c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
- } else if (wntqo) {
- irvt = nrwork;
- iru = irvt + *m * *m;
- nrwork = iru + *m * *m;
- ivt = nwork;
-
-/*
- Copy A to U, generate Q
- (Cworkspace: need 2*M, prefer M+M*NB)
- (Rworkspace: 0)
-*/
-
- zlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
- i__1 = *lwork - nwork + 1;
- zungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[
- nwork], &i__1, &ierr);
-
-/*
- Generate P**H in A
- (Cworkspace: need 2*M, prefer M+M*NB)
- (Rworkspace: 0)
-*/
-
- i__1 = *lwork - nwork + 1;
- zungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
- nwork], &i__1, &ierr);
-
- ldwkvt = *m;
- if (*lwork >= *m * *n + *m * 3) {
-
-/* WORK( IVT ) is M by N */
-
- nwork = ivt + ldwkvt * *n;
- chunk = *n;
- } else {
-
-/* WORK( IVT ) is M by CHUNK */
-
- chunk = (*lwork - *m * 3) / *m;
- nwork = ivt + ldwkvt * chunk;
- }
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
- rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Multiply Q in U by real matrix RWORK(IRVT)
- storing the result in WORK(IVT), copying to U
- (Cworkspace: need 0)
- (Rworkspace: need 2*M*M)
-*/
-
- zlacrm_(m, m, &u[u_offset], ldu, &rwork[iru], m, &work[ivt], &
- ldwkvt, &rwork[nrwork]);
- zlacpy_("F", m, m, &work[ivt], &ldwkvt, &u[u_offset], ldu);
-
-/*
- Multiply RWORK(IRVT) by P**H in A, storing the
- result in WORK(IVT), copying to A
- (CWorkspace: need M*M, prefer M*N)
- (Rworkspace: need 2*M*M, prefer 2*M*N)
-*/
-
- nrwork = iru;
- i__1 = *n;
- i__2 = chunk;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
- i__2) {
-/* Computing MIN */
- i__3 = *n - i__ + 1;
- blk = min(i__3,chunk);
- zlarcm_(m, &blk, &rwork[irvt], m, &a[i__ * a_dim1 + 1],
- lda, &work[ivt], &ldwkvt, &rwork[nrwork]);
- zlacpy_("F", m, &blk, &work[ivt], &ldwkvt, &a[i__ *
- a_dim1 + 1], lda);
-/* L50: */
- }
- } else if (wntqs) {
-
-/*
- Copy A to U, generate Q
- (Cworkspace: need 2*M, prefer M+M*NB)
- (Rworkspace: 0)
-*/
-
- zlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
- i__2 = *lwork - nwork + 1;
- zungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[
- nwork], &i__2, &ierr);
-
-/*
- Copy A to VT, generate P**H
- (Cworkspace: need 2*M, prefer M+M*NB)
- (Rworkspace: 0)
-*/
-
- zlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
- i__2 = *lwork - nwork + 1;
- zungbr_("P", m, n, m, &vt[vt_offset], ldvt, &work[itaup], &
- work[nwork], &i__2, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- irvt = nrwork;
- iru = irvt + *m * *m;
- nrwork = iru + *m * *m;
- dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
- rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Multiply Q in U by real matrix RWORK(IRU), storing the
- result in A, copying to U
- (CWorkspace: need 0)
- (Rworkspace: need 3*M*M)
-*/
-
- zlacrm_(m, m, &u[u_offset], ldu, &rwork[iru], m, &a[a_offset],
- lda, &rwork[nrwork]);
- zlacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu);
-
-/*
- Multiply real matrix RWORK(IRVT) by P**H in VT,
- storing the result in A, copying to VT
- (Cworkspace: need 0)
- (Rworkspace: need M*M+2*M*N)
-*/
-
- nrwork = iru;
- zlarcm_(m, n, &rwork[irvt], m, &vt[vt_offset], ldvt, &a[
- a_offset], lda, &rwork[nrwork]);
- zlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
- } else {
-
-/*
- Copy A to U, generate Q
- (Cworkspace: need 2*M, prefer M+M*NB)
- (Rworkspace: 0)
-*/
-
- zlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
- i__2 = *lwork - nwork + 1;
- zungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[
- nwork], &i__2, &ierr);
-
-/*
- Copy A to VT, generate P**H
- (Cworkspace: need 2*M, prefer M+M*NB)
- (Rworkspace: 0)
-*/
-
- zlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
- i__2 = *lwork - nwork + 1;
- zungbr_("P", n, n, m, &vt[vt_offset], ldvt, &work[itaup], &
- work[nwork], &i__2, &ierr);
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- irvt = nrwork;
- iru = irvt + *m * *m;
- nrwork = iru + *m * *m;
- dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
- rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Multiply Q in U by real matrix RWORK(IRU), storing the
- result in A, copying to U
- (CWorkspace: need 0)
- (Rworkspace: need 3*M*M)
-*/
-
- zlacrm_(m, m, &u[u_offset], ldu, &rwork[iru], m, &a[a_offset],
- lda, &rwork[nrwork]);
- zlacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu);
-
-/*
- Multiply real matrix RWORK(IRVT) by P**H in VT,
- storing the result in A, copying to VT
- (Cworkspace: need 0)
- (Rworkspace: need M*M+2*M*N)
-*/
-
- zlarcm_(m, n, &rwork[irvt], m, &vt[vt_offset], ldvt, &a[
- a_offset], lda, &rwork[nrwork]);
- zlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
- }
-
- } else {
-
-/*
- N .LT. MNTHR2
-
- Path 6t (N greater than M, but not much larger)
- Reduce to bidiagonal form without LQ decomposition
- Use ZUNMBR to compute singular vectors
-*/
-
- ie = 1;
- nrwork = ie + *m;
- itauq = 1;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
-/*
- Bidiagonalize A
- (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
- (RWorkspace: M)
-*/
-
- i__2 = *lwork - nwork + 1;
- zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
- &work[itaup], &work[nwork], &i__2, &ierr);
- if (wntqn) {
-
-/*
- Compute singular values only
- (Cworkspace: 0)
- (Rworkspace: need BDSPAC)
-*/
-
- dbdsdc_("L", "N", m, &s[1], &rwork[ie], dum, &c__1, dum, &
- c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
- } else if (wntqo) {
- ldwkvt = *m;
- ivt = nwork;
- if (*lwork >= *m * *n + *m * 3) {
-
-/* WORK( IVT ) is M by N */
-
- zlaset_("F", m, n, &c_b59, &c_b59, &work[ivt], &ldwkvt);
- nwork = ivt + ldwkvt * *n;
- } else {
-
-/* WORK( IVT ) is M by CHUNK */
-
- chunk = (*lwork - *m * 3) / *m;
- nwork = ivt + ldwkvt * chunk;
- }
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- irvt = nrwork;
- iru = irvt + *m * *m;
- nrwork = iru + *m * *m;
- dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
- rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix U
- Overwrite U by left singular vectors of A
- (Cworkspace: need 2*M, prefer M+M*NB)
- (Rworkspace: need 0)
-*/
-
- zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
- i__2 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
-
- if (*lwork >= *m * *n + *m * 3) {
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
- Overwrite WORK(IVT) by right singular vectors of A,
- copying to A
- (Cworkspace: need M*N+2*M, prefer M*N+M+M*NB)
- (Rworkspace: need 0)
-*/
-
- zlacp2_("F", m, m, &rwork[irvt], m, &work[ivt], &ldwkvt);
- i__2 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", m, n, m, &a[a_offset], lda, &work[
- itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2,
- &ierr);
- zlacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda);
- } else {
-
-/*
- Generate P**H in A
- (Cworkspace: need 2*M, prefer M+M*NB)
- (Rworkspace: need 0)
-*/
-
- i__2 = *lwork - nwork + 1;
- zungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
- work[nwork], &i__2, &ierr);
-
-/*
- Multiply Q in A by real matrix RWORK(IRU), storing the
- result in WORK(IU), copying to A
- (CWorkspace: need M*M, prefer M*N)
- (Rworkspace: need 3*M*M, prefer M*M+2*M*N)
-*/
-
- nrwork = iru;
- i__2 = *n;
- i__1 = chunk;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
- i__1) {
-/* Computing MIN */
- i__3 = *n - i__ + 1;
- blk = min(i__3,chunk);
- zlarcm_(m, &blk, &rwork[irvt], m, &a[i__ * a_dim1 + 1]
- , lda, &work[ivt], &ldwkvt, &rwork[nrwork]);
- zlacpy_("F", m, &blk, &work[ivt], &ldwkvt, &a[i__ *
- a_dim1 + 1], lda);
-/* L60: */
- }
- }
- } else if (wntqs) {
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- irvt = nrwork;
- iru = irvt + *m * *m;
- nrwork = iru + *m * *m;
- dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
- rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix U
- Overwrite U by left singular vectors of A
- (CWorkspace: need 3*M, prefer 2*M+M*NB)
- (RWorkspace: M*M)
-*/
-
- zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
- i__1 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix VT
- Overwrite VT by right singular vectors of A
- (CWorkspace: need 3*M, prefer 2*M+M*NB)
- (RWorkspace: M*M)
-*/
-
- zlaset_("F", m, n, &c_b59, &c_b59, &vt[vt_offset], ldvt);
- zlacp2_("F", m, m, &rwork[irvt], m, &vt[vt_offset], ldvt);
- i__1 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", m, n, m, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
- ierr);
- } else {
-
-/*
- Perform bidiagonal SVD, computing left singular vectors
- of bidiagonal matrix in RWORK(IRU) and computing right
- singular vectors of bidiagonal matrix in RWORK(IRVT)
- (CWorkspace: need 0)
- (RWorkspace: need BDSPAC)
-*/
-
- irvt = nrwork;
- iru = irvt + *m * *m;
- nrwork = iru + *m * *m;
-
- dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
- rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
- info);
-
-/*
- Copy real matrix RWORK(IRU) to complex matrix U
- Overwrite U by left singular vectors of A
- (CWorkspace: need 3*M, prefer 2*M+M*NB)
- (RWorkspace: M*M)
-*/
-
- zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
- i__1 = *lwork - nwork + 1;
- zunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
-
-/* Set the right corner of VT to identity matrix */
-
- i__1 = *n - *m;
- i__2 = *n - *m;
- zlaset_("F", &i__1, &i__2, &c_b59, &c_b60, &vt[*m + 1 + (*m +
- 1) * vt_dim1], ldvt);
-
-/*
- Copy real matrix RWORK(IRVT) to complex matrix VT
- Overwrite VT by right singular vectors of A
- (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- (RWorkspace: M*M)
-*/
-
- zlaset_("F", n, n, &c_b59, &c_b59, &vt[vt_offset], ldvt);
- zlacp2_("F", m, m, &rwork[irvt], m, &vt[vt_offset], ldvt);
- i__1 = *lwork - nwork + 1;
- zunmbr_("P", "R", "C", n, n, m, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
- ierr);
- }
-
- }
-
- }
-
-/* Undo scaling if necessary */
-
- if (iscl == 1) {
- if (anrm > bignum) {
- dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
- minmn, &ierr);
- }
- if (anrm < smlnum) {
- dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
- minmn, &ierr);
- }
- }
-
-/* Return optimal workspace in WORK(1) */
-
- work[1].r = (doublereal) maxwrk, work[1].i = 0.;
-
- return 0;
-
-/* End of ZGESDD */
-
-} /* zgesdd_ */
-
-/* Subroutine */ int zgesv_(integer *n, integer *nrhs, doublecomplex *a,
- integer *lda, integer *ipiv, doublecomplex *b, integer *ldb, integer *
- info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1;
-
- /* Local variables */
- extern /* Subroutine */ int xerbla_(char *, integer *), zgetrf_(
- integer *, integer *, doublecomplex *, integer *, integer *,
- integer *), zgetrs_(char *, integer *, integer *, doublecomplex *,
- integer *, integer *, doublecomplex *, integer *, integer *);
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- March 31, 1993
-
-
- Purpose
- =======
-
- ZGESV computes the solution to a complex system of linear equations
- A * X = B,
- where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
-
- The LU decomposition with partial pivoting and row interchanges is
- used to factor A as
- A = P * L * U,
- where P is a permutation matrix, L is unit lower triangular, and U is
- upper triangular. The factored form of A is then used to solve the
- system of equations A * X = B.
-
- Arguments
- =========
-
- N (input) INTEGER
- The number of linear equations, i.e., the order of the
- matrix A. N >= 0.
-
- NRHS (input) INTEGER
- The number of right hand sides, i.e., the number of columns
- of the matrix B. NRHS >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the N-by-N coefficient matrix A.
- On exit, the factors L and U from the factorization
- A = P*L*U; the unit diagonal elements of L are not stored.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- IPIV (output) INTEGER array, dimension (N)
- The pivot indices that define the permutation matrix P;
- row i of the matrix was interchanged with row IPIV(i).
-
- B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
- On entry, the N-by-NRHS matrix of right hand side matrix B.
- On exit, if INFO = 0, the N-by-NRHS solution matrix X.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, U(i,i) is exactly zero. The factorization
- has been completed, but the factor U is exactly
- singular, so the solution could not be computed.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- } else if (*nrhs < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- } else if (*ldb < max(1,*n)) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGESV ", &i__1);
- return 0;
- }
-
-/* Compute the LU factorization of A. */
-
- zgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);
- if (*info == 0) {
-
-/* Solve the system A*X = B, overwriting B with X. */
-
- zgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[
- b_offset], ldb, info);
- }
- return 0;
-
-/* End of ZGESV */
-
-} /* zgesv_ */
-
-/* Subroutine */ int zgetf2_(integer *m, integer *n, doublecomplex *a,
- integer *lda, integer *ipiv, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublecomplex z__1;
-
- /* Builtin functions */
- void z_div(doublecomplex *, doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer j, jp;
- extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *), zgeru_(integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, integer *), zswap_(integer *,
- doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(
- char *, integer *);
- extern integer izamax_(integer *, doublecomplex *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZGETF2 computes an LU factorization of a general m-by-n matrix A
- using partial pivoting with row interchanges.
-
- The factorization has the form
- A = P * L * U
- where P is a permutation matrix, L is lower triangular with unit
- diagonal elements (lower trapezoidal if m > n), and U is upper
- triangular (upper trapezoidal if m < n).
-
- This is the right-looking Level 2 BLAS version of the algorithm.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the m by n matrix to be factored.
- On exit, the factors L and U from the factorization
- A = P*L*U; the unit diagonal elements of L are not stored.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- IPIV (output) INTEGER array, dimension (min(M,N))
- The pivot indices; for 1 <= i <= min(M,N), row i of the
- matrix was interchanged with row IPIV(i).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -k, the k-th argument had an illegal value
- > 0: if INFO = k, U(k,k) is exactly zero. The factorization
- has been completed, but the factor U is exactly
- singular, and division by zero will occur if it is used
- to solve a system of equations.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGETF2", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- return 0;
- }
-
- i__1 = min(*m,*n);
- for (j = 1; j <= i__1; ++j) {
-
-/* Find pivot and test for singularity. */
-
- i__2 = *m - j + 1;
- jp = j - 1 + izamax_(&i__2, &a[j + j * a_dim1], &c__1);
- ipiv[j] = jp;
- i__2 = jp + j * a_dim1;
- if (a[i__2].r != 0. || a[i__2].i != 0.) {
-
-/* Apply the interchange to columns 1:N. */
-
- if (jp != j) {
- zswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda);
- }
-
-/* Compute elements J+1:M of J-th column. */
-
- if (j < *m) {
- i__2 = *m - j;
- z_div(&z__1, &c_b60, &a[j + j * a_dim1]);
- zscal_(&i__2, &z__1, &a[j + 1 + j * a_dim1], &c__1);
- }
-
- } else if (*info == 0) {
-
- *info = j;
- }
-
- if (j < min(*m,*n)) {
-
-/* Update trailing submatrix. */
-
- i__2 = *m - j;
- i__3 = *n - j;
- z__1.r = -1., z__1.i = -0.;
- zgeru_(&i__2, &i__3, &z__1, &a[j + 1 + j * a_dim1], &c__1, &a[j +
- (j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda)
- ;
- }
-/* L10: */
- }
- return 0;
-
-/* End of ZGETF2 */
-
-} /* zgetf2_ */
-
-/* Subroutine */ int zgetrf_(integer *m, integer *n, doublecomplex *a,
- integer *lda, integer *ipiv, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1;
-
- /* Local variables */
- static integer i__, j, jb, nb, iinfo;
- extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *), ztrsm_(char *, char *, char *, char *,
- integer *, integer *, doublecomplex *, doublecomplex *, integer *
- , doublecomplex *, integer *),
- zgetf2_(integer *, integer *, doublecomplex *, integer *, integer
- *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zlaswp_(integer *, doublecomplex *, integer *,
- integer *, integer *, integer *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZGETRF computes an LU factorization of a general M-by-N matrix A
- using partial pivoting with row interchanges.
-
- The factorization has the form
- A = P * L * U
- where P is a permutation matrix, L is lower triangular with unit
- diagonal elements (lower trapezoidal if m > n), and U is upper
- triangular (upper trapezoidal if m < n).
-
- This is the right-looking Level 3 BLAS version of the algorithm.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the M-by-N matrix to be factored.
- On exit, the factors L and U from the factorization
- A = P*L*U; the unit diagonal elements of L are not stored.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- IPIV (output) INTEGER array, dimension (min(M,N))
- The pivot indices; for 1 <= i <= min(M,N), row i of the
- matrix was interchanged with row IPIV(i).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, U(i,i) is exactly zero. The factorization
- has been completed, but the factor U is exactly
- singular, and division by zero will occur if it is used
- to solve a system of equations.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGETRF", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- return 0;
- }
-
-/* Determine the block size for this environment. */
-
- nb = ilaenv_(&c__1, "ZGETRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- if (nb <= 1 || nb >= min(*m,*n)) {
-
-/* Use unblocked code. */
-
- zgetf2_(m, n, &a[a_offset], lda, &ipiv[1], info);
- } else {
-
-/* Use blocked code. */
-
- i__1 = min(*m,*n);
- i__2 = nb;
- for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-/* Computing MIN */
- i__3 = min(*m,*n) - j + 1;
- jb = min(i__3,nb);
-
-/*
- Factor diagonal and subdiagonal blocks and test for exact
- singularity.
-*/
-
- i__3 = *m - j + 1;
- zgetf2_(&i__3, &jb, &a[j + j * a_dim1], lda, &ipiv[j], &iinfo);
-
-/* Adjust INFO and the pivot indices. */
-
- if ((*info == 0 && iinfo > 0)) {
- *info = iinfo + j - 1;
- }
-/* Computing MIN */
- i__4 = *m, i__5 = j + jb - 1;
- i__3 = min(i__4,i__5);
- for (i__ = j; i__ <= i__3; ++i__) {
- ipiv[i__] = j - 1 + ipiv[i__];
-/* L10: */
- }
-
-/* Apply interchanges to columns 1:J-1. */
-
- i__3 = j - 1;
- i__4 = j + jb - 1;
- zlaswp_(&i__3, &a[a_offset], lda, &j, &i__4, &ipiv[1], &c__1);
-
- if (j + jb <= *n) {
-
-/* Apply interchanges to columns J+JB:N. */
-
- i__3 = *n - j - jb + 1;
- i__4 = j + jb - 1;
- zlaswp_(&i__3, &a[(j + jb) * a_dim1 + 1], lda, &j, &i__4, &
- ipiv[1], &c__1);
-
-/* Compute block row of U. */
-
- i__3 = *n - j - jb + 1;
- ztrsm_("Left", "Lower", "No transpose", "Unit", &jb, &i__3, &
- c_b60, &a[j + j * a_dim1], lda, &a[j + (j + jb) *
- a_dim1], lda);
- if (j + jb <= *m) {
-
-/* Update trailing submatrix. */
-
- i__3 = *m - j - jb + 1;
- i__4 = *n - j - jb + 1;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("No transpose", "No transpose", &i__3, &i__4, &jb,
- &z__1, &a[j + jb + j * a_dim1], lda, &a[j + (j +
- jb) * a_dim1], lda, &c_b60, &a[j + jb + (j + jb) *
- a_dim1], lda);
- }
- }
-/* L20: */
- }
- }
- return 0;
-
-/* End of ZGETRF */
-
-} /* zgetrf_ */
-
-/* Subroutine */ int zgetrs_(char *trans, integer *n, integer *nrhs,
- doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *b,
- integer *ldb, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1;
-
- /* Local variables */
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *,
- integer *, integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *),
- xerbla_(char *, integer *);
- static logical notran;
- extern /* Subroutine */ int zlaswp_(integer *, doublecomplex *, integer *,
- integer *, integer *, integer *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZGETRS solves a system of linear equations
- A * X = B, A**T * X = B, or A**H * X = B
- with a general N-by-N matrix A using the LU factorization computed
- by ZGETRF.
-
- Arguments
- =========
-
- TRANS (input) CHARACTER*1
- Specifies the form of the system of equations:
- = 'N': A * X = B (No transpose)
- = 'T': A**T * X = B (Transpose)
- = 'C': A**H * X = B (Conjugate transpose)
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- NRHS (input) INTEGER
- The number of right hand sides, i.e., the number of columns
- of the matrix B. NRHS >= 0.
-
- A (input) COMPLEX*16 array, dimension (LDA,N)
- The factors L and U from the factorization A = P*L*U
- as computed by ZGETRF.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- IPIV (input) INTEGER array, dimension (N)
- The pivot indices from ZGETRF; for 1<=i<=N, row i of the
- matrix was interchanged with row IPIV(i).
-
- B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
- On entry, the right hand side matrix B.
- On exit, the solution matrix X.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- *info = 0;
- notran = lsame_(trans, "N");
- if (((! notran && ! lsame_(trans, "T")) && ! lsame_(
- trans, "C"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*nrhs < 0) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if (*ldb < max(1,*n)) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGETRS", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0 || *nrhs == 0) {
- return 0;
- }
-
- if (notran) {
-
-/*
- Solve A * X = B.
-
- Apply row interchanges to the right hand sides.
-*/
-
- zlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c__1);
-
-/* Solve L*X = B, overwriting B with X. */
-
- ztrsm_("Left", "Lower", "No transpose", "Unit", n, nrhs, &c_b60, &a[
- a_offset], lda, &b[b_offset], ldb);
-
-/* Solve U*X = B, overwriting B with X. */
-
- ztrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b60, &
- a[a_offset], lda, &b[b_offset], ldb);
- } else {
-
-/*
- Solve A**T * X = B or A**H * X = B.
-
- Solve U'*X = B, overwriting B with X.
-*/
-
- ztrsm_("Left", "Upper", trans, "Non-unit", n, nrhs, &c_b60, &a[
- a_offset], lda, &b[b_offset], ldb);
-
-/* Solve L'*X = B, overwriting B with X. */
-
- ztrsm_("Left", "Lower", trans, "Unit", n, nrhs, &c_b60, &a[a_offset],
- lda, &b[b_offset], ldb);
-
-/* Apply row interchanges to the solution vectors. */
-
- zlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c_n1);
- }
-
- return 0;
-
-/* End of ZGETRS */
-
-} /* zgetrs_ */
-
-/* Subroutine */ int zheevd_(char *jobz, char *uplo, integer *n,
- doublecomplex *a, integer *lda, doublereal *w, doublecomplex *work,
- integer *lwork, doublereal *rwork, integer *lrwork, integer *iwork,
- integer *liwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal eps;
- static integer inde;
- static doublereal anrm;
- static integer imax;
- static doublereal rmin, rmax;
- static integer lopt;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- static doublereal sigma;
- extern logical lsame_(char *, char *);
- static integer iinfo, lwmin, liopt;
- static logical lower;
- static integer llrwk, lropt;
- static logical wantz;
- static integer indwk2, llwrk2;
-
- static integer iscale;
- static doublereal safmin;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static doublereal bignum;
- extern doublereal zlanhe_(char *, char *, integer *, doublecomplex *,
- integer *, doublereal *);
- static integer indtau;
- extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
- integer *), zlascl_(char *, integer *, integer *, doublereal *,
- doublereal *, integer *, integer *, doublecomplex *, integer *,
- integer *), zstedc_(char *, integer *, doublereal *,
- doublereal *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublereal *, integer *, integer *, integer *, integer
- *);
- static integer indrwk, indwrk, liwmin;
- extern /* Subroutine */ int zhetrd_(char *, integer *, doublecomplex *,
- integer *, doublereal *, doublereal *, doublecomplex *,
- doublecomplex *, integer *, integer *), zlacpy_(char *,
- integer *, integer *, doublecomplex *, integer *, doublecomplex *,
- integer *);
- static integer lrwmin, llwork;
- static doublereal smlnum;
- static logical lquery;
- extern /* Subroutine */ int zunmtr_(char *, char *, char *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *, integer *);
-
-
-/*
- -- LAPACK driver routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a
- complex Hermitian matrix A. If eigenvectors are desired, it uses a
- divide and conquer algorithm.
-
- The divide and conquer algorithm makes very mild assumptions about
- floating point arithmetic. It will work on machines with a guard
- digit in add/subtract, or on those binary machines without guard
- digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- Cray-2. It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none.
-
- Arguments
- =========
-
- JOBZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only;
- = 'V': Compute eigenvalues and eigenvectors.
-
- UPLO (input) CHARACTER*1
- = 'U': Upper triangle of A is stored;
- = 'L': Lower triangle of A is stored.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA, N)
- On entry, the Hermitian matrix A. If UPLO = 'U', the
- leading N-by-N upper triangular part of A contains the
- upper triangular part of the matrix A. If UPLO = 'L',
- the leading N-by-N lower triangular part of A contains
- the lower triangular part of the matrix A.
- On exit, if JOBZ = 'V', then if INFO = 0, A contains the
- orthonormal eigenvectors of the matrix A.
- If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
- or the upper triangle (if UPLO='U') of A, including the
- diagonal, is destroyed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- W (output) DOUBLE PRECISION array, dimension (N)
- If INFO = 0, the eigenvalues in ascending order.
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The length of the array WORK.
- If N <= 1, LWORK must be at least 1.
- If JOBZ = 'N' and N > 1, LWORK must be at least N + 1.
- If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- RWORK (workspace/output) DOUBLE PRECISION array,
- dimension (LRWORK)
- On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
-
- LRWORK (input) INTEGER
- The dimension of the array RWORK.
- If N <= 1, LRWORK must be at least 1.
- If JOBZ = 'N' and N > 1, LRWORK must be at least N.
- If JOBZ = 'V' and N > 1, LRWORK must be at least
- 1 + 5*N + 2*N**2.
-
- If LRWORK = -1, then a workspace query is assumed; the
- routine only calculates the optimal size of the RWORK array,
- returns this value as the first entry of the RWORK array, and
- no error message related to LRWORK is issued by XERBLA.
-
- IWORK (workspace/output) INTEGER array, dimension (LIWORK)
- On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
-
- LIWORK (input) INTEGER
- The dimension of the array IWORK.
- If N <= 1, LIWORK must be at least 1.
- If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
- If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
-
- If LIWORK = -1, then a workspace query is assumed; the
- routine only calculates the optimal size of the IWORK array,
- returns this value as the first entry of the IWORK array, and
- no error message related to LIWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, the algorithm failed to converge; i
- off-diagonal elements of an intermediate tridiagonal
- form did not converge to zero.
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --w;
- --work;
- --rwork;
- --iwork;
-
- /* Function Body */
- wantz = lsame_(jobz, "V");
- lower = lsame_(uplo, "L");
- lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
-
- *info = 0;
- if (*n <= 1) {
- lwmin = 1;
- lrwmin = 1;
- liwmin = 1;
- lopt = lwmin;
- lropt = lrwmin;
- liopt = liwmin;
- } else {
- if (wantz) {
- lwmin = ((*n) << (1)) + *n * *n;
-/* Computing 2nd power */
- i__1 = *n;
- lrwmin = *n * 5 + 1 + ((i__1 * i__1) << (1));
- liwmin = *n * 5 + 3;
- } else {
- lwmin = *n + 1;
- lrwmin = *n;
- liwmin = 1;
- }
- lopt = lwmin;
- lropt = lrwmin;
- liopt = liwmin;
- }
- if (! (wantz || lsame_(jobz, "N"))) {
- *info = -1;
- } else if (! (lower || lsame_(uplo, "U"))) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if ((*lwork < lwmin && ! lquery)) {
- *info = -8;
- } else if ((*lrwork < lrwmin && ! lquery)) {
- *info = -10;
- } else if ((*liwork < liwmin && ! lquery)) {
- *info = -12;
- }
-
- if (*info == 0) {
- work[1].r = (doublereal) lopt, work[1].i = 0.;
- rwork[1] = (doublereal) lropt;
- iwork[1] = liopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZHEEVD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- if (*n == 1) {
- i__1 = a_dim1 + 1;
- w[1] = a[i__1].r;
- if (wantz) {
- i__1 = a_dim1 + 1;
- a[i__1].r = 1., a[i__1].i = 0.;
- }
- return 0;
- }
-
-/* Get machine constants. */
-
- safmin = SAFEMINIMUM;
- eps = PRECISION;
- smlnum = safmin / eps;
- bignum = 1. / smlnum;
- rmin = sqrt(smlnum);
- rmax = sqrt(bignum);
-
-/* Scale matrix to allowable range, if necessary. */
-
- anrm = zlanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
- iscale = 0;
- if ((anrm > 0. && anrm < rmin)) {
- iscale = 1;
- sigma = rmin / anrm;
- } else if (anrm > rmax) {
- iscale = 1;
- sigma = rmax / anrm;
- }
- if (iscale == 1) {
- zlascl_(uplo, &c__0, &c__0, &c_b1015, &sigma, n, n, &a[a_offset], lda,
- info);
- }
-
-/* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */
-
- inde = 1;
- indtau = 1;
- indwrk = indtau + *n;
- indrwk = inde + *n;
- indwk2 = indwrk + *n * *n;
- llwork = *lwork - indwrk + 1;
- llwrk2 = *lwork - indwk2 + 1;
- llrwk = *lrwork - indrwk + 1;
- zhetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], &
- work[indwrk], &llwork, &iinfo);
-/* Computing MAX */
- i__1 = indwrk;
- d__1 = (doublereal) lopt, d__2 = (doublereal) (*n) + work[i__1].r;
- lopt = (integer) max(d__1,d__2);
-
-/*
- For eigenvalues only, call DSTERF. For eigenvectors, first call
- ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
- tridiagonal matrix, then call ZUNMTR to multiply it to the
- Householder transformations represented as Householder vectors in
- A.
-*/
-
- if (! wantz) {
- dsterf_(n, &w[1], &rwork[inde], info);
- } else {
- zstedc_("I", n, &w[1], &rwork[inde], &work[indwrk], n, &work[indwk2],
- &llwrk2, &rwork[indrwk], &llrwk, &iwork[1], liwork, info);
- zunmtr_("L", uplo, "N", n, n, &a[a_offset], lda, &work[indtau], &work[
- indwrk], n, &work[indwk2], &llwrk2, &iinfo);
- zlacpy_("A", n, n, &work[indwrk], n, &a[a_offset], lda);
-/*
- Computing MAX
- Computing 2nd power
-*/
- i__3 = *n;
- i__4 = indwk2;
- i__1 = lopt, i__2 = *n + i__3 * i__3 + (integer) work[i__4].r;
- lopt = max(i__1,i__2);
- }
-
-/* If matrix was scaled, then rescale eigenvalues appropriately. */
-
- if (iscale == 1) {
- if (*info == 0) {
- imax = *n;
- } else {
- imax = *info - 1;
- }
- d__1 = 1. / sigma;
- dscal_(&imax, &d__1, &w[1], &c__1);
- }
-
- work[1].r = (doublereal) lopt, work[1].i = 0.;
- rwork[1] = (doublereal) lropt;
- iwork[1] = liopt;
-
- return 0;
-
-/* End of ZHEEVD */
-
-} /* zheevd_ */
-
-/* Subroutine */ int zhetd2_(char *uplo, integer *n, doublecomplex *a,
- integer *lda, doublereal *d__, doublereal *e, doublecomplex *tau,
- integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Local variables */
- static integer i__;
- static doublecomplex taui;
- extern /* Subroutine */ int zher2_(char *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- static doublecomplex alpha;
- extern logical lsame_(char *, char *);
- extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *);
- extern /* Subroutine */ int zhemv_(char *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, doublecomplex *, integer *);
- static logical upper;
- extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(
- char *, integer *), zlarfg_(integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- ZHETD2 reduces a complex Hermitian matrix A to real symmetric
- tridiagonal form T by a unitary similarity transformation:
- Q' * A * Q = T.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- Specifies whether the upper or lower triangular part of the
- Hermitian matrix A is stored:
- = 'U': Upper triangular
- = 'L': Lower triangular
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the Hermitian matrix A. If UPLO = 'U', the leading
- n-by-n upper triangular part of A contains the upper
- triangular part of the matrix A, and the strictly lower
- triangular part of A is not referenced. If UPLO = 'L', the
- leading n-by-n lower triangular part of A contains the lower
- triangular part of the matrix A, and the strictly upper
- triangular part of A is not referenced.
- On exit, if UPLO = 'U', the diagonal and first superdiagonal
- of A are overwritten by the corresponding elements of the
- tridiagonal matrix T, and the elements above the first
- superdiagonal, with the array TAU, represent the unitary
- matrix Q as a product of elementary reflectors; if UPLO
- = 'L', the diagonal and first subdiagonal of A are over-
- written by the corresponding elements of the tridiagonal
- matrix T, and the elements below the first subdiagonal, with
- the array TAU, represent the unitary matrix Q as a product
- of elementary reflectors. See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- D (output) DOUBLE PRECISION array, dimension (N)
- The diagonal elements of the tridiagonal matrix T:
- D(i) = A(i,i).
-
- E (output) DOUBLE PRECISION array, dimension (N-1)
- The off-diagonal elements of the tridiagonal matrix T:
- E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
-
- TAU (output) COMPLEX*16 array, dimension (N-1)
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- If UPLO = 'U', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(n-1) . . . H(2) H(1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
- A(1:i-1,i+1), and tau in TAU(i).
-
- If UPLO = 'L', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(1) H(2) . . . H(n-1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
- and tau in TAU(i).
-
- The contents of A on exit are illustrated by the following examples
- with n = 5:
-
- if UPLO = 'U': if UPLO = 'L':
-
- ( d e v2 v3 v4 ) ( d )
- ( d e v3 v4 ) ( e d )
- ( d e v4 ) ( v1 e d )
- ( d e ) ( v1 v2 e d )
- ( d ) ( v1 v2 v3 e d )
-
- where d and e denote diagonal and off-diagonal elements of T, and vi
- denotes an element of the vector defining H(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tau;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- if ((! upper && ! lsame_(uplo, "L"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZHETD2", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n <= 0) {
- return 0;
- }
-
- if (upper) {
-
-/* Reduce the upper triangle of A */
-
- i__1 = *n + *n * a_dim1;
- i__2 = *n + *n * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- for (i__ = *n - 1; i__ >= 1; --i__) {
-
-/*
- Generate elementary reflector H(i) = I - tau * v * v'
- to annihilate A(1:i-1,i+1)
-*/
-
- i__1 = i__ + (i__ + 1) * a_dim1;
- alpha.r = a[i__1].r, alpha.i = a[i__1].i;
- zlarfg_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &taui);
- i__1 = i__;
- e[i__1] = alpha.r;
-
- if (taui.r != 0. || taui.i != 0.) {
-
-/* Apply H(i) from both sides to A(1:i,1:i) */
-
- i__1 = i__ + (i__ + 1) * a_dim1;
- a[i__1].r = 1., a[i__1].i = 0.;
-
-/* Compute x := tau * A * v storing x in TAU(1:i) */
-
- zhemv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) *
- a_dim1 + 1], &c__1, &c_b59, &tau[1], &c__1)
- ;
-
-/* Compute w := x - 1/2 * tau * (x'*v) * v */
-
- z__3.r = -.5, z__3.i = -0.;
- z__2.r = z__3.r * taui.r - z__3.i * taui.i, z__2.i = z__3.r *
- taui.i + z__3.i * taui.r;
- zdotc_(&z__4, &i__, &tau[1], &c__1, &a[(i__ + 1) * a_dim1 + 1]
- , &c__1);
- z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
- z__4.i + z__2.i * z__4.r;
- alpha.r = z__1.r, alpha.i = z__1.i;
- zaxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[
- 1], &c__1);
-
-/*
- Apply the transformation as a rank-2 update:
- A := A - v * w' - w * v'
-*/
-
- z__1.r = -1., z__1.i = -0.;
- zher2_(uplo, &i__, &z__1, &a[(i__ + 1) * a_dim1 + 1], &c__1, &
- tau[1], &c__1, &a[a_offset], lda);
-
- } else {
- i__1 = i__ + i__ * a_dim1;
- i__2 = i__ + i__ * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- }
- i__1 = i__ + (i__ + 1) * a_dim1;
- i__2 = i__;
- a[i__1].r = e[i__2], a[i__1].i = 0.;
- i__1 = i__ + 1;
- i__2 = i__ + 1 + (i__ + 1) * a_dim1;
- d__[i__1] = a[i__2].r;
- i__1 = i__;
- tau[i__1].r = taui.r, tau[i__1].i = taui.i;
-/* L10: */
- }
- i__1 = a_dim1 + 1;
- d__[1] = a[i__1].r;
- } else {
-
-/* Reduce the lower triangle of A */
-
- i__1 = a_dim1 + 1;
- i__2 = a_dim1 + 1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/*
- Generate elementary reflector H(i) = I - tau * v * v'
- to annihilate A(i+2:n,i)
-*/
-
- i__2 = i__ + 1 + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *n - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &
- taui);
- i__2 = i__;
- e[i__2] = alpha.r;
-
- if (taui.r != 0. || taui.i != 0.) {
-
-/* Apply H(i) from both sides to A(i+1:n,i+1:n) */
-
- i__2 = i__ + 1 + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Compute x := tau * A * v storing y in TAU(i:n-1) */
-
- i__2 = *n - i__;
- zhemv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1],
- lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b59, &tau[
- i__], &c__1);
-
-/* Compute w := x - 1/2 * tau * (x'*v) * v */
-
- z__3.r = -.5, z__3.i = -0.;
- z__2.r = z__3.r * taui.r - z__3.i * taui.i, z__2.i = z__3.r *
- taui.i + z__3.i * taui.r;
- i__2 = *n - i__;
- zdotc_(&z__4, &i__2, &tau[i__], &c__1, &a[i__ + 1 + i__ *
- a_dim1], &c__1);
- z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
- z__4.i + z__2.i * z__4.r;
- alpha.r = z__1.r, alpha.i = z__1.i;
- i__2 = *n - i__;
- zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
- i__], &c__1);
-
-/*
- Apply the transformation as a rank-2 update:
- A := A - v * w' - w * v'
-*/
-
- i__2 = *n - i__;
- z__1.r = -1., z__1.i = -0.;
- zher2_(uplo, &i__2, &z__1, &a[i__ + 1 + i__ * a_dim1], &c__1,
- &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1],
- lda);
-
- } else {
- i__2 = i__ + 1 + (i__ + 1) * a_dim1;
- i__3 = i__ + 1 + (i__ + 1) * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- }
- i__2 = i__ + 1 + i__ * a_dim1;
- i__3 = i__;
- a[i__2].r = e[i__3], a[i__2].i = 0.;
- i__2 = i__;
- i__3 = i__ + i__ * a_dim1;
- d__[i__2] = a[i__3].r;
- i__2 = i__;
- tau[i__2].r = taui.r, tau[i__2].i = taui.i;
-/* L20: */
- }
- i__1 = *n;
- i__2 = *n + *n * a_dim1;
- d__[i__1] = a[i__2].r;
- }
-
- return 0;
-
-/* End of ZHETD2 */
-
-} /* zhetd2_ */
-
-/* Subroutine */ int zhetrd_(char *uplo, integer *n, doublecomplex *a,
- integer *lda, doublereal *d__, doublereal *e, doublecomplex *tau,
- doublecomplex *work, integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1;
-
- /* Local variables */
- static integer i__, j, nb, kk, nx, iws;
- extern logical lsame_(char *, char *);
- static integer nbmin, iinfo;
- static logical upper;
- extern /* Subroutine */ int zhetd2_(char *, integer *, doublecomplex *,
- integer *, doublereal *, doublereal *, doublecomplex *, integer *), zher2k_(char *, char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublereal *, doublecomplex *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zlatrd_(char *, integer *, integer *,
- doublecomplex *, integer *, doublereal *, doublecomplex *,
- doublecomplex *, integer *);
- static integer ldwork, lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZHETRD reduces a complex Hermitian matrix A to real symmetric
- tridiagonal form T by a unitary similarity transformation:
- Q**H * A * Q = T.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- = 'U': Upper triangle of A is stored;
- = 'L': Lower triangle of A is stored.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the Hermitian matrix A. If UPLO = 'U', the leading
- N-by-N upper triangular part of A contains the upper
- triangular part of the matrix A, and the strictly lower
- triangular part of A is not referenced. If UPLO = 'L', the
- leading N-by-N lower triangular part of A contains the lower
- triangular part of the matrix A, and the strictly upper
- triangular part of A is not referenced.
- On exit, if UPLO = 'U', the diagonal and first superdiagonal
- of A are overwritten by the corresponding elements of the
- tridiagonal matrix T, and the elements above the first
- superdiagonal, with the array TAU, represent the unitary
- matrix Q as a product of elementary reflectors; if UPLO
- = 'L', the diagonal and first subdiagonal of A are over-
- written by the corresponding elements of the tridiagonal
- matrix T, and the elements below the first subdiagonal, with
- the array TAU, represent the unitary matrix Q as a product
- of elementary reflectors. See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- D (output) DOUBLE PRECISION array, dimension (N)
- The diagonal elements of the tridiagonal matrix T:
- D(i) = A(i,i).
-
- E (output) DOUBLE PRECISION array, dimension (N-1)
- The off-diagonal elements of the tridiagonal matrix T:
- E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
-
- TAU (output) COMPLEX*16 array, dimension (N-1)
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= 1.
- For optimum performance LWORK >= N*NB, where NB is the
- optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- If UPLO = 'U', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(n-1) . . . H(2) H(1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
- A(1:i-1,i+1), and tau in TAU(i).
-
- If UPLO = 'L', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(1) H(2) . . . H(n-1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
- and tau in TAU(i).
-
- The contents of A on exit are illustrated by the following examples
- with n = 5:
-
- if UPLO = 'U': if UPLO = 'L':
-
- ( d e v2 v3 v4 ) ( d )
- ( d e v3 v4 ) ( e d )
- ( d e v4 ) ( v1 e d )
- ( d e ) ( v1 v2 e d )
- ( d ) ( v1 v2 v3 e d )
-
- where d and e denote diagonal and off-diagonal elements of T, and vi
- denotes an element of the vector defining H(i).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- lquery = *lwork == -1;
- if ((! upper && ! lsame_(uplo, "L"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- } else if ((*lwork < 1 && ! lquery)) {
- *info = -9;
- }
-
- if (*info == 0) {
-
-/* Determine the block size. */
-
- nb = ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
- (ftnlen)1);
- lwkopt = *n * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZHETRD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- nx = *n;
- iws = 1;
- if ((nb > 1 && nb < *n)) {
-
-/*
- Determine when to cross over from blocked to unblocked code
- (last block is always handled by unblocked code).
-
- Computing MAX
-*/
- i__1 = nb, i__2 = ilaenv_(&c__3, "ZHETRD", uplo, n, &c_n1, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < *n) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- ldwork = *n;
- iws = ldwork * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: determine the
- minimum value of NB, and reduce NB or force use of
- unblocked code by setting NX = N.
-
- Computing MAX
-*/
- i__1 = *lwork / ldwork;
- nb = max(i__1,1);
- nbmin = ilaenv_(&c__2, "ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- if (nb < nbmin) {
- nx = *n;
- }
- }
- } else {
- nx = *n;
- }
- } else {
- nb = 1;
- }
-
- if (upper) {
-
-/*
- Reduce the upper triangle of A.
- Columns 1:kk are handled by the unblocked method.
-*/
-
- kk = *n - (*n - nx + nb - 1) / nb * nb;
- i__1 = kk + 1;
- i__2 = -nb;
- for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
- i__2) {
-
-/*
- Reduce columns i:i+nb-1 to tridiagonal form and form the
- matrix W which is needed to update the unreduced part of
- the matrix
-*/
-
- i__3 = i__ + nb - 1;
- zlatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &
- work[1], &ldwork);
-
-/*
- Update the unreduced submatrix A(1:i-1,1:i-1), using an
- update of the form: A := A - V*W' - W*V'
-*/
-
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zher2k_(uplo, "No transpose", &i__3, &nb, &z__1, &a[i__ * a_dim1
- + 1], lda, &work[1], &ldwork, &c_b1015, &a[a_offset], lda);
-
-/*
- Copy superdiagonal elements back into A, and diagonal
- elements into D
-*/
-
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- i__4 = j - 1 + j * a_dim1;
- i__5 = j - 1;
- a[i__4].r = e[i__5], a[i__4].i = 0.;
- i__4 = j;
- i__5 = j + j * a_dim1;
- d__[i__4] = a[i__5].r;
-/* L10: */
- }
-/* L20: */
- }
-
-/* Use unblocked code to reduce the last or only block */
-
- zhetd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);
- } else {
-
-/* Reduce the lower triangle of A */
-
- i__2 = *n - nx;
- i__1 = nb;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
-
-/*
- Reduce columns i:i+nb-1 to tridiagonal form and form the
- matrix W which is needed to update the unreduced part of
- the matrix
-*/
-
- i__3 = *n - i__ + 1;
- zlatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], &
- tau[i__], &work[1], &ldwork);
-
-/*
- Update the unreduced submatrix A(i+nb:n,i+nb:n), using
- an update of the form: A := A - V*W' - W*V'
-*/
-
- i__3 = *n - i__ - nb + 1;
- z__1.r = -1., z__1.i = -0.;
- zher2k_(uplo, "No transpose", &i__3, &nb, &z__1, &a[i__ + nb +
- i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b1015, &a[
- i__ + nb + (i__ + nb) * a_dim1], lda);
-
-/*
- Copy subdiagonal elements back into A, and diagonal
- elements into D
-*/
-
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- i__4 = j + 1 + j * a_dim1;
- i__5 = j;
- a[i__4].r = e[i__5], a[i__4].i = 0.;
- i__4 = j;
- i__5 = j + j * a_dim1;
- d__[i__4] = a[i__5].r;
-/* L30: */
- }
-/* L40: */
- }
-
-/* Use unblocked code to reduce the last or only block */
-
- i__1 = *n - i__ + 1;
- zhetd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__],
- &tau[i__], &iinfo);
- }
-
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- return 0;
-
-/* End of ZHETRD */
-
-} /* zhetrd_ */
-
-/* Subroutine */ int zhseqr_(char *job, char *compz, integer *n, integer *ilo,
- integer *ihi, doublecomplex *h__, integer *ldh, doublecomplex *w,
- doublecomplex *z__, integer *ldz, doublecomplex *work, integer *lwork,
- integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4[2],
- i__5, i__6;
- doublereal d__1, d__2, d__3, d__4;
- doublecomplex z__1;
- char ch__1[2];
-
- /* Builtin functions */
- double d_imag(doublecomplex *);
- void d_cnjg(doublecomplex *, doublecomplex *);
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i__, j, k, l;
- static doublecomplex s[225] /* was [15][15] */, v[16];
- static integer i1, i2, ii, nh, nr, ns, nv;
- static doublecomplex vv[16];
- static integer itn;
- static doublecomplex tau;
- static integer its;
- static doublereal ulp, tst1;
- static integer maxb, ierr;
- static doublereal unfl;
- static doublecomplex temp;
- static doublereal ovfl;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *);
- static integer itemp;
- static doublereal rtemp;
- extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *);
- static logical initz, wantt, wantz;
- static doublereal rwork[1];
- extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- extern doublereal dlapy2_(doublereal *, doublereal *);
- extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
-
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zdscal_(integer *, doublereal *,
- doublecomplex *, integer *), zlarfg_(integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *);
- extern integer izamax_(integer *, doublecomplex *, integer *);
- extern doublereal zlanhs_(char *, integer *, doublecomplex *, integer *,
- doublereal *);
- extern /* Subroutine */ int zlahqr_(logical *, logical *, integer *,
- integer *, integer *, doublecomplex *, integer *, doublecomplex *,
- integer *, integer *, doublecomplex *, integer *, integer *),
- zlacpy_(char *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zlaset_(char *, integer *,
- integer *, doublecomplex *, doublecomplex *, doublecomplex *,
- integer *), zlarfx_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *);
- static doublereal smlnum;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZHSEQR computes the eigenvalues of a complex upper Hessenberg
- matrix H, and, optionally, the matrices T and Z from the Schur
- decomposition H = Z T Z**H, where T is an upper triangular matrix
- (the Schur form), and Z is the unitary matrix of Schur vectors.
-
- Optionally Z may be postmultiplied into an input unitary matrix Q,
- so that this routine can give the Schur factorization of a matrix A
- which has been reduced to the Hessenberg form H by the unitary
- matrix Q: A = Q*H*Q**H = (QZ)*T*(QZ)**H.
-
- Arguments
- =========
-
- JOB (input) CHARACTER*1
- = 'E': compute eigenvalues only;
- = 'S': compute eigenvalues and the Schur form T.
-
- COMPZ (input) CHARACTER*1
- = 'N': no Schur vectors are computed;
- = 'I': Z is initialized to the unit matrix and the matrix Z
- of Schur vectors of H is returned;
- = 'V': Z must contain an unitary matrix Q on entry, and
- the product Q*Z is returned.
-
- N (input) INTEGER
- The order of the matrix H. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- It is assumed that H is already upper triangular in rows
- and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
- set by a previous call to ZGEBAL, and then passed to CGEHRD
- when the matrix output by ZGEBAL is reduced to Hessenberg
- form. Otherwise ILO and IHI should be set to 1 and N
- respectively.
- 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
-
- H (input/output) COMPLEX*16 array, dimension (LDH,N)
- On entry, the upper Hessenberg matrix H.
- On exit, if JOB = 'S', H contains the upper triangular matrix
- T from the Schur decomposition (the Schur form). If
- JOB = 'E', the contents of H are unspecified on exit.
-
- LDH (input) INTEGER
- The leading dimension of the array H. LDH >= max(1,N).
-
- W (output) COMPLEX*16 array, dimension (N)
- The computed eigenvalues. If JOB = 'S', the eigenvalues are
- stored in the same order as on the diagonal of the Schur form
- returned in H, with W(i) = H(i,i).
-
- Z (input/output) COMPLEX*16 array, dimension (LDZ,N)
- If COMPZ = 'N': Z is not referenced.
- If COMPZ = 'I': on entry, Z need not be set, and on exit, Z
- contains the unitary matrix Z of the Schur vectors of H.
- If COMPZ = 'V': on entry Z must contain an N-by-N matrix Q,
- which is assumed to be equal to the unit matrix except for
- the submatrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.
- Normally Q is the unitary matrix generated by ZUNGHR after
- the call to ZGEHRD which formed the Hessenberg matrix H.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z.
- LDZ >= max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 otherwise.
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,N).
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, ZHSEQR failed to compute all the
- eigenvalues in a total of 30*(IHI-ILO+1) iterations;
- elements 1:ilo-1 and i+1:n of W contain those
- eigenvalues which have been successfully computed.
-
- =====================================================================
-
-
- Decode and test the input parameters
-*/
-
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- wantt = lsame_(job, "S");
- initz = lsame_(compz, "I");
- wantz = initz || lsame_(compz, "V");
-
- *info = 0;
- i__1 = max(1,*n);
- work[1].r = (doublereal) i__1, work[1].i = 0.;
- lquery = *lwork == -1;
- if ((! lsame_(job, "E") && ! wantt)) {
- *info = -1;
- } else if ((! lsame_(compz, "N") && ! wantz)) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -4;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -5;
- } else if (*ldh < max(1,*n)) {
- *info = -7;
- } else if (*ldz < 1 || (wantz && *ldz < max(1,*n))) {
- *info = -10;
- } else if ((*lwork < max(1,*n) && ! lquery)) {
- *info = -12;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZHSEQR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Initialize Z, if necessary */
-
- if (initz) {
- zlaset_("Full", n, n, &c_b59, &c_b60, &z__[z_offset], ldz);
- }
-
-/* Store the eigenvalues isolated by ZGEBAL. */
-
- i__1 = *ilo - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__ + i__ * h_dim1;
- w[i__2].r = h__[i__3].r, w[i__2].i = h__[i__3].i;
-/* L10: */
- }
- i__1 = *n;
- for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__ + i__ * h_dim1;
- w[i__2].r = h__[i__3].r, w[i__2].i = h__[i__3].i;
-/* L20: */
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
- if (*ilo == *ihi) {
- i__1 = *ilo;
- i__2 = *ilo + *ilo * h_dim1;
- w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
- return 0;
- }
-
-/*
- Set rows and columns ILO to IHI to zero below the first
- subdiagonal.
-*/
-
- i__1 = *ihi - 2;
- for (j = *ilo; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j + 2; i__ <= i__2; ++i__) {
- i__3 = i__ + j * h_dim1;
- h__[i__3].r = 0., h__[i__3].i = 0.;
-/* L30: */
- }
-/* L40: */
- }
- nh = *ihi - *ilo + 1;
-
-/*
- I1 and I2 are the indices of the first row and last column of H
- to which transformations must be applied. If eigenvalues only are
- being computed, I1 and I2 are re-set inside the main loop.
-*/
-
- if (wantt) {
- i1 = 1;
- i2 = *n;
- } else {
- i1 = *ilo;
- i2 = *ihi;
- }
-
-/* Ensure that the subdiagonal elements are real. */
-
- i__1 = *ihi;
- for (i__ = *ilo + 1; i__ <= i__1; ++i__) {
- i__2 = i__ + (i__ - 1) * h_dim1;
- temp.r = h__[i__2].r, temp.i = h__[i__2].i;
- if (d_imag(&temp) != 0.) {
- d__1 = temp.r;
- d__2 = d_imag(&temp);
- rtemp = dlapy2_(&d__1, &d__2);
- i__2 = i__ + (i__ - 1) * h_dim1;
- h__[i__2].r = rtemp, h__[i__2].i = 0.;
- z__1.r = temp.r / rtemp, z__1.i = temp.i / rtemp;
- temp.r = z__1.r, temp.i = z__1.i;
- if (i2 > i__) {
- i__2 = i2 - i__;
- d_cnjg(&z__1, &temp);
- zscal_(&i__2, &z__1, &h__[i__ + (i__ + 1) * h_dim1], ldh);
- }
- i__2 = i__ - i1;
- zscal_(&i__2, &temp, &h__[i1 + i__ * h_dim1], &c__1);
- if (i__ < *ihi) {
- i__2 = i__ + 1 + i__ * h_dim1;
- i__3 = i__ + 1 + i__ * h_dim1;
- z__1.r = temp.r * h__[i__3].r - temp.i * h__[i__3].i, z__1.i =
- temp.r * h__[i__3].i + temp.i * h__[i__3].r;
- h__[i__2].r = z__1.r, h__[i__2].i = z__1.i;
- }
- if (wantz) {
- zscal_(&nh, &temp, &z__[*ilo + i__ * z_dim1], &c__1);
- }
- }
-/* L50: */
- }
-
-/*
- Determine the order of the multi-shift QR algorithm to be used.
-
- Writing concatenation
-*/
- i__4[0] = 1, a__1[0] = job;
- i__4[1] = 1, a__1[1] = compz;
- s_cat(ch__1, a__1, i__4, &c__2, (ftnlen)2);
- ns = ilaenv_(&c__4, "ZHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
- ftnlen)2);
-/* Writing concatenation */
- i__4[0] = 1, a__1[0] = job;
- i__4[1] = 1, a__1[1] = compz;
- s_cat(ch__1, a__1, i__4, &c__2, (ftnlen)2);
- maxb = ilaenv_(&c__8, "ZHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
- ftnlen)2);
- if (ns <= 1 || ns > nh || maxb >= nh) {
-
-/* Use the standard double-shift algorithm */
-
- zlahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1], ilo,
- ihi, &z__[z_offset], ldz, info);
- return 0;
- }
- maxb = max(2,maxb);
-/* Computing MIN */
- i__1 = min(ns,maxb);
- ns = min(i__1,15);
-
-/*
- Now 1 < NS <= MAXB < NH.
-
- Set machine-dependent constants for the stopping criterion.
- If norm(H) <= sqrt(OVFL), overflow should not occur.
-*/
-
- unfl = SAFEMINIMUM;
- ovfl = 1. / unfl;
- dlabad_(&unfl, &ovfl);
- ulp = PRECISION;
- smlnum = unfl * (nh / ulp);
-
-/* ITN is the total number of multiple-shift QR iterations allowed. */
-
- itn = nh * 30;
-
-/*
- The main loop begins here. I is the loop index and decreases from
- IHI to ILO in steps of at most MAXB. Each iteration of the loop
- works with the active submatrix in rows and columns L to I.
- Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
- H(L,L-1) is negligible so that the matrix splits.
-*/
-
- i__ = *ihi;
-L60:
- if (i__ < *ilo) {
- goto L180;
- }
-
-/*
- Perform multiple-shift QR iterations on rows and columns ILO to I
- until a submatrix of order at most MAXB splits off at the bottom
- because a subdiagonal element has become negligible.
-*/
-
- l = *ilo;
- i__1 = itn;
- for (its = 0; its <= i__1; ++its) {
-
-/* Look for a single small subdiagonal element. */
-
- i__2 = l + 1;
- for (k = i__; k >= i__2; --k) {
- i__3 = k - 1 + (k - 1) * h_dim1;
- i__5 = k + k * h_dim1;
- tst1 = (d__1 = h__[i__3].r, abs(d__1)) + (d__2 = d_imag(&h__[k -
- 1 + (k - 1) * h_dim1]), abs(d__2)) + ((d__3 = h__[i__5].r,
- abs(d__3)) + (d__4 = d_imag(&h__[k + k * h_dim1]), abs(
- d__4)));
- if (tst1 == 0.) {
- i__3 = i__ - l + 1;
- tst1 = zlanhs_("1", &i__3, &h__[l + l * h_dim1], ldh, rwork);
- }
- i__3 = k + (k - 1) * h_dim1;
-/* Computing MAX */
- d__2 = ulp * tst1;
- if ((d__1 = h__[i__3].r, abs(d__1)) <= max(d__2,smlnum)) {
- goto L80;
- }
-/* L70: */
- }
-L80:
- l = k;
- if (l > *ilo) {
-
-/* H(L,L-1) is negligible. */
-
- i__2 = l + (l - 1) * h_dim1;
- h__[i__2].r = 0., h__[i__2].i = 0.;
- }
-
-/* Exit from loop if a submatrix of order <= MAXB has split off. */
-
- if (l >= i__ - maxb + 1) {
- goto L170;
- }
-
-/*
- Now the active submatrix is in rows and columns L to I. If
- eigenvalues only are being computed, only the active submatrix
- need be transformed.
-*/
-
- if (! wantt) {
- i1 = l;
- i2 = i__;
- }
-
- if (its == 20 || its == 30) {
-
-/* Exceptional shifts. */
-
- i__2 = i__;
- for (ii = i__ - ns + 1; ii <= i__2; ++ii) {
- i__3 = ii;
- i__5 = ii + (ii - 1) * h_dim1;
- i__6 = ii + ii * h_dim1;
- d__3 = ((d__1 = h__[i__5].r, abs(d__1)) + (d__2 = h__[i__6].r,
- abs(d__2))) * 1.5;
- w[i__3].r = d__3, w[i__3].i = 0.;
-/* L90: */
- }
- } else {
-
-/* Use eigenvalues of trailing submatrix of order NS as shifts. */
-
- zlacpy_("Full", &ns, &ns, &h__[i__ - ns + 1 + (i__ - ns + 1) *
- h_dim1], ldh, s, &c__15);
- zlahqr_(&c_false, &c_false, &ns, &c__1, &ns, s, &c__15, &w[i__ -
- ns + 1], &c__1, &ns, &z__[z_offset], ldz, &ierr);
- if (ierr > 0) {
-
-/*
- If ZLAHQR failed to compute all NS eigenvalues, use the
- unconverged diagonal elements as the remaining shifts.
-*/
-
- i__2 = ierr;
- for (ii = 1; ii <= i__2; ++ii) {
- i__3 = i__ - ns + ii;
- i__5 = ii + ii * 15 - 16;
- w[i__3].r = s[i__5].r, w[i__3].i = s[i__5].i;
-/* L100: */
- }
- }
- }
-
-/*
- Form the first column of (G-w(1)) (G-w(2)) . . . (G-w(ns))
- where G is the Hessenberg submatrix H(L:I,L:I) and w is
- the vector of shifts (stored in W). The result is
- stored in the local array V.
-*/
-
- v[0].r = 1., v[0].i = 0.;
- i__2 = ns + 1;
- for (ii = 2; ii <= i__2; ++ii) {
- i__3 = ii - 1;
- v[i__3].r = 0., v[i__3].i = 0.;
-/* L110: */
- }
- nv = 1;
- i__2 = i__;
- for (j = i__ - ns + 1; j <= i__2; ++j) {
- i__3 = nv + 1;
- zcopy_(&i__3, v, &c__1, vv, &c__1);
- i__3 = nv + 1;
- i__5 = j;
- z__1.r = -w[i__5].r, z__1.i = -w[i__5].i;
- zgemv_("No transpose", &i__3, &nv, &c_b60, &h__[l + l * h_dim1],
- ldh, vv, &c__1, &z__1, v, &c__1);
- ++nv;
-
-/*
- Scale V(1:NV) so that max(abs(V(i))) = 1. If V is zero,
- reset it to the unit vector.
-*/
-
- itemp = izamax_(&nv, v, &c__1);
- i__3 = itemp - 1;
- rtemp = (d__1 = v[i__3].r, abs(d__1)) + (d__2 = d_imag(&v[itemp -
- 1]), abs(d__2));
- if (rtemp == 0.) {
- v[0].r = 1., v[0].i = 0.;
- i__3 = nv;
- for (ii = 2; ii <= i__3; ++ii) {
- i__5 = ii - 1;
- v[i__5].r = 0., v[i__5].i = 0.;
-/* L120: */
- }
- } else {
- rtemp = max(rtemp,smlnum);
- d__1 = 1. / rtemp;
- zdscal_(&nv, &d__1, v, &c__1);
- }
-/* L130: */
- }
-
-/* Multiple-shift QR step */
-
- i__2 = i__ - 1;
- for (k = l; k <= i__2; ++k) {
-
-/*
- The first iteration of this loop determines a reflection G
- from the vector V and applies it from left and right to H,
- thus creating a nonzero bulge below the subdiagonal.
-
- Each subsequent iteration determines a reflection G to
- restore the Hessenberg form in the (K-1)th column, and thus
- chases the bulge one step toward the bottom of the active
- submatrix. NR is the order of G.
-
- Computing MIN
-*/
- i__3 = ns + 1, i__5 = i__ - k + 1;
- nr = min(i__3,i__5);
- if (k > l) {
- zcopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
- }
- zlarfg_(&nr, v, &v[1], &c__1, &tau);
- if (k > l) {
- i__3 = k + (k - 1) * h_dim1;
- h__[i__3].r = v[0].r, h__[i__3].i = v[0].i;
- i__3 = i__;
- for (ii = k + 1; ii <= i__3; ++ii) {
- i__5 = ii + (k - 1) * h_dim1;
- h__[i__5].r = 0., h__[i__5].i = 0.;
-/* L140: */
- }
- }
- v[0].r = 1., v[0].i = 0.;
-
-/*
- Apply G' from the left to transform the rows of the matrix
- in columns K to I2.
-*/
-
- i__3 = i2 - k + 1;
- d_cnjg(&z__1, &tau);
- zlarfx_("Left", &nr, &i__3, v, &z__1, &h__[k + k * h_dim1], ldh, &
- work[1]);
-
-/*
- Apply G from the right to transform the columns of the
- matrix in rows I1 to min(K+NR,I).
-
- Computing MIN
-*/
- i__5 = k + nr;
- i__3 = min(i__5,i__) - i1 + 1;
- zlarfx_("Right", &i__3, &nr, v, &tau, &h__[i1 + k * h_dim1], ldh,
- &work[1]);
-
- if (wantz) {
-
-/* Accumulate transformations in the matrix Z */
-
- zlarfx_("Right", &nh, &nr, v, &tau, &z__[*ilo + k * z_dim1],
- ldz, &work[1]);
- }
-/* L150: */
- }
-
-/* Ensure that H(I,I-1) is real. */
-
- i__2 = i__ + (i__ - 1) * h_dim1;
- temp.r = h__[i__2].r, temp.i = h__[i__2].i;
- if (d_imag(&temp) != 0.) {
- d__1 = temp.r;
- d__2 = d_imag(&temp);
- rtemp = dlapy2_(&d__1, &d__2);
- i__2 = i__ + (i__ - 1) * h_dim1;
- h__[i__2].r = rtemp, h__[i__2].i = 0.;
- z__1.r = temp.r / rtemp, z__1.i = temp.i / rtemp;
- temp.r = z__1.r, temp.i = z__1.i;
- if (i2 > i__) {
- i__2 = i2 - i__;
- d_cnjg(&z__1, &temp);
- zscal_(&i__2, &z__1, &h__[i__ + (i__ + 1) * h_dim1], ldh);
- }
- i__2 = i__ - i1;
- zscal_(&i__2, &temp, &h__[i1 + i__ * h_dim1], &c__1);
- if (wantz) {
- zscal_(&nh, &temp, &z__[*ilo + i__ * z_dim1], &c__1);
- }
- }
-
-/* L160: */
- }
-
-/* Failure to converge in remaining number of iterations */
-
- *info = i__;
- return 0;
-
-L170:
-
-/*
- A submatrix of order <= MAXB in rows and columns L to I has split
- off. Use the double-shift QR algorithm to handle it.
-*/
-
- zlahqr_(&wantt, &wantz, n, &l, &i__, &h__[h_offset], ldh, &w[1], ilo, ihi,
- &z__[z_offset], ldz, info);
- if (*info > 0) {
- return 0;
- }
-
-/*
- Decrement number of remaining iterations, and return to start of
- the main loop with a new value of I.
-*/
-
- itn -= its;
- i__ = l - 1;
- goto L60;
-
-L180:
- i__1 = max(1,*n);
- work[1].r = (doublereal) i__1, work[1].i = 0.;
- return 0;
-
-/* End of ZHSEQR */
-
-} /* zhseqr_ */
-
-/* Subroutine */ int zlabrd_(integer *m, integer *n, integer *nb,
- doublecomplex *a, integer *lda, doublereal *d__, doublereal *e,
- doublecomplex *tauq, doublecomplex *taup, doublecomplex *x, integer *
- ldx, doublecomplex *y, integer *ldy)
-{
- /* System generated locals */
- integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
- i__3;
- doublecomplex z__1;
-
- /* Local variables */
- static integer i__;
- static doublecomplex alpha;
- extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *),
- zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *), zlacgv_(integer *, doublecomplex *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZLABRD reduces the first NB rows and columns of a complex general
- m by n matrix A to upper or lower real bidiagonal form by a unitary
- transformation Q' * A * P, and returns the matrices X and Y which
- are needed to apply the transformation to the unreduced part of A.
-
- If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
- bidiagonal form.
-
- This is an auxiliary routine called by ZGEBRD
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows in the matrix A.
-
- N (input) INTEGER
- The number of columns in the matrix A.
-
- NB (input) INTEGER
- The number of leading rows and columns of A to be reduced.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the m by n general matrix to be reduced.
- On exit, the first NB rows and columns of the matrix are
- overwritten; the rest of the array is unchanged.
- If m >= n, elements on and below the diagonal in the first NB
- columns, with the array TAUQ, represent the unitary
- matrix Q as a product of elementary reflectors; and
- elements above the diagonal in the first NB rows, with the
- array TAUP, represent the unitary matrix P as a product
- of elementary reflectors.
- If m < n, elements below the diagonal in the first NB
- columns, with the array TAUQ, represent the unitary
- matrix Q as a product of elementary reflectors, and
- elements on and above the diagonal in the first NB rows,
- with the array TAUP, represent the unitary matrix P as
- a product of elementary reflectors.
- See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- D (output) DOUBLE PRECISION array, dimension (NB)
- The diagonal elements of the first NB rows and columns of
- the reduced matrix. D(i) = A(i,i).
-
- E (output) DOUBLE PRECISION array, dimension (NB)
- The off-diagonal elements of the first NB rows and columns of
- the reduced matrix.
-
- TAUQ (output) COMPLEX*16 array dimension (NB)
- The scalar factors of the elementary reflectors which
- represent the unitary matrix Q. See Further Details.
-
- TAUP (output) COMPLEX*16 array, dimension (NB)
- The scalar factors of the elementary reflectors which
- represent the unitary matrix P. See Further Details.
-
- X (output) COMPLEX*16 array, dimension (LDX,NB)
- The m-by-nb matrix X required to update the unreduced part
- of A.
-
- LDX (input) INTEGER
- The leading dimension of the array X. LDX >= max(1,M).
-
- Y (output) COMPLEX*16 array, dimension (LDY,NB)
- The n-by-nb matrix Y required to update the unreduced part
- of A.
-
- LDY (output) INTEGER
- The leading dimension of the array Y. LDY >= max(1,N).
-
- Further Details
- ===============
-
- The matrices Q and P are represented as products of elementary
- reflectors:
-
- Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
-
- Each H(i) and G(i) has the form:
-
- H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-
- where tauq and taup are complex scalars, and v and u are complex
- vectors.
-
- If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
- A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
- A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
- A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
- A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-
- The elements of the vectors v and u together form the m-by-nb matrix
- V and the nb-by-n matrix U' which are needed, with X and Y, to apply
- the transformation to the unreduced part of the matrix, using a block
- update of the form: A := A - V*Y' - X*U'.
-
- The contents of A on exit are illustrated by the following examples
- with nb = 2:
-
- m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
-
- ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
- ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
- ( v1 v2 a a a ) ( v1 1 a a a a )
- ( v1 v2 a a a ) ( v1 v2 a a a a )
- ( v1 v2 a a a ) ( v1 v2 a a a a )
- ( v1 v2 a a a )
-
- where a denotes an element of the original matrix which is unchanged,
- vi denotes an element of the vector defining H(i), and ui an element
- of the vector defining G(i).
-
- =====================================================================
-
-
- Quick return if possible
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tauq;
- --taup;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1 * 1;
- y -= y_offset;
-
- /* Function Body */
- if (*m <= 0 || *n <= 0) {
- return 0;
- }
-
- if (*m >= *n) {
-
-/* Reduce to upper bidiagonal form */
-
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Update A(i:m,i) */
-
- i__2 = i__ - 1;
- zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda,
- &y[i__ + y_dim1], ldy, &c_b60, &a[i__ + i__ * a_dim1], &
- c__1);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + x_dim1], ldx,
- &a[i__ * a_dim1 + 1], &c__1, &c_b60, &a[i__ + i__ *
- a_dim1], &c__1);
-
-/* Generate reflection Q(i) to annihilate A(i+1:m,i) */
-
- i__2 = i__ + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *m - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- zlarfg_(&i__2, &alpha, &a[min(i__3,*m) + i__ * a_dim1], &c__1, &
- tauq[i__]);
- i__2 = i__;
- d__[i__2] = alpha.r;
- if (i__ < *n) {
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Compute Y(i+1:n,i) */
-
- i__2 = *m - i__ + 1;
- i__3 = *n - i__;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &a[i__ + (
- i__ + 1) * a_dim1], lda, &a[i__ + i__ * a_dim1], &
- c__1, &c_b59, &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &a[i__ +
- a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b59, &
- y[i__ * y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + 1 +
- y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b60, &y[
- i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &x[i__ +
- x_dim1], ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b59, &
- y[i__ * y_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[(i__ +
- 1) * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
- c_b60, &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *n - i__;
- zscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
-
-/* Update A(i,i+1:n) */
-
- i__2 = *n - i__;
- zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
- zlacgv_(&i__, &a[i__ + a_dim1], lda);
- i__2 = *n - i__;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__, &z__1, &y[i__ + 1 +
- y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b60, &a[i__ +
- (i__ + 1) * a_dim1], lda);
- zlacgv_(&i__, &a[i__ + a_dim1], lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[(i__ +
- 1) * a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b60,
- &a[i__ + (i__ + 1) * a_dim1], lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
-
-/* Generate reflection P(i) to annihilate A(i,i+2:n) */
-
- i__2 = i__ + (i__ + 1) * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *n - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- zlarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, &
- taup[i__]);
- i__2 = i__;
- e[i__2] = alpha.r;
- i__2 = i__ + (i__ + 1) * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Compute X(i+1:m,i) */
-
- i__2 = *m - i__;
- i__3 = *n - i__;
- zgemv_("No transpose", &i__2, &i__3, &c_b60, &a[i__ + 1 + (
- i__ + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1],
- lda, &c_b59, &x[i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__;
- zgemv_("Conjugate transpose", &i__2, &i__, &c_b60, &y[i__ + 1
- + y_dim1], ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &
- c_b59, &x[i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__, &z__1, &a[i__ + 1 +
- a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b60, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- zgemv_("No transpose", &i__2, &i__3, &c_b60, &a[(i__ + 1) *
- a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
- c_b59, &x[i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + 1 +
- x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b60, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *m - i__;
- zscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__;
- zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
- }
-/* L10: */
- }
- } else {
-
-/* Reduce to lower bidiagonal form */
-
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Update A(i,i:n) */
-
- i__2 = *n - i__ + 1;
- zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &a[i__ + a_dim1], lda);
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + y_dim1], ldy,
- &a[i__ + a_dim1], lda, &c_b60, &a[i__ + i__ * a_dim1],
- lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &a[i__ + a_dim1], lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
- i__2 = i__ - 1;
- i__3 = *n - i__ + 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[i__ *
- a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b60, &a[i__ +
- i__ * a_dim1], lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
-
-/* Generate reflection P(i) to annihilate A(i,i+1:n) */
-
- i__2 = i__ + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *n - i__ + 1;
-/* Computing MIN */
- i__3 = i__ + 1;
- zlarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, &
- taup[i__]);
- i__2 = i__;
- d__[i__2] = alpha.r;
- if (i__ < *m) {
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Compute X(i+1:m,i) */
-
- i__2 = *m - i__;
- i__3 = *n - i__ + 1;
- zgemv_("No transpose", &i__2, &i__3, &c_b60, &a[i__ + 1 + i__
- * a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b59, &
- x[i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &y[i__ +
- y_dim1], ldy, &a[i__ + i__ * a_dim1], lda, &c_b59, &x[
- i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 +
- a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b60, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__ + 1;
- zgemv_("No transpose", &i__2, &i__3, &c_b60, &a[i__ * a_dim1
- + 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b59, &x[
- i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + 1 +
- x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b60, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *m - i__;
- zscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__ + 1;
- zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
-
-/* Update A(i+1:m,i) */
-
- i__2 = i__ - 1;
- zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 +
- a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b60, &a[i__ +
- 1 + i__ * a_dim1], &c__1);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
- i__2 = *m - i__;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__, &z__1, &x[i__ + 1 +
- x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b60, &a[
- i__ + 1 + i__ * a_dim1], &c__1);
-
-/* Generate reflection Q(i) to annihilate A(i+2:m,i) */
-
- i__2 = i__ + 1 + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *m - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- zlarfg_(&i__2, &alpha, &a[min(i__3,*m) + i__ * a_dim1], &c__1,
- &tauq[i__]);
- i__2 = i__;
- e[i__2] = alpha.r;
- i__2 = i__ + 1 + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Compute Y(i+1:n,i) */
-
- i__2 = *m - i__;
- i__3 = *n - i__;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &a[i__ +
- 1 + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ *
- a_dim1], &c__1, &c_b59, &y[i__ + 1 + i__ * y_dim1], &
- c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &a[i__ +
- 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
- c_b59, &y[i__ * y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + 1 +
- y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b60, &y[
- i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__;
- zgemv_("Conjugate transpose", &i__2, &i__, &c_b60, &x[i__ + 1
- + x_dim1], ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &
- c_b59, &y[i__ * y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("Conjugate transpose", &i__, &i__2, &z__1, &a[(i__ + 1)
- * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
- c_b60, &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *n - i__;
- zscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
- } else {
- i__2 = *n - i__ + 1;
- zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
- }
-/* L20: */
- }
- }
- return 0;
-
-/* End of ZLABRD */
-
-} /* zlabrd_ */
-
-/* Subroutine */ int zlacgv_(integer *n, doublecomplex *x, integer *incx)
-{
- /* System generated locals */
- integer i__1, i__2;
- doublecomplex z__1;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, ioff;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- ZLACGV conjugates a complex vector of length N.
-
- Arguments
- =========
-
- N (input) INTEGER
- The length of the vector X. N >= 0.
-
- X (input/output) COMPLEX*16 array, dimension
- (1+(N-1)*abs(INCX))
- On entry, the vector of length N to be conjugated.
- On exit, X is overwritten with conjg(X).
-
- INCX (input) INTEGER
- The spacing between successive elements of X.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --x;
-
- /* Function Body */
- if (*incx == 1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- d_cnjg(&z__1, &x[i__]);
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
-/* L10: */
- }
- } else {
- ioff = 1;
- if (*incx < 0) {
- ioff = 1 - (*n - 1) * *incx;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = ioff;
- d_cnjg(&z__1, &x[ioff]);
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
- ioff += *incx;
-/* L20: */
- }
- }
- return 0;
-
-/* End of ZLACGV */
-
-} /* zlacgv_ */
-
-/* Subroutine */ int zlacp2_(char *uplo, integer *m, integer *n, doublereal *
- a, integer *lda, doublecomplex *b, integer *ldb)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__, j;
- extern logical lsame_(char *, char *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZLACP2 copies all or part of a real two-dimensional matrix A to a
- complex matrix B.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- Specifies the part of the matrix A to be copied to B.
- = 'U': Upper triangular part
- = 'L': Lower triangular part
- Otherwise: All of the matrix A
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,N)
- The m by n matrix A. If UPLO = 'U', only the upper trapezium
- is accessed; if UPLO = 'L', only the lower trapezium is
- accessed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- B (output) COMPLEX*16 array, dimension (LDB,N)
- On exit, B = A in the locations specified by UPLO.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,M).
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = min(j,*m);
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * a_dim1;
- b[i__3].r = a[i__4], b[i__3].i = 0.;
-/* L10: */
- }
-/* L20: */
- }
-
- } else if (lsame_(uplo, "L")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * a_dim1;
- b[i__3].r = a[i__4], b[i__3].i = 0.;
-/* L30: */
- }
-/* L40: */
- }
-
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * a_dim1;
- b[i__3].r = a[i__4], b[i__3].i = 0.;
-/* L50: */
- }
-/* L60: */
- }
- }
-
- return 0;
-
-/* End of ZLACP2 */
-
-} /* zlacp2_ */
-
-/* Subroutine */ int zlacpy_(char *uplo, integer *m, integer *n,
- doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__, j;
- extern logical lsame_(char *, char *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- ZLACPY copies all or part of a two-dimensional matrix A to another
- matrix B.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- Specifies the part of the matrix A to be copied to B.
- = 'U': Upper triangular part
- = 'L': Lower triangular part
- Otherwise: All of the matrix A
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input) COMPLEX*16 array, dimension (LDA,N)
- The m by n matrix A. If UPLO = 'U', only the upper trapezium
- is accessed; if UPLO = 'L', only the lower trapezium is
- accessed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- B (output) COMPLEX*16 array, dimension (LDB,N)
- On exit, B = A in the locations specified by UPLO.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,M).
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = min(j,*m);
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * a_dim1;
- b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
-/* L10: */
- }
-/* L20: */
- }
-
- } else if (lsame_(uplo, "L")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * a_dim1;
- b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
-/* L30: */
- }
-/* L40: */
- }
-
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * a_dim1;
- b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
-/* L50: */
- }
-/* L60: */
- }
- }
-
- return 0;
-
-/* End of ZLACPY */
-
-} /* zlacpy_ */
-
-/* Subroutine */ int zlacrm_(integer *m, integer *n, doublecomplex *a,
- integer *lda, doublereal *b, integer *ldb, doublecomplex *c__,
- integer *ldc, doublereal *rwork)
-{
- /* System generated locals */
- integer b_dim1, b_offset, a_dim1, a_offset, c_dim1, c_offset, i__1, i__2,
- i__3, i__4, i__5;
- doublereal d__1;
- doublecomplex z__1;
-
- /* Builtin functions */
- double d_imag(doublecomplex *);
-
- /* Local variables */
- static integer i__, j, l;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZLACRM performs a very simple matrix-matrix multiplication:
- C := A * B,
- where A is M by N and complex; B is N by N and real;
- C is M by N and complex.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A and of the matrix C.
- M >= 0.
-
- N (input) INTEGER
- The number of columns and rows of the matrix B and
- the number of columns of the matrix C.
- N >= 0.
-
- A (input) COMPLEX*16 array, dimension (LDA, N)
- A contains the M by N matrix A.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >=max(1,M).
-
- B (input) DOUBLE PRECISION array, dimension (LDB, N)
- B contains the N by N matrix B.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >=max(1,N).
-
- C (input) COMPLEX*16 array, dimension (LDC, N)
- C contains the M by N matrix C.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >=max(1,N).
-
- RWORK (workspace) DOUBLE PRECISION array, dimension (2*M*N)
-
- =====================================================================
-
-
- Quick return if possible.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --rwork;
-
- /* Function Body */
- if (*m == 0 || *n == 0) {
- return 0;
- }
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- rwork[(j - 1) * *m + i__] = a[i__3].r;
-/* L10: */
- }
-/* L20: */
- }
-
- l = *m * *n + 1;
- dgemm_("N", "N", m, n, n, &c_b1015, &rwork[1], m, &b[b_offset], ldb, &
- c_b324, &rwork[l], m);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = l + (j - 1) * *m + i__ - 1;
- c__[i__3].r = rwork[i__4], c__[i__3].i = 0.;
-/* L30: */
- }
-/* L40: */
- }
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- rwork[(j - 1) * *m + i__] = d_imag(&a[i__ + j * a_dim1]);
-/* L50: */
- }
-/* L60: */
- }
- dgemm_("N", "N", m, n, n, &c_b1015, &rwork[1], m, &b[b_offset], ldb, &
- c_b324, &rwork[l], m);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- d__1 = c__[i__4].r;
- i__5 = l + (j - 1) * *m + i__ - 1;
- z__1.r = d__1, z__1.i = rwork[i__5];
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L70: */
- }
-/* L80: */
- }
-
- return 0;
-
-/* End of ZLACRM */
-
-} /* zlacrm_ */
-
-/* Double Complex */ VOID zladiv_(doublecomplex * ret_val, doublecomplex *x,
- doublecomplex *y)
-{
- /* System generated locals */
- doublereal d__1, d__2, d__3, d__4;
- doublecomplex z__1;
-
- /* Builtin functions */
- double d_imag(doublecomplex *);
-
- /* Local variables */
- static doublereal zi, zr;
- extern /* Subroutine */ int dladiv_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- ZLADIV := X / Y, where X and Y are complex. The computation of X / Y
- will not overflow on an intermediary step unless the results
- overflows.
-
- Arguments
- =========
-
- X (input) COMPLEX*16
- Y (input) COMPLEX*16
- The complex scalars X and Y.
-
- =====================================================================
-*/
-
-
- d__1 = x->r;
- d__2 = d_imag(x);
- d__3 = y->r;
- d__4 = d_imag(y);
- dladiv_(&d__1, &d__2, &d__3, &d__4, &zr, &zi);
- z__1.r = zr, z__1.i = zi;
- ret_val->r = z__1.r, ret_val->i = z__1.i;
-
- return ;
-
-/* End of ZLADIV */
-
-} /* zladiv_ */
-
-/* Subroutine */ int zlaed0_(integer *qsiz, integer *n, doublereal *d__,
- doublereal *e, doublecomplex *q, integer *ldq, doublecomplex *qstore,
- integer *ldqs, doublereal *rwork, integer *iwork, integer *info)
-{
- /* System generated locals */
- integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
- doublereal d__1;
-
- /* Builtin functions */
- double log(doublereal);
- integer pow_ii(integer *, integer *);
-
- /* Local variables */
- static integer i__, j, k, ll, iq, lgn, msd2, smm1, spm1, spm2;
- static doublereal temp;
- static integer curr, iperm;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- static integer indxq, iwrem, iqptr, tlvls;
- extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zlaed7_(integer *, integer *,
- integer *, integer *, integer *, integer *, doublereal *,
- doublecomplex *, integer *, doublereal *, integer *, doublereal *,
- integer *, integer *, integer *, integer *, integer *,
- doublereal *, doublecomplex *, doublereal *, integer *, integer *)
- ;
- static integer igivcl;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zlacrm_(integer *, integer *, doublecomplex *,
- integer *, doublereal *, integer *, doublecomplex *, integer *,
- doublereal *);
- static integer igivnm, submat, curprb, subpbs, igivpt;
- extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *);
- static integer curlvl, matsiz, iprmpt, smlsiz;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- Using the divide and conquer method, ZLAED0 computes all eigenvalues
- of a symmetric tridiagonal matrix which is one diagonal block of
- those from reducing a dense or band Hermitian matrix and
- corresponding eigenvectors of the dense or band matrix.
-
- Arguments
- =========
-
- QSIZ (input) INTEGER
- The dimension of the unitary matrix used to reduce
- the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the diagonal elements of the tridiagonal matrix.
- On exit, the eigenvalues in ascending order.
-
- E (input/output) DOUBLE PRECISION array, dimension (N-1)
- On entry, the off-diagonal elements of the tridiagonal matrix.
- On exit, E has been destroyed.
-
- Q (input/output) COMPLEX*16 array, dimension (LDQ,N)
- On entry, Q must contain an QSIZ x N matrix whose columns
- unitarily orthonormal. It is a part of the unitary matrix
- that reduces the full dense Hermitian matrix to a
- (reducible) symmetric tridiagonal matrix.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max(1,N).
-
- IWORK (workspace) INTEGER array,
- the dimension of IWORK must be at least
- 6 + 6*N + 5*N*lg N
- ( lg( N ) = smallest integer k
- such that 2^k >= N )
-
- RWORK (workspace) DOUBLE PRECISION array,
- dimension (1 + 3*N + 2*N*lg N + 3*N**2)
- ( lg( N ) = smallest integer k
- such that 2^k >= N )
-
- QSTORE (workspace) COMPLEX*16 array, dimension (LDQS, N)
- Used to store parts of
- the eigenvector matrix when the updating matrix multiplies
- take place.
-
- LDQS (input) INTEGER
- The leading dimension of the array QSTORE.
- LDQS >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The algorithm failed to compute an eigenvalue while
- working on the submatrix lying in rows and columns
- INFO/(N+1) through mod(INFO,N+1).
-
- =====================================================================
-
- Warning: N could be as big as QSIZ!
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- qstore_dim1 = *ldqs;
- qstore_offset = 1 + qstore_dim1 * 1;
- qstore -= qstore_offset;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
-/*
- IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
- INFO = -1
- ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
- $ THEN
-*/
- if (*qsiz < max(0,*n)) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*ldq < max(1,*n)) {
- *info = -6;
- } else if (*ldqs < max(1,*n)) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLAED0", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- smlsiz = ilaenv_(&c__9, "ZLAED0", " ", &c__0, &c__0, &c__0, &c__0, (
- ftnlen)6, (ftnlen)1);
-
-/*
- Determine the size and placement of the submatrices, and save in
- the leading elements of IWORK.
-*/
-
- iwork[1] = *n;
- subpbs = 1;
- tlvls = 0;
-L10:
- if (iwork[subpbs] > smlsiz) {
- for (j = subpbs; j >= 1; --j) {
- iwork[j * 2] = (iwork[j] + 1) / 2;
- iwork[((j) << (1)) - 1] = iwork[j] / 2;
-/* L20: */
- }
- ++tlvls;
- subpbs <<= 1;
- goto L10;
- }
- i__1 = subpbs;
- for (j = 2; j <= i__1; ++j) {
- iwork[j] += iwork[j - 1];
-/* L30: */
- }
-
-/*
- Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
- using rank-1 modifications (cuts).
-*/
-
- spm1 = subpbs - 1;
- i__1 = spm1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- submat = iwork[i__] + 1;
- smm1 = submat - 1;
- d__[smm1] -= (d__1 = e[smm1], abs(d__1));
- d__[submat] -= (d__1 = e[smm1], abs(d__1));
-/* L40: */
- }
-
- indxq = ((*n) << (2)) + 3;
-
-/*
- Set up workspaces for eigenvalues only/accumulate new vectors
- routine
-*/
-
- temp = log((doublereal) (*n)) / log(2.);
- lgn = (integer) temp;
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- iprmpt = indxq + *n + 1;
- iperm = iprmpt + *n * lgn;
- iqptr = iperm + *n * lgn;
- igivpt = iqptr + *n + 2;
- igivcl = igivpt + *n * lgn;
-
- igivnm = 1;
- iq = igivnm + ((*n) << (1)) * lgn;
-/* Computing 2nd power */
- i__1 = *n;
- iwrem = iq + i__1 * i__1 + 1;
-/* Initialize pointers */
- i__1 = subpbs;
- for (i__ = 0; i__ <= i__1; ++i__) {
- iwork[iprmpt + i__] = 1;
- iwork[igivpt + i__] = 1;
-/* L50: */
- }
- iwork[iqptr] = 1;
-
-/*
- Solve each submatrix eigenproblem at the bottom of the divide and
- conquer tree.
-*/
-
- curr = 0;
- i__1 = spm1;
- for (i__ = 0; i__ <= i__1; ++i__) {
- if (i__ == 0) {
- submat = 1;
- matsiz = iwork[1];
- } else {
- submat = iwork[i__] + 1;
- matsiz = iwork[i__ + 1] - iwork[i__];
- }
- ll = iq - 1 + iwork[iqptr + curr];
- dsteqr_("I", &matsiz, &d__[submat], &e[submat], &rwork[ll], &matsiz, &
- rwork[1], info);
- zlacrm_(qsiz, &matsiz, &q[submat * q_dim1 + 1], ldq, &rwork[ll], &
- matsiz, &qstore[submat * qstore_dim1 + 1], ldqs, &rwork[iwrem]
- );
-/* Computing 2nd power */
- i__2 = matsiz;
- iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
- ++curr;
- if (*info > 0) {
- *info = submat * (*n + 1) + submat + matsiz - 1;
- return 0;
- }
- k = 1;
- i__2 = iwork[i__ + 1];
- for (j = submat; j <= i__2; ++j) {
- iwork[indxq + j] = k;
- ++k;
-/* L60: */
- }
-/* L70: */
- }
-
-/*
- Successively merge eigensystems of adjacent submatrices
- into eigensystem for the corresponding larger matrix.
-
- while ( SUBPBS > 1 )
-*/
-
- curlvl = 1;
-L80:
- if (subpbs > 1) {
- spm2 = subpbs - 2;
- i__1 = spm2;
- for (i__ = 0; i__ <= i__1; i__ += 2) {
- if (i__ == 0) {
- submat = 1;
- matsiz = iwork[2];
- msd2 = iwork[1];
- curprb = 0;
- } else {
- submat = iwork[i__] + 1;
- matsiz = iwork[i__ + 2] - iwork[i__];
- msd2 = matsiz / 2;
- ++curprb;
- }
-
-/*
- Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
- into an eigensystem of size MATSIZ. ZLAED7 handles the case
- when the eigenvectors of a full or band Hermitian matrix (which
- was reduced to tridiagonal form) are desired.
-
- I am free to use Q as a valuable working space until Loop 150.
-*/
-
- zlaed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &d__[
- submat], &qstore[submat * qstore_dim1 + 1], ldqs, &e[
- submat + msd2 - 1], &iwork[indxq + submat], &rwork[iq], &
- iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[
- igivpt], &iwork[igivcl], &rwork[igivnm], &q[submat *
- q_dim1 + 1], &rwork[iwrem], &iwork[subpbs + 1], info);
- if (*info > 0) {
- *info = submat * (*n + 1) + submat + matsiz - 1;
- return 0;
- }
- iwork[i__ / 2 + 1] = iwork[i__ + 2];
-/* L90: */
- }
- subpbs /= 2;
- ++curlvl;
- goto L80;
- }
-
-/*
- end while
-
- Re-merge the eigenvalues/vectors which were deflated at the final
- merge step.
-*/
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- j = iwork[indxq + i__];
- rwork[i__] = d__[j];
- zcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 + 1]
- , &c__1);
-/* L100: */
- }
- dcopy_(n, &rwork[1], &c__1, &d__[1], &c__1);
-
- return 0;
-
-/* End of ZLAED0 */
-
-} /* zlaed0_ */
-
-/* Subroutine */ int zlaed7_(integer *n, integer *cutpnt, integer *qsiz,
- integer *tlvls, integer *curlvl, integer *curpbm, doublereal *d__,
- doublecomplex *q, integer *ldq, doublereal *rho, integer *indxq,
- doublereal *qstore, integer *qptr, integer *prmptr, integer *perm,
- integer *givptr, integer *givcol, doublereal *givnum, doublecomplex *
- work, doublereal *rwork, integer *iwork, integer *info)
-{
- /* System generated locals */
- integer q_dim1, q_offset, i__1, i__2;
-
- /* Builtin functions */
- integer pow_ii(integer *, integer *);
-
- /* Local variables */
- static integer i__, k, n1, n2, iq, iw, iz, ptr, ind1, ind2, indx, curr,
- indxc, indxp;
- extern /* Subroutine */ int dlaed9_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *),
- zlaed8_(integer *, integer *, integer *, doublecomplex *, integer
- *, doublereal *, doublereal *, integer *, doublereal *,
- doublereal *, doublecomplex *, integer *, doublereal *, integer *,
- integer *, integer *, integer *, integer *, integer *,
- doublereal *, integer *), dlaeda_(integer *, integer *, integer *,
- integer *, integer *, integer *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- integer *);
- static integer idlmda;
- extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), xerbla_(char *, integer *), zlacrm_(integer *, integer *, doublecomplex *, integer *,
- doublereal *, integer *, doublecomplex *, integer *, doublereal *
- );
- static integer coltyp;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZLAED7 computes the updated eigensystem of a diagonal
- matrix after modification by a rank-one symmetric matrix. This
- routine is used only for the eigenproblem which requires all
- eigenvalues and optionally eigenvectors of a dense or banded
- Hermitian matrix that has been reduced to tridiagonal form.
-
- T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
-
- where Z = Q'u, u is a vector of length N with ones in the
- CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
-
- The eigenvectors of the original matrix are stored in Q, and the
- eigenvalues are in D. The algorithm consists of three stages:
-
- The first stage consists of deflating the size of the problem
- when there are multiple eigenvalues or if there is a zero in
- the Z vector. For each such occurence the dimension of the
- secular equation problem is reduced by one. This stage is
- performed by the routine DLAED2.
-
- The second stage consists of calculating the updated
- eigenvalues. This is done by finding the roots of the secular
- equation via the routine DLAED4 (as called by SLAED3).
- This routine also calculates the eigenvectors of the current
- problem.
-
- The final stage consists of computing the updated eigenvectors
- directly using the updated eigenvalues. The eigenvectors for
- the current problem are multiplied with the eigenvectors from
- the overall problem.
-
- Arguments
- =========
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- CUTPNT (input) INTEGER
- Contains the location of the last eigenvalue in the leading
- sub-matrix. min(1,N) <= CUTPNT <= N.
-
- QSIZ (input) INTEGER
- The dimension of the unitary matrix used to reduce
- the full matrix to tridiagonal form. QSIZ >= N.
-
- TLVLS (input) INTEGER
- The total number of merging levels in the overall divide and
- conquer tree.
-
- CURLVL (input) INTEGER
- The current level in the overall merge routine,
- 0 <= curlvl <= tlvls.
-
- CURPBM (input) INTEGER
- The current problem in the current level in the overall
- merge routine (counting from upper left to lower right).
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the eigenvalues of the rank-1-perturbed matrix.
- On exit, the eigenvalues of the repaired matrix.
-
- Q (input/output) COMPLEX*16 array, dimension (LDQ,N)
- On entry, the eigenvectors of the rank-1-perturbed matrix.
- On exit, the eigenvectors of the repaired tridiagonal matrix.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max(1,N).
-
- RHO (input) DOUBLE PRECISION
- Contains the subdiagonal element used to create the rank-1
- modification.
-
- INDXQ (output) INTEGER array, dimension (N)
- This contains the permutation which will reintegrate the
- subproblem just solved back into sorted order,
- ie. D( INDXQ( I = 1, N ) ) will be in ascending order.
-
- IWORK (workspace) INTEGER array, dimension (4*N)
-
- RWORK (workspace) DOUBLE PRECISION array,
- dimension (3*N+2*QSIZ*N)
-
- WORK (workspace) COMPLEX*16 array, dimension (QSIZ*N)
-
- QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)
- Stores eigenvectors of submatrices encountered during
- divide and conquer, packed together. QPTR points to
- beginning of the submatrices.
-
- QPTR (input/output) INTEGER array, dimension (N+2)
- List of indices pointing to beginning of submatrices stored
- in QSTORE. The submatrices are numbered starting at the
- bottom left of the divide and conquer tree, from left to
- right and bottom to top.
-
- PRMPTR (input) INTEGER array, dimension (N lg N)
- Contains a list of pointers which indicate where in PERM a
- level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
- indicates the size of the permutation and also the size of
- the full, non-deflated problem.
-
- PERM (input) INTEGER array, dimension (N lg N)
- Contains the permutations (from deflation and sorting) to be
- applied to each eigenblock.
-
- GIVPTR (input) INTEGER array, dimension (N lg N)
- Contains a list of pointers which indicate where in GIVCOL a
- level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
- indicates the number of Givens rotations.
-
- GIVCOL (input) INTEGER array, dimension (2, N lg N)
- Each pair of numbers indicates a pair of columns to take place
- in a Givens rotation.
-
- GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
- Each number indicates the S value to be used in the
- corresponding Givens rotation.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an eigenvalue did not converge
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --indxq;
- --qstore;
- --qptr;
- --prmptr;
- --perm;
- --givptr;
- givcol -= 3;
- givnum -= 3;
- --work;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
-/*
- IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
-*/
- if (*n < 0) {
- *info = -1;
- } else if (min(1,*n) > *cutpnt || *n < *cutpnt) {
- *info = -2;
- } else if (*qsiz < *n) {
- *info = -3;
- } else if (*ldq < max(1,*n)) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLAED7", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
-/*
- The following values are for bookkeeping purposes only. They are
- integer pointers which indicate the portion of the workspace
- used by a particular array in DLAED2 and SLAED3.
-*/
-
- iz = 1;
- idlmda = iz + *n;
- iw = idlmda + *n;
- iq = iw + *n;
-
- indx = 1;
- indxc = indx + *n;
- coltyp = indxc + *n;
- indxp = coltyp + *n;
-
-/*
- Form the z-vector which consists of the last row of Q_1 and the
- first row of Q_2.
-*/
-
- ptr = pow_ii(&c__2, tlvls) + 1;
- i__1 = *curlvl - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *tlvls - i__;
- ptr += pow_ii(&c__2, &i__2);
-/* L10: */
- }
- curr = ptr + *curpbm;
- dlaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], &
- givcol[3], &givnum[3], &qstore[1], &qptr[1], &rwork[iz], &rwork[
- iz + *n], info);
-
-/*
- When solving the final problem, we no longer need the stored data,
- so we will overwrite the data from this level onto the previously
- used storage space.
-*/
-
- if (*curlvl == *tlvls) {
- qptr[curr] = 1;
- prmptr[curr] = 1;
- givptr[curr] = 1;
- }
-
-/* Sort and Deflate eigenvalues. */
-
- zlaed8_(&k, n, qsiz, &q[q_offset], ldq, &d__[1], rho, cutpnt, &rwork[iz],
- &rwork[idlmda], &work[1], qsiz, &rwork[iw], &iwork[indxp], &iwork[
- indx], &indxq[1], &perm[prmptr[curr]], &givptr[curr + 1], &givcol[
- ((givptr[curr]) << (1)) + 1], &givnum[((givptr[curr]) << (1)) + 1]
- , info);
- prmptr[curr + 1] = prmptr[curr] + *n;
- givptr[curr + 1] += givptr[curr];
-
-/* Solve Secular Equation. */
-
- if (k != 0) {
- dlaed9_(&k, &c__1, &k, n, &d__[1], &rwork[iq], &k, rho, &rwork[idlmda]
- , &rwork[iw], &qstore[qptr[curr]], &k, info);
- zlacrm_(qsiz, &k, &work[1], qsiz, &qstore[qptr[curr]], &k, &q[
- q_offset], ldq, &rwork[iq]);
-/* Computing 2nd power */
- i__1 = k;
- qptr[curr + 1] = qptr[curr] + i__1 * i__1;
- if (*info != 0) {
- return 0;
- }
-
-/* Prepare the INDXQ sorting premutation. */
-
- n1 = k;
- n2 = *n - k;
- ind1 = 1;
- ind2 = *n;
- dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
- } else {
- qptr[curr + 1] = qptr[curr];
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- indxq[i__] = i__;
-/* L20: */
- }
- }
-
- return 0;
-
-/* End of ZLAED7 */
-
-} /* zlaed7_ */
-
-/* Subroutine */ int zlaed8_(integer *k, integer *n, integer *qsiz,
- doublecomplex *q, integer *ldq, doublereal *d__, doublereal *rho,
- integer *cutpnt, doublereal *z__, doublereal *dlamda, doublecomplex *
- q2, integer *ldq2, doublereal *w, integer *indxp, integer *indx,
- integer *indxq, integer *perm, integer *givptr, integer *givcol,
- doublereal *givnum, integer *info)
-{
- /* System generated locals */
- integer q_dim1, q_offset, q2_dim1, q2_offset, i__1;
- doublereal d__1;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static doublereal c__;
- static integer i__, j;
- static doublereal s, t;
- static integer k2, n1, n2, jp, n1p1;
- static doublereal eps, tau, tol;
- static integer jlam, imax, jmax;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *), dcopy_(integer *, doublereal *, integer *, doublereal
- *, integer *), zdrot_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublereal *, doublereal *), zcopy_(
- integer *, doublecomplex *, integer *, doublecomplex *, integer *)
- ;
-
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), xerbla_(char *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *,
- integer *, doublecomplex *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
- Courant Institute, NAG Ltd., and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZLAED8 merges the two sets of eigenvalues together into a single
- sorted set. Then it tries to deflate the size of the problem.
- There are two ways in which deflation can occur: when two or more
- eigenvalues are close together or if there is a tiny element in the
- Z vector. For each such occurrence the order of the related secular
- equation problem is reduced by one.
-
- Arguments
- =========
-
- K (output) INTEGER
- Contains the number of non-deflated eigenvalues.
- This is the order of the related secular equation.
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- QSIZ (input) INTEGER
- The dimension of the unitary matrix used to reduce
- the dense or band matrix to tridiagonal form.
- QSIZ >= N if ICOMPQ = 1.
-
- Q (input/output) COMPLEX*16 array, dimension (LDQ,N)
- On entry, Q contains the eigenvectors of the partially solved
- system which has been previously updated in matrix
- multiplies with other partially solved eigensystems.
- On exit, Q contains the trailing (N-K) updated eigenvectors
- (those which were deflated) in its last N-K columns.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max( 1, N ).
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, D contains the eigenvalues of the two submatrices to
- be combined. On exit, D contains the trailing (N-K) updated
- eigenvalues (those which were deflated) sorted into increasing
- order.
-
- RHO (input/output) DOUBLE PRECISION
- Contains the off diagonal element associated with the rank-1
- cut which originally split the two submatrices which are now
- being recombined. RHO is modified during the computation to
- the value required by DLAED3.
-
- CUTPNT (input) INTEGER
- Contains the location of the last eigenvalue in the leading
- sub-matrix. MIN(1,N) <= CUTPNT <= N.
-
- Z (input) DOUBLE PRECISION array, dimension (N)
- On input this vector contains the updating vector (the last
- row of the first sub-eigenvector matrix and the first row of
- the second sub-eigenvector matrix). The contents of Z are
- destroyed during the updating process.
-
- DLAMDA (output) DOUBLE PRECISION array, dimension (N)
- Contains a copy of the first K eigenvalues which will be used
- by DLAED3 to form the secular equation.
-
- Q2 (output) COMPLEX*16 array, dimension (LDQ2,N)
- If ICOMPQ = 0, Q2 is not referenced. Otherwise,
- Contains a copy of the first K eigenvectors which will be used
- by DLAED7 in a matrix multiply (DGEMM) to update the new
- eigenvectors.
-
- LDQ2 (input) INTEGER
- The leading dimension of the array Q2. LDQ2 >= max( 1, N ).
-
- W (output) DOUBLE PRECISION array, dimension (N)
- This will hold the first k values of the final
- deflation-altered z-vector and will be passed to DLAED3.
-
- INDXP (workspace) INTEGER array, dimension (N)
- This will contain the permutation used to place deflated
- values of D at the end of the array. On output INDXP(1:K)
- points to the nondeflated D-values and INDXP(K+1:N)
- points to the deflated eigenvalues.
-
- INDX (workspace) INTEGER array, dimension (N)
- This will contain the permutation used to sort the contents of
- D into ascending order.
-
- INDXQ (input) INTEGER array, dimension (N)
- This contains the permutation which separately sorts the two
- sub-problems in D into ascending order. Note that elements in
- the second half of this permutation must first have CUTPNT
- added to their values in order to be accurate.
-
- PERM (output) INTEGER array, dimension (N)
- Contains the permutations (from deflation and sorting) to be
- applied to each eigenblock.
-
- GIVPTR (output) INTEGER
- Contains the number of Givens rotations which took place in
- this subproblem.
-
- GIVCOL (output) INTEGER array, dimension (2, N)
- Each pair of numbers indicates a pair of columns to take place
- in a Givens rotation.
-
- GIVNUM (output) DOUBLE PRECISION array, dimension (2, N)
- Each number indicates the S value to be used in the
- corresponding Givens rotation.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --d__;
- --z__;
- --dlamda;
- q2_dim1 = *ldq2;
- q2_offset = 1 + q2_dim1 * 1;
- q2 -= q2_offset;
- --w;
- --indxp;
- --indx;
- --indxq;
- --perm;
- givcol -= 3;
- givnum -= 3;
-
- /* Function Body */
- *info = 0;
-
- if (*n < 0) {
- *info = -2;
- } else if (*qsiz < *n) {
- *info = -3;
- } else if (*ldq < max(1,*n)) {
- *info = -5;
- } else if (*cutpnt < min(1,*n) || *cutpnt > *n) {
- *info = -8;
- } else if (*ldq2 < max(1,*n)) {
- *info = -12;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLAED8", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- n1 = *cutpnt;
- n2 = *n - n1;
- n1p1 = n1 + 1;
-
- if (*rho < 0.) {
- dscal_(&n2, &c_b1294, &z__[n1p1], &c__1);
- }
-
-/* Normalize z so that norm(z) = 1 */
-
- t = 1. / sqrt(2.);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- indx[j] = j;
-/* L10: */
- }
- dscal_(n, &t, &z__[1], &c__1);
- *rho = (d__1 = *rho * 2., abs(d__1));
-
-/* Sort the eigenvalues into increasing order */
-
- i__1 = *n;
- for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) {
- indxq[i__] += *cutpnt;
-/* L20: */
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlamda[i__] = d__[indxq[i__]];
- w[i__] = z__[indxq[i__]];
-/* L30: */
- }
- i__ = 1;
- j = *cutpnt + 1;
- dlamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]);
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = dlamda[indx[i__]];
- z__[i__] = w[indx[i__]];
-/* L40: */
- }
-
-/* Calculate the allowable deflation tolerance */
-
- imax = idamax_(n, &z__[1], &c__1);
- jmax = idamax_(n, &d__[1], &c__1);
- eps = EPSILON;
- tol = eps * 8. * (d__1 = d__[jmax], abs(d__1));
-
-/*
- If the rank-1 modifier is small enough, no more needs to be done
- -- except to reorganize Q so that its columns correspond with the
- elements in D.
-*/
-
- if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
- *k = 0;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- perm[j] = indxq[indx[j]];
- zcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1]
- , &c__1);
-/* L50: */
- }
- zlacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq);
- return 0;
- }
-
-/*
- If there are multiple eigenvalues then the problem deflates. Here
- the number of equal eigenvalues are found. As each equal
- eigenvalue is found, an elementary reflector is computed to rotate
- the corresponding eigensubspace so that the corresponding
- components of Z are zero in this new basis.
-*/
-
- *k = 0;
- *givptr = 0;
- k2 = *n + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {
-
-/* Deflate due to small z component. */
-
- --k2;
- indxp[k2] = j;
- if (j == *n) {
- goto L100;
- }
- } else {
- jlam = j;
- goto L70;
- }
-/* L60: */
- }
-L70:
- ++j;
- if (j > *n) {
- goto L90;
- }
- if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {
-
-/* Deflate due to small z component. */
-
- --k2;
- indxp[k2] = j;
- } else {
-
-/* Check if eigenvalues are close enough to allow deflation. */
-
- s = z__[jlam];
- c__ = z__[j];
-
-/*
- Find sqrt(a**2+b**2) without overflow or
- destructive underflow.
-*/
-
- tau = dlapy2_(&c__, &s);
- t = d__[j] - d__[jlam];
- c__ /= tau;
- s = -s / tau;
- if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {
-
-/* Deflation is possible. */
-
- z__[j] = tau;
- z__[jlam] = 0.;
-
-/* Record the appropriate Givens rotation */
-
- ++(*givptr);
- givcol[((*givptr) << (1)) + 1] = indxq[indx[jlam]];
- givcol[((*givptr) << (1)) + 2] = indxq[indx[j]];
- givnum[((*givptr) << (1)) + 1] = c__;
- givnum[((*givptr) << (1)) + 2] = s;
- zdrot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[indxq[
- indx[j]] * q_dim1 + 1], &c__1, &c__, &s);
- t = d__[jlam] * c__ * c__ + d__[j] * s * s;
- d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__;
- d__[jlam] = t;
- --k2;
- i__ = 1;
-L80:
- if (k2 + i__ <= *n) {
- if (d__[jlam] < d__[indxp[k2 + i__]]) {
- indxp[k2 + i__ - 1] = indxp[k2 + i__];
- indxp[k2 + i__] = jlam;
- ++i__;
- goto L80;
- } else {
- indxp[k2 + i__ - 1] = jlam;
- }
- } else {
- indxp[k2 + i__ - 1] = jlam;
- }
- jlam = j;
- } else {
- ++(*k);
- w[*k] = z__[jlam];
- dlamda[*k] = d__[jlam];
- indxp[*k] = jlam;
- jlam = j;
- }
- }
- goto L70;
-L90:
-
-/* Record the last eigenvalue. */
-
- ++(*k);
- w[*k] = z__[jlam];
- dlamda[*k] = d__[jlam];
- indxp[*k] = jlam;
-
-L100:
-
-/*
- Sort the eigenvalues and corresponding eigenvectors into DLAMDA
- and Q2 respectively. The eigenvalues/vectors which were not
- deflated go into the first K slots of DLAMDA and Q2 respectively,
- while those which were deflated go into the last N - K slots.
-*/
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- jp = indxp[j];
- dlamda[j] = d__[jp];
- perm[j] = indxq[indx[jp]];
- zcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1], &
- c__1);
-/* L110: */
- }
-
-/*
- The deflated eigenvalues and their corresponding vectors go back
- into the last N - K slots of D and Q respectively.
-*/
-
- if (*k < *n) {
- i__1 = *n - *k;
- dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
- i__1 = *n - *k;
- zlacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(*k +
- 1) * q_dim1 + 1], ldq);
- }
-
- return 0;
-
-/* End of ZLAED8 */
-
-} /* zlaed8_ */
-
-/* Subroutine */ int zlahqr_(logical *wantt, logical *wantz, integer *n,
- integer *ilo, integer *ihi, doublecomplex *h__, integer *ldh,
- doublecomplex *w, integer *iloz, integer *ihiz, doublecomplex *z__,
- integer *ldz, integer *info)
-{
- /* System generated locals */
- integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1, d__2, d__3, d__4, d__5, d__6;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Builtin functions */
- double d_imag(doublecomplex *);
- void z_sqrt(doublecomplex *, doublecomplex *), d_cnjg(doublecomplex *,
- doublecomplex *);
- double z_abs(doublecomplex *);
-
- /* Local variables */
- static integer i__, j, k, l, m;
- static doublereal s;
- static doublecomplex t, u, v[2], x, y;
- static integer i1, i2;
- static doublecomplex t1;
- static doublereal t2;
- static doublecomplex v2;
- static doublereal h10;
- static doublecomplex h11;
- static doublereal h21;
- static doublecomplex h22;
- static integer nh, nz;
- static doublecomplex h11s;
- static integer itn, its;
- static doublereal ulp;
- static doublecomplex sum;
- static doublereal tst1;
- static doublecomplex temp;
- extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *);
- static doublereal rtemp, rwork[1];
- extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
-
- extern /* Subroutine */ int zlarfg_(integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *);
- extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
- doublecomplex *);
- extern doublereal zlanhs_(char *, integer *, doublecomplex *, integer *,
- doublereal *);
- static doublereal smlnum;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZLAHQR is an auxiliary routine called by ZHSEQR to update the
- eigenvalues and Schur decomposition already computed by ZHSEQR, by
- dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
-
- Arguments
- =========
-
- WANTT (input) LOGICAL
- = .TRUE. : the full Schur form T is required;
- = .FALSE.: only eigenvalues are required.
-
- WANTZ (input) LOGICAL
- = .TRUE. : the matrix of Schur vectors Z is required;
- = .FALSE.: Schur vectors are not required.
-
- N (input) INTEGER
- The order of the matrix H. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- It is assumed that H is already upper triangular in rows and
- columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
- ZLAHQR works primarily with the Hessenberg submatrix in rows
- and columns ILO to IHI, but applies transformations to all of
- H if WANTT is .TRUE..
- 1 <= ILO <= max(1,IHI); IHI <= N.
-
- H (input/output) COMPLEX*16 array, dimension (LDH,N)
- On entry, the upper Hessenberg matrix H.
- On exit, if WANTT is .TRUE., H is upper triangular in rows
- and columns ILO:IHI, with any 2-by-2 diagonal blocks in
- standard form. If WANTT is .FALSE., the contents of H are
- unspecified on exit.
-
- LDH (input) INTEGER
- The leading dimension of the array H. LDH >= max(1,N).
-
- W (output) COMPLEX*16 array, dimension (N)
- The computed eigenvalues ILO to IHI are stored in the
- corresponding elements of W. If WANTT is .TRUE., the
- eigenvalues are stored in the same order as on the diagonal
- of the Schur form returned in H, with W(i) = H(i,i).
-
- ILOZ (input) INTEGER
- IHIZ (input) INTEGER
- Specify the rows of Z to which transformations must be
- applied if WANTZ is .TRUE..
- 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
-
- Z (input/output) COMPLEX*16 array, dimension (LDZ,N)
- If WANTZ is .TRUE., on entry Z must contain the current
- matrix Z of transformations accumulated by ZHSEQR, and on
- exit Z has been updated; transformations are applied only to
- the submatrix Z(ILOZ:IHIZ,ILO:IHI).
- If WANTZ is .FALSE., Z is not referenced.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- > 0: if INFO = i, ZLAHQR failed to compute all the
- eigenvalues ILO to IHI in a total of 30*(IHI-ILO+1)
- iterations; elements i+1:ihi of W contain those
- eigenvalues which have been successfully computed.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
-
- /* Function Body */
- *info = 0;
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
- if (*ilo == *ihi) {
- i__1 = *ilo;
- i__2 = *ilo + *ilo * h_dim1;
- w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
- return 0;
- }
-
- nh = *ihi - *ilo + 1;
- nz = *ihiz - *iloz + 1;
-
-/*
- Set machine-dependent constants for the stopping criterion.
- If norm(H) <= sqrt(OVFL), overflow should not occur.
-*/
-
- ulp = PRECISION;
- smlnum = SAFEMINIMUM / ulp;
-
-/*
- I1 and I2 are the indices of the first row and last column of H
- to which transformations must be applied. If eigenvalues only are
- being computed, I1 and I2 are set inside the main loop.
-*/
-
- if (*wantt) {
- i1 = 1;
- i2 = *n;
- }
-
-/* ITN is the total number of QR iterations allowed. */
-
- itn = nh * 30;
-
-/*
- The main loop begins here. I is the loop index and decreases from
- IHI to ILO in steps of 1. Each iteration of the loop works
- with the active submatrix in rows and columns L to I.
- Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
- H(L,L-1) is negligible so that the matrix splits.
-*/
-
- i__ = *ihi;
-L10:
- if (i__ < *ilo) {
- goto L130;
- }
-
-/*
- Perform QR iterations on rows and columns ILO to I until a
- submatrix of order 1 splits off at the bottom because a
- subdiagonal element has become negligible.
-*/
-
- l = *ilo;
- i__1 = itn;
- for (its = 0; its <= i__1; ++its) {
-
-/* Look for a single small subdiagonal element. */
-
- i__2 = l + 1;
- for (k = i__; k >= i__2; --k) {
- i__3 = k - 1 + (k - 1) * h_dim1;
- i__4 = k + k * h_dim1;
- tst1 = (d__1 = h__[i__3].r, abs(d__1)) + (d__2 = d_imag(&h__[k -
- 1 + (k - 1) * h_dim1]), abs(d__2)) + ((d__3 = h__[i__4].r,
- abs(d__3)) + (d__4 = d_imag(&h__[k + k * h_dim1]), abs(
- d__4)));
- if (tst1 == 0.) {
- i__3 = i__ - l + 1;
- tst1 = zlanhs_("1", &i__3, &h__[l + l * h_dim1], ldh, rwork);
- }
- i__3 = k + (k - 1) * h_dim1;
-/* Computing MAX */
- d__2 = ulp * tst1;
- if ((d__1 = h__[i__3].r, abs(d__1)) <= max(d__2,smlnum)) {
- goto L30;
- }
-/* L20: */
- }
-L30:
- l = k;
- if (l > *ilo) {
-
-/* H(L,L-1) is negligible */
-
- i__2 = l + (l - 1) * h_dim1;
- h__[i__2].r = 0., h__[i__2].i = 0.;
- }
-
-/* Exit from loop if a submatrix of order 1 has split off. */
-
- if (l >= i__) {
- goto L120;
- }
-
-/*
- Now the active submatrix is in rows and columns L to I. If
- eigenvalues only are being computed, only the active submatrix
- need be transformed.
-*/
-
- if (! (*wantt)) {
- i1 = l;
- i2 = i__;
- }
-
- if (its == 10 || its == 20) {
-
-/* Exceptional shift. */
-
- i__2 = i__ + (i__ - 1) * h_dim1;
- s = (d__1 = h__[i__2].r, abs(d__1)) * .75;
- i__2 = i__ + i__ * h_dim1;
- z__1.r = s + h__[i__2].r, z__1.i = h__[i__2].i;
- t.r = z__1.r, t.i = z__1.i;
- } else {
-
-/* Wilkinson's shift. */
-
- i__2 = i__ + i__ * h_dim1;
- t.r = h__[i__2].r, t.i = h__[i__2].i;
- i__2 = i__ - 1 + i__ * h_dim1;
- i__3 = i__ + (i__ - 1) * h_dim1;
- d__1 = h__[i__3].r;
- z__1.r = d__1 * h__[i__2].r, z__1.i = d__1 * h__[i__2].i;
- u.r = z__1.r, u.i = z__1.i;
- if (u.r != 0. || u.i != 0.) {
- i__2 = i__ - 1 + (i__ - 1) * h_dim1;
- z__2.r = h__[i__2].r - t.r, z__2.i = h__[i__2].i - t.i;
- z__1.r = z__2.r * .5, z__1.i = z__2.i * .5;
- x.r = z__1.r, x.i = z__1.i;
- z__3.r = x.r * x.r - x.i * x.i, z__3.i = x.r * x.i + x.i *
- x.r;
- z__2.r = z__3.r + u.r, z__2.i = z__3.i + u.i;
- z_sqrt(&z__1, &z__2);
- y.r = z__1.r, y.i = z__1.i;
- if (x.r * y.r + d_imag(&x) * d_imag(&y) < 0.) {
- z__1.r = -y.r, z__1.i = -y.i;
- y.r = z__1.r, y.i = z__1.i;
- }
- z__3.r = x.r + y.r, z__3.i = x.i + y.i;
- zladiv_(&z__2, &u, &z__3);
- z__1.r = t.r - z__2.r, z__1.i = t.i - z__2.i;
- t.r = z__1.r, t.i = z__1.i;
- }
- }
-
-/* Look for two consecutive small subdiagonal elements. */
-
- i__2 = l + 1;
- for (m = i__ - 1; m >= i__2; --m) {
-
-/*
- Determine the effect of starting the single-shift QR
- iteration at row M, and see if this would make H(M,M-1)
- negligible.
-*/
-
- i__3 = m + m * h_dim1;
- h11.r = h__[i__3].r, h11.i = h__[i__3].i;
- i__3 = m + 1 + (m + 1) * h_dim1;
- h22.r = h__[i__3].r, h22.i = h__[i__3].i;
- z__1.r = h11.r - t.r, z__1.i = h11.i - t.i;
- h11s.r = z__1.r, h11s.i = z__1.i;
- i__3 = m + 1 + m * h_dim1;
- h21 = h__[i__3].r;
- s = (d__1 = h11s.r, abs(d__1)) + (d__2 = d_imag(&h11s), abs(d__2))
- + abs(h21);
- z__1.r = h11s.r / s, z__1.i = h11s.i / s;
- h11s.r = z__1.r, h11s.i = z__1.i;
- h21 /= s;
- v[0].r = h11s.r, v[0].i = h11s.i;
- v[1].r = h21, v[1].i = 0.;
- i__3 = m + (m - 1) * h_dim1;
- h10 = h__[i__3].r;
- tst1 = ((d__1 = h11s.r, abs(d__1)) + (d__2 = d_imag(&h11s), abs(
- d__2))) * ((d__3 = h11.r, abs(d__3)) + (d__4 = d_imag(&
- h11), abs(d__4)) + ((d__5 = h22.r, abs(d__5)) + (d__6 =
- d_imag(&h22), abs(d__6))));
- if ((d__1 = h10 * h21, abs(d__1)) <= ulp * tst1) {
- goto L50;
- }
-/* L40: */
- }
- i__2 = l + l * h_dim1;
- h11.r = h__[i__2].r, h11.i = h__[i__2].i;
- i__2 = l + 1 + (l + 1) * h_dim1;
- h22.r = h__[i__2].r, h22.i = h__[i__2].i;
- z__1.r = h11.r - t.r, z__1.i = h11.i - t.i;
- h11s.r = z__1.r, h11s.i = z__1.i;
- i__2 = l + 1 + l * h_dim1;
- h21 = h__[i__2].r;
- s = (d__1 = h11s.r, abs(d__1)) + (d__2 = d_imag(&h11s), abs(d__2)) +
- abs(h21);
- z__1.r = h11s.r / s, z__1.i = h11s.i / s;
- h11s.r = z__1.r, h11s.i = z__1.i;
- h21 /= s;
- v[0].r = h11s.r, v[0].i = h11s.i;
- v[1].r = h21, v[1].i = 0.;
-L50:
-
-/* Single-shift QR step */
-
- i__2 = i__ - 1;
- for (k = m; k <= i__2; ++k) {
-
-/*
- The first iteration of this loop determines a reflection G
- from the vector V and applies it from left and right to H,
- thus creating a nonzero bulge below the subdiagonal.
-
- Each subsequent iteration determines a reflection G to
- restore the Hessenberg form in the (K-1)th column, and thus
- chases the bulge one step toward the bottom of the active
- submatrix.
-
- V(2) is always real before the call to ZLARFG, and hence
- after the call T2 ( = T1*V(2) ) is also real.
-*/
-
- if (k > m) {
- zcopy_(&c__2, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
- }
- zlarfg_(&c__2, v, &v[1], &c__1, &t1);
- if (k > m) {
- i__3 = k + (k - 1) * h_dim1;
- h__[i__3].r = v[0].r, h__[i__3].i = v[0].i;
- i__3 = k + 1 + (k - 1) * h_dim1;
- h__[i__3].r = 0., h__[i__3].i = 0.;
- }
- v2.r = v[1].r, v2.i = v[1].i;
- z__1.r = t1.r * v2.r - t1.i * v2.i, z__1.i = t1.r * v2.i + t1.i *
- v2.r;
- t2 = z__1.r;
-
-/*
- Apply G from the left to transform the rows of the matrix
- in columns K to I2.
-*/
-
- i__3 = i2;
- for (j = k; j <= i__3; ++j) {
- d_cnjg(&z__3, &t1);
- i__4 = k + j * h_dim1;
- z__2.r = z__3.r * h__[i__4].r - z__3.i * h__[i__4].i, z__2.i =
- z__3.r * h__[i__4].i + z__3.i * h__[i__4].r;
- i__5 = k + 1 + j * h_dim1;
- z__4.r = t2 * h__[i__5].r, z__4.i = t2 * h__[i__5].i;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__4 = k + j * h_dim1;
- i__5 = k + j * h_dim1;
- z__1.r = h__[i__5].r - sum.r, z__1.i = h__[i__5].i - sum.i;
- h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
- i__4 = k + 1 + j * h_dim1;
- i__5 = k + 1 + j * h_dim1;
- z__2.r = sum.r * v2.r - sum.i * v2.i, z__2.i = sum.r * v2.i +
- sum.i * v2.r;
- z__1.r = h__[i__5].r - z__2.r, z__1.i = h__[i__5].i - z__2.i;
- h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
-/* L60: */
- }
-
-/*
- Apply G from the right to transform the columns of the
- matrix in rows I1 to min(K+2,I).
-
- Computing MIN
-*/
- i__4 = k + 2;
- i__3 = min(i__4,i__);
- for (j = i1; j <= i__3; ++j) {
- i__4 = j + k * h_dim1;
- z__2.r = t1.r * h__[i__4].r - t1.i * h__[i__4].i, z__2.i =
- t1.r * h__[i__4].i + t1.i * h__[i__4].r;
- i__5 = j + (k + 1) * h_dim1;
- z__3.r = t2 * h__[i__5].r, z__3.i = t2 * h__[i__5].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__4 = j + k * h_dim1;
- i__5 = j + k * h_dim1;
- z__1.r = h__[i__5].r - sum.r, z__1.i = h__[i__5].i - sum.i;
- h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
- i__4 = j + (k + 1) * h_dim1;
- i__5 = j + (k + 1) * h_dim1;
- d_cnjg(&z__3, &v2);
- z__2.r = sum.r * z__3.r - sum.i * z__3.i, z__2.i = sum.r *
- z__3.i + sum.i * z__3.r;
- z__1.r = h__[i__5].r - z__2.r, z__1.i = h__[i__5].i - z__2.i;
- h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
-/* L70: */
- }
-
- if (*wantz) {
-
-/* Accumulate transformations in the matrix Z */
-
- i__3 = *ihiz;
- for (j = *iloz; j <= i__3; ++j) {
- i__4 = j + k * z_dim1;
- z__2.r = t1.r * z__[i__4].r - t1.i * z__[i__4].i, z__2.i =
- t1.r * z__[i__4].i + t1.i * z__[i__4].r;
- i__5 = j + (k + 1) * z_dim1;
- z__3.r = t2 * z__[i__5].r, z__3.i = t2 * z__[i__5].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__4 = j + k * z_dim1;
- i__5 = j + k * z_dim1;
- z__1.r = z__[i__5].r - sum.r, z__1.i = z__[i__5].i -
- sum.i;
- z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
- i__4 = j + (k + 1) * z_dim1;
- i__5 = j + (k + 1) * z_dim1;
- d_cnjg(&z__3, &v2);
- z__2.r = sum.r * z__3.r - sum.i * z__3.i, z__2.i = sum.r *
- z__3.i + sum.i * z__3.r;
- z__1.r = z__[i__5].r - z__2.r, z__1.i = z__[i__5].i -
- z__2.i;
- z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
-/* L80: */
- }
- }
-
- if ((k == m && m > l)) {
-
-/*
- If the QR step was started at row M > L because two
- consecutive small subdiagonals were found, then extra
- scaling must be performed to ensure that H(M,M-1) remains
- real.
-*/
-
- z__1.r = 1. - t1.r, z__1.i = 0. - t1.i;
- temp.r = z__1.r, temp.i = z__1.i;
- d__1 = z_abs(&temp);
- z__1.r = temp.r / d__1, z__1.i = temp.i / d__1;
- temp.r = z__1.r, temp.i = z__1.i;
- i__3 = m + 1 + m * h_dim1;
- i__4 = m + 1 + m * h_dim1;
- d_cnjg(&z__2, &temp);
- z__1.r = h__[i__4].r * z__2.r - h__[i__4].i * z__2.i, z__1.i =
- h__[i__4].r * z__2.i + h__[i__4].i * z__2.r;
- h__[i__3].r = z__1.r, h__[i__3].i = z__1.i;
- if (m + 2 <= i__) {
- i__3 = m + 2 + (m + 1) * h_dim1;
- i__4 = m + 2 + (m + 1) * h_dim1;
- z__1.r = h__[i__4].r * temp.r - h__[i__4].i * temp.i,
- z__1.i = h__[i__4].r * temp.i + h__[i__4].i *
- temp.r;
- h__[i__3].r = z__1.r, h__[i__3].i = z__1.i;
- }
- i__3 = i__;
- for (j = m; j <= i__3; ++j) {
- if (j != m + 1) {
- if (i2 > j) {
- i__4 = i2 - j;
- zscal_(&i__4, &temp, &h__[j + (j + 1) * h_dim1],
- ldh);
- }
- i__4 = j - i1;
- d_cnjg(&z__1, &temp);
- zscal_(&i__4, &z__1, &h__[i1 + j * h_dim1], &c__1);
- if (*wantz) {
- d_cnjg(&z__1, &temp);
- zscal_(&nz, &z__1, &z__[*iloz + j * z_dim1], &
- c__1);
- }
- }
-/* L90: */
- }
- }
-/* L100: */
- }
-
-/* Ensure that H(I,I-1) is real. */
-
- i__2 = i__ + (i__ - 1) * h_dim1;
- temp.r = h__[i__2].r, temp.i = h__[i__2].i;
- if (d_imag(&temp) != 0.) {
- rtemp = z_abs(&temp);
- i__2 = i__ + (i__ - 1) * h_dim1;
- h__[i__2].r = rtemp, h__[i__2].i = 0.;
- z__1.r = temp.r / rtemp, z__1.i = temp.i / rtemp;
- temp.r = z__1.r, temp.i = z__1.i;
- if (i2 > i__) {
- i__2 = i2 - i__;
- d_cnjg(&z__1, &temp);
- zscal_(&i__2, &z__1, &h__[i__ + (i__ + 1) * h_dim1], ldh);
- }
- i__2 = i__ - i1;
- zscal_(&i__2, &temp, &h__[i1 + i__ * h_dim1], &c__1);
- if (*wantz) {
- zscal_(&nz, &temp, &z__[*iloz + i__ * z_dim1], &c__1);
- }
- }
-
-/* L110: */
- }
-
-/* Failure to converge in remaining number of iterations */
-
- *info = i__;
- return 0;
-
-L120:
-
-/* H(I,I-1) is negligible: one eigenvalue has converged. */
-
- i__1 = i__;
- i__2 = i__ + i__ * h_dim1;
- w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
-
-/*
- Decrement number of remaining iterations, and return to start of
- the main loop with new value of I.
-*/
-
- itn -= its;
- i__ = l - 1;
- goto L10;
-
-L130:
- return 0;
-
-/* End of ZLAHQR */
-
-} /* zlahqr_ */
-
-/* Subroutine */ int zlahrd_(integer *n, integer *k, integer *nb,
- doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *t,
- integer *ldt, doublecomplex *y, integer *ldy)
-{
- /* System generated locals */
- integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
- i__3;
- doublecomplex z__1;
-
- /* Local variables */
- static integer i__;
- static doublecomplex ei;
- extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *),
- zcopy_(integer *, doublecomplex *, integer *, doublecomplex *,
- integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *, integer *), ztrmv_(char *, char *,
- char *, integer *, doublecomplex *, integer *, doublecomplex *,
- integer *), zlarfg_(integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *),
- zlacgv_(integer *, doublecomplex *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZLAHRD reduces the first NB columns of a complex general n-by-(n-k+1)
- matrix A so that elements below the k-th subdiagonal are zero. The
- reduction is performed by a unitary similarity transformation
- Q' * A * Q. The routine returns the matrices V and T which determine
- Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
-
- This is an auxiliary routine called by ZGEHRD.
-
- Arguments
- =========
-
- N (input) INTEGER
- The order of the matrix A.
-
- K (input) INTEGER
- The offset for the reduction. Elements below the k-th
- subdiagonal in the first NB columns are reduced to zero.
-
- NB (input) INTEGER
- The number of columns to be reduced.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N-K+1)
- On entry, the n-by-(n-k+1) general matrix A.
- On exit, the elements on and above the k-th subdiagonal in
- the first NB columns are overwritten with the corresponding
- elements of the reduced matrix; the elements below the k-th
- subdiagonal, with the array TAU, represent the matrix Q as a
- product of elementary reflectors. The other columns of A are
- unchanged. See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- TAU (output) COMPLEX*16 array, dimension (NB)
- The scalar factors of the elementary reflectors. See Further
- Details.
-
- T (output) COMPLEX*16 array, dimension (LDT,NB)
- The upper triangular matrix T.
-
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= NB.
-
- Y (output) COMPLEX*16 array, dimension (LDY,NB)
- The n-by-nb matrix Y.
-
- LDY (input) INTEGER
- The leading dimension of the array Y. LDY >= max(1,N).
-
- Further Details
- ===============
-
- The matrix Q is represented as a product of nb elementary reflectors
-
- Q = H(1) H(2) . . . H(nb).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
- A(i+k+1:n,i), and tau in TAU(i).
-
- The elements of the vectors v together form the (n-k+1)-by-nb matrix
- V which is needed, with T and Y, to apply the transformation to the
- unreduced part of the matrix, using an update of the form:
- A := (I - V*T*V') * (A - Y*V').
-
- The contents of A on exit are illustrated by the following example
- with n = 7, k = 3 and nb = 2:
-
- ( a h a a a )
- ( a h a a a )
- ( a h a a a )
- ( h h a a a )
- ( v1 h a a a )
- ( v1 v2 a a a )
- ( v1 v2 a a a )
-
- where a denotes an element of the original matrix A, h denotes a
- modified element of the upper Hessenberg matrix H, and vi denotes an
- element of the vector defining H(i).
-
- =====================================================================
-
-
- Quick return if possible
-*/
-
- /* Parameter adjustments */
- --tau;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1 * 1;
- y -= y_offset;
-
- /* Function Body */
- if (*n <= 1) {
- return 0;
- }
-
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (i__ > 1) {
-
-/*
- Update A(1:n,i)
-
- Compute i-th column of A - Y * V'
-*/
-
- i__2 = i__ - 1;
- zlacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda);
- i__2 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", n, &i__2, &z__1, &y[y_offset], ldy, &a[*k
- + i__ - 1 + a_dim1], lda, &c_b60, &a[i__ * a_dim1 + 1], &
- c__1);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda);
-
-/*
- Apply I - V * T' * V' to this column (call it b) from the
- left, using the last column of T as workspace
-
- Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
- ( V2 ) ( b2 )
-
- where V1 is unit lower triangular
-
- w := V1' * b1
-*/
-
- i__2 = i__ - 1;
- zcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
- 1], &c__1);
- i__2 = i__ - 1;
- ztrmv_("Lower", "Conjugate transpose", "Unit", &i__2, &a[*k + 1 +
- a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1);
-
-/* w := w + V2'*b2 */
-
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &a[*k + i__ +
- a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b60,
- &t[*nb * t_dim1 + 1], &c__1);
-
-/* w := T'*w */
-
- i__2 = i__ - 1;
- ztrmv_("Upper", "Conjugate transpose", "Non-unit", &i__2, &t[
- t_offset], ldt, &t[*nb * t_dim1 + 1], &c__1);
-
-/* b2 := b2 - V2*w */
-
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[*k + i__ + a_dim1],
- lda, &t[*nb * t_dim1 + 1], &c__1, &c_b60, &a[*k + i__ +
- i__ * a_dim1], &c__1);
-
-/* b1 := b1 - V1*w */
-
- i__2 = i__ - 1;
- ztrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
- , lda, &t[*nb * t_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zaxpy_(&i__2, &z__1, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__
- * a_dim1], &c__1);
-
- i__2 = *k + i__ - 1 + (i__ - 1) * a_dim1;
- a[i__2].r = ei.r, a[i__2].i = ei.i;
- }
-
-/*
- Generate the elementary reflector H(i) to annihilate
- A(k+i+1:n,i)
-*/
-
- i__2 = *k + i__ + i__ * a_dim1;
- ei.r = a[i__2].r, ei.i = a[i__2].i;
- i__2 = *n - *k - i__ + 1;
-/* Computing MIN */
- i__3 = *k + i__ + 1;
- zlarfg_(&i__2, &ei, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__])
- ;
- i__2 = *k + i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Compute Y(1:n,i) */
-
- i__2 = *n - *k - i__ + 1;
- zgemv_("No transpose", n, &i__2, &c_b60, &a[(i__ + 1) * a_dim1 + 1],
- lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b59, &y[i__ *
- y_dim1 + 1], &c__1);
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &a[*k + i__ +
- a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b59, &t[
- i__ * t_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", n, &i__2, &z__1, &y[y_offset], ldy, &t[i__ *
- t_dim1 + 1], &c__1, &c_b60, &y[i__ * y_dim1 + 1], &c__1);
- zscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);
-
-/* Compute T(1:i,i) */
-
- i__2 = i__ - 1;
- i__3 = i__;
- z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i;
- zscal_(&i__2, &z__1, &t[i__ * t_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- ztrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
- &t[i__ * t_dim1 + 1], &c__1)
- ;
- i__2 = i__ + i__ * t_dim1;
- i__3 = i__;
- t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i;
-
-/* L10: */
- }
- i__1 = *k + *nb + *nb * a_dim1;
- a[i__1].r = ei.r, a[i__1].i = ei.i;
-
- return 0;
-
-/* End of ZLAHRD */
-
-} /* zlahrd_ */
-
-/* Subroutine */ int zlals0_(integer *icompq, integer *nl, integer *nr,
- integer *sqre, integer *nrhs, doublecomplex *b, integer *ldb,
- doublecomplex *bx, integer *ldbx, integer *perm, integer *givptr,
- integer *givcol, integer *ldgcol, doublereal *givnum, integer *ldgnum,
- doublereal *poles, doublereal *difl, doublereal *difr, doublereal *
- z__, integer *k, doublereal *c__, doublereal *s, doublereal *rwork,
- integer *info)
-{
- /* System generated locals */
- integer givcol_dim1, givcol_offset, difr_dim1, difr_offset, givnum_dim1,
- givnum_offset, poles_dim1, poles_offset, b_dim1, b_offset,
- bx_dim1, bx_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1;
- doublecomplex z__1;
-
- /* Builtin functions */
- double d_imag(doublecomplex *);
-
- /* Local variables */
- static integer i__, j, m, n;
- static doublereal dj;
- static integer nlp1, jcol;
- static doublereal temp;
- static integer jrow;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- static doublereal diflj, difrj, dsigj;
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), zdrot_(integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublereal *, doublereal *);
- extern doublereal dlamc3_(doublereal *, doublereal *);
- extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), xerbla_(char *, integer *);
- static doublereal dsigjp;
- extern /* Subroutine */ int zdscal_(integer *, doublereal *,
- doublecomplex *, integer *), zlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublecomplex *
- , integer *, integer *), zlacpy_(char *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- December 1, 1999
-
-
- Purpose
- =======
-
- ZLALS0 applies back the multiplying factors of either the left or the
- right singular vector matrix of a diagonal matrix appended by a row
- to the right hand side matrix B in solving the least squares problem
- using the divide-and-conquer SVD approach.
-
- For the left singular vector matrix, three types of orthogonal
- matrices are involved:
-
- (1L) Givens rotations: the number of such rotations is GIVPTR; the
- pairs of columns/rows they were applied to are stored in GIVCOL;
- and the C- and S-values of these rotations are stored in GIVNUM.
-
- (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
- row, and for J=2:N, PERM(J)-th row of B is to be moved to the
- J-th row.
-
- (3L) The left singular vector matrix of the remaining matrix.
-
- For the right singular vector matrix, four types of orthogonal
- matrices are involved:
-
- (1R) The right singular vector matrix of the remaining matrix.
-
- (2R) If SQRE = 1, one extra Givens rotation to generate the right
- null space.
-
- (3R) The inverse transformation of (2L).
-
- (4R) The inverse transformation of (1L).
-
- Arguments
- =========
-
- ICOMPQ (input) INTEGER
- Specifies whether singular vectors are to be computed in
- factored form:
- = 0: Left singular vector matrix.
- = 1: Right singular vector matrix.
-
- NL (input) INTEGER
- The row dimension of the upper block. NL >= 1.
-
- NR (input) INTEGER
- The row dimension of the lower block. NR >= 1.
-
- SQRE (input) INTEGER
- = 0: the lower block is an NR-by-NR square matrix.
- = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-
- The bidiagonal matrix has row dimension N = NL + NR + 1,
- and column dimension M = N + SQRE.
-
- NRHS (input) INTEGER
- The number of columns of B and BX. NRHS must be at least 1.
-
- B (input/output) COMPLEX*16 array, dimension ( LDB, NRHS )
- On input, B contains the right hand sides of the least
- squares problem in rows 1 through M. On output, B contains
- the solution X in rows 1 through N.
-
- LDB (input) INTEGER
- The leading dimension of B. LDB must be at least
- max(1,MAX( M, N ) ).
-
- BX (workspace) COMPLEX*16 array, dimension ( LDBX, NRHS )
-
- LDBX (input) INTEGER
- The leading dimension of BX.
-
- PERM (input) INTEGER array, dimension ( N )
- The permutations (from deflation and sorting) applied
- to the two blocks.
-
- GIVPTR (input) INTEGER
- The number of Givens rotations which took place in this
- subproblem.
-
- GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
- Each pair of numbers indicates a pair of rows/columns
- involved in a Givens rotation.
-
- LDGCOL (input) INTEGER
- The leading dimension of GIVCOL, must be at least N.
-
- GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
- Each number indicates the C or S value used in the
- corresponding Givens rotation.
-
- LDGNUM (input) INTEGER
- The leading dimension of arrays DIFR, POLES and
- GIVNUM, must be at least K.
-
- POLES (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
- On entry, POLES(1:K, 1) contains the new singular
- values obtained from solving the secular equation, and
- POLES(1:K, 2) is an array containing the poles in the secular
- equation.
-
- DIFL (input) DOUBLE PRECISION array, dimension ( K ).
- On entry, DIFL(I) is the distance between I-th updated
- (undeflated) singular value and the I-th (undeflated) old
- singular value.
-
- DIFR (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
- On entry, DIFR(I, 1) contains the distances between I-th
- updated (undeflated) singular value and the I+1-th
- (undeflated) old singular value. And DIFR(I, 2) is the
- normalizing factor for the I-th right singular vector.
-
- Z (input) DOUBLE PRECISION array, dimension ( K )
- Contain the components of the deflation-adjusted updating row
- vector.
-
- K (input) INTEGER
- Contains the dimension of the non-deflated matrix,
- This is the order of the related secular equation. 1 <= K <=N.
-
- C (input) DOUBLE PRECISION
- C contains garbage if SQRE =0 and the C-value of a Givens
- rotation related to the right null space if SQRE = 1.
-
- S (input) DOUBLE PRECISION
- S contains garbage if SQRE =0 and the S-value of a Givens
- rotation related to the right null space if SQRE = 1.
-
- RWORK (workspace) DOUBLE PRECISION array, dimension
- ( K*(1+NRHS) + 2*NRHS )
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Ren-Cang Li, Computer Science Division, University of
- California at Berkeley, USA
- Osni Marques, LBNL/NERSC, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- bx_dim1 = *ldbx;
- bx_offset = 1 + bx_dim1 * 1;
- bx -= bx_offset;
- --perm;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1 * 1;
- givcol -= givcol_offset;
- difr_dim1 = *ldgnum;
- difr_offset = 1 + difr_dim1 * 1;
- difr -= difr_offset;
- poles_dim1 = *ldgnum;
- poles_offset = 1 + poles_dim1 * 1;
- poles -= poles_offset;
- givnum_dim1 = *ldgnum;
- givnum_offset = 1 + givnum_dim1 * 1;
- givnum -= givnum_offset;
- --difl;
- --z__;
- --rwork;
-
- /* Function Body */
- *info = 0;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*nl < 1) {
- *info = -2;
- } else if (*nr < 1) {
- *info = -3;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -4;
- }
-
- n = *nl + *nr + 1;
-
- if (*nrhs < 1) {
- *info = -5;
- } else if (*ldb < n) {
- *info = -7;
- } else if (*ldbx < n) {
- *info = -9;
- } else if (*givptr < 0) {
- *info = -11;
- } else if (*ldgcol < n) {
- *info = -13;
- } else if (*ldgnum < n) {
- *info = -15;
- } else if (*k < 1) {
- *info = -20;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLALS0", &i__1);
- return 0;
- }
-
- m = n + *sqre;
- nlp1 = *nl + 1;
-
- if (*icompq == 0) {
-
-/*
- Apply back orthogonal transformations from the left.
-
- Step (1L): apply back the Givens rotations performed.
-*/
-
- i__1 = *givptr;
- for (i__ = 1; i__ <= i__1; ++i__) {
- zdrot_(nrhs, &b[givcol[i__ + ((givcol_dim1) << (1))] + b_dim1],
- ldb, &b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[
- i__ + ((givnum_dim1) << (1))], &givnum[i__ + givnum_dim1])
- ;
-/* L10: */
- }
-
-/* Step (2L): permute rows of B. */
-
- zcopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx);
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- zcopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1],
- ldbx);
-/* L20: */
- }
-
-/*
- Step (3L): apply the inverse of the left singular vector
- matrix to BX.
-*/
-
- if (*k == 1) {
- zcopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb);
- if (z__[1] < 0.) {
- zdscal_(nrhs, &c_b1294, &b[b_offset], ldb);
- }
- } else {
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- diflj = difl[j];
- dj = poles[j + poles_dim1];
- dsigj = -poles[j + ((poles_dim1) << (1))];
- if (j < *k) {
- difrj = -difr[j + difr_dim1];
- dsigjp = -poles[j + 1 + ((poles_dim1) << (1))];
- }
- if (z__[j] == 0. || poles[j + ((poles_dim1) << (1))] == 0.) {
- rwork[j] = 0.;
- } else {
- rwork[j] = -poles[j + ((poles_dim1) << (1))] * z__[j] /
- diflj / (poles[j + ((poles_dim1) << (1))] + dj);
- }
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (z__[i__] == 0. || poles[i__ + ((poles_dim1) << (1))]
- == 0.) {
- rwork[i__] = 0.;
- } else {
- rwork[i__] = poles[i__ + ((poles_dim1) << (1))] * z__[
- i__] / (dlamc3_(&poles[i__ + ((poles_dim1) <<
- (1))], &dsigj) - diflj) / (poles[i__ + ((
- poles_dim1) << (1))] + dj);
- }
-/* L30: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- if (z__[i__] == 0. || poles[i__ + ((poles_dim1) << (1))]
- == 0.) {
- rwork[i__] = 0.;
- } else {
- rwork[i__] = poles[i__ + ((poles_dim1) << (1))] * z__[
- i__] / (dlamc3_(&poles[i__ + ((poles_dim1) <<
- (1))], &dsigjp) + difrj) / (poles[i__ + ((
- poles_dim1) << (1))] + dj);
- }
-/* L40: */
- }
- rwork[1] = -1.;
- temp = dnrm2_(k, &rwork[1], &c__1);
-
-/*
- Since B and BX are complex, the following call to DGEMV
- is performed in two steps (real and imaginary parts).
-
- CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO,
- $ B( J, 1 ), LDB )
-*/
-
- i__ = *k + ((*nrhs) << (1));
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = *k;
- for (jrow = 1; jrow <= i__3; ++jrow) {
- ++i__;
- i__4 = jrow + jcol * bx_dim1;
- rwork[i__] = bx[i__4].r;
-/* L50: */
- }
-/* L60: */
- }
- dgemv_("T", k, nrhs, &c_b1015, &rwork[*k + 1 + ((*nrhs) << (1)
- )], k, &rwork[1], &c__1, &c_b324, &rwork[*k + 1], &
- c__1);
- i__ = *k + ((*nrhs) << (1));
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = *k;
- for (jrow = 1; jrow <= i__3; ++jrow) {
- ++i__;
- rwork[i__] = d_imag(&bx[jrow + jcol * bx_dim1]);
-/* L70: */
- }
-/* L80: */
- }
- dgemv_("T", k, nrhs, &c_b1015, &rwork[*k + 1 + ((*nrhs) << (1)
- )], k, &rwork[1], &c__1, &c_b324, &rwork[*k + 1 + *
- nrhs], &c__1);
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = j + jcol * b_dim1;
- i__4 = jcol + *k;
- i__5 = jcol + *k + *nrhs;
- z__1.r = rwork[i__4], z__1.i = rwork[i__5];
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L90: */
- }
- zlascl_("G", &c__0, &c__0, &temp, &c_b1015, &c__1, nrhs, &b[j
- + b_dim1], ldb, info);
-/* L100: */
- }
- }
-
-/* Move the deflated rows of BX to B also. */
-
- if (*k < max(m,n)) {
- i__1 = n - *k;
- zlacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1
- + b_dim1], ldb);
- }
- } else {
-
-/*
- Apply back the right orthogonal transformations.
-
- Step (1R): apply back the new right singular vector matrix
- to B.
-*/
-
- if (*k == 1) {
- zcopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx);
- } else {
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dsigj = poles[j + ((poles_dim1) << (1))];
- if (z__[j] == 0.) {
- rwork[j] = 0.;
- } else {
- rwork[j] = -z__[j] / difl[j] / (dsigj + poles[j +
- poles_dim1]) / difr[j + ((difr_dim1) << (1))];
- }
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (z__[j] == 0.) {
- rwork[i__] = 0.;
- } else {
- d__1 = -poles[i__ + 1 + ((poles_dim1) << (1))];
- rwork[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difr[
- i__ + difr_dim1]) / (dsigj + poles[i__ +
- poles_dim1]) / difr[i__ + ((difr_dim1) << (1))
- ];
- }
-/* L110: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- if (z__[j] == 0.) {
- rwork[i__] = 0.;
- } else {
- d__1 = -poles[i__ + ((poles_dim1) << (1))];
- rwork[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difl[
- i__]) / (dsigj + poles[i__ + poles_dim1]) /
- difr[i__ + ((difr_dim1) << (1))];
- }
-/* L120: */
- }
-
-/*
- Since B and BX are complex, the following call to DGEMV
- is performed in two steps (real and imaginary parts).
-
- CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO,
- $ BX( J, 1 ), LDBX )
-*/
-
- i__ = *k + ((*nrhs) << (1));
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = *k;
- for (jrow = 1; jrow <= i__3; ++jrow) {
- ++i__;
- i__4 = jrow + jcol * b_dim1;
- rwork[i__] = b[i__4].r;
-/* L130: */
- }
-/* L140: */
- }
- dgemv_("T", k, nrhs, &c_b1015, &rwork[*k + 1 + ((*nrhs) << (1)
- )], k, &rwork[1], &c__1, &c_b324, &rwork[*k + 1], &
- c__1);
- i__ = *k + ((*nrhs) << (1));
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = *k;
- for (jrow = 1; jrow <= i__3; ++jrow) {
- ++i__;
- rwork[i__] = d_imag(&b[jrow + jcol * b_dim1]);
-/* L150: */
- }
-/* L160: */
- }
- dgemv_("T", k, nrhs, &c_b1015, &rwork[*k + 1 + ((*nrhs) << (1)
- )], k, &rwork[1], &c__1, &c_b324, &rwork[*k + 1 + *
- nrhs], &c__1);
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = j + jcol * bx_dim1;
- i__4 = jcol + *k;
- i__5 = jcol + *k + *nrhs;
- z__1.r = rwork[i__4], z__1.i = rwork[i__5];
- bx[i__3].r = z__1.r, bx[i__3].i = z__1.i;
-/* L170: */
- }
-/* L180: */
- }
- }
-
-/*
- Step (2R): if SQRE = 1, apply back the rotation that is
- related to the right null space of the subproblem.
-*/
-
- if (*sqre == 1) {
- zcopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx);
- zdrot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__,
- s);
- }
- if (*k < max(m,n)) {
- i__1 = n - *k;
- zlacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 +
- bx_dim1], ldbx);
- }
-
-/* Step (3R): permute rows of B. */
-
- zcopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb);
- if (*sqre == 1) {
- zcopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb);
- }
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- zcopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1],
- ldb);
-/* L190: */
- }
-
-/* Step (4R): apply back the Givens rotations performed. */
-
- for (i__ = *givptr; i__ >= 1; --i__) {
- d__1 = -givnum[i__ + givnum_dim1];
- zdrot_(nrhs, &b[givcol[i__ + ((givcol_dim1) << (1))] + b_dim1],
- ldb, &b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[
- i__ + ((givnum_dim1) << (1))], &d__1);
-/* L200: */
- }
- }
-
- return 0;
-
-/* End of ZLALS0 */
-
-} /* zlals0_ */
-
-/* Subroutine */ int zlalsa_(integer *icompq, integer *smlsiz, integer *n,
- integer *nrhs, doublecomplex *b, integer *ldb, doublecomplex *bx,
- integer *ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *
- k, doublereal *difl, doublereal *difr, doublereal *z__, doublereal *
- poles, integer *givptr, integer *givcol, integer *ldgcol, integer *
- perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *
- rwork, integer *iwork, integer *info)
-{
- /* System generated locals */
- integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
- difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
- poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
- z_dim1, z_offset, b_dim1, b_offset, bx_dim1, bx_offset, i__1,
- i__2, i__3, i__4, i__5, i__6;
- doublecomplex z__1;
-
- /* Builtin functions */
- double d_imag(doublecomplex *);
- integer pow_ii(integer *, integer *);
-
- /* Local variables */
- static integer i__, j, i1, ic, lf, nd, ll, nl, nr, im1, nlf, nrf, lvl,
- ndb1, nlp1, lvl2, nrp1, jcol, nlvl, sqre, jrow, jimag;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- static integer jreal, inode, ndiml, ndimr;
- extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zlals0_(integer *, integer *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, integer *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, integer *), dlasdt_(integer *, integer *, integer *
- , integer *, integer *, integer *, integer *), xerbla_(char *,
- integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZLALSA is an itermediate step in solving the least squares problem
- by computing the SVD of the coefficient matrix in compact form (The
- singular vectors are computed as products of simple orthorgonal
- matrices.).
-
- If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector
- matrix of an upper bidiagonal matrix to the right hand side; and if
- ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the
- right hand side. The singular vector matrices were generated in
- compact form by ZLALSA.
-
- Arguments
- =========
-
- ICOMPQ (input) INTEGER
- Specifies whether the left or the right singular vector
- matrix is involved.
- = 0: Left singular vector matrix
- = 1: Right singular vector matrix
-
- SMLSIZ (input) INTEGER
- The maximum size of the subproblems at the bottom of the
- computation tree.
-
- N (input) INTEGER
- The row and column dimensions of the upper bidiagonal matrix.
-
- NRHS (input) INTEGER
- The number of columns of B and BX. NRHS must be at least 1.
-
- B (input) COMPLEX*16 array, dimension ( LDB, NRHS )
- On input, B contains the right hand sides of the least
- squares problem in rows 1 through M. On output, B contains
- the solution X in rows 1 through N.
-
- LDB (input) INTEGER
- The leading dimension of B in the calling subprogram.
- LDB must be at least max(1,MAX( M, N ) ).
-
- BX (output) COMPLEX*16 array, dimension ( LDBX, NRHS )
- On exit, the result of applying the left or right singular
- vector matrix to B.
-
- LDBX (input) INTEGER
- The leading dimension of BX.
-
- U (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
- On entry, U contains the left singular vector matrices of all
- subproblems at the bottom level.
-
- LDU (input) INTEGER, LDU = > N.
- The leading dimension of arrays U, VT, DIFL, DIFR,
- POLES, GIVNUM, and Z.
-
- VT (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
- On entry, VT' contains the right singular vector matrices of
- all subproblems at the bottom level.
-
- K (input) INTEGER array, dimension ( N ).
-
- DIFL (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
- where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
-
- DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
- On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
- distances between singular values on the I-th level and
- singular values on the (I -1)-th level, and DIFR(*, 2 * I)
- record the normalizing factors of the right singular vectors
- matrices of subproblems on I-th level.
-
- Z (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
- On entry, Z(1, I) contains the components of the deflation-
- adjusted updating row vector for subproblems on the I-th
- level.
-
- POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
- On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
- singular values involved in the secular equations on the I-th
- level.
-
- GIVPTR (input) INTEGER array, dimension ( N ).
- On entry, GIVPTR( I ) records the number of Givens
- rotations performed on the I-th problem on the computation
- tree.
-
- GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
- On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
- locations of Givens rotations performed on the I-th level on
- the computation tree.
-
- LDGCOL (input) INTEGER, LDGCOL = > N.
- The leading dimension of arrays GIVCOL and PERM.
-
- PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).
- On entry, PERM(*, I) records permutations done on the I-th
- level of the computation tree.
-
- GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
- On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
- values of Givens rotations performed on the I-th level on the
- computation tree.
-
- C (input) DOUBLE PRECISION array, dimension ( N ).
- On entry, if the I-th subproblem is not square,
- C( I ) contains the C-value of a Givens rotation related to
- the right null space of the I-th subproblem.
-
- S (input) DOUBLE PRECISION array, dimension ( N ).
- On entry, if the I-th subproblem is not square,
- S( I ) contains the S-value of a Givens rotation related to
- the right null space of the I-th subproblem.
-
- RWORK (workspace) DOUBLE PRECISION array, dimension at least
- max ( N, (SMLSZ+1)*NRHS*3 ).
-
- IWORK (workspace) INTEGER array.
- The dimension must be at least 3 * N
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Ren-Cang Li, Computer Science Division, University of
- California at Berkeley, USA
- Osni Marques, LBNL/NERSC, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- bx_dim1 = *ldbx;
- bx_offset = 1 + bx_dim1 * 1;
- bx -= bx_offset;
- givnum_dim1 = *ldu;
- givnum_offset = 1 + givnum_dim1 * 1;
- givnum -= givnum_offset;
- poles_dim1 = *ldu;
- poles_offset = 1 + poles_dim1 * 1;
- poles -= poles_offset;
- z_dim1 = *ldu;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- difr_dim1 = *ldu;
- difr_offset = 1 + difr_dim1 * 1;
- difr -= difr_offset;
- difl_dim1 = *ldu;
- difl_offset = 1 + difl_dim1 * 1;
- difl -= difl_offset;
- vt_dim1 = *ldu;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- --k;
- --givptr;
- perm_dim1 = *ldgcol;
- perm_offset = 1 + perm_dim1 * 1;
- perm -= perm_offset;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1 * 1;
- givcol -= givcol_offset;
- --c__;
- --s;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*smlsiz < 3) {
- *info = -2;
- } else if (*n < *smlsiz) {
- *info = -3;
- } else if (*nrhs < 1) {
- *info = -4;
- } else if (*ldb < *n) {
- *info = -6;
- } else if (*ldbx < *n) {
- *info = -8;
- } else if (*ldu < *n) {
- *info = -10;
- } else if (*ldgcol < *n) {
- *info = -19;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLALSA", &i__1);
- return 0;
- }
-
-/* Book-keeping and setting up the computation tree. */
-
- inode = 1;
- ndiml = inode + *n;
- ndimr = ndiml + *n;
-
- dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
- smlsiz);
-
-/*
- The following code applies back the left singular vector factors.
- For applying back the right singular vector factors, go to 170.
-*/
-
- if (*icompq == 1) {
- goto L170;
- }
-
-/*
- The nodes on the bottom level of the tree were solved
- by DLASDQ. The corresponding left and right singular vector
- matrices are in explicit form. First apply back the left
- singular vector matrices.
-*/
-
- ndb1 = (nd + 1) / 2;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
-
-/*
- IC : center row of each node
- NL : number of rows of left subproblem
- NR : number of rows of right subproblem
- NLF: starting row of the left subproblem
- NRF: starting row of the right subproblem
-*/
-
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nr = iwork[ndimr + i1];
- nlf = ic - nl;
- nrf = ic + 1;
-
-/*
- Since B and BX are complex, the following call to DGEMM
- is performed in two steps (real and imaginary parts).
-
- CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
- $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
-*/
-
- j = (nl * *nrhs) << (1);
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nl - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++j;
- i__4 = jrow + jcol * b_dim1;
- rwork[j] = b[i__4].r;
-/* L10: */
- }
-/* L20: */
- }
- dgemm_("T", "N", &nl, nrhs, &nl, &c_b1015, &u[nlf + u_dim1], ldu, &
- rwork[((nl * *nrhs) << (1)) + 1], &nl, &c_b324, &rwork[1], &
- nl);
- j = (nl * *nrhs) << (1);
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nl - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
-/* L30: */
- }
-/* L40: */
- }
- dgemm_("T", "N", &nl, nrhs, &nl, &c_b1015, &u[nlf + u_dim1], ldu, &
- rwork[((nl * *nrhs) << (1)) + 1], &nl, &c_b324, &rwork[nl * *
- nrhs + 1], &nl);
- jreal = 0;
- jimag = nl * *nrhs;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nl - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * bx_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- bx[i__4].r = z__1.r, bx[i__4].i = z__1.i;
-/* L50: */
- }
-/* L60: */
- }
-
-/*
- Since B and BX are complex, the following call to DGEMM
- is performed in two steps (real and imaginary parts).
-
- CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
- $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
-*/
-
- j = (nr * *nrhs) << (1);
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nr - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++j;
- i__4 = jrow + jcol * b_dim1;
- rwork[j] = b[i__4].r;
-/* L70: */
- }
-/* L80: */
- }
- dgemm_("T", "N", &nr, nrhs, &nr, &c_b1015, &u[nrf + u_dim1], ldu, &
- rwork[((nr * *nrhs) << (1)) + 1], &nr, &c_b324, &rwork[1], &
- nr);
- j = (nr * *nrhs) << (1);
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nr - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
-/* L90: */
- }
-/* L100: */
- }
- dgemm_("T", "N", &nr, nrhs, &nr, &c_b1015, &u[nrf + u_dim1], ldu, &
- rwork[((nr * *nrhs) << (1)) + 1], &nr, &c_b324, &rwork[nr * *
- nrhs + 1], &nr);
- jreal = 0;
- jimag = nr * *nrhs;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nr - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * bx_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- bx[i__4].r = z__1.r, bx[i__4].i = z__1.i;
-/* L110: */
- }
-/* L120: */
- }
-
-/* L130: */
- }
-
-/*
- Next copy the rows of B that correspond to unchanged rows
- in the bidiagonal matrix to BX.
-*/
-
- i__1 = nd;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ic = iwork[inode + i__ - 1];
- zcopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
-/* L140: */
- }
-
-/*
- Finally go through the left singular vector matrices of all
- the other subproblems bottom-up on the tree.
-*/
-
- j = pow_ii(&c__2, &nlvl);
- sqre = 0;
-
- for (lvl = nlvl; lvl >= 1; --lvl) {
- lvl2 = ((lvl) << (1)) - 1;
-
-/*
- find the first node LF and last node LL on
- the current level LVL
-*/
-
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__1 = lvl - 1;
- lf = pow_ii(&c__2, &i__1);
- ll = ((lf) << (1)) - 1;
- }
- i__1 = ll;
- for (i__ = lf; i__ <= i__1; ++i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- nrf = ic + 1;
- --j;
- zlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
- b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
- givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
- givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
- poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
- lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
- j], &s[j], &rwork[1], info);
-/* L150: */
- }
-/* L160: */
- }
- goto L330;
-
-/* ICOMPQ = 1: applying back the right singular vector factors. */
-
-L170:
-
-/*
- First now go through the right singular vector matrices of all
- the tree nodes top-down.
-*/
-
- j = 0;
- i__1 = nlvl;
- for (lvl = 1; lvl <= i__1; ++lvl) {
- lvl2 = ((lvl) << (1)) - 1;
-
-/*
- Find the first node LF and last node LL on
- the current level LVL.
-*/
-
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__2 = lvl - 1;
- lf = pow_ii(&c__2, &i__2);
- ll = ((lf) << (1)) - 1;
- }
- i__2 = lf;
- for (i__ = ll; i__ >= i__2; --i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- nrf = ic + 1;
- if (i__ == ll) {
- sqre = 0;
- } else {
- sqre = 1;
- }
- ++j;
- zlals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
- nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
- givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
- givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
- poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
- lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
- j], &s[j], &rwork[1], info);
-/* L180: */
- }
-/* L190: */
- }
-
-/*
- The nodes on the bottom level of the tree were solved
- by DLASDQ. The corresponding right singular vector
- matrices are in explicit form. Apply them back.
-*/
-
- ndb1 = (nd + 1) / 2;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nr = iwork[ndimr + i1];
- nlp1 = nl + 1;
- if (i__ == nd) {
- nrp1 = nr;
- } else {
- nrp1 = nr + 1;
- }
- nlf = ic - nl;
- nrf = ic + 1;
-
-/*
- Since B and BX are complex, the following call to DGEMM is
- performed in two steps (real and imaginary parts).
-
- CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
- $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
-*/
-
- j = (nlp1 * *nrhs) << (1);
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nlp1 - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++j;
- i__4 = jrow + jcol * b_dim1;
- rwork[j] = b[i__4].r;
-/* L200: */
- }
-/* L210: */
- }
- dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b1015, &vt[nlf + vt_dim1],
- ldu, &rwork[((nlp1 * *nrhs) << (1)) + 1], &nlp1, &c_b324, &
- rwork[1], &nlp1);
- j = (nlp1 * *nrhs) << (1);
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nlp1 - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
-/* L220: */
- }
-/* L230: */
- }
- dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b1015, &vt[nlf + vt_dim1],
- ldu, &rwork[((nlp1 * *nrhs) << (1)) + 1], &nlp1, &c_b324, &
- rwork[nlp1 * *nrhs + 1], &nlp1);
- jreal = 0;
- jimag = nlp1 * *nrhs;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nlp1 - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * bx_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- bx[i__4].r = z__1.r, bx[i__4].i = z__1.i;
-/* L240: */
- }
-/* L250: */
- }
-
-/*
- Since B and BX are complex, the following call to DGEMM is
- performed in two steps (real and imaginary parts).
-
- CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
- $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
-*/
-
- j = (nrp1 * *nrhs) << (1);
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nrp1 - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++j;
- i__4 = jrow + jcol * b_dim1;
- rwork[j] = b[i__4].r;
-/* L260: */
- }
-/* L270: */
- }
- dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b1015, &vt[nrf + vt_dim1],
- ldu, &rwork[((nrp1 * *nrhs) << (1)) + 1], &nrp1, &c_b324, &
- rwork[1], &nrp1);
- j = (nrp1 * *nrhs) << (1);
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nrp1 - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
-/* L280: */
- }
-/* L290: */
- }
- dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b1015, &vt[nrf + vt_dim1],
- ldu, &rwork[((nrp1 * *nrhs) << (1)) + 1], &nrp1, &c_b324, &
- rwork[nrp1 * *nrhs + 1], &nrp1);
- jreal = 0;
- jimag = nrp1 * *nrhs;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nrp1 - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * bx_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- bx[i__4].r = z__1.r, bx[i__4].i = z__1.i;
-/* L300: */
- }
-/* L310: */
- }
-
-/* L320: */
- }
-
-L330:
-
- return 0;
-
-/* End of ZLALSA */
-
-} /* zlalsa_ */
-
-/* Subroutine */ int zlalsd_(char *uplo, integer *smlsiz, integer *n, integer
- *nrhs, doublereal *d__, doublereal *e, doublecomplex *b, integer *ldb,
- doublereal *rcond, integer *rank, doublecomplex *work, doublereal *
- rwork, integer *iwork, integer *info)
-{
- /* System generated locals */
- integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6;
- doublereal d__1;
- doublecomplex z__1;
-
- /* Builtin functions */
- double d_imag(doublecomplex *), log(doublereal), d_sign(doublereal *,
- doublereal *);
-
- /* Local variables */
- static integer c__, i__, j, k;
- static doublereal r__;
- static integer s, u, z__;
- static doublereal cs;
- static integer bx;
- static doublereal sn;
- static integer st, vt, nm1, st1;
- static doublereal eps;
- static integer iwk;
- static doublereal tol;
- static integer difl, difr, jcol, irwb, perm, nsub, nlvl, sqre, bxst, jrow,
- irwu, jimag;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- static integer jreal, irwib, poles, sizei, irwrb, nsize;
- extern /* Subroutine */ int zdrot_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublereal *, doublereal *), zcopy_(
- integer *, doublecomplex *, integer *, doublecomplex *, integer *)
- ;
- static integer irwvt, icmpq1, icmpq2;
-
- extern /* Subroutine */ int dlasda_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *), dlascl_(char *, integer *, integer *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *);
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer
- *, integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *), dlaset_(char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *), dlartg_(doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *), xerbla_(char *, integer *);
- static integer givcol;
- extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int zlalsa_(integer *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *), zlascl_(char *, integer *,
- integer *, doublereal *, doublereal *, integer *, integer *,
- doublecomplex *, integer *, integer *), dlasrt_(char *,
- integer *, doublereal *, integer *), zlacpy_(char *,
- integer *, integer *, doublecomplex *, integer *, doublecomplex *,
- integer *), zlaset_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *);
- static doublereal orgnrm;
- static integer givnum, givptr, nrwork, irwwrk, smlszp;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1999
-
-
- Purpose
- =======
-
- ZLALSD uses the singular value decomposition of A to solve the least
- squares problem of finding X to minimize the Euclidean norm of each
- column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
- are N-by-NRHS. The solution X overwrites B.
-
- The singular values of A smaller than RCOND times the largest
- singular value are treated as zero in solving the least squares
- problem; in this case a minimum norm solution is returned.
- The actual singular values are returned in D in ascending order.
-
- This code makes very mild assumptions about floating point
- arithmetic. It will work on machines with a guard digit in
- add/subtract, or on those binary machines without guard digits
- which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
- It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- = 'U': D and E define an upper bidiagonal matrix.
- = 'L': D and E define a lower bidiagonal matrix.
-
- SMLSIZ (input) INTEGER
- The maximum size of the subproblems at the bottom of the
- computation tree.
-
- N (input) INTEGER
- The dimension of the bidiagonal matrix. N >= 0.
-
- NRHS (input) INTEGER
- The number of columns of B. NRHS must be at least 1.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry D contains the main diagonal of the bidiagonal
- matrix. On exit, if INFO = 0, D contains its singular values.
-
- E (input) DOUBLE PRECISION array, dimension (N-1)
- Contains the super-diagonal entries of the bidiagonal matrix.
- On exit, E has been destroyed.
-
- B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
- On input, B contains the right hand sides of the least
- squares problem. On output, B contains the solution X.
-
- LDB (input) INTEGER
- The leading dimension of B in the calling subprogram.
- LDB must be at least max(1,N).
-
- RCOND (input) DOUBLE PRECISION
- The singular values of A less than or equal to RCOND times
- the largest singular value are treated as zero in solving
- the least squares problem. If RCOND is negative,
- machine precision is used instead.
- For example, if diag(S)*X=B were the least squares problem,
- where diag(S) is a diagonal matrix of singular values, the
- solution would be X(i) = B(i) / S(i) if S(i) is greater than
- RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
- RCOND*max(S).
-
- RANK (output) INTEGER
- The number of singular values of A greater than RCOND times
- the largest singular value.
-
- WORK (workspace) COMPLEX*16 array, dimension at least
- (N * NRHS).
-
- RWORK (workspace) DOUBLE PRECISION array, dimension at least
- (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + (SMLSIZ+1)**2),
- where
- NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
-
- IWORK (workspace) INTEGER array, dimension at least
- (3*N*NLVL + 11*N).
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The algorithm failed to compute an singular value while
- working on the submatrix lying in rows and columns
- INFO/(N+1) through MOD(INFO,N+1).
-
- Further Details
- ===============
-
- Based on contributions by
- Ming Gu and Ren-Cang Li, Computer Science Division, University of
- California at Berkeley, USA
- Osni Marques, LBNL/NERSC, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --work;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 1) {
- *info = -4;
- } else if (*ldb < 1 || *ldb < *n) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLALSD", &i__1);
- return 0;
- }
-
- eps = EPSILON;
-
-/* Set up the tolerance. */
-
- if (*rcond <= 0. || *rcond >= 1.) {
- *rcond = eps;
- }
-
- *rank = 0;
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- } else if (*n == 1) {
- if (d__[1] == 0.) {
- zlaset_("A", &c__1, nrhs, &c_b59, &c_b59, &b[b_offset], ldb);
- } else {
- *rank = 1;
- zlascl_("G", &c__0, &c__0, &d__[1], &c_b1015, &c__1, nrhs, &b[
- b_offset], ldb, info);
- d__[1] = abs(d__[1]);
- }
- return 0;
- }
-
-/* Rotate the matrix if it is lower bidiagonal. */
-
- if (*(unsigned char *)uplo == 'L') {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- if (*nrhs == 1) {
- zdrot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
- c__1, &cs, &sn);
- } else {
- rwork[((i__) << (1)) - 1] = cs;
- rwork[i__ * 2] = sn;
- }
-/* L10: */
- }
- if (*nrhs > 1) {
- i__1 = *nrhs;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n - 1;
- for (j = 1; j <= i__2; ++j) {
- cs = rwork[((j) << (1)) - 1];
- sn = rwork[j * 2];
- zdrot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__
- * b_dim1], &c__1, &cs, &sn);
-/* L20: */
- }
-/* L30: */
- }
- }
- }
-
-/* Scale. */
-
- nm1 = *n - 1;
- orgnrm = dlanst_("M", n, &d__[1], &e[1]);
- if (orgnrm == 0.) {
- zlaset_("A", n, nrhs, &c_b59, &c_b59, &b[b_offset], ldb);
- return 0;
- }
-
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b1015, n, &c__1, &d__[1], n, info);
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b1015, &nm1, &c__1, &e[1], &nm1,
- info);
-
-/*
- If N is smaller than the minimum divide size SMLSIZ, then solve
- the problem with another solver.
-*/
-
- if (*n <= *smlsiz) {
- irwu = 1;
- irwvt = irwu + *n * *n;
- irwwrk = irwvt + *n * *n;
- irwrb = irwwrk;
- irwib = irwrb + *n * *nrhs;
- irwb = irwib + *n * *nrhs;
- dlaset_("A", n, n, &c_b324, &c_b1015, &rwork[irwu], n);
- dlaset_("A", n, n, &c_b324, &c_b1015, &rwork[irwvt], n);
- dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &rwork[irwvt], n,
- &rwork[irwu], n, &rwork[irwwrk], &c__1, &rwork[irwwrk], info);
- if (*info != 0) {
- return 0;
- }
-
-/*
- In the real version, B is passed to DLASDQ and multiplied
- internally by Q'. Here B is complex and that product is
- computed below in two steps (real and imaginary parts).
-*/
-
- j = irwb - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++j;
- i__3 = jrow + jcol * b_dim1;
- rwork[j] = b[i__3].r;
-/* L40: */
- }
-/* L50: */
- }
- dgemm_("T", "N", n, nrhs, n, &c_b1015, &rwork[irwu], n, &rwork[irwb],
- n, &c_b324, &rwork[irwrb], n);
- j = irwb - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
-/* L60: */
- }
-/* L70: */
- }
- dgemm_("T", "N", n, nrhs, n, &c_b1015, &rwork[irwu], n, &rwork[irwb],
- n, &c_b324, &rwork[irwib], n);
- jreal = irwrb - 1;
- jimag = irwib - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++jreal;
- ++jimag;
- i__3 = jrow + jcol * b_dim1;
- i__4 = jreal;
- i__5 = jimag;
- z__1.r = rwork[i__4], z__1.i = rwork[i__5];
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L80: */
- }
-/* L90: */
- }
-
- tol = *rcond * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (d__[i__] <= tol) {
- zlaset_("A", &c__1, nrhs, &c_b59, &c_b59, &b[i__ + b_dim1],
- ldb);
- } else {
- zlascl_("G", &c__0, &c__0, &d__[i__], &c_b1015, &c__1, nrhs, &
- b[i__ + b_dim1], ldb, info);
- ++(*rank);
- }
-/* L100: */
- }
-
-/*
- Since B is complex, the following call to DGEMM is performed
- in two steps (real and imaginary parts). That is for V * B
- (in the real version of the code V' is stored in WORK).
-
- CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
- $ WORK( NWORK ), N )
-*/
-
- j = irwb - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++j;
- i__3 = jrow + jcol * b_dim1;
- rwork[j] = b[i__3].r;
-/* L110: */
- }
-/* L120: */
- }
- dgemm_("T", "N", n, nrhs, n, &c_b1015, &rwork[irwvt], n, &rwork[irwb],
- n, &c_b324, &rwork[irwrb], n);
- j = irwb - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
-/* L130: */
- }
-/* L140: */
- }
- dgemm_("T", "N", n, nrhs, n, &c_b1015, &rwork[irwvt], n, &rwork[irwb],
- n, &c_b324, &rwork[irwib], n);
- jreal = irwrb - 1;
- jimag = irwib - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++jreal;
- ++jimag;
- i__3 = jrow + jcol * b_dim1;
- i__4 = jreal;
- i__5 = jimag;
- z__1.r = rwork[i__4], z__1.i = rwork[i__5];
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
-/* L150: */
- }
-/* L160: */
- }
-
-/* Unscale. */
-
- dlascl_("G", &c__0, &c__0, &c_b1015, &orgnrm, n, &c__1, &d__[1], n,
- info);
- dlasrt_("D", n, &d__[1], info);
- zlascl_("G", &c__0, &c__0, &orgnrm, &c_b1015, n, nrhs, &b[b_offset],
- ldb, info);
-
- return 0;
- }
-
-/* Book-keeping and setting up some constants. */
-
- nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) /
- log(2.)) + 1;
-
- smlszp = *smlsiz + 1;
-
- u = 1;
- vt = *smlsiz * *n + 1;
- difl = vt + smlszp * *n;
- difr = difl + nlvl * *n;
- z__ = difr + ((nlvl * *n) << (1));
- c__ = z__ + nlvl * *n;
- s = c__ + *n;
- poles = s + *n;
- givnum = poles + ((nlvl) << (1)) * *n;
- nrwork = givnum + ((nlvl) << (1)) * *n;
- bx = 1;
-
- irwrb = nrwork;
- irwib = irwrb + *smlsiz * *nrhs;
- irwb = irwib + *smlsiz * *nrhs;
-
- sizei = *n + 1;
- k = sizei + *n;
- givptr = k + *n;
- perm = givptr + *n;
- givcol = perm + nlvl * *n;
- iwk = givcol + ((nlvl * *n) << (1));
-
- st = 1;
- sqre = 0;
- icmpq1 = 1;
- icmpq2 = 0;
- nsub = 0;
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) < eps) {
- d__[i__] = d_sign(&eps, &d__[i__]);
- }
-/* L170: */
- }
-
- i__1 = nm1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
- ++nsub;
- iwork[nsub] = st;
-
-/*
- Subproblem found. First determine its size and then
- apply divide and conquer on it.
-*/
-
- if (i__ < nm1) {
-
-/* A subproblem with E(I) small for I < NM1. */
-
- nsize = i__ - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
-
-/* A subproblem with E(NM1) not too small but I = NM1. */
-
- nsize = *n - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- } else {
-
-/*
- A subproblem with E(NM1) small. This implies an
- 1-by-1 subproblem at D(N), which is not solved
- explicitly.
-*/
-
- nsize = i__ - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- ++nsub;
- iwork[nsub] = *n;
- iwork[sizei + nsub - 1] = 1;
- zcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
- }
- st1 = st - 1;
- if (nsize == 1) {
-
-/*
- This is a 1-by-1 subproblem and is not solved
- explicitly.
-*/
-
- zcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
- } else if (nsize <= *smlsiz) {
-
-/* This is a small subproblem and is solved by DLASDQ. */
-
- dlaset_("A", &nsize, &nsize, &c_b324, &c_b1015, &rwork[vt +
- st1], n);
- dlaset_("A", &nsize, &nsize, &c_b324, &c_b1015, &rwork[u +
- st1], n);
- dlasdq_("U", &c__0, &nsize, &nsize, &nsize, &c__0, &d__[st], &
- e[st], &rwork[vt + st1], n, &rwork[u + st1], n, &
- rwork[nrwork], &c__1, &rwork[nrwork], info)
- ;
- if (*info != 0) {
- return 0;
- }
-
-/*
- In the real version, B is passed to DLASDQ and multiplied
- internally by Q'. Here B is complex and that product is
- computed below in two steps (real and imaginary parts).
-*/
-
- j = irwb - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = st + nsize - 1;
- for (jrow = st; jrow <= i__3; ++jrow) {
- ++j;
- i__4 = jrow + jcol * b_dim1;
- rwork[j] = b[i__4].r;
-/* L180: */
- }
-/* L190: */
- }
- dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b1015, &rwork[u +
- st1], n, &rwork[irwb], &nsize, &c_b324, &rwork[irwrb],
- &nsize);
- j = irwb - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = st + nsize - 1;
- for (jrow = st; jrow <= i__3; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
-/* L200: */
- }
-/* L210: */
- }
- dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b1015, &rwork[u +
- st1], n, &rwork[irwb], &nsize, &c_b324, &rwork[irwib],
- &nsize);
- jreal = irwrb - 1;
- jimag = irwib - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = st + nsize - 1;
- for (jrow = st; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * b_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
-/* L220: */
- }
-/* L230: */
- }
-
- zlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
- st1], n);
- } else {
-
-/* A large problem. Solve it using divide and conquer. */
-
- dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
- rwork[u + st1], n, &rwork[vt + st1], &iwork[k + st1],
- &rwork[difl + st1], &rwork[difr + st1], &rwork[z__ +
- st1], &rwork[poles + st1], &iwork[givptr + st1], &
- iwork[givcol + st1], n, &iwork[perm + st1], &rwork[
- givnum + st1], &rwork[c__ + st1], &rwork[s + st1], &
- rwork[nrwork], &iwork[iwk], info);
- if (*info != 0) {
- return 0;
- }
- bxst = bx + st1;
- zlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
- work[bxst], n, &rwork[u + st1], n, &rwork[vt + st1], &
- iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1]
- , &rwork[z__ + st1], &rwork[poles + st1], &iwork[
- givptr + st1], &iwork[givcol + st1], n, &iwork[perm +
- st1], &rwork[givnum + st1], &rwork[c__ + st1], &rwork[
- s + st1], &rwork[nrwork], &iwork[iwk], info);
- if (*info != 0) {
- return 0;
- }
- }
- st = i__ + 1;
- }
-/* L240: */
- }
-
-/* Apply the singular values and treat the tiny ones as zero. */
-
- tol = *rcond * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/*
- Some of the elements in D can be negative because 1-by-1
- subproblems were not solved explicitly.
-*/
-
- if ((d__1 = d__[i__], abs(d__1)) <= tol) {
- zlaset_("A", &c__1, nrhs, &c_b59, &c_b59, &work[bx + i__ - 1], n);
- } else {
- ++(*rank);
- zlascl_("G", &c__0, &c__0, &d__[i__], &c_b1015, &c__1, nrhs, &
- work[bx + i__ - 1], n, info);
- }
- d__[i__] = (d__1 = d__[i__], abs(d__1));
-/* L250: */
- }
-
-/* Now apply back the right singular vectors. */
-
- icmpq2 = 1;
- i__1 = nsub;
- for (i__ = 1; i__ <= i__1; ++i__) {
- st = iwork[i__];
- st1 = st - 1;
- nsize = iwork[sizei + i__ - 1];
- bxst = bx + st1;
- if (nsize == 1) {
- zcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
- } else if (nsize <= *smlsiz) {
-
-/*
- Since B and BX are complex, the following call to DGEMM
- is performed in two steps (real and imaginary parts).
-
- CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
- $ RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO,
- $ B( ST, 1 ), LDB )
-*/
-
- j = bxst - *n - 1;
- jreal = irwb - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- j += *n;
- i__3 = nsize;
- for (jrow = 1; jrow <= i__3; ++jrow) {
- ++jreal;
- i__4 = j + jrow;
- rwork[jreal] = work[i__4].r;
-/* L260: */
- }
-/* L270: */
- }
- dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b1015, &rwork[vt + st1],
- n, &rwork[irwb], &nsize, &c_b324, &rwork[irwrb], &nsize);
- j = bxst - *n - 1;
- jimag = irwb - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- j += *n;
- i__3 = nsize;
- for (jrow = 1; jrow <= i__3; ++jrow) {
- ++jimag;
- rwork[jimag] = d_imag(&work[j + jrow]);
-/* L280: */
- }
-/* L290: */
- }
- dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b1015, &rwork[vt + st1],
- n, &rwork[irwb], &nsize, &c_b324, &rwork[irwib], &nsize);
- jreal = irwrb - 1;
- jimag = irwib - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = st + nsize - 1;
- for (jrow = st; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * b_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
-/* L300: */
- }
-/* L310: */
- }
- } else {
- zlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
- b_dim1], ldb, &rwork[u + st1], n, &rwork[vt + st1], &
- iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1], &
- rwork[z__ + st1], &rwork[poles + st1], &iwork[givptr +
- st1], &iwork[givcol + st1], n, &iwork[perm + st1], &rwork[
- givnum + st1], &rwork[c__ + st1], &rwork[s + st1], &rwork[
- nrwork], &iwork[iwk], info);
- if (*info != 0) {
- return 0;
- }
- }
-/* L320: */
- }
-
-/* Unscale and sort the singular values. */
-
- dlascl_("G", &c__0, &c__0, &c_b1015, &orgnrm, n, &c__1, &d__[1], n, info);
- dlasrt_("D", n, &d__[1], info);
- zlascl_("G", &c__0, &c__0, &orgnrm, &c_b1015, n, nrhs, &b[b_offset], ldb,
- info);
-
- return 0;
-
-/* End of ZLALSD */
-
-} /* zlalsd_ */
-
-doublereal zlange_(char *norm, integer *m, integer *n, doublecomplex *a,
- integer *lda, doublereal *work)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal ret_val, d__1, d__2;
-
- /* Builtin functions */
- double z_abs(doublecomplex *), sqrt(doublereal);
-
- /* Local variables */
- static integer i__, j;
- static doublereal sum, scale;
- extern logical lsame_(char *, char *);
- static doublereal value;
- extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
- doublereal *, doublereal *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- ZLANGE returns the value of the one norm, or the Frobenius norm, or
- the infinity norm, or the element of largest absolute value of a
- complex matrix A.
-
- Description
- ===========
-
- ZLANGE returns the value
-
- ZLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- (
- ( norm1(A), NORM = '1', 'O' or 'o'
- (
- ( normI(A), NORM = 'I' or 'i'
- (
- ( normF(A), NORM = 'F', 'f', 'E' or 'e'
-
- where norm1 denotes the one norm of a matrix (maximum column sum),
- normI denotes the infinity norm of a matrix (maximum row sum) and
- normF denotes the Frobenius norm of a matrix (square root of sum of
- squares). Note that max(abs(A(i,j))) is not a matrix norm.
-
- Arguments
- =========
-
- NORM (input) CHARACTER*1
- Specifies the value to be returned in ZLANGE as described
- above.
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0. When M = 0,
- ZLANGE is set to zero.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0. When N = 0,
- ZLANGE is set to zero.
-
- A (input) COMPLEX*16 array, dimension (LDA,N)
- The m by n matrix A.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(M,1).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
- where LWORK >= M when NORM = 'I'; otherwise, WORK is not
- referenced.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --work;
-
- /* Function Body */
- if (min(*m,*n) == 0) {
- value = 0.;
- } else if (lsame_(norm, "M")) {
-
-/* Find max(abs(A(i,j))). */
-
- value = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
-/* Computing MAX */
- d__1 = value, d__2 = z_abs(&a[i__ + j * a_dim1]);
- value = max(d__1,d__2);
-/* L10: */
- }
-/* L20: */
- }
- } else if (lsame_(norm, "O") || *(unsigned char *)
- norm == '1') {
-
-/* Find norm1(A). */
-
- value = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = 0.;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- sum += z_abs(&a[i__ + j * a_dim1]);
-/* L30: */
- }
- value = max(value,sum);
-/* L40: */
- }
- } else if (lsame_(norm, "I")) {
-
-/* Find normI(A). */
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
-/* L50: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__] += z_abs(&a[i__ + j * a_dim1]);
-/* L60: */
- }
-/* L70: */
- }
- value = 0.;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
-/* Computing MAX */
- d__1 = value, d__2 = work[i__];
- value = max(d__1,d__2);
-/* L80: */
- }
- } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
-
-/* Find normF(A). */
-
- scale = 0.;
- sum = 1.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- zlassq_(m, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
-/* L90: */
- }
- value = scale * sqrt(sum);
- }
-
- ret_val = value;
- return ret_val;
-
-/* End of ZLANGE */
-
-} /* zlange_ */
-
-doublereal zlanhe_(char *norm, char *uplo, integer *n, doublecomplex *a,
- integer *lda, doublereal *work)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal ret_val, d__1, d__2, d__3;
-
- /* Builtin functions */
- double z_abs(doublecomplex *), sqrt(doublereal);
-
- /* Local variables */
- static integer i__, j;
- static doublereal sum, absa, scale;
- extern logical lsame_(char *, char *);
- static doublereal value;
- extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
- doublereal *, doublereal *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- ZLANHE returns the value of the one norm, or the Frobenius norm, or
- the infinity norm, or the element of largest absolute value of a
- complex hermitian matrix A.
-
- Description
- ===========
-
- ZLANHE returns the value
-
- ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- (
- ( norm1(A), NORM = '1', 'O' or 'o'
- (
- ( normI(A), NORM = 'I' or 'i'
- (
- ( normF(A), NORM = 'F', 'f', 'E' or 'e'
-
- where norm1 denotes the one norm of a matrix (maximum column sum),
- normI denotes the infinity norm of a matrix (maximum row sum) and
- normF denotes the Frobenius norm of a matrix (square root of sum of
- squares). Note that max(abs(A(i,j))) is not a matrix norm.
-
- Arguments
- =========
-
- NORM (input) CHARACTER*1
- Specifies the value to be returned in ZLANHE as described
- above.
-
- UPLO (input) CHARACTER*1
- Specifies whether the upper or lower triangular part of the
- hermitian matrix A is to be referenced.
- = 'U': Upper triangular part of A is referenced
- = 'L': Lower triangular part of A is referenced
-
- N (input) INTEGER
- The order of the matrix A. N >= 0. When N = 0, ZLANHE is
- set to zero.
-
- A (input) COMPLEX*16 array, dimension (LDA,N)
- The hermitian matrix A. If UPLO = 'U', the leading n by n
- upper triangular part of A contains the upper triangular part
- of the matrix A, and the strictly lower triangular part of A
- is not referenced. If UPLO = 'L', the leading n by n lower
- triangular part of A contains the lower triangular part of
- the matrix A, and the strictly upper triangular part of A is
- not referenced. Note that the imaginary parts of the diagonal
- elements need not be set and are assumed to be zero.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(N,1).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
- where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
- WORK is not referenced.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --work;
-
- /* Function Body */
- if (*n == 0) {
- value = 0.;
- } else if (lsame_(norm, "M")) {
-
-/* Find max(abs(A(i,j))). */
-
- value = 0.;
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
-/* Computing MAX */
- d__1 = value, d__2 = z_abs(&a[i__ + j * a_dim1]);
- value = max(d__1,d__2);
-/* L10: */
- }
-/* Computing MAX */
- i__2 = j + j * a_dim1;
- d__2 = value, d__3 = (d__1 = a[i__2].r, abs(d__1));
- value = max(d__2,d__3);
-/* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MAX */
- i__2 = j + j * a_dim1;
- d__2 = value, d__3 = (d__1 = a[i__2].r, abs(d__1));
- value = max(d__2,d__3);
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
-/* Computing MAX */
- d__1 = value, d__2 = z_abs(&a[i__ + j * a_dim1]);
- value = max(d__1,d__2);
-/* L30: */
- }
-/* L40: */
- }
- }
- } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {
-
-/* Find normI(A) ( = norm1(A), since A is hermitian). */
-
- value = 0.;
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = 0.;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- absa = z_abs(&a[i__ + j * a_dim1]);
- sum += absa;
- work[i__] += absa;
-/* L50: */
- }
- i__2 = j + j * a_dim1;
- work[j] = sum + (d__1 = a[i__2].r, abs(d__1));
-/* L60: */
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-/* Computing MAX */
- d__1 = value, d__2 = work[i__];
- value = max(d__1,d__2);
-/* L70: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
-/* L80: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + j * a_dim1;
- sum = work[j] + (d__1 = a[i__2].r, abs(d__1));
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- absa = z_abs(&a[i__ + j * a_dim1]);
- sum += absa;
- work[i__] += absa;
-/* L90: */
- }
- value = max(value,sum);
-/* L100: */
- }
- }
- } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
-
-/* Find normF(A). */
-
- scale = 0.;
- sum = 1.;
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- i__2 = j - 1;
- zlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
-/* L110: */
- }
- } else {
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n - j;
- zlassq_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &scale, &sum);
-/* L120: */
- }
- }
- sum *= 2;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + i__ * a_dim1;
- if (a[i__2].r != 0.) {
- i__2 = i__ + i__ * a_dim1;
- absa = (d__1 = a[i__2].r, abs(d__1));
- if (scale < absa) {
-/* Computing 2nd power */
- d__1 = scale / absa;
- sum = sum * (d__1 * d__1) + 1.;
- scale = absa;
- } else {
-/* Computing 2nd power */
- d__1 = absa / scale;
- sum += d__1 * d__1;
- }
- }
-/* L130: */
- }
- value = scale * sqrt(sum);
- }
-
- ret_val = value;
- return ret_val;
-
-/* End of ZLANHE */
-
-} /* zlanhe_ */
-
-doublereal zlanhs_(char *norm, integer *n, doublecomplex *a, integer *lda,
- doublereal *work)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- doublereal ret_val, d__1, d__2;
-
- /* Builtin functions */
- double z_abs(doublecomplex *), sqrt(doublereal);
-
- /* Local variables */
- static integer i__, j;
- static doublereal sum, scale;
- extern logical lsame_(char *, char *);
- static doublereal value;
- extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
- doublereal *, doublereal *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- ZLANHS returns the value of the one norm, or the Frobenius norm, or
- the infinity norm, or the element of largest absolute value of a
- Hessenberg matrix A.
-
- Description
- ===========
-
- ZLANHS returns the value
-
- ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- (
- ( norm1(A), NORM = '1', 'O' or 'o'
- (
- ( normI(A), NORM = 'I' or 'i'
- (
- ( normF(A), NORM = 'F', 'f', 'E' or 'e'
-
- where norm1 denotes the one norm of a matrix (maximum column sum),
- normI denotes the infinity norm of a matrix (maximum row sum) and
- normF denotes the Frobenius norm of a matrix (square root of sum of
- squares). Note that max(abs(A(i,j))) is not a matrix norm.
-
- Arguments
- =========
-
- NORM (input) CHARACTER*1
- Specifies the value to be returned in ZLANHS as described
- above.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0. When N = 0, ZLANHS is
- set to zero.
-
- A (input) COMPLEX*16 array, dimension (LDA,N)
- The n by n upper Hessenberg matrix A; the part of A below the
- first sub-diagonal is not referenced.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(N,1).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
- where LWORK >= N when NORM = 'I'; otherwise, WORK is not
- referenced.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --work;
-
- /* Function Body */
- if (*n == 0) {
- value = 0.;
- } else if (lsame_(norm, "M")) {
-
-/* Find max(abs(A(i,j))). */
-
- value = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = *n, i__4 = j + 1;
- i__2 = min(i__3,i__4);
- for (i__ = 1; i__ <= i__2; ++i__) {
-/* Computing MAX */
- d__1 = value, d__2 = z_abs(&a[i__ + j * a_dim1]);
- value = max(d__1,d__2);
-/* L10: */
- }
-/* L20: */
- }
- } else if (lsame_(norm, "O") || *(unsigned char *)
- norm == '1') {
-
-/* Find norm1(A). */
-
- value = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sum = 0.;
-/* Computing MIN */
- i__3 = *n, i__4 = j + 1;
- i__2 = min(i__3,i__4);
- for (i__ = 1; i__ <= i__2; ++i__) {
- sum += z_abs(&a[i__ + j * a_dim1]);
-/* L30: */
- }
- value = max(value,sum);
-/* L40: */
- }
- } else if (lsame_(norm, "I")) {
-
-/* Find normI(A). */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
-/* L50: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = *n, i__4 = j + 1;
- i__2 = min(i__3,i__4);
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__] += z_abs(&a[i__ + j * a_dim1]);
-/* L60: */
- }
-/* L70: */
- }
- value = 0.;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-/* Computing MAX */
- d__1 = value, d__2 = work[i__];
- value = max(d__1,d__2);
-/* L80: */
- }
- } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
-
-/* Find normF(A). */
-
- scale = 0.;
- sum = 1.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = *n, i__4 = j + 1;
- i__2 = min(i__3,i__4);
- zlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
-/* L90: */
- }
- value = scale * sqrt(sum);
- }
-
- ret_val = value;
- return ret_val;
-
-/* End of ZLANHS */
-
-} /* zlanhs_ */
-
-/* Subroutine */ int zlarcm_(integer *m, integer *n, doublereal *a, integer *
- lda, doublecomplex *b, integer *ldb, doublecomplex *c__, integer *ldc,
- doublereal *rwork)
-{
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
- i__3, i__4, i__5;
- doublereal d__1;
- doublecomplex z__1;
-
- /* Builtin functions */
- double d_imag(doublecomplex *);
-
- /* Local variables */
- static integer i__, j, l;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZLARCM performs a very simple matrix-matrix multiplication:
- C := A * B,
- where A is M by M and real; B is M by N and complex;
- C is M by N and complex.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix A and of the matrix C.
- M >= 0.
-
- N (input) INTEGER
- The number of columns and rows of the matrix B and
- the number of columns of the matrix C.
- N >= 0.
-
- A (input) DOUBLE PRECISION array, dimension (LDA, M)
- A contains the M by M matrix A.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >=max(1,M).
-
- B (input) DOUBLE PRECISION array, dimension (LDB, N)
- B contains the M by N matrix B.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >=max(1,M).
-
- C (input) COMPLEX*16 array, dimension (LDC, N)
- C contains the M by N matrix C.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >=max(1,M).
-
- RWORK (workspace) DOUBLE PRECISION array, dimension (2*M*N)
-
- =====================================================================
-
-
- Quick return if possible.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --rwork;
-
- /* Function Body */
- if (*m == 0 || *n == 0) {
- return 0;
- }
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- rwork[(j - 1) * *m + i__] = b[i__3].r;
-/* L10: */
- }
-/* L20: */
- }
-
- l = *m * *n + 1;
- dgemm_("N", "N", m, n, m, &c_b1015, &a[a_offset], lda, &rwork[1], m, &
- c_b324, &rwork[l], m);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = l + (j - 1) * *m + i__ - 1;
- c__[i__3].r = rwork[i__4], c__[i__3].i = 0.;
-/* L30: */
- }
-/* L40: */
- }
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- rwork[(j - 1) * *m + i__] = d_imag(&b[i__ + j * b_dim1]);
-/* L50: */
- }
-/* L60: */
- }
- dgemm_("N", "N", m, n, m, &c_b1015, &a[a_offset], lda, &rwork[1], m, &
- c_b324, &rwork[l], m);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- d__1 = c__[i__4].r;
- i__5 = l + (j - 1) * *m + i__ - 1;
- z__1.r = d__1, z__1.i = rwork[i__5];
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L70: */
- }
-/* L80: */
- }
-
- return 0;
-
-/* End of ZLARCM */
-
-} /* zlarcm_ */
-
-/* Subroutine */ int zlarf_(char *side, integer *m, integer *n, doublecomplex
- *v, integer *incv, doublecomplex *tau, doublecomplex *c__, integer *
- ldc, doublecomplex *work)
-{
- /* System generated locals */
- integer c_dim1, c_offset;
- doublecomplex z__1;
-
- /* Local variables */
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZLARF applies a complex elementary reflector H to a complex M-by-N
- matrix C, from either the left or the right. H is represented in the
- form
-
- H = I - tau * v * v'
-
- where tau is a complex scalar and v is a complex vector.
-
- If tau = 0, then H is taken to be the unit matrix.
-
- To apply H' (the conjugate transpose of H), supply conjg(tau) instead
- tau.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': form H * C
- = 'R': form C * H
-
- M (input) INTEGER
- The number of rows of the matrix C.
-
- N (input) INTEGER
- The number of columns of the matrix C.
-
- V (input) COMPLEX*16 array, dimension
- (1 + (M-1)*abs(INCV)) if SIDE = 'L'
- or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
- The vector v in the representation of H. V is not used if
- TAU = 0.
-
- INCV (input) INTEGER
- The increment between elements of v. INCV <> 0.
-
- TAU (input) COMPLEX*16
- The value tau in the representation of H.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by the matrix H * C if SIDE = 'L',
- or C * H if SIDE = 'R'.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace) COMPLEX*16 array, dimension
- (N) if SIDE = 'L'
- or (M) if SIDE = 'R'
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --v;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- if (lsame_(side, "L")) {
-
-/* Form H * C */
-
- if (tau->r != 0. || tau->i != 0.) {
-
-/* w := C' * v */
-
- zgemv_("Conjugate transpose", m, n, &c_b60, &c__[c_offset], ldc, &
- v[1], incv, &c_b59, &work[1], &c__1);
-
-/* C := C - v * w' */
-
- z__1.r = -tau->r, z__1.i = -tau->i;
- zgerc_(m, n, &z__1, &v[1], incv, &work[1], &c__1, &c__[c_offset],
- ldc);
- }
- } else {
-
-/* Form C * H */
-
- if (tau->r != 0. || tau->i != 0.) {
-
-/* w := C * v */
-
- zgemv_("No transpose", m, n, &c_b60, &c__[c_offset], ldc, &v[1],
- incv, &c_b59, &work[1], &c__1);
-
-/* C := C - w * v' */
-
- z__1.r = -tau->r, z__1.i = -tau->i;
- zgerc_(m, n, &z__1, &work[1], &c__1, &v[1], incv, &c__[c_offset],
- ldc);
- }
- }
- return 0;
-
-/* End of ZLARF */
-
-} /* zlarf_ */
-
-/* Subroutine */ int zlarfb_(char *side, char *trans, char *direct, char *
- storev, integer *m, integer *n, integer *k, doublecomplex *v, integer
- *ldv, doublecomplex *t, integer *ldt, doublecomplex *c__, integer *
- ldc, doublecomplex *work, integer *ldwork)
-{
- /* System generated locals */
- integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
- work_offset, i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1, z__2;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *), zcopy_(integer *, doublecomplex *,
- integer *, doublecomplex *, integer *), ztrmm_(char *, char *,
- char *, char *, integer *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *), zlacgv_(integer *, doublecomplex *,
- integer *);
- static char transt[1];
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZLARFB applies a complex block reflector H or its transpose H' to a
- complex M-by-N matrix C, from either the left or the right.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply H or H' from the Left
- = 'R': apply H or H' from the Right
-
- TRANS (input) CHARACTER*1
- = 'N': apply H (No transpose)
- = 'C': apply H' (Conjugate transpose)
-
- DIRECT (input) CHARACTER*1
- Indicates how H is formed from a product of elementary
- reflectors
- = 'F': H = H(1) H(2) . . . H(k) (Forward)
- = 'B': H = H(k) . . . H(2) H(1) (Backward)
-
- STOREV (input) CHARACTER*1
- Indicates how the vectors which define the elementary
- reflectors are stored:
- = 'C': Columnwise
- = 'R': Rowwise
-
- M (input) INTEGER
- The number of rows of the matrix C.
-
- N (input) INTEGER
- The number of columns of the matrix C.
-
- K (input) INTEGER
- The order of the matrix T (= the number of elementary
- reflectors whose product defines the block reflector).
-
- V (input) COMPLEX*16 array, dimension
- (LDV,K) if STOREV = 'C'
- (LDV,M) if STOREV = 'R' and SIDE = 'L'
- (LDV,N) if STOREV = 'R' and SIDE = 'R'
- The matrix V. See further details.
-
- LDV (input) INTEGER
- The leading dimension of the array V.
- If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
- if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
- if STOREV = 'R', LDV >= K.
-
- T (input) COMPLEX*16 array, dimension (LDT,K)
- The triangular K-by-K matrix T in the representation of the
- block reflector.
-
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= K.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace) COMPLEX*16 array, dimension (LDWORK,K)
-
- LDWORK (input) INTEGER
- The leading dimension of the array WORK.
- If SIDE = 'L', LDWORK >= max(1,N);
- if SIDE = 'R', LDWORK >= max(1,M).
-
- =====================================================================
-
-
- Quick return if possible
-*/
-
- /* Parameter adjustments */
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- work_dim1 = *ldwork;
- work_offset = 1 + work_dim1 * 1;
- work -= work_offset;
-
- /* Function Body */
- if (*m <= 0 || *n <= 0) {
- return 0;
- }
-
- if (lsame_(trans, "N")) {
- *(unsigned char *)transt = 'C';
- } else {
- *(unsigned char *)transt = 'N';
- }
-
- if (lsame_(storev, "C")) {
-
- if (lsame_(direct, "F")) {
-
-/*
- Let V = ( V1 ) (first K rows)
- ( V2 )
- where V1 is unit lower triangular.
-*/
-
- if (lsame_(side, "L")) {
-
-/*
- Form H * C or H' * C where C = ( C1 )
- ( C2 )
-
- W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK)
-
- W := C1'
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
- &c__1);
- zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
-/* L10: */
- }
-
-/* W := W * V1 */
-
- ztrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b60,
- &v[v_offset], ldv, &work[work_offset], ldwork);
- if (*m > *k) {
-
-/* W := W + C2'*V2 */
-
- i__1 = *m - *k;
- zgemm_("Conjugate transpose", "No transpose", n, k, &i__1,
- &c_b60, &c__[*k + 1 + c_dim1], ldc, &v[*k + 1 +
- v_dim1], ldv, &c_b60, &work[work_offset], ldwork);
- }
-
-/* W := W * T' or W * T */
-
- ztrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b60, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - V * W' */
-
- if (*m > *k) {
-
-/* C2 := C2 - V2 * W' */
-
- i__1 = *m - *k;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("No transpose", "Conjugate transpose", &i__1, n, k,
- &z__1, &v[*k + 1 + v_dim1], ldv, &work[
- work_offset], ldwork, &c_b60, &c__[*k + 1 +
- c_dim1], ldc);
- }
-
-/* W := W * V1' */
-
- ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k,
- &c_b60, &v[v_offset], ldv, &work[work_offset], ldwork);
-
-/* C1 := C1 - W' */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = j + i__ * c_dim1;
- i__4 = j + i__ * c_dim1;
- d_cnjg(&z__2, &work[i__ + j * work_dim1]);
- z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
- z__2.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L20: */
- }
-/* L30: */
- }
-
- } else if (lsame_(side, "R")) {
-
-/*
- Form C * H or C * H' where C = ( C1 C2 )
-
- W := C * V = (C1*V1 + C2*V2) (stored in WORK)
-
- W := C1
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
- work_dim1 + 1], &c__1);
-/* L40: */
- }
-
-/* W := W * V1 */
-
- ztrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b60,
- &v[v_offset], ldv, &work[work_offset], ldwork);
- if (*n > *k) {
-
-/* W := W + C2 * V2 */
-
- i__1 = *n - *k;
- zgemm_("No transpose", "No transpose", m, k, &i__1, &
- c_b60, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k +
- 1 + v_dim1], ldv, &c_b60, &work[work_offset],
- ldwork);
- }
-
-/* W := W * T or W * T' */
-
- ztrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b60, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - W * V' */
-
- if (*n > *k) {
-
-/* C2 := C2 - W * V2' */
-
- i__1 = *n - *k;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("No transpose", "Conjugate transpose", m, &i__1, k,
- &z__1, &work[work_offset], ldwork, &v[*k + 1 +
- v_dim1], ldv, &c_b60, &c__[(*k + 1) * c_dim1 + 1],
- ldc);
- }
-
-/* W := W * V1' */
-
- ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k,
- &c_b60, &v[v_offset], ldv, &work[work_offset], ldwork);
-
-/* C1 := C1 - W */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * work_dim1;
- z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
- i__4].i - work[i__5].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L50: */
- }
-/* L60: */
- }
- }
-
- } else {
-
-/*
- Let V = ( V1 )
- ( V2 ) (last K rows)
- where V2 is unit upper triangular.
-*/
-
- if (lsame_(side, "L")) {
-
-/*
- Form H * C or H' * C where C = ( C1 )
- ( C2 )
-
- W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK)
-
- W := C2'
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- zcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
- work_dim1 + 1], &c__1);
- zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
-/* L70: */
- }
-
-/* W := W * V2 */
-
- ztrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b60,
- &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
- ldwork);
- if (*m > *k) {
-
-/* W := W + C1'*V1 */
-
- i__1 = *m - *k;
- zgemm_("Conjugate transpose", "No transpose", n, k, &i__1,
- &c_b60, &c__[c_offset], ldc, &v[v_offset], ldv, &
- c_b60, &work[work_offset], ldwork);
- }
-
-/* W := W * T' or W * T */
-
- ztrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b60, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - V * W' */
-
- if (*m > *k) {
-
-/* C1 := C1 - V1 * W' */
-
- i__1 = *m - *k;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("No transpose", "Conjugate transpose", &i__1, n, k,
- &z__1, &v[v_offset], ldv, &work[work_offset],
- ldwork, &c_b60, &c__[c_offset], ldc);
- }
-
-/* W := W * V2' */
-
- ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k,
- &c_b60, &v[*m - *k + 1 + v_dim1], ldv, &work[
- work_offset], ldwork);
-
-/* C2 := C2 - W' */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = *m - *k + j + i__ * c_dim1;
- i__4 = *m - *k + j + i__ * c_dim1;
- d_cnjg(&z__2, &work[i__ + j * work_dim1]);
- z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
- z__2.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L80: */
- }
-/* L90: */
- }
-
- } else if (lsame_(side, "R")) {
-
-/*
- Form C * H or C * H' where C = ( C1 C2 )
-
- W := C * V = (C1*V1 + C2*V2) (stored in WORK)
-
- W := C2
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- zcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
- j * work_dim1 + 1], &c__1);
-/* L100: */
- }
-
-/* W := W * V2 */
-
- ztrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b60,
- &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
- ldwork);
- if (*n > *k) {
-
-/* W := W + C1 * V1 */
-
- i__1 = *n - *k;
- zgemm_("No transpose", "No transpose", m, k, &i__1, &
- c_b60, &c__[c_offset], ldc, &v[v_offset], ldv, &
- c_b60, &work[work_offset], ldwork);
- }
-
-/* W := W * T or W * T' */
-
- ztrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b60, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - W * V' */
-
- if (*n > *k) {
-
-/* C1 := C1 - W * V1' */
-
- i__1 = *n - *k;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("No transpose", "Conjugate transpose", m, &i__1, k,
- &z__1, &work[work_offset], ldwork, &v[v_offset],
- ldv, &c_b60, &c__[c_offset], ldc);
- }
-
-/* W := W * V2' */
-
- ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k,
- &c_b60, &v[*n - *k + 1 + v_dim1], ldv, &work[
- work_offset], ldwork);
-
-/* C2 := C2 - W */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + (*n - *k + j) * c_dim1;
- i__4 = i__ + (*n - *k + j) * c_dim1;
- i__5 = i__ + j * work_dim1;
- z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
- i__4].i - work[i__5].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L110: */
- }
-/* L120: */
- }
- }
- }
-
- } else if (lsame_(storev, "R")) {
-
- if (lsame_(direct, "F")) {
-
-/*
- Let V = ( V1 V2 ) (V1: first K columns)
- where V1 is unit upper triangular.
-*/
-
- if (lsame_(side, "L")) {
-
-/*
- Form H * C or H' * C where C = ( C1 )
- ( C2 )
-
- W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK)
-
- W := C1'
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
- &c__1);
- zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
-/* L130: */
- }
-
-/* W := W * V1' */
-
- ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k,
- &c_b60, &v[v_offset], ldv, &work[work_offset], ldwork);
- if (*m > *k) {
-
-/* W := W + C2'*V2' */
-
- i__1 = *m - *k;
- zgemm_("Conjugate transpose", "Conjugate transpose", n, k,
- &i__1, &c_b60, &c__[*k + 1 + c_dim1], ldc, &v[(*
- k + 1) * v_dim1 + 1], ldv, &c_b60, &work[
- work_offset], ldwork);
- }
-
-/* W := W * T' or W * T */
-
- ztrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b60, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - V' * W' */
-
- if (*m > *k) {
-
-/* C2 := C2 - V2' * W' */
-
- i__1 = *m - *k;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("Conjugate transpose", "Conjugate transpose", &
- i__1, n, k, &z__1, &v[(*k + 1) * v_dim1 + 1], ldv,
- &work[work_offset], ldwork, &c_b60, &c__[*k + 1
- + c_dim1], ldc);
- }
-
-/* W := W * V1 */
-
- ztrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b60,
- &v[v_offset], ldv, &work[work_offset], ldwork);
-
-/* C1 := C1 - W' */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = j + i__ * c_dim1;
- i__4 = j + i__ * c_dim1;
- d_cnjg(&z__2, &work[i__ + j * work_dim1]);
- z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
- z__2.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L140: */
- }
-/* L150: */
- }
-
- } else if (lsame_(side, "R")) {
-
-/*
- Form C * H or C * H' where C = ( C1 C2 )
-
- W := C * V' = (C1*V1' + C2*V2') (stored in WORK)
-
- W := C1
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
- work_dim1 + 1], &c__1);
-/* L160: */
- }
-
-/* W := W * V1' */
-
- ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k,
- &c_b60, &v[v_offset], ldv, &work[work_offset], ldwork);
- if (*n > *k) {
-
-/* W := W + C2 * V2' */
-
- i__1 = *n - *k;
- zgemm_("No transpose", "Conjugate transpose", m, k, &i__1,
- &c_b60, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k
- + 1) * v_dim1 + 1], ldv, &c_b60, &work[
- work_offset], ldwork);
- }
-
-/* W := W * T or W * T' */
-
- ztrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b60, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - W * V */
-
- if (*n > *k) {
-
-/* C2 := C2 - W * V2 */
-
- i__1 = *n - *k;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("No transpose", "No transpose", m, &i__1, k, &z__1,
- &work[work_offset], ldwork, &v[(*k + 1) * v_dim1
- + 1], ldv, &c_b60, &c__[(*k + 1) * c_dim1 + 1],
- ldc);
- }
-
-/* W := W * V1 */
-
- ztrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b60,
- &v[v_offset], ldv, &work[work_offset], ldwork);
-
-/* C1 := C1 - W */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * work_dim1;
- z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
- i__4].i - work[i__5].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L170: */
- }
-/* L180: */
- }
-
- }
-
- } else {
-
-/*
- Let V = ( V1 V2 ) (V2: last K columns)
- where V2 is unit lower triangular.
-*/
-
- if (lsame_(side, "L")) {
-
-/*
- Form H * C or H' * C where C = ( C1 )
- ( C2 )
-
- W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK)
-
- W := C2'
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- zcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
- work_dim1 + 1], &c__1);
- zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
-/* L190: */
- }
-
-/* W := W * V2' */
-
- ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k,
- &c_b60, &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
- work_offset], ldwork);
- if (*m > *k) {
-
-/* W := W + C1'*V1' */
-
- i__1 = *m - *k;
- zgemm_("Conjugate transpose", "Conjugate transpose", n, k,
- &i__1, &c_b60, &c__[c_offset], ldc, &v[v_offset],
- ldv, &c_b60, &work[work_offset], ldwork);
- }
-
-/* W := W * T' or W * T */
-
- ztrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b60, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - V' * W' */
-
- if (*m > *k) {
-
-/* C1 := C1 - V1' * W' */
-
- i__1 = *m - *k;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("Conjugate transpose", "Conjugate transpose", &
- i__1, n, k, &z__1, &v[v_offset], ldv, &work[
- work_offset], ldwork, &c_b60, &c__[c_offset], ldc);
- }
-
-/* W := W * V2 */
-
- ztrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b60,
- &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
- work_offset], ldwork);
-
-/* C2 := C2 - W' */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = *m - *k + j + i__ * c_dim1;
- i__4 = *m - *k + j + i__ * c_dim1;
- d_cnjg(&z__2, &work[i__ + j * work_dim1]);
- z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
- z__2.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L200: */
- }
-/* L210: */
- }
-
- } else if (lsame_(side, "R")) {
-
-/*
- Form C * H or C * H' where C = ( C1 C2 )
-
- W := C * V' = (C1*V1' + C2*V2') (stored in WORK)
-
- W := C2
-*/
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- zcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
- j * work_dim1 + 1], &c__1);
-/* L220: */
- }
-
-/* W := W * V2' */
-
- ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k,
- &c_b60, &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
- work_offset], ldwork);
- if (*n > *k) {
-
-/* W := W + C1 * V1' */
-
- i__1 = *n - *k;
- zgemm_("No transpose", "Conjugate transpose", m, k, &i__1,
- &c_b60, &c__[c_offset], ldc, &v[v_offset], ldv, &
- c_b60, &work[work_offset], ldwork);
- }
-
-/* W := W * T or W * T' */
-
- ztrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b60, &t[
- t_offset], ldt, &work[work_offset], ldwork);
-
-/* C := C - W * V */
-
- if (*n > *k) {
-
-/* C1 := C1 - W * V1 */
-
- i__1 = *n - *k;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("No transpose", "No transpose", m, &i__1, k, &z__1,
- &work[work_offset], ldwork, &v[v_offset], ldv, &
- c_b60, &c__[c_offset], ldc);
- }
-
-/* W := W * V2 */
-
- ztrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b60,
- &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
- work_offset], ldwork);
-
-/* C1 := C1 - W */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + (*n - *k + j) * c_dim1;
- i__4 = i__ + (*n - *k + j) * c_dim1;
- i__5 = i__ + j * work_dim1;
- z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
- i__4].i - work[i__5].i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
-/* L230: */
- }
-/* L240: */
- }
-
- }
-
- }
- }
-
- return 0;
-
-/* End of ZLARFB */
-
-} /* zlarfb_ */
-
-/* Subroutine */ int zlarfg_(integer *n, doublecomplex *alpha, doublecomplex *
- x, integer *incx, doublecomplex *tau)
-{
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2;
- doublecomplex z__1, z__2;
-
- /* Builtin functions */
- double d_imag(doublecomplex *), d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static integer j, knt;
- static doublereal beta, alphi, alphr;
- extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *);
- static doublereal xnorm;
- extern doublereal dlapy3_(doublereal *, doublereal *, doublereal *),
- dznrm2_(integer *, doublecomplex *, integer *), dlamch_(char *);
- static doublereal safmin;
- extern /* Subroutine */ int zdscal_(integer *, doublereal *,
- doublecomplex *, integer *);
- static doublereal rsafmn;
- extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
- doublecomplex *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZLARFG generates a complex elementary reflector H of order n, such
- that
-
- H' * ( alpha ) = ( beta ), H' * H = I.
- ( x ) ( 0 )
-
- where alpha and beta are scalars, with beta real, and x is an
- (n-1)-element complex vector. H is represented in the form
-
- H = I - tau * ( 1 ) * ( 1 v' ) ,
- ( v )
-
- where tau is a complex scalar and v is a complex (n-1)-element
- vector. Note that H is not hermitian.
-
- If the elements of x are all zero and alpha is real, then tau = 0
- and H is taken to be the unit matrix.
-
- Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 .
-
- Arguments
- =========
-
- N (input) INTEGER
- The order of the elementary reflector.
-
- ALPHA (input/output) COMPLEX*16
- On entry, the value alpha.
- On exit, it is overwritten with the value beta.
-
- X (input/output) COMPLEX*16 array, dimension
- (1+(N-2)*abs(INCX))
- On entry, the vector x.
- On exit, it is overwritten with the vector v.
-
- INCX (input) INTEGER
- The increment between elements of X. INCX > 0.
-
- TAU (output) COMPLEX*16
- The value tau.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --x;
-
- /* Function Body */
- if (*n <= 0) {
- tau->r = 0., tau->i = 0.;
- return 0;
- }
-
- i__1 = *n - 1;
- xnorm = dznrm2_(&i__1, &x[1], incx);
- alphr = alpha->r;
- alphi = d_imag(alpha);
-
- if ((xnorm == 0. && alphi == 0.)) {
-
-/* H = I */
-
- tau->r = 0., tau->i = 0.;
- } else {
-
-/* general case */
-
- d__1 = dlapy3_(&alphr, &alphi, &xnorm);
- beta = -d_sign(&d__1, &alphr);
- safmin = SAFEMINIMUM / EPSILON;
- rsafmn = 1. / safmin;
-
- if (abs(beta) < safmin) {
-
-/* XNORM, BETA may be inaccurate; scale X and recompute them */
-
- knt = 0;
-L10:
- ++knt;
- i__1 = *n - 1;
- zdscal_(&i__1, &rsafmn, &x[1], incx);
- beta *= rsafmn;
- alphi *= rsafmn;
- alphr *= rsafmn;
- if (abs(beta) < safmin) {
- goto L10;
- }
-
-/* New BETA is at most 1, at least SAFMIN */
-
- i__1 = *n - 1;
- xnorm = dznrm2_(&i__1, &x[1], incx);
- z__1.r = alphr, z__1.i = alphi;
- alpha->r = z__1.r, alpha->i = z__1.i;
- d__1 = dlapy3_(&alphr, &alphi, &xnorm);
- beta = -d_sign(&d__1, &alphr);
- d__1 = (beta - alphr) / beta;
- d__2 = -alphi / beta;
- z__1.r = d__1, z__1.i = d__2;
- tau->r = z__1.r, tau->i = z__1.i;
- z__2.r = alpha->r - beta, z__2.i = alpha->i;
- zladiv_(&z__1, &c_b60, &z__2);
- alpha->r = z__1.r, alpha->i = z__1.i;
- i__1 = *n - 1;
- zscal_(&i__1, alpha, &x[1], incx);
-
-/* If ALPHA is subnormal, it may lose relative accuracy */
-
- alpha->r = beta, alpha->i = 0.;
- i__1 = knt;
- for (j = 1; j <= i__1; ++j) {
- z__1.r = safmin * alpha->r, z__1.i = safmin * alpha->i;
- alpha->r = z__1.r, alpha->i = z__1.i;
-/* L20: */
- }
- } else {
- d__1 = (beta - alphr) / beta;
- d__2 = -alphi / beta;
- z__1.r = d__1, z__1.i = d__2;
- tau->r = z__1.r, tau->i = z__1.i;
- z__2.r = alpha->r - beta, z__2.i = alpha->i;
- zladiv_(&z__1, &c_b60, &z__2);
- alpha->r = z__1.r, alpha->i = z__1.i;
- i__1 = *n - 1;
- zscal_(&i__1, alpha, &x[1], incx);
- alpha->r = beta, alpha->i = 0.;
- }
- }
-
- return 0;
-
-/* End of ZLARFG */
-
-} /* zlarfg_ */
-
-/* Subroutine */ int zlarft_(char *direct, char *storev, integer *n, integer *
- k, doublecomplex *v, integer *ldv, doublecomplex *tau, doublecomplex *
- t, integer *ldt)
-{
- /* System generated locals */
- integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4;
- doublecomplex z__1;
-
- /* Local variables */
- static integer i__, j;
- static doublecomplex vii;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *),
- ztrmv_(char *, char *, char *, integer *, doublecomplex *,
- integer *, doublecomplex *, integer *),
- zlacgv_(integer *, doublecomplex *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZLARFT forms the triangular factor T of a complex block reflector H
- of order n, which is defined as a product of k elementary reflectors.
-
- If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
-
- If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
-
- If STOREV = 'C', the vector which defines the elementary reflector
- H(i) is stored in the i-th column of the array V, and
-
- H = I - V * T * V'
-
- If STOREV = 'R', the vector which defines the elementary reflector
- H(i) is stored in the i-th row of the array V, and
-
- H = I - V' * T * V
-
- Arguments
- =========
-
- DIRECT (input) CHARACTER*1
- Specifies the order in which the elementary reflectors are
- multiplied to form the block reflector:
- = 'F': H = H(1) H(2) . . . H(k) (Forward)
- = 'B': H = H(k) . . . H(2) H(1) (Backward)
-
- STOREV (input) CHARACTER*1
- Specifies how the vectors which define the elementary
- reflectors are stored (see also Further Details):
- = 'C': columnwise
- = 'R': rowwise
-
- N (input) INTEGER
- The order of the block reflector H. N >= 0.
-
- K (input) INTEGER
- The order of the triangular factor T (= the number of
- elementary reflectors). K >= 1.
-
- V (input/output) COMPLEX*16 array, dimension
- (LDV,K) if STOREV = 'C'
- (LDV,N) if STOREV = 'R'
- The matrix V. See further details.
-
- LDV (input) INTEGER
- The leading dimension of the array V.
- If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
-
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i).
-
- T (output) COMPLEX*16 array, dimension (LDT,K)
- The k by k triangular factor T of the block reflector.
- If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
- lower triangular. The rest of the array is not used.
-
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= K.
-
- Further Details
- ===============
-
- The shape of the matrix V and the storage of the vectors which define
- the H(i) is best illustrated by the following example with n = 5 and
- k = 3. The elements equal to 1 are not stored; the corresponding
- array elements are modified but restored on exit. The rest of the
- array is not used.
-
- DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
-
- V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
- ( v1 1 ) ( 1 v2 v2 v2 )
- ( v1 v2 1 ) ( 1 v3 v3 )
- ( v1 v2 v3 )
- ( v1 v2 v3 )
-
- DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
-
- V = ( v1 v2 v3 ) V = ( v1 v1 1 )
- ( v1 v2 v3 ) ( v2 v2 v2 1 )
- ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
- ( 1 v3 )
- ( 1 )
-
- =====================================================================
-
-
- Quick return if possible
-*/
-
- /* Parameter adjustments */
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
- --tau;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
-
- /* Function Body */
- if (*n == 0) {
- return 0;
- }
-
- if (lsame_(direct, "F")) {
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- if ((tau[i__2].r == 0. && tau[i__2].i == 0.)) {
-
-/* H(i) = I */
-
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- i__3 = j + i__ * t_dim1;
- t[i__3].r = 0., t[i__3].i = 0.;
-/* L10: */
- }
- } else {
-
-/* general case */
-
- i__2 = i__ + i__ * v_dim1;
- vii.r = v[i__2].r, vii.i = v[i__2].i;
- i__2 = i__ + i__ * v_dim1;
- v[i__2].r = 1., v[i__2].i = 0.;
- if (lsame_(storev, "C")) {
-
-/* T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i) */
-
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- i__4 = i__;
- z__1.r = -tau[i__4].r, z__1.i = -tau[i__4].i;
- zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &v[i__
- + v_dim1], ldv, &v[i__ + i__ * v_dim1], &c__1, &
- c_b59, &t[i__ * t_dim1 + 1], &c__1);
- } else {
-
-/* T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)' */
-
- if (i__ < *n) {
- i__2 = *n - i__;
- zlacgv_(&i__2, &v[i__ + (i__ + 1) * v_dim1], ldv);
- }
- i__2 = i__ - 1;
- i__3 = *n - i__ + 1;
- i__4 = i__;
- z__1.r = -tau[i__4].r, z__1.i = -tau[i__4].i;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &v[i__ *
- v_dim1 + 1], ldv, &v[i__ + i__ * v_dim1], ldv, &
- c_b59, &t[i__ * t_dim1 + 1], &c__1);
- if (i__ < *n) {
- i__2 = *n - i__;
- zlacgv_(&i__2, &v[i__ + (i__ + 1) * v_dim1], ldv);
- }
- }
- i__2 = i__ + i__ * v_dim1;
- v[i__2].r = vii.r, v[i__2].i = vii.i;
-
-/* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */
-
- i__2 = i__ - 1;
- ztrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[
- t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1);
- i__2 = i__ + i__ * t_dim1;
- i__3 = i__;
- t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i;
- }
-/* L20: */
- }
- } else {
- for (i__ = *k; i__ >= 1; --i__) {
- i__1 = i__;
- if ((tau[i__1].r == 0. && tau[i__1].i == 0.)) {
-
-/* H(i) = I */
-
- i__1 = *k;
- for (j = i__; j <= i__1; ++j) {
- i__2 = j + i__ * t_dim1;
- t[i__2].r = 0., t[i__2].i = 0.;
-/* L30: */
- }
- } else {
-
-/* general case */
-
- if (i__ < *k) {
- if (lsame_(storev, "C")) {
- i__1 = *n - *k + i__ + i__ * v_dim1;
- vii.r = v[i__1].r, vii.i = v[i__1].i;
- i__1 = *n - *k + i__ + i__ * v_dim1;
- v[i__1].r = 1., v[i__1].i = 0.;
-
-/*
- T(i+1:k,i) :=
- - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i)
-*/
-
- i__1 = *n - *k + i__;
- i__2 = *k - i__;
- i__3 = i__;
- z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i;
- zgemv_("Conjugate transpose", &i__1, &i__2, &z__1, &v[
- (i__ + 1) * v_dim1 + 1], ldv, &v[i__ * v_dim1
- + 1], &c__1, &c_b59, &t[i__ + 1 + i__ *
- t_dim1], &c__1);
- i__1 = *n - *k + i__ + i__ * v_dim1;
- v[i__1].r = vii.r, v[i__1].i = vii.i;
- } else {
- i__1 = i__ + (*n - *k + i__) * v_dim1;
- vii.r = v[i__1].r, vii.i = v[i__1].i;
- i__1 = i__ + (*n - *k + i__) * v_dim1;
- v[i__1].r = 1., v[i__1].i = 0.;
-
-/*
- T(i+1:k,i) :=
- - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)'
-*/
-
- i__1 = *n - *k + i__ - 1;
- zlacgv_(&i__1, &v[i__ + v_dim1], ldv);
- i__1 = *k - i__;
- i__2 = *n - *k + i__;
- i__3 = i__;
- z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i;
- zgemv_("No transpose", &i__1, &i__2, &z__1, &v[i__ +
- 1 + v_dim1], ldv, &v[i__ + v_dim1], ldv, &
- c_b59, &t[i__ + 1 + i__ * t_dim1], &c__1);
- i__1 = *n - *k + i__ - 1;
- zlacgv_(&i__1, &v[i__ + v_dim1], ldv);
- i__1 = i__ + (*n - *k + i__) * v_dim1;
- v[i__1].r = vii.r, v[i__1].i = vii.i;
- }
-
-/* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */
-
- i__1 = *k - i__;
- ztrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__
- + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ *
- t_dim1], &c__1)
- ;
- }
- i__1 = i__ + i__ * t_dim1;
- i__2 = i__;
- t[i__1].r = tau[i__2].r, t[i__1].i = tau[i__2].i;
- }
-/* L40: */
- }
- }
- return 0;
-
-/* End of ZLARFT */
-
-} /* zlarft_ */
-
-/* Subroutine */ int zlarfx_(char *side, integer *m, integer *n,
- doublecomplex *v, doublecomplex *tau, doublecomplex *c__, integer *
- ldc, doublecomplex *work)
-{
- /* System generated locals */
- integer c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8,
- i__9, i__10, i__11;
- doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8, z__9, z__10,
- z__11, z__12, z__13, z__14, z__15, z__16, z__17, z__18, z__19;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer j;
- static doublecomplex t1, t2, t3, t4, t5, t6, t7, t8, t9, v1, v2, v3, v4,
- v5, v6, v7, v8, v9, t10, v10, sum;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZLARFX applies a complex elementary reflector H to a complex m by n
- matrix C, from either the left or the right. H is represented in the
- form
-
- H = I - tau * v * v'
-
- where tau is a complex scalar and v is a complex vector.
-
- If tau = 0, then H is taken to be the unit matrix
-
- This version uses inline code if H has order < 11.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': form H * C
- = 'R': form C * H
-
- M (input) INTEGER
- The number of rows of the matrix C.
-
- N (input) INTEGER
- The number of columns of the matrix C.
-
- V (input) COMPLEX*16 array, dimension (M) if SIDE = 'L'
- or (N) if SIDE = 'R'
- The vector v in the representation of H.
-
- TAU (input) COMPLEX*16
- The value tau in the representation of H.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the m by n matrix C.
- On exit, C is overwritten by the matrix H * C if SIDE = 'L',
- or C * H if SIDE = 'R'.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDA >= max(1,M).
-
- WORK (workspace) COMPLEX*16 array, dimension (N) if SIDE = 'L'
- or (M) if SIDE = 'R'
- WORK is not referenced if H has order < 11.
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --v;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- if ((tau->r == 0. && tau->i == 0.)) {
- return 0;
- }
- if (lsame_(side, "L")) {
-
-/* Form H * C, where H has order m. */
-
- switch (*m) {
- case 1: goto L10;
- case 2: goto L30;
- case 3: goto L50;
- case 4: goto L70;
- case 5: goto L90;
- case 6: goto L110;
- case 7: goto L130;
- case 8: goto L150;
- case 9: goto L170;
- case 10: goto L190;
- }
-
-/*
- Code for general M
-
- w := C'*v
-*/
-
- zgemv_("Conjugate transpose", m, n, &c_b60, &c__[c_offset], ldc, &v[1]
- , &c__1, &c_b59, &work[1], &c__1);
-
-/* C := C - tau * v * w' */
-
- z__1.r = -tau->r, z__1.i = -tau->i;
- zgerc_(m, n, &z__1, &v[1], &c__1, &work[1], &c__1, &c__[c_offset],
- ldc);
- goto L410;
-L10:
-
-/* Special code for 1 x 1 Householder */
-
- z__3.r = tau->r * v[1].r - tau->i * v[1].i, z__3.i = tau->r * v[1].i
- + tau->i * v[1].r;
- d_cnjg(&z__4, &v[1]);
- z__2.r = z__3.r * z__4.r - z__3.i * z__4.i, z__2.i = z__3.r * z__4.i
- + z__3.i * z__4.r;
- z__1.r = 1. - z__2.r, z__1.i = 0. - z__2.i;
- t1.r = z__1.r, t1.i = z__1.i;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j * c_dim1 + 1;
- i__3 = j * c_dim1 + 1;
- z__1.r = t1.r * c__[i__3].r - t1.i * c__[i__3].i, z__1.i = t1.r *
- c__[i__3].i + t1.i * c__[i__3].r;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L20: */
- }
- goto L410;
-L30:
-
-/* Special code for 2 x 2 Householder */
-
- d_cnjg(&z__1, &v[1]);
- v1.r = z__1.r, v1.i = z__1.i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- d_cnjg(&z__1, &v[2]);
- v2.r = z__1.r, v2.i = z__1.i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j * c_dim1 + 1;
- z__2.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__2.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j * c_dim1 + 2;
- z__3.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__3.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j * c_dim1 + 1;
- i__3 = j * c_dim1 + 1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 2;
- i__3 = j * c_dim1 + 2;
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L40: */
- }
- goto L410;
-L50:
-
-/* Special code for 3 x 3 Householder */
-
- d_cnjg(&z__1, &v[1]);
- v1.r = z__1.r, v1.i = z__1.i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- d_cnjg(&z__1, &v[2]);
- v2.r = z__1.r, v2.i = z__1.i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- d_cnjg(&z__1, &v[3]);
- v3.r = z__1.r, v3.i = z__1.i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j * c_dim1 + 1;
- z__3.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__3.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j * c_dim1 + 2;
- z__4.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__4.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__2.r = z__3.r + z__4.r, z__2.i = z__3.i + z__4.i;
- i__4 = j * c_dim1 + 3;
- z__5.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__5.i = v3.r *
- c__[i__4].i + v3.i * c__[i__4].r;
- z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j * c_dim1 + 1;
- i__3 = j * c_dim1 + 1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 2;
- i__3 = j * c_dim1 + 2;
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 3;
- i__3 = j * c_dim1 + 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L60: */
- }
- goto L410;
-L70:
-
-/* Special code for 4 x 4 Householder */
-
- d_cnjg(&z__1, &v[1]);
- v1.r = z__1.r, v1.i = z__1.i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- d_cnjg(&z__1, &v[2]);
- v2.r = z__1.r, v2.i = z__1.i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- d_cnjg(&z__1, &v[3]);
- v3.r = z__1.r, v3.i = z__1.i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- d_cnjg(&z__1, &v[4]);
- v4.r = z__1.r, v4.i = z__1.i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j * c_dim1 + 1;
- z__4.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__4.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j * c_dim1 + 2;
- z__5.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__5.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__3.r = z__4.r + z__5.r, z__3.i = z__4.i + z__5.i;
- i__4 = j * c_dim1 + 3;
- z__6.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__6.i = v3.r *
- c__[i__4].i + v3.i * c__[i__4].r;
- z__2.r = z__3.r + z__6.r, z__2.i = z__3.i + z__6.i;
- i__5 = j * c_dim1 + 4;
- z__7.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__7.i = v4.r *
- c__[i__5].i + v4.i * c__[i__5].r;
- z__1.r = z__2.r + z__7.r, z__1.i = z__2.i + z__7.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j * c_dim1 + 1;
- i__3 = j * c_dim1 + 1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 2;
- i__3 = j * c_dim1 + 2;
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 3;
- i__3 = j * c_dim1 + 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 4;
- i__3 = j * c_dim1 + 4;
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L80: */
- }
- goto L410;
-L90:
-
-/* Special code for 5 x 5 Householder */
-
- d_cnjg(&z__1, &v[1]);
- v1.r = z__1.r, v1.i = z__1.i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- d_cnjg(&z__1, &v[2]);
- v2.r = z__1.r, v2.i = z__1.i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- d_cnjg(&z__1, &v[3]);
- v3.r = z__1.r, v3.i = z__1.i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- d_cnjg(&z__1, &v[4]);
- v4.r = z__1.r, v4.i = z__1.i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- d_cnjg(&z__1, &v[5]);
- v5.r = z__1.r, v5.i = z__1.i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j * c_dim1 + 1;
- z__5.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__5.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j * c_dim1 + 2;
- z__6.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__6.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__4.r = z__5.r + z__6.r, z__4.i = z__5.i + z__6.i;
- i__4 = j * c_dim1 + 3;
- z__7.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__7.i = v3.r *
- c__[i__4].i + v3.i * c__[i__4].r;
- z__3.r = z__4.r + z__7.r, z__3.i = z__4.i + z__7.i;
- i__5 = j * c_dim1 + 4;
- z__8.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__8.i = v4.r *
- c__[i__5].i + v4.i * c__[i__5].r;
- z__2.r = z__3.r + z__8.r, z__2.i = z__3.i + z__8.i;
- i__6 = j * c_dim1 + 5;
- z__9.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__9.i = v5.r *
- c__[i__6].i + v5.i * c__[i__6].r;
- z__1.r = z__2.r + z__9.r, z__1.i = z__2.i + z__9.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j * c_dim1 + 1;
- i__3 = j * c_dim1 + 1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 2;
- i__3 = j * c_dim1 + 2;
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 3;
- i__3 = j * c_dim1 + 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 4;
- i__3 = j * c_dim1 + 4;
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 5;
- i__3 = j * c_dim1 + 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L100: */
- }
- goto L410;
-L110:
-
-/* Special code for 6 x 6 Householder */
-
- d_cnjg(&z__1, &v[1]);
- v1.r = z__1.r, v1.i = z__1.i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- d_cnjg(&z__1, &v[2]);
- v2.r = z__1.r, v2.i = z__1.i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- d_cnjg(&z__1, &v[3]);
- v3.r = z__1.r, v3.i = z__1.i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- d_cnjg(&z__1, &v[4]);
- v4.r = z__1.r, v4.i = z__1.i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- d_cnjg(&z__1, &v[5]);
- v5.r = z__1.r, v5.i = z__1.i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- d_cnjg(&z__1, &v[6]);
- v6.r = z__1.r, v6.i = z__1.i;
- d_cnjg(&z__2, &v6);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t6.r = z__1.r, t6.i = z__1.i;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j * c_dim1 + 1;
- z__6.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__6.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j * c_dim1 + 2;
- z__7.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__7.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__5.r = z__6.r + z__7.r, z__5.i = z__6.i + z__7.i;
- i__4 = j * c_dim1 + 3;
- z__8.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__8.i = v3.r *
- c__[i__4].i + v3.i * c__[i__4].r;
- z__4.r = z__5.r + z__8.r, z__4.i = z__5.i + z__8.i;
- i__5 = j * c_dim1 + 4;
- z__9.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__9.i = v4.r *
- c__[i__5].i + v4.i * c__[i__5].r;
- z__3.r = z__4.r + z__9.r, z__3.i = z__4.i + z__9.i;
- i__6 = j * c_dim1 + 5;
- z__10.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__10.i = v5.r
- * c__[i__6].i + v5.i * c__[i__6].r;
- z__2.r = z__3.r + z__10.r, z__2.i = z__3.i + z__10.i;
- i__7 = j * c_dim1 + 6;
- z__11.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, z__11.i = v6.r
- * c__[i__7].i + v6.i * c__[i__7].r;
- z__1.r = z__2.r + z__11.r, z__1.i = z__2.i + z__11.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j * c_dim1 + 1;
- i__3 = j * c_dim1 + 1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 2;
- i__3 = j * c_dim1 + 2;
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 3;
- i__3 = j * c_dim1 + 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 4;
- i__3 = j * c_dim1 + 4;
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 5;
- i__3 = j * c_dim1 + 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 6;
- i__3 = j * c_dim1 + 6;
- z__2.r = sum.r * t6.r - sum.i * t6.i, z__2.i = sum.r * t6.i +
- sum.i * t6.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L120: */
- }
- goto L410;
-L130:
-
-/* Special code for 7 x 7 Householder */
-
- d_cnjg(&z__1, &v[1]);
- v1.r = z__1.r, v1.i = z__1.i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- d_cnjg(&z__1, &v[2]);
- v2.r = z__1.r, v2.i = z__1.i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- d_cnjg(&z__1, &v[3]);
- v3.r = z__1.r, v3.i = z__1.i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- d_cnjg(&z__1, &v[4]);
- v4.r = z__1.r, v4.i = z__1.i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- d_cnjg(&z__1, &v[5]);
- v5.r = z__1.r, v5.i = z__1.i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- d_cnjg(&z__1, &v[6]);
- v6.r = z__1.r, v6.i = z__1.i;
- d_cnjg(&z__2, &v6);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t6.r = z__1.r, t6.i = z__1.i;
- d_cnjg(&z__1, &v[7]);
- v7.r = z__1.r, v7.i = z__1.i;
- d_cnjg(&z__2, &v7);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t7.r = z__1.r, t7.i = z__1.i;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j * c_dim1 + 1;
- z__7.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__7.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j * c_dim1 + 2;
- z__8.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__8.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__6.r = z__7.r + z__8.r, z__6.i = z__7.i + z__8.i;
- i__4 = j * c_dim1 + 3;
- z__9.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__9.i = v3.r *
- c__[i__4].i + v3.i * c__[i__4].r;
- z__5.r = z__6.r + z__9.r, z__5.i = z__6.i + z__9.i;
- i__5 = j * c_dim1 + 4;
- z__10.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__10.i = v4.r
- * c__[i__5].i + v4.i * c__[i__5].r;
- z__4.r = z__5.r + z__10.r, z__4.i = z__5.i + z__10.i;
- i__6 = j * c_dim1 + 5;
- z__11.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__11.i = v5.r
- * c__[i__6].i + v5.i * c__[i__6].r;
- z__3.r = z__4.r + z__11.r, z__3.i = z__4.i + z__11.i;
- i__7 = j * c_dim1 + 6;
- z__12.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, z__12.i = v6.r
- * c__[i__7].i + v6.i * c__[i__7].r;
- z__2.r = z__3.r + z__12.r, z__2.i = z__3.i + z__12.i;
- i__8 = j * c_dim1 + 7;
- z__13.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, z__13.i = v7.r
- * c__[i__8].i + v7.i * c__[i__8].r;
- z__1.r = z__2.r + z__13.r, z__1.i = z__2.i + z__13.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j * c_dim1 + 1;
- i__3 = j * c_dim1 + 1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 2;
- i__3 = j * c_dim1 + 2;
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 3;
- i__3 = j * c_dim1 + 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 4;
- i__3 = j * c_dim1 + 4;
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 5;
- i__3 = j * c_dim1 + 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 6;
- i__3 = j * c_dim1 + 6;
- z__2.r = sum.r * t6.r - sum.i * t6.i, z__2.i = sum.r * t6.i +
- sum.i * t6.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 7;
- i__3 = j * c_dim1 + 7;
- z__2.r = sum.r * t7.r - sum.i * t7.i, z__2.i = sum.r * t7.i +
- sum.i * t7.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L140: */
- }
- goto L410;
-L150:
-
-/* Special code for 8 x 8 Householder */
-
- d_cnjg(&z__1, &v[1]);
- v1.r = z__1.r, v1.i = z__1.i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- d_cnjg(&z__1, &v[2]);
- v2.r = z__1.r, v2.i = z__1.i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- d_cnjg(&z__1, &v[3]);
- v3.r = z__1.r, v3.i = z__1.i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- d_cnjg(&z__1, &v[4]);
- v4.r = z__1.r, v4.i = z__1.i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- d_cnjg(&z__1, &v[5]);
- v5.r = z__1.r, v5.i = z__1.i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- d_cnjg(&z__1, &v[6]);
- v6.r = z__1.r, v6.i = z__1.i;
- d_cnjg(&z__2, &v6);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t6.r = z__1.r, t6.i = z__1.i;
- d_cnjg(&z__1, &v[7]);
- v7.r = z__1.r, v7.i = z__1.i;
- d_cnjg(&z__2, &v7);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t7.r = z__1.r, t7.i = z__1.i;
- d_cnjg(&z__1, &v[8]);
- v8.r = z__1.r, v8.i = z__1.i;
- d_cnjg(&z__2, &v8);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t8.r = z__1.r, t8.i = z__1.i;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j * c_dim1 + 1;
- z__8.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__8.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j * c_dim1 + 2;
- z__9.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__9.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__7.r = z__8.r + z__9.r, z__7.i = z__8.i + z__9.i;
- i__4 = j * c_dim1 + 3;
- z__10.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__10.i = v3.r
- * c__[i__4].i + v3.i * c__[i__4].r;
- z__6.r = z__7.r + z__10.r, z__6.i = z__7.i + z__10.i;
- i__5 = j * c_dim1 + 4;
- z__11.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__11.i = v4.r
- * c__[i__5].i + v4.i * c__[i__5].r;
- z__5.r = z__6.r + z__11.r, z__5.i = z__6.i + z__11.i;
- i__6 = j * c_dim1 + 5;
- z__12.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__12.i = v5.r
- * c__[i__6].i + v5.i * c__[i__6].r;
- z__4.r = z__5.r + z__12.r, z__4.i = z__5.i + z__12.i;
- i__7 = j * c_dim1 + 6;
- z__13.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, z__13.i = v6.r
- * c__[i__7].i + v6.i * c__[i__7].r;
- z__3.r = z__4.r + z__13.r, z__3.i = z__4.i + z__13.i;
- i__8 = j * c_dim1 + 7;
- z__14.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, z__14.i = v7.r
- * c__[i__8].i + v7.i * c__[i__8].r;
- z__2.r = z__3.r + z__14.r, z__2.i = z__3.i + z__14.i;
- i__9 = j * c_dim1 + 8;
- z__15.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, z__15.i = v8.r
- * c__[i__9].i + v8.i * c__[i__9].r;
- z__1.r = z__2.r + z__15.r, z__1.i = z__2.i + z__15.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j * c_dim1 + 1;
- i__3 = j * c_dim1 + 1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 2;
- i__3 = j * c_dim1 + 2;
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 3;
- i__3 = j * c_dim1 + 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 4;
- i__3 = j * c_dim1 + 4;
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 5;
- i__3 = j * c_dim1 + 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 6;
- i__3 = j * c_dim1 + 6;
- z__2.r = sum.r * t6.r - sum.i * t6.i, z__2.i = sum.r * t6.i +
- sum.i * t6.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 7;
- i__3 = j * c_dim1 + 7;
- z__2.r = sum.r * t7.r - sum.i * t7.i, z__2.i = sum.r * t7.i +
- sum.i * t7.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 8;
- i__3 = j * c_dim1 + 8;
- z__2.r = sum.r * t8.r - sum.i * t8.i, z__2.i = sum.r * t8.i +
- sum.i * t8.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L160: */
- }
- goto L410;
-L170:
-
-/* Special code for 9 x 9 Householder */
-
- d_cnjg(&z__1, &v[1]);
- v1.r = z__1.r, v1.i = z__1.i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- d_cnjg(&z__1, &v[2]);
- v2.r = z__1.r, v2.i = z__1.i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- d_cnjg(&z__1, &v[3]);
- v3.r = z__1.r, v3.i = z__1.i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- d_cnjg(&z__1, &v[4]);
- v4.r = z__1.r, v4.i = z__1.i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- d_cnjg(&z__1, &v[5]);
- v5.r = z__1.r, v5.i = z__1.i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- d_cnjg(&z__1, &v[6]);
- v6.r = z__1.r, v6.i = z__1.i;
- d_cnjg(&z__2, &v6);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t6.r = z__1.r, t6.i = z__1.i;
- d_cnjg(&z__1, &v[7]);
- v7.r = z__1.r, v7.i = z__1.i;
- d_cnjg(&z__2, &v7);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t7.r = z__1.r, t7.i = z__1.i;
- d_cnjg(&z__1, &v[8]);
- v8.r = z__1.r, v8.i = z__1.i;
- d_cnjg(&z__2, &v8);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t8.r = z__1.r, t8.i = z__1.i;
- d_cnjg(&z__1, &v[9]);
- v9.r = z__1.r, v9.i = z__1.i;
- d_cnjg(&z__2, &v9);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t9.r = z__1.r, t9.i = z__1.i;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j * c_dim1 + 1;
- z__9.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__9.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j * c_dim1 + 2;
- z__10.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__10.i = v2.r
- * c__[i__3].i + v2.i * c__[i__3].r;
- z__8.r = z__9.r + z__10.r, z__8.i = z__9.i + z__10.i;
- i__4 = j * c_dim1 + 3;
- z__11.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__11.i = v3.r
- * c__[i__4].i + v3.i * c__[i__4].r;
- z__7.r = z__8.r + z__11.r, z__7.i = z__8.i + z__11.i;
- i__5 = j * c_dim1 + 4;
- z__12.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__12.i = v4.r
- * c__[i__5].i + v4.i * c__[i__5].r;
- z__6.r = z__7.r + z__12.r, z__6.i = z__7.i + z__12.i;
- i__6 = j * c_dim1 + 5;
- z__13.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__13.i = v5.r
- * c__[i__6].i + v5.i * c__[i__6].r;
- z__5.r = z__6.r + z__13.r, z__5.i = z__6.i + z__13.i;
- i__7 = j * c_dim1 + 6;
- z__14.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, z__14.i = v6.r
- * c__[i__7].i + v6.i * c__[i__7].r;
- z__4.r = z__5.r + z__14.r, z__4.i = z__5.i + z__14.i;
- i__8 = j * c_dim1 + 7;
- z__15.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, z__15.i = v7.r
- * c__[i__8].i + v7.i * c__[i__8].r;
- z__3.r = z__4.r + z__15.r, z__3.i = z__4.i + z__15.i;
- i__9 = j * c_dim1 + 8;
- z__16.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, z__16.i = v8.r
- * c__[i__9].i + v8.i * c__[i__9].r;
- z__2.r = z__3.r + z__16.r, z__2.i = z__3.i + z__16.i;
- i__10 = j * c_dim1 + 9;
- z__17.r = v9.r * c__[i__10].r - v9.i * c__[i__10].i, z__17.i =
- v9.r * c__[i__10].i + v9.i * c__[i__10].r;
- z__1.r = z__2.r + z__17.r, z__1.i = z__2.i + z__17.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j * c_dim1 + 1;
- i__3 = j * c_dim1 + 1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 2;
- i__3 = j * c_dim1 + 2;
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 3;
- i__3 = j * c_dim1 + 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 4;
- i__3 = j * c_dim1 + 4;
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 5;
- i__3 = j * c_dim1 + 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 6;
- i__3 = j * c_dim1 + 6;
- z__2.r = sum.r * t6.r - sum.i * t6.i, z__2.i = sum.r * t6.i +
- sum.i * t6.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 7;
- i__3 = j * c_dim1 + 7;
- z__2.r = sum.r * t7.r - sum.i * t7.i, z__2.i = sum.r * t7.i +
- sum.i * t7.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 8;
- i__3 = j * c_dim1 + 8;
- z__2.r = sum.r * t8.r - sum.i * t8.i, z__2.i = sum.r * t8.i +
- sum.i * t8.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 9;
- i__3 = j * c_dim1 + 9;
- z__2.r = sum.r * t9.r - sum.i * t9.i, z__2.i = sum.r * t9.i +
- sum.i * t9.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L180: */
- }
- goto L410;
-L190:
-
-/* Special code for 10 x 10 Householder */
-
- d_cnjg(&z__1, &v[1]);
- v1.r = z__1.r, v1.i = z__1.i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- d_cnjg(&z__1, &v[2]);
- v2.r = z__1.r, v2.i = z__1.i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- d_cnjg(&z__1, &v[3]);
- v3.r = z__1.r, v3.i = z__1.i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- d_cnjg(&z__1, &v[4]);
- v4.r = z__1.r, v4.i = z__1.i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- d_cnjg(&z__1, &v[5]);
- v5.r = z__1.r, v5.i = z__1.i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- d_cnjg(&z__1, &v[6]);
- v6.r = z__1.r, v6.i = z__1.i;
- d_cnjg(&z__2, &v6);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t6.r = z__1.r, t6.i = z__1.i;
- d_cnjg(&z__1, &v[7]);
- v7.r = z__1.r, v7.i = z__1.i;
- d_cnjg(&z__2, &v7);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t7.r = z__1.r, t7.i = z__1.i;
- d_cnjg(&z__1, &v[8]);
- v8.r = z__1.r, v8.i = z__1.i;
- d_cnjg(&z__2, &v8);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t8.r = z__1.r, t8.i = z__1.i;
- d_cnjg(&z__1, &v[9]);
- v9.r = z__1.r, v9.i = z__1.i;
- d_cnjg(&z__2, &v9);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t9.r = z__1.r, t9.i = z__1.i;
- d_cnjg(&z__1, &v[10]);
- v10.r = z__1.r, v10.i = z__1.i;
- d_cnjg(&z__2, &v10);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t10.r = z__1.r, t10.i = z__1.i;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j * c_dim1 + 1;
- z__10.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__10.i = v1.r
- * c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j * c_dim1 + 2;
- z__11.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__11.i = v2.r
- * c__[i__3].i + v2.i * c__[i__3].r;
- z__9.r = z__10.r + z__11.r, z__9.i = z__10.i + z__11.i;
- i__4 = j * c_dim1 + 3;
- z__12.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__12.i = v3.r
- * c__[i__4].i + v3.i * c__[i__4].r;
- z__8.r = z__9.r + z__12.r, z__8.i = z__9.i + z__12.i;
- i__5 = j * c_dim1 + 4;
- z__13.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__13.i = v4.r
- * c__[i__5].i + v4.i * c__[i__5].r;
- z__7.r = z__8.r + z__13.r, z__7.i = z__8.i + z__13.i;
- i__6 = j * c_dim1 + 5;
- z__14.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__14.i = v5.r
- * c__[i__6].i + v5.i * c__[i__6].r;
- z__6.r = z__7.r + z__14.r, z__6.i = z__7.i + z__14.i;
- i__7 = j * c_dim1 + 6;
- z__15.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, z__15.i = v6.r
- * c__[i__7].i + v6.i * c__[i__7].r;
- z__5.r = z__6.r + z__15.r, z__5.i = z__6.i + z__15.i;
- i__8 = j * c_dim1 + 7;
- z__16.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, z__16.i = v7.r
- * c__[i__8].i + v7.i * c__[i__8].r;
- z__4.r = z__5.r + z__16.r, z__4.i = z__5.i + z__16.i;
- i__9 = j * c_dim1 + 8;
- z__17.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, z__17.i = v8.r
- * c__[i__9].i + v8.i * c__[i__9].r;
- z__3.r = z__4.r + z__17.r, z__3.i = z__4.i + z__17.i;
- i__10 = j * c_dim1 + 9;
- z__18.r = v9.r * c__[i__10].r - v9.i * c__[i__10].i, z__18.i =
- v9.r * c__[i__10].i + v9.i * c__[i__10].r;
- z__2.r = z__3.r + z__18.r, z__2.i = z__3.i + z__18.i;
- i__11 = j * c_dim1 + 10;
- z__19.r = v10.r * c__[i__11].r - v10.i * c__[i__11].i, z__19.i =
- v10.r * c__[i__11].i + v10.i * c__[i__11].r;
- z__1.r = z__2.r + z__19.r, z__1.i = z__2.i + z__19.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j * c_dim1 + 1;
- i__3 = j * c_dim1 + 1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 2;
- i__3 = j * c_dim1 + 2;
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 3;
- i__3 = j * c_dim1 + 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 4;
- i__3 = j * c_dim1 + 4;
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 5;
- i__3 = j * c_dim1 + 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 6;
- i__3 = j * c_dim1 + 6;
- z__2.r = sum.r * t6.r - sum.i * t6.i, z__2.i = sum.r * t6.i +
- sum.i * t6.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 7;
- i__3 = j * c_dim1 + 7;
- z__2.r = sum.r * t7.r - sum.i * t7.i, z__2.i = sum.r * t7.i +
- sum.i * t7.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 8;
- i__3 = j * c_dim1 + 8;
- z__2.r = sum.r * t8.r - sum.i * t8.i, z__2.i = sum.r * t8.i +
- sum.i * t8.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 9;
- i__3 = j * c_dim1 + 9;
- z__2.r = sum.r * t9.r - sum.i * t9.i, z__2.i = sum.r * t9.i +
- sum.i * t9.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j * c_dim1 + 10;
- i__3 = j * c_dim1 + 10;
- z__2.r = sum.r * t10.r - sum.i * t10.i, z__2.i = sum.r * t10.i +
- sum.i * t10.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L200: */
- }
- goto L410;
- } else {
-
-/* Form C * H, where H has order n. */
-
- switch (*n) {
- case 1: goto L210;
- case 2: goto L230;
- case 3: goto L250;
- case 4: goto L270;
- case 5: goto L290;
- case 6: goto L310;
- case 7: goto L330;
- case 8: goto L350;
- case 9: goto L370;
- case 10: goto L390;
- }
-
-/*
- Code for general N
-
- w := C * v
-*/
-
- zgemv_("No transpose", m, n, &c_b60, &c__[c_offset], ldc, &v[1], &
- c__1, &c_b59, &work[1], &c__1);
-
-/* C := C - tau * w * v' */
-
- z__1.r = -tau->r, z__1.i = -tau->i;
- zgerc_(m, n, &z__1, &work[1], &c__1, &v[1], &c__1, &c__[c_offset],
- ldc);
- goto L410;
-L210:
-
-/* Special code for 1 x 1 Householder */
-
- z__3.r = tau->r * v[1].r - tau->i * v[1].i, z__3.i = tau->r * v[1].i
- + tau->i * v[1].r;
- d_cnjg(&z__4, &v[1]);
- z__2.r = z__3.r * z__4.r - z__3.i * z__4.i, z__2.i = z__3.r * z__4.i
- + z__3.i * z__4.r;
- z__1.r = 1. - z__2.r, z__1.i = 0. - z__2.i;
- t1.r = z__1.r, t1.i = z__1.i;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + c_dim1;
- i__3 = j + c_dim1;
- z__1.r = t1.r * c__[i__3].r - t1.i * c__[i__3].i, z__1.i = t1.r *
- c__[i__3].i + t1.i * c__[i__3].r;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L220: */
- }
- goto L410;
-L230:
-
-/* Special code for 2 x 2 Householder */
-
- v1.r = v[1].r, v1.i = v[1].i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- v2.r = v[2].r, v2.i = v[2].i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + c_dim1;
- z__2.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__2.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j + ((c_dim1) << (1));
- z__3.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__3.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j + c_dim1;
- i__3 = j + c_dim1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (1));
- i__3 = j + ((c_dim1) << (1));
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L240: */
- }
- goto L410;
-L250:
-
-/* Special code for 3 x 3 Householder */
-
- v1.r = v[1].r, v1.i = v[1].i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- v2.r = v[2].r, v2.i = v[2].i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- v3.r = v[3].r, v3.i = v[3].i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + c_dim1;
- z__3.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__3.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j + ((c_dim1) << (1));
- z__4.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__4.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__2.r = z__3.r + z__4.r, z__2.i = z__3.i + z__4.i;
- i__4 = j + c_dim1 * 3;
- z__5.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__5.i = v3.r *
- c__[i__4].i + v3.i * c__[i__4].r;
- z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j + c_dim1;
- i__3 = j + c_dim1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (1));
- i__3 = j + ((c_dim1) << (1));
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 3;
- i__3 = j + c_dim1 * 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L260: */
- }
- goto L410;
-L270:
-
-/* Special code for 4 x 4 Householder */
-
- v1.r = v[1].r, v1.i = v[1].i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- v2.r = v[2].r, v2.i = v[2].i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- v3.r = v[3].r, v3.i = v[3].i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- v4.r = v[4].r, v4.i = v[4].i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + c_dim1;
- z__4.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__4.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j + ((c_dim1) << (1));
- z__5.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__5.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__3.r = z__4.r + z__5.r, z__3.i = z__4.i + z__5.i;
- i__4 = j + c_dim1 * 3;
- z__6.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__6.i = v3.r *
- c__[i__4].i + v3.i * c__[i__4].r;
- z__2.r = z__3.r + z__6.r, z__2.i = z__3.i + z__6.i;
- i__5 = j + ((c_dim1) << (2));
- z__7.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__7.i = v4.r *
- c__[i__5].i + v4.i * c__[i__5].r;
- z__1.r = z__2.r + z__7.r, z__1.i = z__2.i + z__7.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j + c_dim1;
- i__3 = j + c_dim1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (1));
- i__3 = j + ((c_dim1) << (1));
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 3;
- i__3 = j + c_dim1 * 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (2));
- i__3 = j + ((c_dim1) << (2));
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L280: */
- }
- goto L410;
-L290:
-
-/* Special code for 5 x 5 Householder */
-
- v1.r = v[1].r, v1.i = v[1].i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- v2.r = v[2].r, v2.i = v[2].i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- v3.r = v[3].r, v3.i = v[3].i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- v4.r = v[4].r, v4.i = v[4].i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- v5.r = v[5].r, v5.i = v[5].i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + c_dim1;
- z__5.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__5.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j + ((c_dim1) << (1));
- z__6.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__6.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__4.r = z__5.r + z__6.r, z__4.i = z__5.i + z__6.i;
- i__4 = j + c_dim1 * 3;
- z__7.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__7.i = v3.r *
- c__[i__4].i + v3.i * c__[i__4].r;
- z__3.r = z__4.r + z__7.r, z__3.i = z__4.i + z__7.i;
- i__5 = j + ((c_dim1) << (2));
- z__8.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__8.i = v4.r *
- c__[i__5].i + v4.i * c__[i__5].r;
- z__2.r = z__3.r + z__8.r, z__2.i = z__3.i + z__8.i;
- i__6 = j + c_dim1 * 5;
- z__9.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__9.i = v5.r *
- c__[i__6].i + v5.i * c__[i__6].r;
- z__1.r = z__2.r + z__9.r, z__1.i = z__2.i + z__9.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j + c_dim1;
- i__3 = j + c_dim1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (1));
- i__3 = j + ((c_dim1) << (1));
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 3;
- i__3 = j + c_dim1 * 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (2));
- i__3 = j + ((c_dim1) << (2));
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 5;
- i__3 = j + c_dim1 * 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L300: */
- }
- goto L410;
-L310:
-
-/* Special code for 6 x 6 Householder */
-
- v1.r = v[1].r, v1.i = v[1].i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- v2.r = v[2].r, v2.i = v[2].i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- v3.r = v[3].r, v3.i = v[3].i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- v4.r = v[4].r, v4.i = v[4].i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- v5.r = v[5].r, v5.i = v[5].i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- v6.r = v[6].r, v6.i = v[6].i;
- d_cnjg(&z__2, &v6);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t6.r = z__1.r, t6.i = z__1.i;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + c_dim1;
- z__6.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__6.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j + ((c_dim1) << (1));
- z__7.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__7.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__5.r = z__6.r + z__7.r, z__5.i = z__6.i + z__7.i;
- i__4 = j + c_dim1 * 3;
- z__8.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__8.i = v3.r *
- c__[i__4].i + v3.i * c__[i__4].r;
- z__4.r = z__5.r + z__8.r, z__4.i = z__5.i + z__8.i;
- i__5 = j + ((c_dim1) << (2));
- z__9.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__9.i = v4.r *
- c__[i__5].i + v4.i * c__[i__5].r;
- z__3.r = z__4.r + z__9.r, z__3.i = z__4.i + z__9.i;
- i__6 = j + c_dim1 * 5;
- z__10.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__10.i = v5.r
- * c__[i__6].i + v5.i * c__[i__6].r;
- z__2.r = z__3.r + z__10.r, z__2.i = z__3.i + z__10.i;
- i__7 = j + c_dim1 * 6;
- z__11.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, z__11.i = v6.r
- * c__[i__7].i + v6.i * c__[i__7].r;
- z__1.r = z__2.r + z__11.r, z__1.i = z__2.i + z__11.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j + c_dim1;
- i__3 = j + c_dim1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (1));
- i__3 = j + ((c_dim1) << (1));
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 3;
- i__3 = j + c_dim1 * 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (2));
- i__3 = j + ((c_dim1) << (2));
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 5;
- i__3 = j + c_dim1 * 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 6;
- i__3 = j + c_dim1 * 6;
- z__2.r = sum.r * t6.r - sum.i * t6.i, z__2.i = sum.r * t6.i +
- sum.i * t6.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L320: */
- }
- goto L410;
-L330:
-
-/* Special code for 7 x 7 Householder */
-
- v1.r = v[1].r, v1.i = v[1].i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- v2.r = v[2].r, v2.i = v[2].i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- v3.r = v[3].r, v3.i = v[3].i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- v4.r = v[4].r, v4.i = v[4].i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- v5.r = v[5].r, v5.i = v[5].i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- v6.r = v[6].r, v6.i = v[6].i;
- d_cnjg(&z__2, &v6);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t6.r = z__1.r, t6.i = z__1.i;
- v7.r = v[7].r, v7.i = v[7].i;
- d_cnjg(&z__2, &v7);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t7.r = z__1.r, t7.i = z__1.i;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + c_dim1;
- z__7.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__7.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j + ((c_dim1) << (1));
- z__8.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__8.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__6.r = z__7.r + z__8.r, z__6.i = z__7.i + z__8.i;
- i__4 = j + c_dim1 * 3;
- z__9.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__9.i = v3.r *
- c__[i__4].i + v3.i * c__[i__4].r;
- z__5.r = z__6.r + z__9.r, z__5.i = z__6.i + z__9.i;
- i__5 = j + ((c_dim1) << (2));
- z__10.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__10.i = v4.r
- * c__[i__5].i + v4.i * c__[i__5].r;
- z__4.r = z__5.r + z__10.r, z__4.i = z__5.i + z__10.i;
- i__6 = j + c_dim1 * 5;
- z__11.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__11.i = v5.r
- * c__[i__6].i + v5.i * c__[i__6].r;
- z__3.r = z__4.r + z__11.r, z__3.i = z__4.i + z__11.i;
- i__7 = j + c_dim1 * 6;
- z__12.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, z__12.i = v6.r
- * c__[i__7].i + v6.i * c__[i__7].r;
- z__2.r = z__3.r + z__12.r, z__2.i = z__3.i + z__12.i;
- i__8 = j + c_dim1 * 7;
- z__13.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, z__13.i = v7.r
- * c__[i__8].i + v7.i * c__[i__8].r;
- z__1.r = z__2.r + z__13.r, z__1.i = z__2.i + z__13.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j + c_dim1;
- i__3 = j + c_dim1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (1));
- i__3 = j + ((c_dim1) << (1));
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 3;
- i__3 = j + c_dim1 * 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (2));
- i__3 = j + ((c_dim1) << (2));
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 5;
- i__3 = j + c_dim1 * 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 6;
- i__3 = j + c_dim1 * 6;
- z__2.r = sum.r * t6.r - sum.i * t6.i, z__2.i = sum.r * t6.i +
- sum.i * t6.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 7;
- i__3 = j + c_dim1 * 7;
- z__2.r = sum.r * t7.r - sum.i * t7.i, z__2.i = sum.r * t7.i +
- sum.i * t7.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L340: */
- }
- goto L410;
-L350:
-
-/* Special code for 8 x 8 Householder */
-
- v1.r = v[1].r, v1.i = v[1].i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- v2.r = v[2].r, v2.i = v[2].i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- v3.r = v[3].r, v3.i = v[3].i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- v4.r = v[4].r, v4.i = v[4].i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- v5.r = v[5].r, v5.i = v[5].i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- v6.r = v[6].r, v6.i = v[6].i;
- d_cnjg(&z__2, &v6);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t6.r = z__1.r, t6.i = z__1.i;
- v7.r = v[7].r, v7.i = v[7].i;
- d_cnjg(&z__2, &v7);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t7.r = z__1.r, t7.i = z__1.i;
- v8.r = v[8].r, v8.i = v[8].i;
- d_cnjg(&z__2, &v8);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t8.r = z__1.r, t8.i = z__1.i;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + c_dim1;
- z__8.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__8.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j + ((c_dim1) << (1));
- z__9.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__9.i = v2.r *
- c__[i__3].i + v2.i * c__[i__3].r;
- z__7.r = z__8.r + z__9.r, z__7.i = z__8.i + z__9.i;
- i__4 = j + c_dim1 * 3;
- z__10.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__10.i = v3.r
- * c__[i__4].i + v3.i * c__[i__4].r;
- z__6.r = z__7.r + z__10.r, z__6.i = z__7.i + z__10.i;
- i__5 = j + ((c_dim1) << (2));
- z__11.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__11.i = v4.r
- * c__[i__5].i + v4.i * c__[i__5].r;
- z__5.r = z__6.r + z__11.r, z__5.i = z__6.i + z__11.i;
- i__6 = j + c_dim1 * 5;
- z__12.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__12.i = v5.r
- * c__[i__6].i + v5.i * c__[i__6].r;
- z__4.r = z__5.r + z__12.r, z__4.i = z__5.i + z__12.i;
- i__7 = j + c_dim1 * 6;
- z__13.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, z__13.i = v6.r
- * c__[i__7].i + v6.i * c__[i__7].r;
- z__3.r = z__4.r + z__13.r, z__3.i = z__4.i + z__13.i;
- i__8 = j + c_dim1 * 7;
- z__14.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, z__14.i = v7.r
- * c__[i__8].i + v7.i * c__[i__8].r;
- z__2.r = z__3.r + z__14.r, z__2.i = z__3.i + z__14.i;
- i__9 = j + ((c_dim1) << (3));
- z__15.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, z__15.i = v8.r
- * c__[i__9].i + v8.i * c__[i__9].r;
- z__1.r = z__2.r + z__15.r, z__1.i = z__2.i + z__15.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j + c_dim1;
- i__3 = j + c_dim1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (1));
- i__3 = j + ((c_dim1) << (1));
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 3;
- i__3 = j + c_dim1 * 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (2));
- i__3 = j + ((c_dim1) << (2));
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 5;
- i__3 = j + c_dim1 * 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 6;
- i__3 = j + c_dim1 * 6;
- z__2.r = sum.r * t6.r - sum.i * t6.i, z__2.i = sum.r * t6.i +
- sum.i * t6.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 7;
- i__3 = j + c_dim1 * 7;
- z__2.r = sum.r * t7.r - sum.i * t7.i, z__2.i = sum.r * t7.i +
- sum.i * t7.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (3));
- i__3 = j + ((c_dim1) << (3));
- z__2.r = sum.r * t8.r - sum.i * t8.i, z__2.i = sum.r * t8.i +
- sum.i * t8.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L360: */
- }
- goto L410;
-L370:
-
-/* Special code for 9 x 9 Householder */
-
- v1.r = v[1].r, v1.i = v[1].i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- v2.r = v[2].r, v2.i = v[2].i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- v3.r = v[3].r, v3.i = v[3].i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- v4.r = v[4].r, v4.i = v[4].i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- v5.r = v[5].r, v5.i = v[5].i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- v6.r = v[6].r, v6.i = v[6].i;
- d_cnjg(&z__2, &v6);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t6.r = z__1.r, t6.i = z__1.i;
- v7.r = v[7].r, v7.i = v[7].i;
- d_cnjg(&z__2, &v7);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t7.r = z__1.r, t7.i = z__1.i;
- v8.r = v[8].r, v8.i = v[8].i;
- d_cnjg(&z__2, &v8);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t8.r = z__1.r, t8.i = z__1.i;
- v9.r = v[9].r, v9.i = v[9].i;
- d_cnjg(&z__2, &v9);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t9.r = z__1.r, t9.i = z__1.i;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + c_dim1;
- z__9.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__9.i = v1.r *
- c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j + ((c_dim1) << (1));
- z__10.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__10.i = v2.r
- * c__[i__3].i + v2.i * c__[i__3].r;
- z__8.r = z__9.r + z__10.r, z__8.i = z__9.i + z__10.i;
- i__4 = j + c_dim1 * 3;
- z__11.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__11.i = v3.r
- * c__[i__4].i + v3.i * c__[i__4].r;
- z__7.r = z__8.r + z__11.r, z__7.i = z__8.i + z__11.i;
- i__5 = j + ((c_dim1) << (2));
- z__12.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__12.i = v4.r
- * c__[i__5].i + v4.i * c__[i__5].r;
- z__6.r = z__7.r + z__12.r, z__6.i = z__7.i + z__12.i;
- i__6 = j + c_dim1 * 5;
- z__13.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__13.i = v5.r
- * c__[i__6].i + v5.i * c__[i__6].r;
- z__5.r = z__6.r + z__13.r, z__5.i = z__6.i + z__13.i;
- i__7 = j + c_dim1 * 6;
- z__14.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, z__14.i = v6.r
- * c__[i__7].i + v6.i * c__[i__7].r;
- z__4.r = z__5.r + z__14.r, z__4.i = z__5.i + z__14.i;
- i__8 = j + c_dim1 * 7;
- z__15.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, z__15.i = v7.r
- * c__[i__8].i + v7.i * c__[i__8].r;
- z__3.r = z__4.r + z__15.r, z__3.i = z__4.i + z__15.i;
- i__9 = j + ((c_dim1) << (3));
- z__16.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, z__16.i = v8.r
- * c__[i__9].i + v8.i * c__[i__9].r;
- z__2.r = z__3.r + z__16.r, z__2.i = z__3.i + z__16.i;
- i__10 = j + c_dim1 * 9;
- z__17.r = v9.r * c__[i__10].r - v9.i * c__[i__10].i, z__17.i =
- v9.r * c__[i__10].i + v9.i * c__[i__10].r;
- z__1.r = z__2.r + z__17.r, z__1.i = z__2.i + z__17.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j + c_dim1;
- i__3 = j + c_dim1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (1));
- i__3 = j + ((c_dim1) << (1));
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 3;
- i__3 = j + c_dim1 * 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (2));
- i__3 = j + ((c_dim1) << (2));
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 5;
- i__3 = j + c_dim1 * 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 6;
- i__3 = j + c_dim1 * 6;
- z__2.r = sum.r * t6.r - sum.i * t6.i, z__2.i = sum.r * t6.i +
- sum.i * t6.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 7;
- i__3 = j + c_dim1 * 7;
- z__2.r = sum.r * t7.r - sum.i * t7.i, z__2.i = sum.r * t7.i +
- sum.i * t7.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (3));
- i__3 = j + ((c_dim1) << (3));
- z__2.r = sum.r * t8.r - sum.i * t8.i, z__2.i = sum.r * t8.i +
- sum.i * t8.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 9;
- i__3 = j + c_dim1 * 9;
- z__2.r = sum.r * t9.r - sum.i * t9.i, z__2.i = sum.r * t9.i +
- sum.i * t9.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L380: */
- }
- goto L410;
-L390:
-
-/* Special code for 10 x 10 Householder */
-
- v1.r = v[1].r, v1.i = v[1].i;
- d_cnjg(&z__2, &v1);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t1.r = z__1.r, t1.i = z__1.i;
- v2.r = v[2].r, v2.i = v[2].i;
- d_cnjg(&z__2, &v2);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t2.r = z__1.r, t2.i = z__1.i;
- v3.r = v[3].r, v3.i = v[3].i;
- d_cnjg(&z__2, &v3);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t3.r = z__1.r, t3.i = z__1.i;
- v4.r = v[4].r, v4.i = v[4].i;
- d_cnjg(&z__2, &v4);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t4.r = z__1.r, t4.i = z__1.i;
- v5.r = v[5].r, v5.i = v[5].i;
- d_cnjg(&z__2, &v5);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t5.r = z__1.r, t5.i = z__1.i;
- v6.r = v[6].r, v6.i = v[6].i;
- d_cnjg(&z__2, &v6);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t6.r = z__1.r, t6.i = z__1.i;
- v7.r = v[7].r, v7.i = v[7].i;
- d_cnjg(&z__2, &v7);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t7.r = z__1.r, t7.i = z__1.i;
- v8.r = v[8].r, v8.i = v[8].i;
- d_cnjg(&z__2, &v8);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t8.r = z__1.r, t8.i = z__1.i;
- v9.r = v[9].r, v9.i = v[9].i;
- d_cnjg(&z__2, &v9);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t9.r = z__1.r, t9.i = z__1.i;
- v10.r = v[10].r, v10.i = v[10].i;
- d_cnjg(&z__2, &v10);
- z__1.r = tau->r * z__2.r - tau->i * z__2.i, z__1.i = tau->r * z__2.i
- + tau->i * z__2.r;
- t10.r = z__1.r, t10.i = z__1.i;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + c_dim1;
- z__10.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, z__10.i = v1.r
- * c__[i__2].i + v1.i * c__[i__2].r;
- i__3 = j + ((c_dim1) << (1));
- z__11.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, z__11.i = v2.r
- * c__[i__3].i + v2.i * c__[i__3].r;
- z__9.r = z__10.r + z__11.r, z__9.i = z__10.i + z__11.i;
- i__4 = j + c_dim1 * 3;
- z__12.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, z__12.i = v3.r
- * c__[i__4].i + v3.i * c__[i__4].r;
- z__8.r = z__9.r + z__12.r, z__8.i = z__9.i + z__12.i;
- i__5 = j + ((c_dim1) << (2));
- z__13.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, z__13.i = v4.r
- * c__[i__5].i + v4.i * c__[i__5].r;
- z__7.r = z__8.r + z__13.r, z__7.i = z__8.i + z__13.i;
- i__6 = j + c_dim1 * 5;
- z__14.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, z__14.i = v5.r
- * c__[i__6].i + v5.i * c__[i__6].r;
- z__6.r = z__7.r + z__14.r, z__6.i = z__7.i + z__14.i;
- i__7 = j + c_dim1 * 6;
- z__15.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, z__15.i = v6.r
- * c__[i__7].i + v6.i * c__[i__7].r;
- z__5.r = z__6.r + z__15.r, z__5.i = z__6.i + z__15.i;
- i__8 = j + c_dim1 * 7;
- z__16.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, z__16.i = v7.r
- * c__[i__8].i + v7.i * c__[i__8].r;
- z__4.r = z__5.r + z__16.r, z__4.i = z__5.i + z__16.i;
- i__9 = j + ((c_dim1) << (3));
- z__17.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, z__17.i = v8.r
- * c__[i__9].i + v8.i * c__[i__9].r;
- z__3.r = z__4.r + z__17.r, z__3.i = z__4.i + z__17.i;
- i__10 = j + c_dim1 * 9;
- z__18.r = v9.r * c__[i__10].r - v9.i * c__[i__10].i, z__18.i =
- v9.r * c__[i__10].i + v9.i * c__[i__10].r;
- z__2.r = z__3.r + z__18.r, z__2.i = z__3.i + z__18.i;
- i__11 = j + c_dim1 * 10;
- z__19.r = v10.r * c__[i__11].r - v10.i * c__[i__11].i, z__19.i =
- v10.r * c__[i__11].i + v10.i * c__[i__11].r;
- z__1.r = z__2.r + z__19.r, z__1.i = z__2.i + z__19.i;
- sum.r = z__1.r, sum.i = z__1.i;
- i__2 = j + c_dim1;
- i__3 = j + c_dim1;
- z__2.r = sum.r * t1.r - sum.i * t1.i, z__2.i = sum.r * t1.i +
- sum.i * t1.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (1));
- i__3 = j + ((c_dim1) << (1));
- z__2.r = sum.r * t2.r - sum.i * t2.i, z__2.i = sum.r * t2.i +
- sum.i * t2.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 3;
- i__3 = j + c_dim1 * 3;
- z__2.r = sum.r * t3.r - sum.i * t3.i, z__2.i = sum.r * t3.i +
- sum.i * t3.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (2));
- i__3 = j + ((c_dim1) << (2));
- z__2.r = sum.r * t4.r - sum.i * t4.i, z__2.i = sum.r * t4.i +
- sum.i * t4.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 5;
- i__3 = j + c_dim1 * 5;
- z__2.r = sum.r * t5.r - sum.i * t5.i, z__2.i = sum.r * t5.i +
- sum.i * t5.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 6;
- i__3 = j + c_dim1 * 6;
- z__2.r = sum.r * t6.r - sum.i * t6.i, z__2.i = sum.r * t6.i +
- sum.i * t6.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 7;
- i__3 = j + c_dim1 * 7;
- z__2.r = sum.r * t7.r - sum.i * t7.i, z__2.i = sum.r * t7.i +
- sum.i * t7.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + ((c_dim1) << (3));
- i__3 = j + ((c_dim1) << (3));
- z__2.r = sum.r * t8.r - sum.i * t8.i, z__2.i = sum.r * t8.i +
- sum.i * t8.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 9;
- i__3 = j + c_dim1 * 9;
- z__2.r = sum.r * t9.r - sum.i * t9.i, z__2.i = sum.r * t9.i +
- sum.i * t9.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
- i__2 = j + c_dim1 * 10;
- i__3 = j + c_dim1 * 10;
- z__2.r = sum.r * t10.r - sum.i * t10.i, z__2.i = sum.r * t10.i +
- sum.i * t10.r;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
-/* L400: */
- }
- goto L410;
- }
-L410:
- return 0;
-
-/* End of ZLARFX */
-
-} /* zlarfx_ */
-
-/* Subroutine */ int zlascl_(char *type__, integer *kl, integer *ku,
- doublereal *cfrom, doublereal *cto, integer *m, integer *n,
- doublecomplex *a, integer *lda, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1;
-
- /* Local variables */
- static integer i__, j, k1, k2, k3, k4;
- static doublereal mul, cto1;
- static logical done;
- static doublereal ctoc;
- extern logical lsame_(char *, char *);
- static integer itype;
- static doublereal cfrom1;
-
- static doublereal cfromc;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- static doublereal bignum, smlnum;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- February 29, 1992
-
-
- Purpose
- =======
-
- ZLASCL multiplies the M by N complex matrix A by the real scalar
- CTO/CFROM. This is done without over/underflow as long as the final
- result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
- A may be full, upper triangular, lower triangular, upper Hessenberg,
- or banded.
-
- Arguments
- =========
-
- TYPE (input) CHARACTER*1
- TYPE indices the storage type of the input matrix.
- = 'G': A is a full matrix.
- = 'L': A is a lower triangular matrix.
- = 'U': A is an upper triangular matrix.
- = 'H': A is an upper Hessenberg matrix.
- = 'B': A is a symmetric band matrix with lower bandwidth KL
- and upper bandwidth KU and with the only the lower
- half stored.
- = 'Q': A is a symmetric band matrix with lower bandwidth KL
- and upper bandwidth KU and with the only the upper
- half stored.
- = 'Z': A is a band matrix with lower bandwidth KL and upper
- bandwidth KU.
-
- KL (input) INTEGER
- The lower bandwidth of A. Referenced only if TYPE = 'B',
- 'Q' or 'Z'.
-
- KU (input) INTEGER
- The upper bandwidth of A. Referenced only if TYPE = 'B',
- 'Q' or 'Z'.
-
- CFROM (input) DOUBLE PRECISION
- CTO (input) DOUBLE PRECISION
- The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
- without over/underflow if the final result CTO*A(I,J)/CFROM
- can be represented without over/underflow. CFROM must be
- nonzero.
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,M)
- The matrix to be multiplied by CTO/CFROM. See TYPE for the
- storage type.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- INFO (output) INTEGER
- 0 - successful exit
- <0 - if INFO = -i, the i-th argument had an illegal value.
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- *info = 0;
-
- if (lsame_(type__, "G")) {
- itype = 0;
- } else if (lsame_(type__, "L")) {
- itype = 1;
- } else if (lsame_(type__, "U")) {
- itype = 2;
- } else if (lsame_(type__, "H")) {
- itype = 3;
- } else if (lsame_(type__, "B")) {
- itype = 4;
- } else if (lsame_(type__, "Q")) {
- itype = 5;
- } else if (lsame_(type__, "Z")) {
- itype = 6;
- } else {
- itype = -1;
- }
-
- if (itype == -1) {
- *info = -1;
- } else if (*cfrom == 0.) {
- *info = -4;
- } else if (*m < 0) {
- *info = -6;
- } else if (*n < 0 || (itype == 4 && *n != *m) || (itype == 5 && *n != *m))
- {
- *info = -7;
- } else if ((itype <= 3 && *lda < max(1,*m))) {
- *info = -9;
- } else if (itype >= 4) {
-/* Computing MAX */
- i__1 = *m - 1;
- if (*kl < 0 || *kl > max(i__1,0)) {
- *info = -2;
- } else /* if(complicated condition) */ {
-/* Computing MAX */
- i__1 = *n - 1;
- if (*ku < 0 || *ku > max(i__1,0) || ((itype == 4 || itype == 5) &&
- *kl != *ku)) {
- *info = -3;
- } else if ((itype == 4 && *lda < *kl + 1) || (itype == 5 && *lda <
- *ku + 1) || (itype == 6 && *lda < ((*kl) << (1)) + *ku +
- 1)) {
- *info = -9;
- }
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLASCL", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0 || *m == 0) {
- return 0;
- }
-
-/* Get machine parameters */
-
- smlnum = SAFEMINIMUM;
- bignum = 1. / smlnum;
-
- cfromc = *cfrom;
- ctoc = *cto;
-
-L10:
- cfrom1 = cfromc * smlnum;
- cto1 = ctoc / bignum;
- if ((abs(cfrom1) > abs(ctoc) && ctoc != 0.)) {
- mul = smlnum;
- done = FALSE_;
- cfromc = cfrom1;
- } else if (abs(cto1) > abs(cfromc)) {
- mul = bignum;
- done = FALSE_;
- ctoc = cto1;
- } else {
- mul = ctoc / cfromc;
- done = TRUE_;
- }
-
- if (itype == 0) {
-
-/* Full matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L20: */
- }
-/* L30: */
- }
-
- } else if (itype == 1) {
-
-/* Lower triangular matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L40: */
- }
-/* L50: */
- }
-
- } else if (itype == 2) {
-
-/* Upper triangular matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = min(j,*m);
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L60: */
- }
-/* L70: */
- }
-
- } else if (itype == 3) {
-
-/* Upper Hessenberg matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = j + 1;
- i__2 = min(i__3,*m);
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L80: */
- }
-/* L90: */
- }
-
- } else if (itype == 4) {
-
-/* Lower half of a symmetric band matrix */
-
- k3 = *kl + 1;
- k4 = *n + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = k3, i__4 = k4 - j;
- i__2 = min(i__3,i__4);
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L100: */
- }
-/* L110: */
- }
-
- } else if (itype == 5) {
-
-/* Upper half of a symmetric band matrix */
-
- k1 = *ku + 2;
- k3 = *ku + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MAX */
- i__2 = k1 - j;
- i__3 = k3;
- for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
- i__2 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
-/* L120: */
- }
-/* L130: */
- }
-
- } else if (itype == 6) {
-
-/* Band matrix */
-
- k1 = *kl + *ku + 2;
- k2 = *kl + 1;
- k3 = ((*kl) << (1)) + *ku + 1;
- k4 = *kl + *ku + 1 + *m;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MAX */
- i__3 = k1 - j;
-/* Computing MIN */
- i__4 = k3, i__5 = k4 - j;
- i__2 = min(i__4,i__5);
- for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L140: */
- }
-/* L150: */
- }
-
- }
-
- if (! done) {
- goto L10;
- }
-
- return 0;
-
-/* End of ZLASCL */
-
-} /* zlascl_ */
-
-/* Subroutine */ int zlaset_(char *uplo, integer *m, integer *n,
- doublecomplex *alpha, doublecomplex *beta, doublecomplex *a, integer *
- lda)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, j;
- extern logical lsame_(char *, char *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- ZLASET initializes a 2-D array A to BETA on the diagonal and
- ALPHA on the offdiagonals.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- Specifies the part of the matrix A to be set.
- = 'U': Upper triangular part is set. The lower triangle
- is unchanged.
- = 'L': Lower triangular part is set. The upper triangle
- is unchanged.
- Otherwise: All of the matrix A is set.
-
- M (input) INTEGER
- On entry, M specifies the number of rows of A.
-
- N (input) INTEGER
- On entry, N specifies the number of columns of A.
-
- ALPHA (input) COMPLEX*16
- All the offdiagonal array elements are set to ALPHA.
-
- BETA (input) COMPLEX*16
- All the diagonal array elements are set to BETA.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the m by n matrix A.
- On exit, A(i,j) = ALPHA, 1 <= i <= m, 1 <= j <= n, i.ne.j;
- A(i,i) = BETA , 1 <= i <= min(m,n)
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- if (lsame_(uplo, "U")) {
-
-/*
- Set the diagonal to BETA and the strictly upper triangular
- part of the array to ALPHA.
-*/
-
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
-/* Computing MIN */
- i__3 = j - 1;
- i__2 = min(i__3,*m);
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = alpha->r, a[i__3].i = alpha->i;
-/* L10: */
- }
-/* L20: */
- }
- i__1 = min(*n,*m);
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = beta->r, a[i__2].i = beta->i;
-/* L30: */
- }
-
- } else if (lsame_(uplo, "L")) {
-
-/*
- Set the diagonal to BETA and the strictly lower triangular
- part of the array to ALPHA.
-*/
-
- i__1 = min(*m,*n);
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = alpha->r, a[i__3].i = alpha->i;
-/* L40: */
- }
-/* L50: */
- }
- i__1 = min(*n,*m);
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = beta->r, a[i__2].i = beta->i;
-/* L60: */
- }
-
- } else {
-
-/*
- Set the array to BETA on the diagonal and ALPHA on the
- offdiagonal.
-*/
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = alpha->r, a[i__3].i = alpha->i;
-/* L70: */
- }
-/* L80: */
- }
- i__1 = min(*m,*n);
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = beta->r, a[i__2].i = beta->i;
-/* L90: */
- }
- }
-
- return 0;
-
-/* End of ZLASET */
-
-} /* zlaset_ */
-
-/* Subroutine */ int zlasr_(char *side, char *pivot, char *direct, integer *m,
- integer *n, doublereal *c__, doublereal *s, doublecomplex *a,
- integer *lda)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- doublecomplex z__1, z__2, z__3;
-
- /* Local variables */
- static integer i__, j, info;
- static doublecomplex temp;
- extern logical lsame_(char *, char *);
- static doublereal ctemp, stemp;
- extern /* Subroutine */ int xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- October 31, 1992
-
-
- Purpose
- =======
-
- ZLASR performs the transformation
-
- A := P*A, when SIDE = 'L' or 'l' ( Left-hand side )
-
- A := A*P', when SIDE = 'R' or 'r' ( Right-hand side )
-
- where A is an m by n complex matrix and P is an orthogonal matrix,
- consisting of a sequence of plane rotations determined by the
- parameters PIVOT and DIRECT as follows ( z = m when SIDE = 'L' or 'l'
- and z = n when SIDE = 'R' or 'r' ):
-
- When DIRECT = 'F' or 'f' ( Forward sequence ) then
-
- P = P( z - 1 )*...*P( 2 )*P( 1 ),
-
- and when DIRECT = 'B' or 'b' ( Backward sequence ) then
-
- P = P( 1 )*P( 2 )*...*P( z - 1 ),
-
- where P( k ) is a plane rotation matrix for the following planes:
-
- when PIVOT = 'V' or 'v' ( Variable pivot ),
- the plane ( k, k + 1 )
-
- when PIVOT = 'T' or 't' ( Top pivot ),
- the plane ( 1, k + 1 )
-
- when PIVOT = 'B' or 'b' ( Bottom pivot ),
- the plane ( k, z )
-
- c( k ) and s( k ) must contain the cosine and sine that define the
- matrix P( k ). The two by two plane rotation part of the matrix
- P( k ), R( k ), is assumed to be of the form
-
- R( k ) = ( c( k ) s( k ) ).
- ( -s( k ) c( k ) )
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- Specifies whether the plane rotation matrix P is applied to
- A on the left or the right.
- = 'L': Left, compute A := P*A
- = 'R': Right, compute A:= A*P'
-
- DIRECT (input) CHARACTER*1
- Specifies whether P is a forward or backward sequence of
- plane rotations.
- = 'F': Forward, P = P( z - 1 )*...*P( 2 )*P( 1 )
- = 'B': Backward, P = P( 1 )*P( 2 )*...*P( z - 1 )
-
- PIVOT (input) CHARACTER*1
- Specifies the plane for which P(k) is a plane rotation
- matrix.
- = 'V': Variable pivot, the plane (k,k+1)
- = 'T': Top pivot, the plane (1,k+1)
- = 'B': Bottom pivot, the plane (k,z)
-
- M (input) INTEGER
- The number of rows of the matrix A. If m <= 1, an immediate
- return is effected.
-
- N (input) INTEGER
- The number of columns of the matrix A. If n <= 1, an
- immediate return is effected.
-
- C, S (input) DOUBLE PRECISION arrays, dimension
- (M-1) if SIDE = 'L'
- (N-1) if SIDE = 'R'
- c(k) and s(k) contain the cosine and sine that define the
- matrix P(k). The two by two plane rotation part of the
- matrix P(k), R(k), is assumed to be of the form
- R( k ) = ( c( k ) s( k ) ).
- ( -s( k ) c( k ) )
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- The m by n matrix A. On exit, A is overwritten by P*A if
- SIDE = 'R' or by A*P' if SIDE = 'L'.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- =====================================================================
-
-
- Test the input parameters
-*/
-
- /* Parameter adjustments */
- --c__;
- --s;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- info = 0;
- if (! (lsame_(side, "L") || lsame_(side, "R"))) {
- info = 1;
- } else if (! (lsame_(pivot, "V") || lsame_(pivot,
- "T") || lsame_(pivot, "B"))) {
- info = 2;
- } else if (! (lsame_(direct, "F") || lsame_(direct,
- "B"))) {
- info = 3;
- } else if (*m < 0) {
- info = 4;
- } else if (*n < 0) {
- info = 5;
- } else if (*lda < max(1,*m)) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("ZLASR ", &info);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- return 0;
- }
- if (lsame_(side, "L")) {
-
-/* Form P * A */
-
- if (lsame_(pivot, "V")) {
- if (lsame_(direct, "F")) {
- i__1 = *m - 1;
- for (j = 1; j <= i__1; ++j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = j + 1 + i__ * a_dim1;
- temp.r = a[i__3].r, temp.i = a[i__3].i;
- i__3 = j + 1 + i__ * a_dim1;
- z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i;
- i__4 = j + i__ * a_dim1;
- z__3.r = stemp * a[i__4].r, z__3.i = stemp * a[
- i__4].i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- i__3 = j + i__ * a_dim1;
- z__2.r = stemp * temp.r, z__2.i = stemp * temp.i;
- i__4 = j + i__ * a_dim1;
- z__3.r = ctemp * a[i__4].r, z__3.i = ctemp * a[
- i__4].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L10: */
- }
- }
-/* L20: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *m - 1; j >= 1; --j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = j + 1 + i__ * a_dim1;
- temp.r = a[i__2].r, temp.i = a[i__2].i;
- i__2 = j + 1 + i__ * a_dim1;
- z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i;
- i__3 = j + i__ * a_dim1;
- z__3.r = stemp * a[i__3].r, z__3.i = stemp * a[
- i__3].i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = j + i__ * a_dim1;
- z__2.r = stemp * temp.r, z__2.i = stemp * temp.i;
- i__3 = j + i__ * a_dim1;
- z__3.r = ctemp * a[i__3].r, z__3.i = ctemp * a[
- i__3].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
-/* L30: */
- }
- }
-/* L40: */
- }
- }
- } else if (lsame_(pivot, "T")) {
- if (lsame_(direct, "F")) {
- i__1 = *m;
- for (j = 2; j <= i__1; ++j) {
- ctemp = c__[j - 1];
- stemp = s[j - 1];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = j + i__ * a_dim1;
- temp.r = a[i__3].r, temp.i = a[i__3].i;
- i__3 = j + i__ * a_dim1;
- z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i;
- i__4 = i__ * a_dim1 + 1;
- z__3.r = stemp * a[i__4].r, z__3.i = stemp * a[
- i__4].i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- i__3 = i__ * a_dim1 + 1;
- z__2.r = stemp * temp.r, z__2.i = stemp * temp.i;
- i__4 = i__ * a_dim1 + 1;
- z__3.r = ctemp * a[i__4].r, z__3.i = ctemp * a[
- i__4].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L50: */
- }
- }
-/* L60: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *m; j >= 2; --j) {
- ctemp = c__[j - 1];
- stemp = s[j - 1];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = j + i__ * a_dim1;
- temp.r = a[i__2].r, temp.i = a[i__2].i;
- i__2 = j + i__ * a_dim1;
- z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i;
- i__3 = i__ * a_dim1 + 1;
- z__3.r = stemp * a[i__3].r, z__3.i = stemp * a[
- i__3].i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = i__ * a_dim1 + 1;
- z__2.r = stemp * temp.r, z__2.i = stemp * temp.i;
- i__3 = i__ * a_dim1 + 1;
- z__3.r = ctemp * a[i__3].r, z__3.i = ctemp * a[
- i__3].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
-/* L70: */
- }
- }
-/* L80: */
- }
- }
- } else if (lsame_(pivot, "B")) {
- if (lsame_(direct, "F")) {
- i__1 = *m - 1;
- for (j = 1; j <= i__1; ++j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = j + i__ * a_dim1;
- temp.r = a[i__3].r, temp.i = a[i__3].i;
- i__3 = j + i__ * a_dim1;
- i__4 = *m + i__ * a_dim1;
- z__2.r = stemp * a[i__4].r, z__2.i = stemp * a[
- i__4].i;
- z__3.r = ctemp * temp.r, z__3.i = ctemp * temp.i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- i__3 = *m + i__ * a_dim1;
- i__4 = *m + i__ * a_dim1;
- z__2.r = ctemp * a[i__4].r, z__2.i = ctemp * a[
- i__4].i;
- z__3.r = stemp * temp.r, z__3.i = stemp * temp.i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L90: */
- }
- }
-/* L100: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *m - 1; j >= 1; --j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = j + i__ * a_dim1;
- temp.r = a[i__2].r, temp.i = a[i__2].i;
- i__2 = j + i__ * a_dim1;
- i__3 = *m + i__ * a_dim1;
- z__2.r = stemp * a[i__3].r, z__2.i = stemp * a[
- i__3].i;
- z__3.r = ctemp * temp.r, z__3.i = ctemp * temp.i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = *m + i__ * a_dim1;
- i__3 = *m + i__ * a_dim1;
- z__2.r = ctemp * a[i__3].r, z__2.i = ctemp * a[
- i__3].i;
- z__3.r = stemp * temp.r, z__3.i = stemp * temp.i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
-/* L110: */
- }
- }
-/* L120: */
- }
- }
- }
- } else if (lsame_(side, "R")) {
-
-/* Form A * P' */
-
- if (lsame_(pivot, "V")) {
- if (lsame_(direct, "F")) {
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + (j + 1) * a_dim1;
- temp.r = a[i__3].r, temp.i = a[i__3].i;
- i__3 = i__ + (j + 1) * a_dim1;
- z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i;
- i__4 = i__ + j * a_dim1;
- z__3.r = stemp * a[i__4].r, z__3.i = stemp * a[
- i__4].i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- i__3 = i__ + j * a_dim1;
- z__2.r = stemp * temp.r, z__2.i = stemp * temp.i;
- i__4 = i__ + j * a_dim1;
- z__3.r = ctemp * a[i__4].r, z__3.i = ctemp * a[
- i__4].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L130: */
- }
- }
-/* L140: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *n - 1; j >= 1; --j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + (j + 1) * a_dim1;
- temp.r = a[i__2].r, temp.i = a[i__2].i;
- i__2 = i__ + (j + 1) * a_dim1;
- z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i;
- i__3 = i__ + j * a_dim1;
- z__3.r = stemp * a[i__3].r, z__3.i = stemp * a[
- i__3].i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = i__ + j * a_dim1;
- z__2.r = stemp * temp.r, z__2.i = stemp * temp.i;
- i__3 = i__ + j * a_dim1;
- z__3.r = ctemp * a[i__3].r, z__3.i = ctemp * a[
- i__3].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
-/* L150: */
- }
- }
-/* L160: */
- }
- }
- } else if (lsame_(pivot, "T")) {
- if (lsame_(direct, "F")) {
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- ctemp = c__[j - 1];
- stemp = s[j - 1];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- temp.r = a[i__3].r, temp.i = a[i__3].i;
- i__3 = i__ + j * a_dim1;
- z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i;
- i__4 = i__ + a_dim1;
- z__3.r = stemp * a[i__4].r, z__3.i = stemp * a[
- i__4].i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- i__3 = i__ + a_dim1;
- z__2.r = stemp * temp.r, z__2.i = stemp * temp.i;
- i__4 = i__ + a_dim1;
- z__3.r = ctemp * a[i__4].r, z__3.i = ctemp * a[
- i__4].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L170: */
- }
- }
-/* L180: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *n; j >= 2; --j) {
- ctemp = c__[j - 1];
- stemp = s[j - 1];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + j * a_dim1;
- temp.r = a[i__2].r, temp.i = a[i__2].i;
- i__2 = i__ + j * a_dim1;
- z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i;
- i__3 = i__ + a_dim1;
- z__3.r = stemp * a[i__3].r, z__3.i = stemp * a[
- i__3].i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = i__ + a_dim1;
- z__2.r = stemp * temp.r, z__2.i = stemp * temp.i;
- i__3 = i__ + a_dim1;
- z__3.r = ctemp * a[i__3].r, z__3.i = ctemp * a[
- i__3].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
-/* L190: */
- }
- }
-/* L200: */
- }
- }
- } else if (lsame_(pivot, "B")) {
- if (lsame_(direct, "F")) {
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- temp.r = a[i__3].r, temp.i = a[i__3].i;
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + *n * a_dim1;
- z__2.r = stemp * a[i__4].r, z__2.i = stemp * a[
- i__4].i;
- z__3.r = ctemp * temp.r, z__3.i = ctemp * temp.i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- i__3 = i__ + *n * a_dim1;
- i__4 = i__ + *n * a_dim1;
- z__2.r = ctemp * a[i__4].r, z__2.i = ctemp * a[
- i__4].i;
- z__3.r = stemp * temp.r, z__3.i = stemp * temp.i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
-/* L210: */
- }
- }
-/* L220: */
- }
- } else if (lsame_(direct, "B")) {
- for (j = *n - 1; j >= 1; --j) {
- ctemp = c__[j];
- stemp = s[j];
- if (ctemp != 1. || stemp != 0.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + j * a_dim1;
- temp.r = a[i__2].r, temp.i = a[i__2].i;
- i__2 = i__ + j * a_dim1;
- i__3 = i__ + *n * a_dim1;
- z__2.r = stemp * a[i__3].r, z__2.i = stemp * a[
- i__3].i;
- z__3.r = ctemp * temp.r, z__3.i = ctemp * temp.i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = i__ + *n * a_dim1;
- i__3 = i__ + *n * a_dim1;
- z__2.r = ctemp * a[i__3].r, z__2.i = ctemp * a[
- i__3].i;
- z__3.r = stemp * temp.r, z__3.i = stemp * temp.i;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i -
- z__3.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
-/* L230: */
- }
- }
-/* L240: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of ZLASR */
-
-} /* zlasr_ */
-
-/* Subroutine */ int zlassq_(integer *n, doublecomplex *x, integer *incx,
- doublereal *scale, doublereal *sumsq)
-{
- /* System generated locals */
- integer i__1, i__2, i__3;
- doublereal d__1;
-
- /* Builtin functions */
- double d_imag(doublecomplex *);
-
- /* Local variables */
- static integer ix;
- static doublereal temp1;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZLASSQ returns the values scl and ssq such that
-
- ( scl**2 )*ssq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
-
- where x( i ) = abs( X( 1 + ( i - 1 )*INCX ) ). The value of sumsq is
- assumed to be at least unity and the value of ssq will then satisfy
-
- 1.0 .le. ssq .le. ( sumsq + 2*n ).
-
- scale is assumed to be non-negative and scl returns the value
-
- scl = max( scale, abs( real( x( i ) ) ), abs( aimag( x( i ) ) ) ),
- i
-
- scale and sumsq must be supplied in SCALE and SUMSQ respectively.
- SCALE and SUMSQ are overwritten by scl and ssq respectively.
-
- The routine makes only one pass through the vector X.
-
- Arguments
- =========
-
- N (input) INTEGER
- The number of elements to be used from the vector X.
-
- X (input) COMPLEX*16 array, dimension (N)
- The vector x as described above.
- x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
-
- INCX (input) INTEGER
- The increment between successive values of the vector X.
- INCX > 0.
-
- SCALE (input/output) DOUBLE PRECISION
- On entry, the value scale in the equation above.
- On exit, SCALE is overwritten with the value scl .
-
- SUMSQ (input/output) DOUBLE PRECISION
- On entry, the value sumsq in the equation above.
- On exit, SUMSQ is overwritten with the value ssq .
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- --x;
-
- /* Function Body */
- if (*n > 0) {
- i__1 = (*n - 1) * *incx + 1;
- i__2 = *incx;
- for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
- i__3 = ix;
- if (x[i__3].r != 0.) {
- i__3 = ix;
- temp1 = (d__1 = x[i__3].r, abs(d__1));
- if (*scale < temp1) {
-/* Computing 2nd power */
- d__1 = *scale / temp1;
- *sumsq = *sumsq * (d__1 * d__1) + 1;
- *scale = temp1;
- } else {
-/* Computing 2nd power */
- d__1 = temp1 / *scale;
- *sumsq += d__1 * d__1;
- }
- }
- if (d_imag(&x[ix]) != 0.) {
- temp1 = (d__1 = d_imag(&x[ix]), abs(d__1));
- if (*scale < temp1) {
-/* Computing 2nd power */
- d__1 = *scale / temp1;
- *sumsq = *sumsq * (d__1 * d__1) + 1;
- *scale = temp1;
- } else {
-/* Computing 2nd power */
- d__1 = temp1 / *scale;
- *sumsq += d__1 * d__1;
- }
- }
-/* L10: */
- }
- }
-
- return 0;
-
-/* End of ZLASSQ */
-
-} /* zlassq_ */
-
-/* Subroutine */ int zlaswp_(integer *n, doublecomplex *a, integer *lda,
- integer *k1, integer *k2, integer *ipiv, integer *incx)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
-
- /* Local variables */
- static integer i__, j, k, i1, i2, n32, ip, ix, ix0, inc;
- static doublecomplex temp;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZLASWP performs a series of row interchanges on the matrix A.
- One row interchange is initiated for each of rows K1 through K2 of A.
-
- Arguments
- =========
-
- N (input) INTEGER
- The number of columns of the matrix A.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the matrix of column dimension N to which the row
- interchanges will be applied.
- On exit, the permuted matrix.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
-
- K1 (input) INTEGER
- The first element of IPIV for which a row interchange will
- be done.
-
- K2 (input) INTEGER
- The last element of IPIV for which a row interchange will
- be done.
-
- IPIV (input) INTEGER array, dimension (M*abs(INCX))
- The vector of pivot indices. Only the elements in positions
- K1 through K2 of IPIV are accessed.
- IPIV(K) = L implies rows K and L are to be interchanged.
-
- INCX (input) INTEGER
- The increment between successive values of IPIV. If IPIV
- is negative, the pivots are applied in reverse order.
-
- Further Details
- ===============
-
- Modified by
- R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
-
- =====================================================================
-
-
- Interchange row I with row IPIV(I) for each of rows K1 through K2.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
-
- /* Function Body */
- if (*incx > 0) {
- ix0 = *k1;
- i1 = *k1;
- i2 = *k2;
- inc = 1;
- } else if (*incx < 0) {
- ix0 = (1 - *k2) * *incx + 1;
- i1 = *k2;
- i2 = *k1;
- inc = -1;
- } else {
- return 0;
- }
-
- n32 = (*n / 32) << (5);
- if (n32 != 0) {
- i__1 = n32;
- for (j = 1; j <= i__1; j += 32) {
- ix = ix0;
- i__2 = i2;
- i__3 = inc;
- for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3)
- {
- ip = ipiv[ix];
- if (ip != i__) {
- i__4 = j + 31;
- for (k = j; k <= i__4; ++k) {
- i__5 = i__ + k * a_dim1;
- temp.r = a[i__5].r, temp.i = a[i__5].i;
- i__5 = i__ + k * a_dim1;
- i__6 = ip + k * a_dim1;
- a[i__5].r = a[i__6].r, a[i__5].i = a[i__6].i;
- i__5 = ip + k * a_dim1;
- a[i__5].r = temp.r, a[i__5].i = temp.i;
-/* L10: */
- }
- }
- ix += *incx;
-/* L20: */
- }
-/* L30: */
- }
- }
- if (n32 != *n) {
- ++n32;
- ix = ix0;
- i__1 = i2;
- i__3 = inc;
- for (i__ = i1; i__3 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__3) {
- ip = ipiv[ix];
- if (ip != i__) {
- i__2 = *n;
- for (k = n32; k <= i__2; ++k) {
- i__4 = i__ + k * a_dim1;
- temp.r = a[i__4].r, temp.i = a[i__4].i;
- i__4 = i__ + k * a_dim1;
- i__5 = ip + k * a_dim1;
- a[i__4].r = a[i__5].r, a[i__4].i = a[i__5].i;
- i__4 = ip + k * a_dim1;
- a[i__4].r = temp.r, a[i__4].i = temp.i;
-/* L40: */
- }
- }
- ix += *incx;
-/* L50: */
- }
- }
-
- return 0;
-
-/* End of ZLASWP */
-
-} /* zlaswp_ */
-
-/* Subroutine */ int zlatrd_(char *uplo, integer *n, integer *nb,
- doublecomplex *a, integer *lda, doublereal *e, doublecomplex *tau,
- doublecomplex *w, integer *ldw)
-{
- /* System generated locals */
- integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Local variables */
- static integer i__, iw;
- static doublecomplex alpha;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *);
- extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *);
- extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *),
- zhemv_(char *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *), zaxpy_(integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), zlacgv_(integer *, doublecomplex *,
- integer *);
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to
- Hermitian tridiagonal form by a unitary similarity
- transformation Q' * A * Q, and returns the matrices V and W which are
- needed to apply the transformation to the unreduced part of A.
-
- If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a
- matrix, of which the upper triangle is supplied;
- if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a
- matrix, of which the lower triangle is supplied.
-
- This is an auxiliary routine called by ZHETRD.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER
- Specifies whether the upper or lower triangular part of the
- Hermitian matrix A is stored:
- = 'U': Upper triangular
- = 'L': Lower triangular
-
- N (input) INTEGER
- The order of the matrix A.
-
- NB (input) INTEGER
- The number of rows and columns to be reduced.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the Hermitian matrix A. If UPLO = 'U', the leading
- n-by-n upper triangular part of A contains the upper
- triangular part of the matrix A, and the strictly lower
- triangular part of A is not referenced. If UPLO = 'L', the
- leading n-by-n lower triangular part of A contains the lower
- triangular part of the matrix A, and the strictly upper
- triangular part of A is not referenced.
- On exit:
- if UPLO = 'U', the last NB columns have been reduced to
- tridiagonal form, with the diagonal elements overwriting
- the diagonal elements of A; the elements above the diagonal
- with the array TAU, represent the unitary matrix Q as a
- product of elementary reflectors;
- if UPLO = 'L', the first NB columns have been reduced to
- tridiagonal form, with the diagonal elements overwriting
- the diagonal elements of A; the elements below the diagonal
- with the array TAU, represent the unitary matrix Q as a
- product of elementary reflectors.
- See Further Details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- E (output) DOUBLE PRECISION array, dimension (N-1)
- If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
- elements of the last NB columns of the reduced matrix;
- if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
- the first NB columns of the reduced matrix.
-
- TAU (output) COMPLEX*16 array, dimension (N-1)
- The scalar factors of the elementary reflectors, stored in
- TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
- See Further Details.
-
- W (output) COMPLEX*16 array, dimension (LDW,NB)
- The n-by-nb matrix W required to update the unreduced part
- of A.
-
- LDW (input) INTEGER
- The leading dimension of the array W. LDW >= max(1,N).
-
- Further Details
- ===============
-
- If UPLO = 'U', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(n) H(n-1) . . . H(n-nb+1).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
- and tau in TAU(i-1).
-
- If UPLO = 'L', the matrix Q is represented as a product of elementary
- reflectors
-
- Q = H(1) H(2) . . . H(nb).
-
- Each H(i) has the form
-
- H(i) = I - tau * v * v'
-
- where tau is a complex scalar, and v is a complex vector with
- v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
- and tau in TAU(i).
-
- The elements of the vectors v together form the n-by-nb matrix V
- which is needed, with W, to apply the transformation to the unreduced
- part of the matrix, using a Hermitian rank-2k update of the form:
- A := A - V*W' - W*V'.
-
- The contents of A on exit are illustrated by the following examples
- with n = 5 and nb = 2:
-
- if UPLO = 'U': if UPLO = 'L':
-
- ( a a a v4 v5 ) ( d )
- ( a a v4 v5 ) ( 1 d )
- ( a 1 v5 ) ( v1 1 a )
- ( d 1 ) ( v1 v2 a a )
- ( d ) ( v1 v2 a a a )
-
- where d denotes a diagonal element of the reduced matrix, a denotes
- an element of the original matrix that is unchanged, and vi denotes
- an element of the vector defining H(i).
-
- =====================================================================
-
-
- Quick return if possible
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --e;
- --tau;
- w_dim1 = *ldw;
- w_offset = 1 + w_dim1 * 1;
- w -= w_offset;
-
- /* Function Body */
- if (*n <= 0) {
- return 0;
- }
-
- if (lsame_(uplo, "U")) {
-
-/* Reduce last NB columns of upper triangle */
-
- i__1 = *n - *nb + 1;
- for (i__ = *n; i__ >= i__1; --i__) {
- iw = i__ - *n + *nb;
- if (i__ < *n) {
-
-/* Update A(1:i,i) */
-
- i__2 = i__ + i__ * a_dim1;
- i__3 = i__ + i__ * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- i__2 = *n - i__;
- zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw);
- i__2 = *n - i__;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__, &i__2, &z__1, &a[(i__ + 1) *
- a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
- c_b60, &a[i__ * a_dim1 + 1], &c__1);
- i__2 = *n - i__;
- zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw);
- i__2 = *n - i__;
- zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
- i__2 = *n - i__;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__, &i__2, &z__1, &w[(iw + 1) *
- w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
- c_b60, &a[i__ * a_dim1 + 1], &c__1);
- i__2 = *n - i__;
- zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
- i__2 = i__ + i__ * a_dim1;
- i__3 = i__ + i__ * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- }
- if (i__ > 1) {
-
-/*
- Generate elementary reflector H(i) to annihilate
- A(1:i-2,i)
-*/
-
- i__2 = i__ - 1 + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = i__ - 1;
- zlarfg_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &tau[i__
- - 1]);
- i__2 = i__ - 1;
- e[i__2] = alpha.r;
- i__2 = i__ - 1 + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Compute W(1:i-1,i) */
-
- i__2 = i__ - 1;
- zhemv_("Upper", &i__2, &c_b60, &a[a_offset], lda, &a[i__ *
- a_dim1 + 1], &c__1, &c_b59, &w[iw * w_dim1 + 1], &
- c__1);
- if (i__ < *n) {
- i__2 = i__ - 1;
- i__3 = *n - i__;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &w[(
- iw + 1) * w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1],
- &c__1, &c_b59, &w[i__ + 1 + iw * w_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[(i__ + 1) *
- a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
- c__1, &c_b60, &w[iw * w_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &a[(
- i__ + 1) * a_dim1 + 1], lda, &a[i__ * a_dim1 + 1],
- &c__1, &c_b59, &w[i__ + 1 + iw * w_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &w[(iw + 1) *
- w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
- c__1, &c_b60, &w[iw * w_dim1 + 1], &c__1);
- }
- i__2 = i__ - 1;
- zscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
- z__3.r = -.5, z__3.i = -0.;
- i__2 = i__ - 1;
- z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i =
- z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
- i__3 = i__ - 1;
- zdotc_(&z__4, &i__3, &w[iw * w_dim1 + 1], &c__1, &a[i__ *
- a_dim1 + 1], &c__1);
- z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
- z__4.i + z__2.i * z__4.r;
- alpha.r = z__1.r, alpha.i = z__1.i;
- i__2 = i__ - 1;
- zaxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw *
- w_dim1 + 1], &c__1);
- }
-
-/* L10: */
- }
- } else {
-
-/* Reduce first NB columns of lower triangle */
-
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
-/* Update A(i:n,i) */
-
- i__2 = i__ + i__ * a_dim1;
- i__3 = i__ + i__ * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- i__2 = i__ - 1;
- zlacgv_(&i__2, &w[i__ + w_dim1], ldw);
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda,
- &w[i__ + w_dim1], ldw, &c_b60, &a[i__ + i__ * a_dim1], &
- c__1);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &w[i__ + w_dim1], ldw);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &a[i__ + a_dim1], lda);
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &w[i__ + w_dim1], ldw,
- &a[i__ + a_dim1], lda, &c_b60, &a[i__ + i__ * a_dim1], &
- c__1);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &a[i__ + a_dim1], lda);
- i__2 = i__ + i__ * a_dim1;
- i__3 = i__ + i__ * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- if (i__ < *n) {
-
-/*
- Generate elementary reflector H(i) to annihilate
- A(i+2:n,i)
-*/
-
- i__2 = i__ + 1 + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *n - i__;
-/* Computing MIN */
- i__3 = i__ + 2;
- zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1,
- &tau[i__]);
- i__2 = i__;
- e[i__2] = alpha.r;
- i__2 = i__ + 1 + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
-/* Compute W(i+1:n,i) */
-
- i__2 = *n - i__;
- zhemv_("Lower", &i__2, &c_b60, &a[i__ + 1 + (i__ + 1) *
- a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
- c_b59, &w[i__ + 1 + i__ * w_dim1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &w[i__ +
- 1 + w_dim1], ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &
- c_b59, &w[i__ * w_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 +
- a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b60, &w[
- i__ + 1 + i__ * w_dim1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b60, &a[i__ +
- 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
- c_b59, &w[i__ * w_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &w[i__ + 1 +
- w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b60, &w[
- i__ + 1 + i__ * w_dim1], &c__1);
- i__2 = *n - i__;
- zscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
- z__3.r = -.5, z__3.i = -0.;
- i__2 = i__;
- z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i =
- z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
- i__3 = *n - i__;
- zdotc_(&z__4, &i__3, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[
- i__ + 1 + i__ * a_dim1], &c__1);
- z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
- z__4.i + z__2.i * z__4.r;
- alpha.r = z__1.r, alpha.i = z__1.i;
- i__2 = *n - i__;
- zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
- i__ + 1 + i__ * w_dim1], &c__1);
- }
-
-/* L20: */
- }
- }
-
- return 0;
-
-/* End of ZLATRD */
-
-} /* zlatrd_ */
-
-/* Subroutine */ int zlatrs_(char *uplo, char *trans, char *diag, char *
- normin, integer *n, doublecomplex *a, integer *lda, doublecomplex *x,
- doublereal *scale, doublereal *cnorm, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1, d__2, d__3, d__4;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Builtin functions */
- double d_imag(doublecomplex *);
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j;
- static doublereal xj, rec, tjj;
- static integer jinc;
- static doublereal xbnd;
- static integer imax;
- static doublereal tmax;
- static doublecomplex tjjs;
- static doublereal xmax, grow;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- static doublereal tscal;
- static doublecomplex uscal;
- static integer jlast;
- static doublecomplex csumj;
- extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *);
- static logical upper;
- extern /* Double Complex */ VOID zdotu_(doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *);
- extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *), ztrsv_(
- char *, char *, char *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), dlabad_(
- doublereal *, doublereal *);
-
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
- integer *, doublereal *, doublecomplex *, integer *);
- static doublereal bignum;
- extern integer izamax_(integer *, doublecomplex *, integer *);
- extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
- doublecomplex *);
- static logical notran;
- static integer jfirst;
- extern doublereal dzasum_(integer *, doublecomplex *, integer *);
- static doublereal smlnum;
- static logical nounit;
-
-
-/*
- -- LAPACK auxiliary routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1992
-
-
- Purpose
- =======
-
- ZLATRS solves one of the triangular systems
-
- A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
-
- with scaling to prevent overflow. Here A is an upper or lower
- triangular matrix, A**T denotes the transpose of A, A**H denotes the
- conjugate transpose of A, x and b are n-element vectors, and s is a
- scaling factor, usually less than or equal to 1, chosen so that the
- components of x will be less than the overflow threshold. If the
- unscaled problem will not cause overflow, the Level 2 BLAS routine
- ZTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
- then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- Specifies whether the matrix A is upper or lower triangular.
- = 'U': Upper triangular
- = 'L': Lower triangular
-
- TRANS (input) CHARACTER*1
- Specifies the operation applied to A.
- = 'N': Solve A * x = s*b (No transpose)
- = 'T': Solve A**T * x = s*b (Transpose)
- = 'C': Solve A**H * x = s*b (Conjugate transpose)
-
- DIAG (input) CHARACTER*1
- Specifies whether or not the matrix A is unit triangular.
- = 'N': Non-unit triangular
- = 'U': Unit triangular
-
- NORMIN (input) CHARACTER*1
- Specifies whether CNORM has been set or not.
- = 'Y': CNORM contains the column norms on entry
- = 'N': CNORM is not set on entry. On exit, the norms will
- be computed and stored in CNORM.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input) COMPLEX*16 array, dimension (LDA,N)
- The triangular matrix A. If UPLO = 'U', the leading n by n
- upper triangular part of the array A contains the upper
- triangular matrix, and the strictly lower triangular part of
- A is not referenced. If UPLO = 'L', the leading n by n lower
- triangular part of the array A contains the lower triangular
- matrix, and the strictly upper triangular part of A is not
- referenced. If DIAG = 'U', the diagonal elements of A are
- also not referenced and are assumed to be 1.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max (1,N).
-
- X (input/output) COMPLEX*16 array, dimension (N)
- On entry, the right hand side b of the triangular system.
- On exit, X is overwritten by the solution vector x.
-
- SCALE (output) DOUBLE PRECISION
- The scaling factor s for the triangular system
- A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
- If SCALE = 0, the matrix A is singular or badly scaled, and
- the vector x is an exact or approximate solution to A*x = 0.
-
- CNORM (input or output) DOUBLE PRECISION array, dimension (N)
-
- If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
- contains the norm of the off-diagonal part of the j-th column
- of A. If TRANS = 'N', CNORM(j) must be greater than or equal
- to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
- must be greater than or equal to the 1-norm.
-
- If NORMIN = 'N', CNORM is an output argument and CNORM(j)
- returns the 1-norm of the offdiagonal part of the j-th column
- of A.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -k, the k-th argument had an illegal value
-
- Further Details
- ======= =======
-
- A rough bound on x is computed; if that is less than overflow, ZTRSV
- is called, otherwise, specific code is used which checks for possible
- overflow or divide-by-zero at every operation.
-
- A columnwise scheme is used for solving A*x = b. The basic algorithm
- if A is lower triangular is
-
- x[1:n] := b[1:n]
- for j = 1, ..., n
- x(j) := x(j) / A(j,j)
- x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
- end
-
- Define bounds on the components of x after j iterations of the loop:
- M(j) = bound on x[1:j]
- G(j) = bound on x[j+1:n]
- Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
-
- Then for iteration j+1 we have
- M(j+1) <= G(j) / | A(j+1,j+1) |
- G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
- <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
-
- where CNORM(j+1) is greater than or equal to the infinity-norm of
- column j+1 of A, not counting the diagonal. Hence
-
- G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
- 1<=i<=j
- and
-
- |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
- 1<=i< j
-
- Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTRSV if the
- reciprocal of the largest M(j), j=1,..,n, is larger than
- max(underflow, 1/overflow).
-
- The bound on x(j) is also used to determine when a step in the
- columnwise method can be performed without fear of overflow. If
- the computed bound is greater than a large constant, x is scaled to
- prevent overflow, but if the bound overflows, x is set to 0, x(j) to
- 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
-
- Similarly, a row-wise scheme is used to solve A**T *x = b or
- A**H *x = b. The basic algorithm for A upper triangular is
-
- for j = 1, ..., n
- x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
- end
-
- We simultaneously compute two bounds
- G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
- M(j) = bound on x(i), 1<=i<=j
-
- The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
- add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
- Then the bound on x(j) is
-
- M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
-
- <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
- 1<=i<=j
-
- and we can safely call ZTRSV if 1/M(n) and 1/G(n) are both greater
- than max(underflow, 1/overflow).
-
- =====================================================================
-*/
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --x;
- --cnorm;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- notran = lsame_(trans, "N");
- nounit = lsame_(diag, "N");
-
-/* Test the input parameters. */
-
- if ((! upper && ! lsame_(uplo, "L"))) {
- *info = -1;
- } else if (((! notran && ! lsame_(trans, "T")) && !
- lsame_(trans, "C"))) {
- *info = -2;
- } else if ((! nounit && ! lsame_(diag, "U"))) {
- *info = -3;
- } else if ((! lsame_(normin, "Y") && ! lsame_(
- normin, "N"))) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*lda < max(1,*n)) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLATRS", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
-/* Determine machine dependent parameters to control overflow. */
-
- smlnum = SAFEMINIMUM;
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
- smlnum /= PRECISION;
- bignum = 1. / smlnum;
- *scale = 1.;
-
- if (lsame_(normin, "N")) {
-
-/* Compute the 1-norm of each column, not including the diagonal. */
-
- if (upper) {
-
-/* A is upper triangular. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- cnorm[j] = dzasum_(&i__2, &a[j * a_dim1 + 1], &c__1);
-/* L10: */
- }
- } else {
-
-/* A is lower triangular. */
-
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n - j;
- cnorm[j] = dzasum_(&i__2, &a[j + 1 + j * a_dim1], &c__1);
-/* L20: */
- }
- cnorm[*n] = 0.;
- }
- }
-
-/*
- Scale the column norms by TSCAL if the maximum element in CNORM is
- greater than BIGNUM/2.
-*/
-
- imax = idamax_(n, &cnorm[1], &c__1);
- tmax = cnorm[imax];
- if (tmax <= bignum * .5) {
- tscal = 1.;
- } else {
- tscal = .5 / (smlnum * tmax);
- dscal_(n, &tscal, &cnorm[1], &c__1);
- }
-
-/*
- Compute a bound on the computed solution vector to see if the
- Level 2 BLAS routine ZTRSV can be used.
-*/
-
- xmax = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-/* Computing MAX */
- i__2 = j;
- d__3 = xmax, d__4 = (d__1 = x[i__2].r / 2., abs(d__1)) + (d__2 =
- d_imag(&x[j]) / 2., abs(d__2));
- xmax = max(d__3,d__4);
-/* L30: */
- }
- xbnd = xmax;
-
- if (notran) {
-
-/* Compute the growth in A * x = b. */
-
- if (upper) {
- jfirst = *n;
- jlast = 1;
- jinc = -1;
- } else {
- jfirst = 1;
- jlast = *n;
- jinc = 1;
- }
-
- if (tscal != 1.) {
- grow = 0.;
- goto L60;
- }
-
- if (nounit) {
-
-/*
- A is non-unit triangular.
-
- Compute GROW = 1/G(j) and XBND = 1/M(j).
- Initially, G(0) = max{x(i), i=1,...,n}.
-*/
-
- grow = .5 / max(xbnd,smlnum);
- xbnd = grow;
- i__1 = jlast;
- i__2 = jinc;
- for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-
-/* Exit the loop if the growth factor is too small. */
-
- if (grow <= smlnum) {
- goto L60;
- }
-
- i__3 = j + j * a_dim1;
- tjjs.r = a[i__3].r, tjjs.i = a[i__3].i;
- tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
- d__2));
-
- if (tjj >= smlnum) {
-
-/*
- M(j) = G(j-1) / abs(A(j,j))
-
- Computing MIN
-*/
- d__1 = xbnd, d__2 = min(1.,tjj) * grow;
- xbnd = min(d__1,d__2);
- } else {
-
-/* M(j) could overflow, set XBND to 0. */
-
- xbnd = 0.;
- }
-
- if (tjj + cnorm[j] >= smlnum) {
-
-/* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
-
- grow *= tjj / (tjj + cnorm[j]);
- } else {
-
-/* G(j) could overflow, set GROW to 0. */
-
- grow = 0.;
- }
-/* L40: */
- }
- grow = xbnd;
- } else {
-
-/*
- A is unit triangular.
-
- Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
-
- Computing MIN
-*/
- d__1 = 1., d__2 = .5 / max(xbnd,smlnum);
- grow = min(d__1,d__2);
- i__2 = jlast;
- i__1 = jinc;
- for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
-
-/* Exit the loop if the growth factor is too small. */
-
- if (grow <= smlnum) {
- goto L60;
- }
-
-/* G(j) = G(j-1)*( 1 + CNORM(j) ) */
-
- grow *= 1. / (cnorm[j] + 1.);
-/* L50: */
- }
- }
-L60:
-
- ;
- } else {
-
-/* Compute the growth in A**T * x = b or A**H * x = b. */
-
- if (upper) {
- jfirst = 1;
- jlast = *n;
- jinc = 1;
- } else {
- jfirst = *n;
- jlast = 1;
- jinc = -1;
- }
-
- if (tscal != 1.) {
- grow = 0.;
- goto L90;
- }
-
- if (nounit) {
-
-/*
- A is non-unit triangular.
-
- Compute GROW = 1/G(j) and XBND = 1/M(j).
- Initially, M(0) = max{x(i), i=1,...,n}.
-*/
-
- grow = .5 / max(xbnd,smlnum);
- xbnd = grow;
- i__1 = jlast;
- i__2 = jinc;
- for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-
-/* Exit the loop if the growth factor is too small. */
-
- if (grow <= smlnum) {
- goto L90;
- }
-
-/* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
-
- xj = cnorm[j] + 1.;
-/* Computing MIN */
- d__1 = grow, d__2 = xbnd / xj;
- grow = min(d__1,d__2);
-
- i__3 = j + j * a_dim1;
- tjjs.r = a[i__3].r, tjjs.i = a[i__3].i;
- tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
- d__2));
-
- if (tjj >= smlnum) {
-
-/* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
-
- if (xj > tjj) {
- xbnd *= tjj / xj;
- }
- } else {
-
-/* M(j) could overflow, set XBND to 0. */
-
- xbnd = 0.;
- }
-/* L70: */
- }
- grow = min(grow,xbnd);
- } else {
-
-/*
- A is unit triangular.
-
- Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
-
- Computing MIN
-*/
- d__1 = 1., d__2 = .5 / max(xbnd,smlnum);
- grow = min(d__1,d__2);
- i__2 = jlast;
- i__1 = jinc;
- for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
-
-/* Exit the loop if the growth factor is too small. */
-
- if (grow <= smlnum) {
- goto L90;
- }
-
-/* G(j) = ( 1 + CNORM(j) )*G(j-1) */
-
- xj = cnorm[j] + 1.;
- grow /= xj;
-/* L80: */
- }
- }
-L90:
- ;
- }
-
- if (grow * tscal > smlnum) {
-
-/*
- Use the Level 2 BLAS solve if the reciprocal of the bound on
- elements of X is not too small.
-*/
-
- ztrsv_(uplo, trans, diag, n, &a[a_offset], lda, &x[1], &c__1);
- } else {
-
-/* Use a Level 1 BLAS solve, scaling intermediate results. */
-
- if (xmax > bignum * .5) {
-
-/*
- Scale X so that its components are less than or equal to
- BIGNUM in absolute value.
-*/
-
- *scale = bignum * .5 / xmax;
- zdscal_(n, scale, &x[1], &c__1);
- xmax = bignum;
- } else {
- xmax *= 2.;
- }
-
- if (notran) {
-
-/* Solve A * x = b */
-
- i__1 = jlast;
- i__2 = jinc;
- for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-
-/* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
-
- i__3 = j;
- xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
- abs(d__2));
- if (nounit) {
- i__3 = j + j * a_dim1;
- z__1.r = tscal * a[i__3].r, z__1.i = tscal * a[i__3].i;
- tjjs.r = z__1.r, tjjs.i = z__1.i;
- } else {
- tjjs.r = tscal, tjjs.i = 0.;
- if (tscal == 1.) {
- goto L110;
- }
- }
- tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
- d__2));
- if (tjj > smlnum) {
-
-/* abs(A(j,j)) > SMLNUM: */
-
- if (tjj < 1.) {
- if (xj > tjj * bignum) {
-
-/* Scale x by 1/b(j). */
-
- rec = 1. / xj;
- zdscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- i__3 = j;
- zladiv_(&z__1, &x[j], &tjjs);
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- i__3 = j;
- xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
- , abs(d__2));
- } else if (tjj > 0.) {
-
-/* 0 < abs(A(j,j)) <= SMLNUM: */
-
- if (xj > tjj * bignum) {
-
-/*
- Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
- to avoid overflow when dividing by A(j,j).
-*/
-
- rec = tjj * bignum / xj;
- if (cnorm[j] > 1.) {
-
-/*
- Scale by 1/CNORM(j) to avoid overflow when
- multiplying x(j) times column j.
-*/
-
- rec /= cnorm[j];
- }
- zdscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- i__3 = j;
- zladiv_(&z__1, &x[j], &tjjs);
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- i__3 = j;
- xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
- , abs(d__2));
- } else {
-
-/*
- A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
- scale = 0, and compute a solution to A*x = 0.
-*/
-
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__;
- x[i__4].r = 0., x[i__4].i = 0.;
-/* L100: */
- }
- i__3 = j;
- x[i__3].r = 1., x[i__3].i = 0.;
- xj = 1.;
- *scale = 0.;
- xmax = 0.;
- }
-L110:
-
-/*
- Scale x if necessary to avoid overflow when adding a
- multiple of column j of A.
-*/
-
- if (xj > 1.) {
- rec = 1. / xj;
- if (cnorm[j] > (bignum - xmax) * rec) {
-
-/* Scale x by 1/(2*abs(x(j))). */
-
- rec *= .5;
- zdscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- }
- } else if (xj * cnorm[j] > bignum - xmax) {
-
-/* Scale x by 1/2. */
-
- zdscal_(n, &c_b2210, &x[1], &c__1);
- *scale *= .5;
- }
-
- if (upper) {
- if (j > 1) {
-
-/*
- Compute the update
- x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
-*/
-
- i__3 = j - 1;
- i__4 = j;
- z__2.r = -x[i__4].r, z__2.i = -x[i__4].i;
- z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
- zaxpy_(&i__3, &z__1, &a[j * a_dim1 + 1], &c__1, &x[1],
- &c__1);
- i__3 = j - 1;
- i__ = izamax_(&i__3, &x[1], &c__1);
- i__3 = i__;
- xmax = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(
- &x[i__]), abs(d__2));
- }
- } else {
- if (j < *n) {
-
-/*
- Compute the update
- x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
-*/
-
- i__3 = *n - j;
- i__4 = j;
- z__2.r = -x[i__4].r, z__2.i = -x[i__4].i;
- z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
- zaxpy_(&i__3, &z__1, &a[j + 1 + j * a_dim1], &c__1, &
- x[j + 1], &c__1);
- i__3 = *n - j;
- i__ = j + izamax_(&i__3, &x[j + 1], &c__1);
- i__3 = i__;
- xmax = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(
- &x[i__]), abs(d__2));
- }
- }
-/* L120: */
- }
-
- } else if (lsame_(trans, "T")) {
-
-/* Solve A**T * x = b */
-
- i__2 = jlast;
- i__1 = jinc;
- for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
-
-/*
- Compute x(j) = b(j) - sum A(k,j)*x(k).
- k<>j
-*/
-
- i__3 = j;
- xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
- abs(d__2));
- uscal.r = tscal, uscal.i = 0.;
- rec = 1. / max(xmax,1.);
- if (cnorm[j] > (bignum - xj) * rec) {
-
-/* If x(j) could overflow, scale x by 1/(2*XMAX). */
-
- rec *= .5;
- if (nounit) {
- i__3 = j + j * a_dim1;
- z__1.r = tscal * a[i__3].r, z__1.i = tscal * a[i__3]
- .i;
- tjjs.r = z__1.r, tjjs.i = z__1.i;
- } else {
- tjjs.r = tscal, tjjs.i = 0.;
- }
- tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
- abs(d__2));
- if (tjj > 1.) {
-
-/*
- Divide by A(j,j) when scaling x if A(j,j) > 1.
-
- Computing MIN
-*/
- d__1 = 1., d__2 = rec * tjj;
- rec = min(d__1,d__2);
- zladiv_(&z__1, &uscal, &tjjs);
- uscal.r = z__1.r, uscal.i = z__1.i;
- }
- if (rec < 1.) {
- zdscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
-
- csumj.r = 0., csumj.i = 0.;
- if ((uscal.r == 1. && uscal.i == 0.)) {
-
-/*
- If the scaling needed for A in the dot product is 1,
- call ZDOTU to perform the dot product.
-*/
-
- if (upper) {
- i__3 = j - 1;
- zdotu_(&z__1, &i__3, &a[j * a_dim1 + 1], &c__1, &x[1],
- &c__1);
- csumj.r = z__1.r, csumj.i = z__1.i;
- } else if (j < *n) {
- i__3 = *n - j;
- zdotu_(&z__1, &i__3, &a[j + 1 + j * a_dim1], &c__1, &
- x[j + 1], &c__1);
- csumj.r = z__1.r, csumj.i = z__1.i;
- }
- } else {
-
-/* Otherwise, use in-line code for the dot product. */
-
- if (upper) {
- i__3 = j - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * a_dim1;
- z__3.r = a[i__4].r * uscal.r - a[i__4].i *
- uscal.i, z__3.i = a[i__4].r * uscal.i + a[
- i__4].i * uscal.r;
- i__5 = i__;
- z__2.r = z__3.r * x[i__5].r - z__3.i * x[i__5].i,
- z__2.i = z__3.r * x[i__5].i + z__3.i * x[
- i__5].r;
- z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
- z__2.i;
- csumj.r = z__1.r, csumj.i = z__1.i;
-/* L130: */
- }
- } else if (j < *n) {
- i__3 = *n;
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * a_dim1;
- z__3.r = a[i__4].r * uscal.r - a[i__4].i *
- uscal.i, z__3.i = a[i__4].r * uscal.i + a[
- i__4].i * uscal.r;
- i__5 = i__;
- z__2.r = z__3.r * x[i__5].r - z__3.i * x[i__5].i,
- z__2.i = z__3.r * x[i__5].i + z__3.i * x[
- i__5].r;
- z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
- z__2.i;
- csumj.r = z__1.r, csumj.i = z__1.i;
-/* L140: */
- }
- }
- }
-
- z__1.r = tscal, z__1.i = 0.;
- if ((uscal.r == z__1.r && uscal.i == z__1.i)) {
-
-/*
- Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
- was not used to scale the dotproduct.
-*/
-
- i__3 = j;
- i__4 = j;
- z__1.r = x[i__4].r - csumj.r, z__1.i = x[i__4].i -
- csumj.i;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- i__3 = j;
- xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
- , abs(d__2));
- if (nounit) {
- i__3 = j + j * a_dim1;
- z__1.r = tscal * a[i__3].r, z__1.i = tscal * a[i__3]
- .i;
- tjjs.r = z__1.r, tjjs.i = z__1.i;
- } else {
- tjjs.r = tscal, tjjs.i = 0.;
- if (tscal == 1.) {
- goto L160;
- }
- }
-
-/* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
-
- tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
- abs(d__2));
- if (tjj > smlnum) {
-
-/* abs(A(j,j)) > SMLNUM: */
-
- if (tjj < 1.) {
- if (xj > tjj * bignum) {
-
-/* Scale X by 1/abs(x(j)). */
-
- rec = 1. / xj;
- zdscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- i__3 = j;
- zladiv_(&z__1, &x[j], &tjjs);
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- } else if (tjj > 0.) {
-
-/* 0 < abs(A(j,j)) <= SMLNUM: */
-
- if (xj > tjj * bignum) {
-
-/* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
-
- rec = tjj * bignum / xj;
- zdscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- i__3 = j;
- zladiv_(&z__1, &x[j], &tjjs);
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- } else {
-
-/*
- A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
- scale = 0 and compute a solution to A**T *x = 0.
-*/
-
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__;
- x[i__4].r = 0., x[i__4].i = 0.;
-/* L150: */
- }
- i__3 = j;
- x[i__3].r = 1., x[i__3].i = 0.;
- *scale = 0.;
- xmax = 0.;
- }
-L160:
- ;
- } else {
-
-/*
- Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
- product has already been divided by 1/A(j,j).
-*/
-
- i__3 = j;
- zladiv_(&z__2, &x[j], &tjjs);
- z__1.r = z__2.r - csumj.r, z__1.i = z__2.i - csumj.i;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- }
-/* Computing MAX */
- i__3 = j;
- d__3 = xmax, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
- d_imag(&x[j]), abs(d__2));
- xmax = max(d__3,d__4);
-/* L170: */
- }
-
- } else {
-
-/* Solve A**H * x = b */
-
- i__1 = jlast;
- i__2 = jinc;
- for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-
-/*
- Compute x(j) = b(j) - sum A(k,j)*x(k).
- k<>j
-*/
-
- i__3 = j;
- xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
- abs(d__2));
- uscal.r = tscal, uscal.i = 0.;
- rec = 1. / max(xmax,1.);
- if (cnorm[j] > (bignum - xj) * rec) {
-
-/* If x(j) could overflow, scale x by 1/(2*XMAX). */
-
- rec *= .5;
- if (nounit) {
- d_cnjg(&z__2, &a[j + j * a_dim1]);
- z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
- tjjs.r = z__1.r, tjjs.i = z__1.i;
- } else {
- tjjs.r = tscal, tjjs.i = 0.;
- }
- tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
- abs(d__2));
- if (tjj > 1.) {
-
-/*
- Divide by A(j,j) when scaling x if A(j,j) > 1.
-
- Computing MIN
-*/
- d__1 = 1., d__2 = rec * tjj;
- rec = min(d__1,d__2);
- zladiv_(&z__1, &uscal, &tjjs);
- uscal.r = z__1.r, uscal.i = z__1.i;
- }
- if (rec < 1.) {
- zdscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
-
- csumj.r = 0., csumj.i = 0.;
- if ((uscal.r == 1. && uscal.i == 0.)) {
-
-/*
- If the scaling needed for A in the dot product is 1,
- call ZDOTC to perform the dot product.
-*/
-
- if (upper) {
- i__3 = j - 1;
- zdotc_(&z__1, &i__3, &a[j * a_dim1 + 1], &c__1, &x[1],
- &c__1);
- csumj.r = z__1.r, csumj.i = z__1.i;
- } else if (j < *n) {
- i__3 = *n - j;
- zdotc_(&z__1, &i__3, &a[j + 1 + j * a_dim1], &c__1, &
- x[j + 1], &c__1);
- csumj.r = z__1.r, csumj.i = z__1.i;
- }
- } else {
-
-/* Otherwise, use in-line code for the dot product. */
-
- if (upper) {
- i__3 = j - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- d_cnjg(&z__4, &a[i__ + j * a_dim1]);
- z__3.r = z__4.r * uscal.r - z__4.i * uscal.i,
- z__3.i = z__4.r * uscal.i + z__4.i *
- uscal.r;
- i__4 = i__;
- z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
- z__2.i = z__3.r * x[i__4].i + z__3.i * x[
- i__4].r;
- z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
- z__2.i;
- csumj.r = z__1.r, csumj.i = z__1.i;
-/* L180: */
- }
- } else if (j < *n) {
- i__3 = *n;
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- d_cnjg(&z__4, &a[i__ + j * a_dim1]);
- z__3.r = z__4.r * uscal.r - z__4.i * uscal.i,
- z__3.i = z__4.r * uscal.i + z__4.i *
- uscal.r;
- i__4 = i__;
- z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
- z__2.i = z__3.r * x[i__4].i + z__3.i * x[
- i__4].r;
- z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
- z__2.i;
- csumj.r = z__1.r, csumj.i = z__1.i;
-/* L190: */
- }
- }
- }
-
- z__1.r = tscal, z__1.i = 0.;
- if ((uscal.r == z__1.r && uscal.i == z__1.i)) {
-
-/*
- Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
- was not used to scale the dotproduct.
-*/
-
- i__3 = j;
- i__4 = j;
- z__1.r = x[i__4].r - csumj.r, z__1.i = x[i__4].i -
- csumj.i;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- i__3 = j;
- xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
- , abs(d__2));
- if (nounit) {
- d_cnjg(&z__2, &a[j + j * a_dim1]);
- z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
- tjjs.r = z__1.r, tjjs.i = z__1.i;
- } else {
- tjjs.r = tscal, tjjs.i = 0.;
- if (tscal == 1.) {
- goto L210;
- }
- }
-
-/* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
-
- tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
- abs(d__2));
- if (tjj > smlnum) {
-
-/* abs(A(j,j)) > SMLNUM: */
-
- if (tjj < 1.) {
- if (xj > tjj * bignum) {
-
-/* Scale X by 1/abs(x(j)). */
-
- rec = 1. / xj;
- zdscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- i__3 = j;
- zladiv_(&z__1, &x[j], &tjjs);
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- } else if (tjj > 0.) {
-
-/* 0 < abs(A(j,j)) <= SMLNUM: */
-
- if (xj > tjj * bignum) {
-
-/* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
-
- rec = tjj * bignum / xj;
- zdscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- i__3 = j;
- zladiv_(&z__1, &x[j], &tjjs);
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- } else {
-
-/*
- A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
- scale = 0 and compute a solution to A**H *x = 0.
-*/
-
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__;
- x[i__4].r = 0., x[i__4].i = 0.;
-/* L200: */
- }
- i__3 = j;
- x[i__3].r = 1., x[i__3].i = 0.;
- *scale = 0.;
- xmax = 0.;
- }
-L210:
- ;
- } else {
-
-/*
- Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
- product has already been divided by 1/A(j,j).
-*/
-
- i__3 = j;
- zladiv_(&z__2, &x[j], &tjjs);
- z__1.r = z__2.r - csumj.r, z__1.i = z__2.i - csumj.i;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- }
-/* Computing MAX */
- i__3 = j;
- d__3 = xmax, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
- d_imag(&x[j]), abs(d__2));
- xmax = max(d__3,d__4);
-/* L220: */
- }
- }
- *scale /= tscal;
- }
-
-/* Scale the column norms by 1/TSCAL for return. */
-
- if (tscal != 1.) {
- d__1 = 1. / tscal;
- dscal_(n, &d__1, &cnorm[1], &c__1);
- }
-
- return 0;
-
-/* End of ZLATRS */
-
-} /* zlatrs_ */
-
-/* Subroutine */ int zpotf2_(char *uplo, integer *n, doublecomplex *a,
- integer *lda, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublereal d__1;
- doublecomplex z__1, z__2;
-
- /* Builtin functions */
- double sqrt(doublereal);
-
- /* Local variables */
- static integer j;
- static doublereal ajj;
- extern logical lsame_(char *, char *);
- extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *);
- extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *);
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
- integer *, doublereal *, doublecomplex *, integer *), zlacgv_(
- integer *, doublecomplex *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZPOTF2 computes the Cholesky factorization of a complex Hermitian
- positive definite matrix A.
-
- The factorization has the form
- A = U' * U , if UPLO = 'U', or
- A = L * L', if UPLO = 'L',
- where U is an upper triangular matrix and L is lower triangular.
-
- This is the unblocked version of the algorithm, calling Level 2 BLAS.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- Specifies whether the upper or lower triangular part of the
- Hermitian matrix A is stored.
- = 'U': Upper triangular
- = 'L': Lower triangular
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the Hermitian matrix A. If UPLO = 'U', the leading
- n by n upper triangular part of A contains the upper
- triangular part of the matrix A, and the strictly lower
- triangular part of A is not referenced. If UPLO = 'L', the
- leading n by n lower triangular part of A contains the lower
- triangular part of the matrix A, and the strictly upper
- triangular part of A is not referenced.
-
- On exit, if INFO = 0, the factor U or L from the Cholesky
- factorization A = U'*U or A = L*L'.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -k, the k-th argument had an illegal value
- > 0: if INFO = k, the leading minor of order k is not
- positive definite, and the factorization could not be
- completed.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- if ((! upper && ! lsame_(uplo, "L"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZPOTF2", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- if (upper) {
-
-/* Compute the Cholesky factorization A = U'*U. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-
-/* Compute U(J,J) and test for non-positive-definiteness. */
-
- i__2 = j + j * a_dim1;
- d__1 = a[i__2].r;
- i__3 = j - 1;
- zdotc_(&z__2, &i__3, &a[j * a_dim1 + 1], &c__1, &a[j * a_dim1 + 1]
- , &c__1);
- z__1.r = d__1 - z__2.r, z__1.i = -z__2.i;
- ajj = z__1.r;
- if (ajj <= 0.) {
- i__2 = j + j * a_dim1;
- a[i__2].r = ajj, a[i__2].i = 0.;
- goto L30;
- }
- ajj = sqrt(ajj);
- i__2 = j + j * a_dim1;
- a[i__2].r = ajj, a[i__2].i = 0.;
-
-/* Compute elements J+1:N of row J. */
-
- if (j < *n) {
- i__2 = j - 1;
- zlacgv_(&i__2, &a[j * a_dim1 + 1], &c__1);
- i__2 = j - 1;
- i__3 = *n - j;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("Transpose", &i__2, &i__3, &z__1, &a[(j + 1) * a_dim1
- + 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b60, &a[j + (
- j + 1) * a_dim1], lda);
- i__2 = j - 1;
- zlacgv_(&i__2, &a[j * a_dim1 + 1], &c__1);
- i__2 = *n - j;
- d__1 = 1. / ajj;
- zdscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda);
- }
-/* L10: */
- }
- } else {
-
-/* Compute the Cholesky factorization A = L*L'. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
-
-/* Compute L(J,J) and test for non-positive-definiteness. */
-
- i__2 = j + j * a_dim1;
- d__1 = a[i__2].r;
- i__3 = j - 1;
- zdotc_(&z__2, &i__3, &a[j + a_dim1], lda, &a[j + a_dim1], lda);
- z__1.r = d__1 - z__2.r, z__1.i = -z__2.i;
- ajj = z__1.r;
- if (ajj <= 0.) {
- i__2 = j + j * a_dim1;
- a[i__2].r = ajj, a[i__2].i = 0.;
- goto L30;
- }
- ajj = sqrt(ajj);
- i__2 = j + j * a_dim1;
- a[i__2].r = ajj, a[i__2].i = 0.;
-
-/* Compute elements J+1:N of column J. */
-
- if (j < *n) {
- i__2 = j - 1;
- zlacgv_(&i__2, &a[j + a_dim1], lda);
- i__2 = *n - j;
- i__3 = j - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[j + 1 + a_dim1]
- , lda, &a[j + a_dim1], lda, &c_b60, &a[j + 1 + j *
- a_dim1], &c__1);
- i__2 = j - 1;
- zlacgv_(&i__2, &a[j + a_dim1], lda);
- i__2 = *n - j;
- d__1 = 1. / ajj;
- zdscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
- }
-/* L20: */
- }
- }
- goto L40;
-
-L30:
- *info = j;
-
-L40:
- return 0;
-
-/* End of ZPOTF2 */
-
-} /* zpotf2_ */
-
-/* Subroutine */ int zpotrf_(char *uplo, integer *n, doublecomplex *a,
- integer *lda, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- doublecomplex z__1;
-
- /* Local variables */
- static integer j, jb, nb;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *), zherk_(char *, char *, integer *,
- integer *, doublereal *, doublecomplex *, integer *, doublereal *,
- doublecomplex *, integer *);
- static logical upper;
- extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *,
- integer *, integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *),
- zpotf2_(char *, integer *, doublecomplex *, integer *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZPOTRF computes the Cholesky factorization of a complex Hermitian
- positive definite matrix A.
-
- The factorization has the form
- A = U**H * U, if UPLO = 'U', or
- A = L * L**H, if UPLO = 'L',
- where U is an upper triangular matrix and L is lower triangular.
-
- This is the block version of the algorithm, calling Level 3 BLAS.
-
- Arguments
- =========
-
- UPLO (input) CHARACTER*1
- = 'U': Upper triangle of A is stored;
- = 'L': Lower triangle of A is stored.
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the Hermitian matrix A. If UPLO = 'U', the leading
- N-by-N upper triangular part of A contains the upper
- triangular part of the matrix A, and the strictly lower
- triangular part of A is not referenced. If UPLO = 'L', the
- leading N-by-N lower triangular part of A contains the lower
- triangular part of the matrix A, and the strictly upper
- triangular part of A is not referenced.
-
- On exit, if INFO = 0, the factor U or L from the Cholesky
- factorization A = U**H*U or A = L*L**H.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, the leading minor of order i is not
- positive definite, and the factorization could not be
- completed.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- if ((! upper && ! lsame_(uplo, "L"))) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZPOTRF", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
-/* Determine the block size for this environment. */
-
- nb = ilaenv_(&c__1, "ZPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)1);
- if (nb <= 1 || nb >= *n) {
-
-/* Use unblocked code. */
-
- zpotf2_(uplo, n, &a[a_offset], lda, info);
- } else {
-
-/* Use blocked code. */
-
- if (upper) {
-
-/* Compute the Cholesky factorization A = U'*U. */
-
- i__1 = *n;
- i__2 = nb;
- for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-
-/*
- Update and factorize the current diagonal block and test
- for non-positive-definiteness.
-
- Computing MIN
-*/
- i__3 = nb, i__4 = *n - j + 1;
- jb = min(i__3,i__4);
- i__3 = j - 1;
- zherk_("Upper", "Conjugate transpose", &jb, &i__3, &c_b1294, &
- a[j * a_dim1 + 1], lda, &c_b1015, &a[j + j * a_dim1],
- lda);
- zpotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info);
- if (*info != 0) {
- goto L30;
- }
- if (j + jb <= *n) {
-
-/* Compute the current block row. */
-
- i__3 = *n - j - jb + 1;
- i__4 = j - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("Conjugate transpose", "No transpose", &jb, &i__3,
- &i__4, &z__1, &a[j * a_dim1 + 1], lda, &a[(j + jb)
- * a_dim1 + 1], lda, &c_b60, &a[j + (j + jb) *
- a_dim1], lda);
- i__3 = *n - j - jb + 1;
- ztrsm_("Left", "Upper", "Conjugate transpose", "Non-unit",
- &jb, &i__3, &c_b60, &a[j + j * a_dim1], lda, &a[
- j + (j + jb) * a_dim1], lda);
- }
-/* L10: */
- }
-
- } else {
-
-/* Compute the Cholesky factorization A = L*L'. */
-
- i__2 = *n;
- i__1 = nb;
- for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
-
-/*
- Update and factorize the current diagonal block and test
- for non-positive-definiteness.
-
- Computing MIN
-*/
- i__3 = nb, i__4 = *n - j + 1;
- jb = min(i__3,i__4);
- i__3 = j - 1;
- zherk_("Lower", "No transpose", &jb, &i__3, &c_b1294, &a[j +
- a_dim1], lda, &c_b1015, &a[j + j * a_dim1], lda);
- zpotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info);
- if (*info != 0) {
- goto L30;
- }
- if (j + jb <= *n) {
-
-/* Compute the current block column. */
-
- i__3 = *n - j - jb + 1;
- i__4 = j - 1;
- z__1.r = -1., z__1.i = -0.;
- zgemm_("No transpose", "Conjugate transpose", &i__3, &jb,
- &i__4, &z__1, &a[j + jb + a_dim1], lda, &a[j +
- a_dim1], lda, &c_b60, &a[j + jb + j * a_dim1],
- lda);
- i__3 = *n - j - jb + 1;
- ztrsm_("Right", "Lower", "Conjugate transpose", "Non-unit"
- , &i__3, &jb, &c_b60, &a[j + j * a_dim1], lda, &a[
- j + jb + j * a_dim1], lda);
- }
-/* L20: */
- }
- }
- }
- goto L40;
-
-L30:
- *info = *info + j - 1;
-
-L40:
- return 0;
-
-/* End of ZPOTRF */
-
-} /* zpotrf_ */
-
-/* Subroutine */ int zstedc_(char *compz, integer *n, doublereal *d__,
- doublereal *e, doublecomplex *z__, integer *ldz, doublecomplex *work,
- integer *lwork, doublereal *rwork, integer *lrwork, integer *iwork,
- integer *liwork, integer *info)
-{
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2, i__3, i__4;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double log(doublereal);
- integer pow_ii(integer *, integer *);
- double sqrt(doublereal);
-
- /* Local variables */
- static integer i__, j, k, m;
- static doublereal p;
- static integer ii, ll, end, lgn;
- static doublereal eps, tiny;
- extern logical lsame_(char *, char *);
- static integer lwmin, start;
- extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zlaed0_(integer *, integer *,
- doublereal *, doublereal *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublereal *, integer *, integer *);
-
- extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), dstedc_(char *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, integer *, integer *, integer *), dlaset_(
- char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
- integer *), zlacrm_(integer *, integer *, doublecomplex *,
- integer *, doublereal *, integer *, doublecomplex *, integer *,
- doublereal *);
- static integer liwmin, icompz;
- extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *,
- integer *, doublecomplex *, integer *);
- static doublereal orgnrm;
- static integer lrwmin;
- static logical lquery;
- static integer smlsiz;
- extern /* Subroutine */ int zsteqr_(char *, integer *, doublereal *,
- doublereal *, doublecomplex *, integer *, doublereal *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a
- symmetric tridiagonal matrix using the divide and conquer method.
- The eigenvectors of a full or band complex Hermitian matrix can also
- be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this
- matrix to tridiagonal form.
-
- This code makes very mild assumptions about floating point
- arithmetic. It will work on machines with a guard digit in
- add/subtract, or on those binary machines without guard digits
- which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
- It could conceivably fail on hexadecimal or decimal machines
- without guard digits, but we know of none. See DLAED3 for details.
-
- Arguments
- =========
-
- COMPZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only.
- = 'I': Compute eigenvectors of tridiagonal matrix also.
- = 'V': Compute eigenvectors of original Hermitian matrix
- also. On entry, Z contains the unitary matrix used
- to reduce the original matrix to tridiagonal form.
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the diagonal elements of the tridiagonal matrix.
- On exit, if INFO = 0, the eigenvalues in ascending order.
-
- E (input/output) DOUBLE PRECISION array, dimension (N-1)
- On entry, the subdiagonal elements of the tridiagonal matrix.
- On exit, E has been destroyed.
-
- Z (input/output) COMPLEX*16 array, dimension (LDZ,N)
- On entry, if COMPZ = 'V', then Z contains the unitary
- matrix used in the reduction to tridiagonal form.
- On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
- orthonormal eigenvectors of the original Hermitian matrix,
- and if COMPZ = 'I', Z contains the orthonormal eigenvectors
- of the symmetric tridiagonal matrix.
- If COMPZ = 'N', then Z is not referenced.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= 1.
- If eigenvectors are desired, then LDZ >= max(1,N).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1.
- If COMPZ = 'V' and N > 1, LWORK must be at least N*N.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- RWORK (workspace/output) DOUBLE PRECISION array,
- dimension (LRWORK)
- On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
-
- LRWORK (input) INTEGER
- The dimension of the array RWORK.
- If COMPZ = 'N' or N <= 1, LRWORK must be at least 1.
- If COMPZ = 'V' and N > 1, LRWORK must be at least
- 1 + 3*N + 2*N*lg N + 3*N**2 ,
- where lg( N ) = smallest integer k such
- that 2**k >= N.
- If COMPZ = 'I' and N > 1, LRWORK must be at least
- 1 + 4*N + 2*N**2 .
-
- If LRWORK = -1, then a workspace query is assumed; the
- routine only calculates the optimal size of the RWORK array,
- returns this value as the first entry of the RWORK array, and
- no error message related to LRWORK is issued by XERBLA.
-
- IWORK (workspace/output) INTEGER array, dimension (LIWORK)
- On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
-
- LIWORK (input) INTEGER
- The dimension of the array IWORK.
- If COMPZ = 'N' or N <= 1, LIWORK must be at least 1.
- If COMPZ = 'V' or N > 1, LIWORK must be at least
- 6 + 6*N + 5*N*lg N.
- If COMPZ = 'I' or N > 1, LIWORK must be at least
- 3 + 5*N .
-
- If LIWORK = -1, then a workspace query is assumed; the
- routine only calculates the optimal size of the IWORK array,
- returns this value as the first entry of the IWORK array, and
- no error message related to LIWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The algorithm failed to compute an eigenvalue while
- working on the submatrix lying in rows and columns
- INFO/(N+1) through mod(INFO,N+1).
-
- Further Details
- ===============
-
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
-
- if (lsame_(compz, "N")) {
- icompz = 0;
- } else if (lsame_(compz, "V")) {
- icompz = 1;
- } else if (lsame_(compz, "I")) {
- icompz = 2;
- } else {
- icompz = -1;
- }
- if (*n <= 1 || icompz <= 0) {
- lwmin = 1;
- liwmin = 1;
- lrwmin = 1;
- } else {
- lgn = (integer) (log((doublereal) (*n)) / log(2.));
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- if (icompz == 1) {
- lwmin = *n * *n;
-/* Computing 2nd power */
- i__1 = *n;
- lrwmin = *n * 3 + 1 + ((*n) << (1)) * lgn + i__1 * i__1 * 3;
- liwmin = *n * 6 + 6 + *n * 5 * lgn;
- } else if (icompz == 2) {
- lwmin = 1;
-/* Computing 2nd power */
- i__1 = *n;
- lrwmin = ((*n) << (2)) + 1 + ((i__1 * i__1) << (1));
- liwmin = *n * 5 + 3;
- }
- }
- if (icompz < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*ldz < 1 || (icompz > 0 && *ldz < max(1,*n))) {
- *info = -6;
- } else if ((*lwork < lwmin && ! lquery)) {
- *info = -8;
- } else if ((*lrwork < lrwmin && ! lquery)) {
- *info = -10;
- } else if ((*liwork < liwmin && ! lquery)) {
- *info = -12;
- }
-
- if (*info == 0) {
- work[1].r = (doublereal) lwmin, work[1].i = 0.;
- rwork[1] = (doublereal) lrwmin;
- iwork[1] = liwmin;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZSTEDC", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- if (icompz != 0) {
- i__1 = z_dim1 + 1;
- z__[i__1].r = 1., z__[i__1].i = 0.;
- }
- return 0;
- }
-
- smlsiz = ilaenv_(&c__9, "ZSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
- ftnlen)6, (ftnlen)1);
-
-/*
- If the following conditional clause is removed, then the routine
- will use the Divide and Conquer routine to compute only the
- eigenvalues, which requires (3N + 3N**2) real workspace and
- (2 + 5N + 2N lg(N)) integer workspace.
- Since on many architectures DSTERF is much faster than any other
- algorithm for finding eigenvalues only, it is used here
- as the default.
-
- If COMPZ = 'N', use DSTERF to compute the eigenvalues.
-*/
-
- if (icompz == 0) {
- dsterf_(n, &d__[1], &e[1], info);
- return 0;
- }
-
-/*
- If N is smaller than the minimum divide size (SMLSIZ+1), then
- solve the problem with another solver.
-*/
-
- if (*n <= smlsiz) {
- if (icompz == 0) {
- dsterf_(n, &d__[1], &e[1], info);
- return 0;
- } else if (icompz == 2) {
- zsteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1],
- info);
- return 0;
- } else {
- zsteqr_("V", n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1],
- info);
- return 0;
- }
- }
-
-/* If COMPZ = 'I', we simply call DSTEDC instead. */
-
- if (icompz == 2) {
- dlaset_("Full", n, n, &c_b324, &c_b1015, &rwork[1], n);
- ll = *n * *n + 1;
- i__1 = *lrwork - ll + 1;
- dstedc_("I", n, &d__[1], &e[1], &rwork[1], n, &rwork[ll], &i__1, &
- iwork[1], liwork, info);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * z_dim1;
- i__4 = (j - 1) * *n + i__;
- z__[i__3].r = rwork[i__4], z__[i__3].i = 0.;
-/* L10: */
- }
-/* L20: */
- }
- return 0;
- }
-
-/*
- From now on, only option left to be handled is COMPZ = 'V',
- i.e. ICOMPZ = 1.
-
- Scale.
-*/
-
- orgnrm = dlanst_("M", n, &d__[1], &e[1]);
- if (orgnrm == 0.) {
- return 0;
- }
-
- eps = EPSILON;
-
- start = 1;
-
-/* while ( START <= N ) */
-
-L30:
- if (start <= *n) {
-
-/*
- Let END be the position of the next subdiagonal entry such that
- E( END ) <= TINY or END = N if no such subdiagonal exists. The
- matrix identified by the elements between START and END
- constitutes an independent sub-problem.
-*/
-
- end = start;
-L40:
- if (end < *n) {
- tiny = eps * sqrt((d__1 = d__[end], abs(d__1))) * sqrt((d__2 =
- d__[end + 1], abs(d__2)));
- if ((d__1 = e[end], abs(d__1)) > tiny) {
- ++end;
- goto L40;
- }
- }
-
-/* (Sub) Problem determined. Compute its size and solve it. */
-
- m = end - start + 1;
- if (m > smlsiz) {
- *info = smlsiz;
-
-/* Scale. */
-
- orgnrm = dlanst_("M", &m, &d__[start], &e[start]);
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b1015, &m, &c__1, &d__[
- start], &m, info);
- i__1 = m - 1;
- i__2 = m - 1;
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b1015, &i__1, &c__1, &e[
- start], &i__2, info);
-
- zlaed0_(n, &m, &d__[start], &e[start], &z__[start * z_dim1 + 1],
- ldz, &work[1], n, &rwork[1], &iwork[1], info);
- if (*info > 0) {
- *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info % (m
- + 1) + start - 1;
- return 0;
- }
-
-/* Scale back. */
-
- dlascl_("G", &c__0, &c__0, &c_b1015, &orgnrm, &m, &c__1, &d__[
- start], &m, info);
-
- } else {
- dsteqr_("I", &m, &d__[start], &e[start], &rwork[1], &m, &rwork[m *
- m + 1], info);
- zlacrm_(n, &m, &z__[start * z_dim1 + 1], ldz, &rwork[1], &m, &
- work[1], n, &rwork[m * m + 1]);
- zlacpy_("A", n, &m, &work[1], n, &z__[start * z_dim1 + 1], ldz);
- if (*info > 0) {
- *info = start * (*n + 1) + end;
- return 0;
- }
- }
-
- start = end + 1;
- goto L30;
- }
-
-/*
- endwhile
-
- If the problem split any number of times, then the eigenvalues
- will not be properly ordered. Here we permute the eigenvalues
- (and the associated eigenvectors) into ascending order.
-*/
-
- if (m != *n) {
-
-/* Use Selection Sort to minimize swaps of eigenvectors */
-
- i__1 = *n;
- for (ii = 2; ii <= i__1; ++ii) {
- i__ = ii - 1;
- k = i__;
- p = d__[i__];
- i__2 = *n;
- for (j = ii; j <= i__2; ++j) {
- if (d__[j] < p) {
- k = j;
- p = d__[j];
- }
-/* L50: */
- }
- if (k != i__) {
- d__[k] = d__[i__];
- d__[i__] = p;
- zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
- &c__1);
- }
-/* L60: */
- }
- }
-
- work[1].r = (doublereal) lwmin, work[1].i = 0.;
- rwork[1] = (doublereal) lrwmin;
- iwork[1] = liwmin;
-
- return 0;
-
-/* End of ZSTEDC */
-
-} /* zstedc_ */
-
-/* Subroutine */ int zsteqr_(char *compz, integer *n, doublereal *d__,
- doublereal *e, doublecomplex *z__, integer *ldz, doublereal *work,
- integer *info)
-{
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2;
- doublereal d__1, d__2;
-
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
-
- /* Local variables */
- static doublereal b, c__, f, g;
- static integer i__, j, k, l, m;
- static doublereal p, r__, s;
- static integer l1, ii, mm, lm1, mm1, nm1;
- static doublereal rt1, rt2, eps;
- static integer lsv;
- static doublereal tst, eps2;
- static integer lend, jtot;
- extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal
- *, doublereal *, doublereal *);
- extern logical lsame_(char *, char *);
- static doublereal anorm;
- extern /* Subroutine */ int zlasr_(char *, char *, char *, integer *,
- integer *, doublereal *, doublereal *, doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
- integer *, doublecomplex *, integer *), dlaev2_(doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *);
- static integer lendm1, lendp1;
-
- static integer iscale;
- extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- static doublereal safmin;
- extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
- static doublereal safmax;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
- integer *);
- static integer lendsv;
- static doublereal ssfmin;
- static integer nmaxit, icompz;
- static doublereal ssfmax;
- extern /* Subroutine */ int zlaset_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZSTEQR computes all eigenvalues and, optionally, eigenvectors of a
- symmetric tridiagonal matrix using the implicit QL or QR method.
- The eigenvectors of a full or band complex Hermitian matrix can also
- be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this
- matrix to tridiagonal form.
-
- Arguments
- =========
-
- COMPZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only.
- = 'V': Compute eigenvalues and eigenvectors of the original
- Hermitian matrix. On entry, Z must contain the
- unitary matrix used to reduce the original matrix
- to tridiagonal form.
- = 'I': Compute eigenvalues and eigenvectors of the
- tridiagonal matrix. Z is initialized to the identity
- matrix.
-
- N (input) INTEGER
- The order of the matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the diagonal elements of the tridiagonal matrix.
- On exit, if INFO = 0, the eigenvalues in ascending order.
-
- E (input/output) DOUBLE PRECISION array, dimension (N-1)
- On entry, the (n-1) subdiagonal elements of the tridiagonal
- matrix.
- On exit, E has been destroyed.
-
- Z (input/output) COMPLEX*16 array, dimension (LDZ, N)
- On entry, if COMPZ = 'V', then Z contains the unitary
- matrix used in the reduction to tridiagonal form.
- On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
- orthonormal eigenvectors of the original Hermitian matrix,
- and if COMPZ = 'I', Z contains the orthonormal eigenvectors
- of the symmetric tridiagonal matrix.
- If COMPZ = 'N', then Z is not referenced.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= 1, and if
- eigenvectors are desired, then LDZ >= max(1,N).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
- If COMPZ = 'N', then WORK is not referenced.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: the algorithm has failed to find all the eigenvalues in
- a total of 30*N iterations; if INFO = i, then i
- elements of E have not converged to zero; on exit, D
- and E contain the elements of a symmetric tridiagonal
- matrix which is unitarily similar to the original
- matrix.
-
- =====================================================================
-
-
- Test the input parameters.
-*/
-
- /* Parameter adjustments */
- --d__;
- --e;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- *info = 0;
-
- if (lsame_(compz, "N")) {
- icompz = 0;
- } else if (lsame_(compz, "V")) {
- icompz = 1;
- } else if (lsame_(compz, "I")) {
- icompz = 2;
- } else {
- icompz = -1;
- }
- if (icompz < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*ldz < 1 || (icompz > 0 && *ldz < max(1,*n))) {
- *info = -6;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZSTEQR", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- if (*n == 1) {
- if (icompz == 2) {
- i__1 = z_dim1 + 1;
- z__[i__1].r = 1., z__[i__1].i = 0.;
- }
- return 0;
- }
-
-/* Determine the unit roundoff and over/underflow thresholds. */
-
- eps = EPSILON;
-/* Computing 2nd power */
- d__1 = eps;
- eps2 = d__1 * d__1;
- safmin = SAFEMINIMUM;
- safmax = 1. / safmin;
- ssfmax = sqrt(safmax) / 3.;
- ssfmin = sqrt(safmin) / eps2;
-
-/*
- Compute the eigenvalues and eigenvectors of the tridiagonal
- matrix.
-*/
-
- if (icompz == 2) {
- zlaset_("Full", n, n, &c_b59, &c_b60, &z__[z_offset], ldz);
- }
-
- nmaxit = *n * 30;
- jtot = 0;
-
-/*
- Determine where the matrix splits and choose QL or QR iteration
- for each block, according to whether top or bottom diagonal
- element is smaller.
-*/
-
- l1 = 1;
- nm1 = *n - 1;
-
-L10:
- if (l1 > *n) {
- goto L160;
- }
- if (l1 > 1) {
- e[l1 - 1] = 0.;
- }
- if (l1 <= nm1) {
- i__1 = nm1;
- for (m = l1; m <= i__1; ++m) {
- tst = (d__1 = e[m], abs(d__1));
- if (tst == 0.) {
- goto L30;
- }
- if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m
- + 1], abs(d__2))) * eps) {
- e[m] = 0.;
- goto L30;
- }
-/* L20: */
- }
- }
- m = *n;
-
-L30:
- l = l1;
- lsv = l;
- lend = m;
- lendsv = lend;
- l1 = m + 1;
- if (lend == l) {
- goto L10;
- }
-
-/* Scale submatrix in rows and columns L to LEND */
-
- i__1 = lend - l + 1;
- anorm = dlanst_("I", &i__1, &d__[l], &e[l]);
- iscale = 0;
- if (anorm == 0.) {
- goto L10;
- }
- if (anorm > ssfmax) {
- iscale = 1;
- i__1 = lend - l + 1;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
- info);
- } else if (anorm < ssfmin) {
- iscale = 2;
- i__1 = lend - l + 1;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
- info);
- }
-
-/* Choose between QL and QR iteration */
-
- if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
- lend = lsv;
- l = lendsv;
- }
-
- if (lend > l) {
-
-/*
- QL Iteration
-
- Look for small subdiagonal element.
-*/
-
-L40:
- if (l != lend) {
- lendm1 = lend - 1;
- i__1 = lendm1;
- for (m = l; m <= i__1; ++m) {
-/* Computing 2nd power */
- d__2 = (d__1 = e[m], abs(d__1));
- tst = d__2 * d__2;
- if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
- + 1], abs(d__2)) + safmin) {
- goto L60;
- }
-/* L50: */
- }
- }
-
- m = lend;
-
-L60:
- if (m < lend) {
- e[m] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L80;
- }
-
-/*
- If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
- to compute its eigensystem.
-*/
-
- if (m == l + 1) {
- if (icompz > 0) {
- dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
- work[l] = c__;
- work[*n - 1 + l] = s;
- zlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
- z__[l * z_dim1 + 1], ldz);
- } else {
- dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
- }
- d__[l] = rt1;
- d__[l + 1] = rt2;
- e[l] = 0.;
- l += 2;
- if (l <= lend) {
- goto L40;
- }
- goto L140;
- }
-
- if (jtot == nmaxit) {
- goto L140;
- }
- ++jtot;
-
-/* Form shift. */
-
- g = (d__[l + 1] - p) / (e[l] * 2.);
- r__ = dlapy2_(&g, &c_b1015);
- g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
-
- s = 1.;
- c__ = 1.;
- p = 0.;
-
-/* Inner loop */
-
- mm1 = m - 1;
- i__1 = l;
- for (i__ = mm1; i__ >= i__1; --i__) {
- f = s * e[i__];
- b = c__ * e[i__];
- dlartg_(&g, &f, &c__, &s, &r__);
- if (i__ != m - 1) {
- e[i__ + 1] = r__;
- }
- g = d__[i__ + 1] - p;
- r__ = (d__[i__] - g) * s + c__ * 2. * b;
- p = s * r__;
- d__[i__ + 1] = g + p;
- g = c__ * r__ - b;
-
-/* If eigenvectors are desired, then save rotations. */
-
- if (icompz > 0) {
- work[i__] = c__;
- work[*n - 1 + i__] = -s;
- }
-
-/* L70: */
- }
-
-/* If eigenvectors are desired, then apply saved rotations. */
-
- if (icompz > 0) {
- mm = m - l + 1;
- zlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l
- * z_dim1 + 1], ldz);
- }
-
- d__[l] -= p;
- e[l] = g;
- goto L40;
-
-/* Eigenvalue found. */
-
-L80:
- d__[l] = p;
-
- ++l;
- if (l <= lend) {
- goto L40;
- }
- goto L140;
-
- } else {
-
-/*
- QR Iteration
-
- Look for small superdiagonal element.
-*/
-
-L90:
- if (l != lend) {
- lendp1 = lend + 1;
- i__1 = lendp1;
- for (m = l; m >= i__1; --m) {
-/* Computing 2nd power */
- d__2 = (d__1 = e[m - 1], abs(d__1));
- tst = d__2 * d__2;
- if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
- - 1], abs(d__2)) + safmin) {
- goto L110;
- }
-/* L100: */
- }
- }
-
- m = lend;
-
-L110:
- if (m > lend) {
- e[m - 1] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L130;
- }
-
-/*
- If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
- to compute its eigensystem.
-*/
-
- if (m == l - 1) {
- if (icompz > 0) {
- dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
- ;
- work[m] = c__;
- work[*n - 1 + m] = s;
- zlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
- z__[(l - 1) * z_dim1 + 1], ldz);
- } else {
- dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
- }
- d__[l - 1] = rt1;
- d__[l] = rt2;
- e[l - 1] = 0.;
- l += -2;
- if (l >= lend) {
- goto L90;
- }
- goto L140;
- }
-
- if (jtot == nmaxit) {
- goto L140;
- }
- ++jtot;
-
-/* Form shift. */
-
- g = (d__[l - 1] - p) / (e[l - 1] * 2.);
- r__ = dlapy2_(&g, &c_b1015);
- g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
-
- s = 1.;
- c__ = 1.;
- p = 0.;
-
-/* Inner loop */
-
- lm1 = l - 1;
- i__1 = lm1;
- for (i__ = m; i__ <= i__1; ++i__) {
- f = s * e[i__];
- b = c__ * e[i__];
- dlartg_(&g, &f, &c__, &s, &r__);
- if (i__ != m) {
- e[i__ - 1] = r__;
- }
- g = d__[i__] - p;
- r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
- p = s * r__;
- d__[i__] = g + p;
- g = c__ * r__ - b;
-
-/* If eigenvectors are desired, then save rotations. */
-
- if (icompz > 0) {
- work[i__] = c__;
- work[*n - 1 + i__] = s;
- }
-
-/* L120: */
- }
-
-/* If eigenvectors are desired, then apply saved rotations. */
-
- if (icompz > 0) {
- mm = l - m + 1;
- zlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m
- * z_dim1 + 1], ldz);
- }
-
- d__[l] -= p;
- e[lm1] = g;
- goto L90;
-
-/* Eigenvalue found. */
-
-L130:
- d__[l] = p;
-
- --l;
- if (l >= lend) {
- goto L90;
- }
- goto L140;
-
- }
-
-/* Undo scaling if necessary */
-
-L140:
- if (iscale == 1) {
- i__1 = lendsv - lsv + 1;
- dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- i__1 = lendsv - lsv;
- dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
- info);
- } else if (iscale == 2) {
- i__1 = lendsv - lsv + 1;
- dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- i__1 = lendsv - lsv;
- dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
- info);
- }
-
-/*
- Check for no convergence to an eigenvalue after a total
- of N*MAXIT iterations.
-*/
-
- if (jtot == nmaxit) {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (e[i__] != 0.) {
- ++(*info);
- }
-/* L150: */
- }
- return 0;
- }
- goto L10;
-
-/* Order eigenvalues and eigenvectors. */
-
-L160:
- if (icompz == 0) {
-
-/* Use Quick Sort */
-
- dlasrt_("I", n, &d__[1], info);
-
- } else {
-
-/* Use Selection Sort to minimize swaps of eigenvectors */
-
- i__1 = *n;
- for (ii = 2; ii <= i__1; ++ii) {
- i__ = ii - 1;
- k = i__;
- p = d__[i__];
- i__2 = *n;
- for (j = ii; j <= i__2; ++j) {
- if (d__[j] < p) {
- k = j;
- p = d__[j];
- }
-/* L170: */
- }
- if (k != i__) {
- d__[k] = d__[i__];
- d__[i__] = p;
- zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
- &c__1);
- }
-/* L180: */
- }
- }
- return 0;
-
-/* End of ZSTEQR */
-
-} /* zsteqr_ */
-
-/* Subroutine */ int ztrevc_(char *side, char *howmny, logical *select,
- integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl,
- integer *ldvl, doublecomplex *vr, integer *ldvr, integer *mm, integer
- *m, doublecomplex *work, doublereal *rwork, integer *info)
-{
- /* System generated locals */
- integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
- i__2, i__3, i__4, i__5;
- doublereal d__1, d__2, d__3;
- doublecomplex z__1, z__2;
-
- /* Builtin functions */
- double d_imag(doublecomplex *);
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, k, ii, ki, is;
- static doublereal ulp;
- static logical allv;
- static doublereal unfl, ovfl, smin;
- static logical over;
- static doublereal scale;
- extern logical lsame_(char *, char *);
- static doublereal remax;
- static logical leftv, bothv;
- extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *);
- static logical somev;
- extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
-
- extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
- integer *, doublereal *, doublecomplex *, integer *);
- extern integer izamax_(integer *, doublecomplex *, integer *);
- static logical rightv;
- extern doublereal dzasum_(integer *, doublecomplex *, integer *);
- static doublereal smlnum;
- extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublereal *, doublereal *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZTREVC computes some or all of the right and/or left eigenvectors of
- a complex upper triangular matrix T.
-
- The right eigenvector x and the left eigenvector y of T corresponding
- to an eigenvalue w are defined by:
-
- T*x = w*x, y'*T = w*y'
-
- where y' denotes the conjugate transpose of the vector y.
-
- If all eigenvectors are requested, the routine may either return the
- matrices X and/or Y of right or left eigenvectors of T, or the
- products Q*X and/or Q*Y, where Q is an input unitary
- matrix. If T was obtained from the Schur factorization of an
- original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of
- right or left eigenvectors of A.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'R': compute right eigenvectors only;
- = 'L': compute left eigenvectors only;
- = 'B': compute both right and left eigenvectors.
-
- HOWMNY (input) CHARACTER*1
- = 'A': compute all right and/or left eigenvectors;
- = 'B': compute all right and/or left eigenvectors,
- and backtransform them using the input matrices
- supplied in VR and/or VL;
- = 'S': compute selected right and/or left eigenvectors,
- specified by the logical array SELECT.
-
- SELECT (input) LOGICAL array, dimension (N)
- If HOWMNY = 'S', SELECT specifies the eigenvectors to be
- computed.
- If HOWMNY = 'A' or 'B', SELECT is not referenced.
- To select the eigenvector corresponding to the j-th
- eigenvalue, SELECT(j) must be set to .TRUE..
-
- N (input) INTEGER
- The order of the matrix T. N >= 0.
-
- T (input/output) COMPLEX*16 array, dimension (LDT,N)
- The upper triangular matrix T. T is modified, but restored
- on exit.
-
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= max(1,N).
-
- VL (input/output) COMPLEX*16 array, dimension (LDVL,MM)
- On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
- contain an N-by-N matrix Q (usually the unitary matrix Q of
- Schur vectors returned by ZHSEQR).
- On exit, if SIDE = 'L' or 'B', VL contains:
- if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
- VL is lower triangular. The i-th column
- VL(i) of VL is the eigenvector corresponding
- to T(i,i).
- if HOWMNY = 'B', the matrix Q*Y;
- if HOWMNY = 'S', the left eigenvectors of T specified by
- SELECT, stored consecutively in the columns
- of VL, in the same order as their
- eigenvalues.
- If SIDE = 'R', VL is not referenced.
-
- LDVL (input) INTEGER
- The leading dimension of the array VL. LDVL >= max(1,N) if
- SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
-
- VR (input/output) COMPLEX*16 array, dimension (LDVR,MM)
- On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
- contain an N-by-N matrix Q (usually the unitary matrix Q of
- Schur vectors returned by ZHSEQR).
- On exit, if SIDE = 'R' or 'B', VR contains:
- if HOWMNY = 'A', the matrix X of right eigenvectors of T;
- VR is upper triangular. The i-th column
- VR(i) of VR is the eigenvector corresponding
- to T(i,i).
- if HOWMNY = 'B', the matrix Q*X;
- if HOWMNY = 'S', the right eigenvectors of T specified by
- SELECT, stored consecutively in the columns
- of VR, in the same order as their
- eigenvalues.
- If SIDE = 'L', VR is not referenced.
-
- LDVR (input) INTEGER
- The leading dimension of the array VR. LDVR >= max(1,N) if
- SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
-
- MM (input) INTEGER
- The number of columns in the arrays VL and/or VR. MM >= M.
-
- M (output) INTEGER
- The number of columns in the arrays VL and/or VR actually
- used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
- is set to N. Each selected eigenvector occupies one
- column.
-
- WORK (workspace) COMPLEX*16 array, dimension (2*N)
-
- RWORK (workspace) DOUBLE PRECISION array, dimension (N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- Further Details
- ===============
-
- The algorithm used in this program is basically backward (forward)
- substitution, with scaling to make the the code robust against
- possible overflow.
-
- Each eigenvector is normalized so that the element of largest
- magnitude has magnitude 1; here the magnitude of a complex number
- (x,y) is taken to be |x| + |y|.
-
- =====================================================================
-
-
- Decode and test the input parameters
-*/
-
- /* Parameter adjustments */
- --select;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --work;
- --rwork;
-
- /* Function Body */
- bothv = lsame_(side, "B");
- rightv = lsame_(side, "R") || bothv;
- leftv = lsame_(side, "L") || bothv;
-
- allv = lsame_(howmny, "A");
- over = lsame_(howmny, "B");
- somev = lsame_(howmny, "S");
-
-/*
- Set M to the number of columns required to store the selected
- eigenvectors.
-*/
-
- if (somev) {
- *m = 0;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (select[j]) {
- ++(*m);
- }
-/* L10: */
- }
- } else {
- *m = *n;
- }
-
- *info = 0;
- if ((! rightv && ! leftv)) {
- *info = -1;
- } else if (((! allv && ! over) && ! somev)) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ldt < max(1,*n)) {
- *info = -6;
- } else if (*ldvl < 1 || (leftv && *ldvl < *n)) {
- *info = -8;
- } else if (*ldvr < 1 || (rightv && *ldvr < *n)) {
- *info = -10;
- } else if (*mm < *m) {
- *info = -11;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZTREVC", &i__1);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
-/* Set the constants to control overflow. */
-
- unfl = SAFEMINIMUM;
- ovfl = 1. / unfl;
- dlabad_(&unfl, &ovfl);
- ulp = PRECISION;
- smlnum = unfl * (*n / ulp);
-
-/* Store the diagonal elements of T in working array WORK. */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + *n;
- i__3 = i__ + i__ * t_dim1;
- work[i__2].r = t[i__3].r, work[i__2].i = t[i__3].i;
-/* L20: */
- }
-
-/*
- Compute 1-norm of each column of strictly upper triangular
- part of T to control overflow in triangular solver.
-*/
-
- rwork[1] = 0.;
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- i__2 = j - 1;
- rwork[j] = dzasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
-/* L30: */
- }
-
- if (rightv) {
-
-/* Compute right eigenvectors. */
-
- is = *m;
- for (ki = *n; ki >= 1; --ki) {
-
- if (somev) {
- if (! select[ki]) {
- goto L80;
- }
- }
-/* Computing MAX */
- i__1 = ki + ki * t_dim1;
- d__3 = ulp * ((d__1 = t[i__1].r, abs(d__1)) + (d__2 = d_imag(&t[
- ki + ki * t_dim1]), abs(d__2)));
- smin = max(d__3,smlnum);
-
- work[1].r = 1., work[1].i = 0.;
-
-/* Form right-hand side. */
-
- i__1 = ki - 1;
- for (k = 1; k <= i__1; ++k) {
- i__2 = k;
- i__3 = k + ki * t_dim1;
- z__1.r = -t[i__3].r, z__1.i = -t[i__3].i;
- work[i__2].r = z__1.r, work[i__2].i = z__1.i;
-/* L40: */
- }
-
-/*
- Solve the triangular system:
- (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
-*/
-
- i__1 = ki - 1;
- for (k = 1; k <= i__1; ++k) {
- i__2 = k + k * t_dim1;
- i__3 = k + k * t_dim1;
- i__4 = ki + ki * t_dim1;
- z__1.r = t[i__3].r - t[i__4].r, z__1.i = t[i__3].i - t[i__4]
- .i;
- t[i__2].r = z__1.r, t[i__2].i = z__1.i;
- i__2 = k + k * t_dim1;
- if ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[k + k *
- t_dim1]), abs(d__2)) < smin) {
- i__3 = k + k * t_dim1;
- t[i__3].r = smin, t[i__3].i = 0.;
- }
-/* L50: */
- }
-
- if (ki > 1) {
- i__1 = ki - 1;
- zlatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[
- t_offset], ldt, &work[1], &scale, &rwork[1], info);
- i__1 = ki;
- work[i__1].r = scale, work[i__1].i = 0.;
- }
-
-/* Copy the vector x or Q*x to VR and normalize. */
-
- if (! over) {
- zcopy_(&ki, &work[1], &c__1, &vr[is * vr_dim1 + 1], &c__1);
-
- ii = izamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
- i__1 = ii + is * vr_dim1;
- remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag(
- &vr[ii + is * vr_dim1]), abs(d__2)));
- zdscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
-
- i__1 = *n;
- for (k = ki + 1; k <= i__1; ++k) {
- i__2 = k + is * vr_dim1;
- vr[i__2].r = 0., vr[i__2].i = 0.;
-/* L60: */
- }
- } else {
- if (ki > 1) {
- i__1 = ki - 1;
- z__1.r = scale, z__1.i = 0.;
- zgemv_("N", n, &i__1, &c_b60, &vr[vr_offset], ldvr, &work[
- 1], &c__1, &z__1, &vr[ki * vr_dim1 + 1], &c__1);
- }
-
- ii = izamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
- i__1 = ii + ki * vr_dim1;
- remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag(
- &vr[ii + ki * vr_dim1]), abs(d__2)));
- zdscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
- }
-
-/* Set back the original diagonal elements of T. */
-
- i__1 = ki - 1;
- for (k = 1; k <= i__1; ++k) {
- i__2 = k + k * t_dim1;
- i__3 = k + *n;
- t[i__2].r = work[i__3].r, t[i__2].i = work[i__3].i;
-/* L70: */
- }
-
- --is;
-L80:
- ;
- }
- }
-
- if (leftv) {
-
-/* Compute left eigenvectors. */
-
- is = 1;
- i__1 = *n;
- for (ki = 1; ki <= i__1; ++ki) {
-
- if (somev) {
- if (! select[ki]) {
- goto L130;
- }
- }
-/* Computing MAX */
- i__2 = ki + ki * t_dim1;
- d__3 = ulp * ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[
- ki + ki * t_dim1]), abs(d__2)));
- smin = max(d__3,smlnum);
-
- i__2 = *n;
- work[i__2].r = 1., work[i__2].i = 0.;
-
-/* Form right-hand side. */
-
- i__2 = *n;
- for (k = ki + 1; k <= i__2; ++k) {
- i__3 = k;
- d_cnjg(&z__2, &t[ki + k * t_dim1]);
- z__1.r = -z__2.r, z__1.i = -z__2.i;
- work[i__3].r = z__1.r, work[i__3].i = z__1.i;
-/* L90: */
- }
-
-/*
- Solve the triangular system:
- (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK.
-*/
-
- i__2 = *n;
- for (k = ki + 1; k <= i__2; ++k) {
- i__3 = k + k * t_dim1;
- i__4 = k + k * t_dim1;
- i__5 = ki + ki * t_dim1;
- z__1.r = t[i__4].r - t[i__5].r, z__1.i = t[i__4].i - t[i__5]
- .i;
- t[i__3].r = z__1.r, t[i__3].i = z__1.i;
- i__3 = k + k * t_dim1;
- if ((d__1 = t[i__3].r, abs(d__1)) + (d__2 = d_imag(&t[k + k *
- t_dim1]), abs(d__2)) < smin) {
- i__4 = k + k * t_dim1;
- t[i__4].r = smin, t[i__4].i = 0.;
- }
-/* L100: */
- }
-
- if (ki < *n) {
- i__2 = *n - ki;
- zlatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", &
- i__2, &t[ki + 1 + (ki + 1) * t_dim1], ldt, &work[ki +
- 1], &scale, &rwork[1], info);
- i__2 = ki;
- work[i__2].r = scale, work[i__2].i = 0.;
- }
-
-/* Copy the vector x or Q*x to VL and normalize. */
-
- if (! over) {
- i__2 = *n - ki + 1;
- zcopy_(&i__2, &work[ki], &c__1, &vl[ki + is * vl_dim1], &c__1)
- ;
-
- i__2 = *n - ki + 1;
- ii = izamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki - 1;
- i__2 = ii + is * vl_dim1;
- remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag(
- &vl[ii + is * vl_dim1]), abs(d__2)));
- i__2 = *n - ki + 1;
- zdscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
-
- i__2 = ki - 1;
- for (k = 1; k <= i__2; ++k) {
- i__3 = k + is * vl_dim1;
- vl[i__3].r = 0., vl[i__3].i = 0.;
-/* L110: */
- }
- } else {
- if (ki < *n) {
- i__2 = *n - ki;
- z__1.r = scale, z__1.i = 0.;
- zgemv_("N", n, &i__2, &c_b60, &vl[(ki + 1) * vl_dim1 + 1],
- ldvl, &work[ki + 1], &c__1, &z__1, &vl[ki *
- vl_dim1 + 1], &c__1);
- }
-
- ii = izamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
- i__2 = ii + ki * vl_dim1;
- remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag(
- &vl[ii + ki * vl_dim1]), abs(d__2)));
- zdscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
- }
-
-/* Set back the original diagonal elements of T. */
-
- i__2 = *n;
- for (k = ki + 1; k <= i__2; ++k) {
- i__3 = k + k * t_dim1;
- i__4 = k + *n;
- t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i;
-/* L120: */
- }
-
- ++is;
-L130:
- ;
- }
- }
-
- return 0;
-
-/* End of ZTREVC */
-
-} /* ztrevc_ */
-
-/* Subroutine */ int zung2r_(integer *m, integer *n, integer *k,
- doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
- work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublecomplex z__1;
-
- /* Local variables */
- static integer i__, j, l;
- extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *), zlarf_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), xerbla_(char *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZUNG2R generates an m by n complex matrix Q with orthonormal columns,
- which is defined as the first n columns of a product of k elementary
- reflectors of order m
-
- Q = H(1) H(2) . . . H(k)
-
- as returned by ZGEQRF.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix Q. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix Q. M >= N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines the
- matrix Q. N >= K >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the i-th column must contain the vector which
- defines the elementary reflector H(i), for i = 1,2,...,k, as
- returned by ZGEQRF in the first k columns of its array
- argument A.
- On exit, the m by n matrix Q.
-
- LDA (input) INTEGER
- The first dimension of the array A. LDA >= max(1,M).
-
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZGEQRF.
-
- WORK (workspace) COMPLEX*16 array, dimension (N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument has an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0 || *n > *m) {
- *info = -2;
- } else if (*k < 0 || *k > *n) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNG2R", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n <= 0) {
- return 0;
- }
-
-/* Initialise columns k+1:n to columns of the unit matrix */
-
- i__1 = *n;
- for (j = *k + 1; j <= i__1; ++j) {
- i__2 = *m;
- for (l = 1; l <= i__2; ++l) {
- i__3 = l + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
-/* L10: */
- }
- i__2 = j + j * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-/* L20: */
- }
-
- for (i__ = *k; i__ >= 1; --i__) {
-
-/* Apply H(i) to A(i:m,i:n) from the left */
-
- if (i__ < *n) {
- i__1 = i__ + i__ * a_dim1;
- a[i__1].r = 1., a[i__1].i = 0.;
- i__1 = *m - i__ + 1;
- i__2 = *n - i__;
- zlarf_("Left", &i__1, &i__2, &a[i__ + i__ * a_dim1], &c__1, &tau[
- i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
- }
- if (i__ < *m) {
- i__1 = *m - i__;
- i__2 = i__;
- z__1.r = -tau[i__2].r, z__1.i = -tau[i__2].i;
- zscal_(&i__1, &z__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
- }
- i__1 = i__ + i__ * a_dim1;
- i__2 = i__;
- z__1.r = 1. - tau[i__2].r, z__1.i = 0. - tau[i__2].i;
- a[i__1].r = z__1.r, a[i__1].i = z__1.i;
-
-/* Set A(1:i-1,i) to zero */
-
- i__1 = i__ - 1;
- for (l = 1; l <= i__1; ++l) {
- i__2 = l + i__ * a_dim1;
- a[i__2].r = 0., a[i__2].i = 0.;
-/* L30: */
- }
-/* L40: */
- }
- return 0;
-
-/* End of ZUNG2R */
-
-} /* zung2r_ */
-
-/* Subroutine */ int zungbr_(char *vect, integer *m, integer *n, integer *k,
- doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
- work, integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
-
- /* Local variables */
- static integer i__, j, nb, mn;
- extern logical lsame_(char *, char *);
- static integer iinfo;
- static logical wantq;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer lwkopt;
- static logical lquery;
- extern /* Subroutine */ int zunglq_(integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, integer *), zungqr_(integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZUNGBR generates one of the complex unitary matrices Q or P**H
- determined by ZGEBRD when reducing a complex matrix A to bidiagonal
- form: A = Q * B * P**H. Q and P**H are defined as products of
- elementary reflectors H(i) or G(i) respectively.
-
- If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
- is of order M:
- if m >= k, Q = H(1) H(2) . . . H(k) and ZUNGBR returns the first n
- columns of Q, where m >= n >= k;
- if m < k, Q = H(1) H(2) . . . H(m-1) and ZUNGBR returns Q as an
- M-by-M matrix.
-
- If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H
- is of order N:
- if k < n, P**H = G(k) . . . G(2) G(1) and ZUNGBR returns the first m
- rows of P**H, where n >= m >= k;
- if k >= n, P**H = G(n-1) . . . G(2) G(1) and ZUNGBR returns P**H as
- an N-by-N matrix.
-
- Arguments
- =========
-
- VECT (input) CHARACTER*1
- Specifies whether the matrix Q or the matrix P**H is
- required, as defined in the transformation applied by ZGEBRD:
- = 'Q': generate Q;
- = 'P': generate P**H.
-
- M (input) INTEGER
- The number of rows of the matrix Q or P**H to be returned.
- M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix Q or P**H to be returned.
- N >= 0.
- If VECT = 'Q', M >= N >= min(M,K);
- if VECT = 'P', N >= M >= min(N,K).
-
- K (input) INTEGER
- If VECT = 'Q', the number of columns in the original M-by-K
- matrix reduced by ZGEBRD.
- If VECT = 'P', the number of rows in the original K-by-N
- matrix reduced by ZGEBRD.
- K >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the vectors which define the elementary reflectors,
- as returned by ZGEBRD.
- On exit, the M-by-N matrix Q or P**H.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= M.
-
- TAU (input) COMPLEX*16 array, dimension
- (min(M,K)) if VECT = 'Q'
- (min(N,K)) if VECT = 'P'
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i) or G(i), which determines Q or P**H, as
- returned by ZGEBRD in its array argument TAUQ or TAUP.
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,min(M,N)).
- For optimum performance LWORK >= min(M,N)*NB, where NB
- is the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- wantq = lsame_(vect, "Q");
- mn = min(*m,*n);
- lquery = *lwork == -1;
- if ((! wantq && ! lsame_(vect, "P"))) {
- *info = -1;
- } else if (*m < 0) {
- *info = -2;
- } else if (*n < 0 || (wantq && (*n > *m || *n < min(*m,*k))) || (! wantq
- && (*m > *n || *m < min(*n,*k)))) {
- *info = -3;
- } else if (*k < 0) {
- *info = -4;
- } else if (*lda < max(1,*m)) {
- *info = -6;
- } else if ((*lwork < max(1,mn) && ! lquery)) {
- *info = -9;
- }
-
- if (*info == 0) {
- if (wantq) {
- nb = ilaenv_(&c__1, "ZUNGQR", " ", m, n, k, &c_n1, (ftnlen)6, (
- ftnlen)1);
- } else {
- nb = ilaenv_(&c__1, "ZUNGLQ", " ", m, n, k, &c_n1, (ftnlen)6, (
- ftnlen)1);
- }
- lwkopt = max(1,mn) * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNGBR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- if (wantq) {
-
-/*
- Form Q, determined by a call to ZGEBRD to reduce an m-by-k
- matrix
-*/
-
- if (*m >= *k) {
-
-/* If m >= k, assume m >= n >= k */
-
- zungqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
- iinfo);
-
- } else {
-
-/*
- If m < k, assume m = n
-
- Shift the vectors which define the elementary reflectors one
- column to the right, and set the first row and column of Q
- to those of the unit matrix
-*/
-
- for (j = *m; j >= 2; --j) {
- i__1 = j * a_dim1 + 1;
- a[i__1].r = 0., a[i__1].i = 0.;
- i__1 = *m;
- for (i__ = j + 1; i__ <= i__1; ++i__) {
- i__2 = i__ + j * a_dim1;
- i__3 = i__ + (j - 1) * a_dim1;
- a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i;
-/* L10: */
- }
-/* L20: */
- }
- i__1 = a_dim1 + 1;
- a[i__1].r = 1., a[i__1].i = 0.;
- i__1 = *m;
- for (i__ = 2; i__ <= i__1; ++i__) {
- i__2 = i__ + a_dim1;
- a[i__2].r = 0., a[i__2].i = 0.;
-/* L30: */
- }
- if (*m > 1) {
-
-/* Form Q(2:m,2:m) */
-
- i__1 = *m - 1;
- i__2 = *m - 1;
- i__3 = *m - 1;
- zungqr_(&i__1, &i__2, &i__3, &a[((a_dim1) << (1)) + 2], lda, &
- tau[1], &work[1], lwork, &iinfo);
- }
- }
- } else {
-
-/*
- Form P', determined by a call to ZGEBRD to reduce a k-by-n
- matrix
-*/
-
- if (*k < *n) {
-
-/* If k < n, assume k <= m <= n */
-
- zunglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
- iinfo);
-
- } else {
-
-/*
- If k >= n, assume m = n
-
- Shift the vectors which define the elementary reflectors one
- row downward, and set the first row and column of P' to
- those of the unit matrix
-*/
-
- i__1 = a_dim1 + 1;
- a[i__1].r = 1., a[i__1].i = 0.;
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- i__2 = i__ + a_dim1;
- a[i__2].r = 0., a[i__2].i = 0.;
-/* L40: */
- }
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- for (i__ = j - 1; i__ >= 2; --i__) {
- i__2 = i__ + j * a_dim1;
- i__3 = i__ - 1 + j * a_dim1;
- a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i;
-/* L50: */
- }
- i__2 = j * a_dim1 + 1;
- a[i__2].r = 0., a[i__2].i = 0.;
-/* L60: */
- }
- if (*n > 1) {
-
-/* Form P'(2:n,2:n) */
-
- i__1 = *n - 1;
- i__2 = *n - 1;
- i__3 = *n - 1;
- zunglq_(&i__1, &i__2, &i__3, &a[((a_dim1) << (1)) + 2], lda, &
- tau[1], &work[1], lwork, &iinfo);
- }
- }
- }
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- return 0;
-
-/* End of ZUNGBR */
-
-} /* zungbr_ */
-
-/* Subroutine */ int zunghr_(integer *n, integer *ilo, integer *ihi,
- doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
- work, integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__, j, nb, nh, iinfo;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer lwkopt;
- static logical lquery;
- extern /* Subroutine */ int zungqr_(integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZUNGHR generates a complex unitary matrix Q which is defined as the
- product of IHI-ILO elementary reflectors of order N, as returned by
- ZGEHRD:
-
- Q = H(ilo) H(ilo+1) . . . H(ihi-1).
-
- Arguments
- =========
-
- N (input) INTEGER
- The order of the matrix Q. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER
- ILO and IHI must have the same values as in the previous call
- of ZGEHRD. Q is equal to the unit matrix except in the
- submatrix Q(ilo+1:ihi,ilo+1:ihi).
- 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the vectors which define the elementary reflectors,
- as returned by ZGEHRD.
- On exit, the N-by-N unitary matrix Q.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- TAU (input) COMPLEX*16 array, dimension (N-1)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZGEHRD.
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= IHI-ILO.
- For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
- the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- nh = *ihi - *ilo;
- lquery = *lwork == -1;
- if (*n < 0) {
- *info = -1;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -2;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if ((*lwork < max(1,nh) && ! lquery)) {
- *info = -8;
- }
-
- if (*info == 0) {
- nb = ilaenv_(&c__1, "ZUNGQR", " ", &nh, &nh, &nh, &c_n1, (ftnlen)6, (
- ftnlen)1);
- lwkopt = max(1,nh) * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNGHR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n == 0) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
-/*
- Shift the vectors which define the elementary reflectors one
- column to the right, and set the first ilo and the last n-ihi
- rows and columns to those of the unit matrix
-*/
-
- i__1 = *ilo + 1;
- for (j = *ihi; j >= i__1; --j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
-/* L10: */
- }
- i__2 = *ihi;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + (j - 1) * a_dim1;
- a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
-/* L20: */
- }
- i__2 = *n;
- for (i__ = *ihi + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
-/* L30: */
- }
-/* L40: */
- }
- i__1 = *ilo;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
-/* L50: */
- }
- i__2 = j + j * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-/* L60: */
- }
- i__1 = *n;
- for (j = *ihi + 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
-/* L70: */
- }
- i__2 = j + j * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-/* L80: */
- }
-
- if (nh > 0) {
-
-/* Generate Q(ilo+1:ihi,ilo+1:ihi) */
-
- zungqr_(&nh, &nh, &nh, &a[*ilo + 1 + (*ilo + 1) * a_dim1], lda, &tau[*
- ilo], &work[1], lwork, &iinfo);
- }
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- return 0;
-
-/* End of ZUNGHR */
-
-} /* zunghr_ */
-
-/* Subroutine */ int zungl2_(integer *m, integer *n, integer *k,
- doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
- work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublecomplex z__1, z__2;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, j, l;
- extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *), zlarf_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), xerbla_(char *, integer *), zlacgv_(integer *, doublecomplex *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZUNGL2 generates an m-by-n complex matrix Q with orthonormal rows,
- which is defined as the first m rows of a product of k elementary
- reflectors of order n
-
- Q = H(k)' . . . H(2)' H(1)'
-
- as returned by ZGELQF.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix Q. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix Q. N >= M.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines the
- matrix Q. M >= K >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the i-th row must contain the vector which defines
- the elementary reflector H(i), for i = 1,2,...,k, as returned
- by ZGELQF in the first k rows of its array argument A.
- On exit, the m by n matrix Q.
-
- LDA (input) INTEGER
- The first dimension of the array A. LDA >= max(1,M).
-
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZGELQF.
-
- WORK (workspace) COMPLEX*16 array, dimension (M)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument has an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < *m) {
- *info = -2;
- } else if (*k < 0 || *k > *m) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNGL2", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m <= 0) {
- return 0;
- }
-
- if (*k < *m) {
-
-/* Initialise rows k+1:m to rows of the unit matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (l = *k + 1; l <= i__2; ++l) {
- i__3 = l + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
-/* L10: */
- }
- if ((j > *k && j <= *m)) {
- i__2 = j + j * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
- }
-/* L20: */
- }
- }
-
- for (i__ = *k; i__ >= 1; --i__) {
-
-/* Apply H(i)' to A(i:m,i:n) from the right */
-
- if (i__ < *n) {
- i__1 = *n - i__;
- zlacgv_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda);
- if (i__ < *m) {
- i__1 = i__ + i__ * a_dim1;
- a[i__1].r = 1., a[i__1].i = 0.;
- i__1 = *m - i__;
- i__2 = *n - i__ + 1;
- d_cnjg(&z__1, &tau[i__]);
- zlarf_("Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &
- z__1, &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
- }
- i__1 = *n - i__;
- i__2 = i__;
- z__1.r = -tau[i__2].r, z__1.i = -tau[i__2].i;
- zscal_(&i__1, &z__1, &a[i__ + (i__ + 1) * a_dim1], lda);
- i__1 = *n - i__;
- zlacgv_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda);
- }
- i__1 = i__ + i__ * a_dim1;
- d_cnjg(&z__2, &tau[i__]);
- z__1.r = 1. - z__2.r, z__1.i = 0. - z__2.i;
- a[i__1].r = z__1.r, a[i__1].i = z__1.i;
-
-/* Set A(i,1:i-1) to zero */
-
- i__1 = i__ - 1;
- for (l = 1; l <= i__1; ++l) {
- i__2 = i__ + l * a_dim1;
- a[i__2].r = 0., a[i__2].i = 0.;
-/* L30: */
- }
-/* L40: */
- }
- return 0;
-
-/* End of ZUNGL2 */
-
-} /* zungl2_ */
-
-/* Subroutine */ int zunglq_(integer *m, integer *n, integer *k,
- doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
- work, integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
- extern /* Subroutine */ int zungl2_(integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- static integer ldwork;
- extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *);
- static logical lquery;
- static integer lwkopt;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZUNGLQ generates an M-by-N complex matrix Q with orthonormal rows,
- which is defined as the first M rows of a product of K elementary
- reflectors of order N
-
- Q = H(k)' . . . H(2)' H(1)'
-
- as returned by ZGELQF.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix Q. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix Q. N >= M.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines the
- matrix Q. M >= K >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the i-th row must contain the vector which defines
- the elementary reflector H(i), for i = 1,2,...,k, as returned
- by ZGELQF in the first k rows of its array argument A.
- On exit, the M-by-N matrix Q.
-
- LDA (input) INTEGER
- The first dimension of the array A. LDA >= max(1,M).
-
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZGELQF.
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,M).
- For optimum performance LWORK >= M*NB, where NB is
- the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit;
- < 0: if INFO = -i, the i-th argument has an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- nb = ilaenv_(&c__1, "ZUNGLQ", " ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1);
- lwkopt = max(1,*m) * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < *m) {
- *info = -2;
- } else if (*k < 0 || *k > *m) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- } else if ((*lwork < max(1,*m) && ! lquery)) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNGLQ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m <= 0) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- nbmin = 2;
- nx = 0;
- iws = *m;
- if ((nb > 1 && nb < *k)) {
-
-/*
- Determine when to cross over from blocked to unblocked code.
-
- Computing MAX
-*/
- i__1 = 0, i__2 = ilaenv_(&c__3, "ZUNGLQ", " ", m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < *k) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- ldwork = *m;
- iws = ldwork * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: reduce NB and
- determine the minimum value of NB.
-*/
-
- nb = *lwork / ldwork;
-/* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "ZUNGLQ", " ", m, n, k, &c_n1,
- (ftnlen)6, (ftnlen)1);
- nbmin = max(i__1,i__2);
- }
- }
- }
-
- if (((nb >= nbmin && nb < *k) && nx < *k)) {
-
-/*
- Use blocked code after the last block.
- The first kk rows are handled by the block method.
-*/
-
- ki = (*k - nx - 1) / nb * nb;
-/* Computing MIN */
- i__1 = *k, i__2 = ki + nb;
- kk = min(i__1,i__2);
-
-/* Set A(kk+1:m,1:kk) to zero. */
-
- i__1 = kk;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = kk + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
-/* L10: */
- }
-/* L20: */
- }
- } else {
- kk = 0;
- }
-
-/* Use unblocked code for the last or only block. */
-
- if (kk < *m) {
- i__1 = *m - kk;
- i__2 = *n - kk;
- i__3 = *k - kk;
- zungl2_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
- tau[kk + 1], &work[1], &iinfo);
- }
-
- if (kk > 0) {
-
-/* Use blocked code */
-
- i__1 = -nb;
- for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
-/* Computing MIN */
- i__2 = nb, i__3 = *k - i__ + 1;
- ib = min(i__2,i__3);
- if (i__ + ib <= *m) {
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__2 = *n - i__ + 1;
- zlarft_("Forward", "Rowwise", &i__2, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], &work[1], &ldwork);
-
-/* Apply H' to A(i+ib:m,i:n) from the right */
-
- i__2 = *m - i__ - ib + 1;
- i__3 = *n - i__ + 1;
- zlarfb_("Right", "Conjugate transpose", "Forward", "Rowwise",
- &i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[
- 1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[
- ib + 1], &ldwork);
- }
-
-/* Apply H' to columns i:n of current block */
-
- i__2 = *n - i__ + 1;
- zungl2_(&ib, &i__2, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
- work[1], &iinfo);
-
-/* Set columns 1:i-1 of current block to zero */
-
- i__2 = i__ - 1;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + ib - 1;
- for (l = i__; l <= i__3; ++l) {
- i__4 = l + j * a_dim1;
- a[i__4].r = 0., a[i__4].i = 0.;
-/* L30: */
- }
-/* L40: */
- }
-/* L50: */
- }
- }
-
- work[1].r = (doublereal) iws, work[1].i = 0.;
- return 0;
-
-/* End of ZUNGLQ */
-
-} /* zunglq_ */
-
-/* Subroutine */ int zungqr_(integer *m, integer *n, integer *k,
- doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
- work, integer *lwork, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- static integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
- extern /* Subroutine */ int zung2r_(integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- static integer ldwork;
- extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *);
- static integer lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZUNGQR generates an M-by-N complex matrix Q with orthonormal columns,
- which is defined as the first N columns of a product of K elementary
- reflectors of order M
-
- Q = H(1) H(2) . . . H(k)
-
- as returned by ZGEQRF.
-
- Arguments
- =========
-
- M (input) INTEGER
- The number of rows of the matrix Q. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix Q. M >= N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines the
- matrix Q. N >= K >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the i-th column must contain the vector which
- defines the elementary reflector H(i), for i = 1,2,...,k, as
- returned by ZGEQRF in the first k columns of its array
- argument A.
- On exit, the M-by-N matrix Q.
-
- LDA (input) INTEGER
- The first dimension of the array A. LDA >= max(1,M).
-
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZGEQRF.
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,N).
- For optimum performance LWORK >= N*NB, where NB is the
- optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument has an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- nb = ilaenv_(&c__1, "ZUNGQR", " ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1);
- lwkopt = max(1,*n) * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0 || *n > *m) {
- *info = -2;
- } else if (*k < 0 || *k > *n) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- } else if ((*lwork < max(1,*n) && ! lquery)) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNGQR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*n <= 0) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- nbmin = 2;
- nx = 0;
- iws = *n;
- if ((nb > 1 && nb < *k)) {
-
-/*
- Determine when to cross over from blocked to unblocked code.
-
- Computing MAX
-*/
- i__1 = 0, i__2 = ilaenv_(&c__3, "ZUNGQR", " ", m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = max(i__1,i__2);
- if (nx < *k) {
-
-/* Determine if workspace is large enough for blocked code. */
-
- ldwork = *n;
- iws = ldwork * nb;
- if (*lwork < iws) {
-
-/*
- Not enough workspace to use optimal NB: reduce NB and
- determine the minimum value of NB.
-*/
-
- nb = *lwork / ldwork;
-/* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "ZUNGQR", " ", m, n, k, &c_n1,
- (ftnlen)6, (ftnlen)1);
- nbmin = max(i__1,i__2);
- }
- }
- }
-
- if (((nb >= nbmin && nb < *k) && nx < *k)) {
-
-/*
- Use blocked code after the last block.
- The first kk columns are handled by the block method.
-*/
-
- ki = (*k - nx - 1) / nb * nb;
-/* Computing MIN */
- i__1 = *k, i__2 = ki + nb;
- kk = min(i__1,i__2);
-
-/* Set A(1:kk,kk+1:n) to zero. */
-
- i__1 = *n;
- for (j = kk + 1; j <= i__1; ++j) {
- i__2 = kk;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
-/* L10: */
- }
-/* L20: */
- }
- } else {
- kk = 0;
- }
-
-/* Use unblocked code for the last or only block. */
-
- if (kk < *n) {
- i__1 = *m - kk;
- i__2 = *n - kk;
- i__3 = *k - kk;
- zung2r_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
- tau[kk + 1], &work[1], &iinfo);
- }
-
- if (kk > 0) {
-
-/* Use blocked code */
-
- i__1 = -nb;
- for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
-/* Computing MIN */
- i__2 = nb, i__3 = *k - i__ + 1;
- ib = min(i__2,i__3);
- if (i__ + ib <= *n) {
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__2 = *m - i__ + 1;
- zlarft_("Forward", "Columnwise", &i__2, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], &work[1], &ldwork);
-
-/* Apply H to A(i:m,i+ib:n) from the left */
-
- i__2 = *m - i__ + 1;
- i__3 = *n - i__ - ib + 1;
- zlarfb_("Left", "No transpose", "Forward", "Columnwise", &
- i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[
- 1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &
- work[ib + 1], &ldwork);
- }
-
-/* Apply H to rows i:m of current block */
-
- i__2 = *m - i__ + 1;
- zung2r_(&i__2, &ib, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
- work[1], &iinfo);
-
-/* Set rows 1:i-1 of current block to zero */
-
- i__2 = i__ + ib - 1;
- for (j = i__; j <= i__2; ++j) {
- i__3 = i__ - 1;
- for (l = 1; l <= i__3; ++l) {
- i__4 = l + j * a_dim1;
- a[i__4].r = 0., a[i__4].i = 0.;
-/* L30: */
- }
-/* L40: */
- }
-/* L50: */
- }
- }
-
- work[1].r = (doublereal) iws, work[1].i = 0.;
- return 0;
-
-/* End of ZUNGQR */
-
-} /* zungqr_ */
-
-/* Subroutine */ int zunm2l_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublecomplex *a, integer *lda, doublecomplex *tau,
- doublecomplex *c__, integer *ldc, doublecomplex *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
- doublecomplex z__1;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, i1, i2, i3, mi, ni, nq;
- static doublecomplex aii;
- static logical left;
- static doublecomplex taui;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), xerbla_(char *, integer *);
- static logical notran;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZUNM2L overwrites the general complex m-by-n matrix C with
-
- Q * C if SIDE = 'L' and TRANS = 'N', or
-
- Q'* C if SIDE = 'L' and TRANS = 'C', or
-
- C * Q if SIDE = 'R' and TRANS = 'N', or
-
- C * Q' if SIDE = 'R' and TRANS = 'C',
-
- where Q is a complex unitary matrix defined as the product of k
- elementary reflectors
-
- Q = H(k) . . . H(2) H(1)
-
- as returned by ZGEQLF. Q is of order m if SIDE = 'L' and of order n
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q' from the Left
- = 'R': apply Q or Q' from the Right
-
- TRANS (input) CHARACTER*1
- = 'N': apply Q (No transpose)
- = 'C': apply Q' (Conjugate transpose)
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) COMPLEX*16 array, dimension (LDA,K)
- The i-th column must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- ZGEQLF in the last k columns of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- If SIDE = 'L', LDA >= max(1,M);
- if SIDE = 'R', LDA >= max(1,N).
-
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZGEQLF.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the m-by-n matrix C.
- On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace) COMPLEX*16 array, dimension
- (N) if SIDE = 'L',
- (M) if SIDE = 'R'
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
-
-/* NQ is the order of Q */
-
- if (left) {
- nq = *m;
- } else {
- nq = *n;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "C"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,nq)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNM2L", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- return 0;
- }
-
- if ((left && notran) || (! left && ! notran)) {
- i1 = 1;
- i2 = *k;
- i3 = 1;
- } else {
- i1 = *k;
- i2 = 1;
- i3 = -1;
- }
-
- if (left) {
- ni = *n;
- } else {
- mi = *m;
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- if (left) {
-
-/* H(i) or H(i)' is applied to C(1:m-k+i,1:n) */
-
- mi = *m - *k + i__;
- } else {
-
-/* H(i) or H(i)' is applied to C(1:m,1:n-k+i) */
-
- ni = *n - *k + i__;
- }
-
-/* Apply H(i) or H(i)' */
-
- if (notran) {
- i__3 = i__;
- taui.r = tau[i__3].r, taui.i = tau[i__3].i;
- } else {
- d_cnjg(&z__1, &tau[i__]);
- taui.r = z__1.r, taui.i = z__1.i;
- }
- i__3 = nq - *k + i__ + i__ * a_dim1;
- aii.r = a[i__3].r, aii.i = a[i__3].i;
- i__3 = nq - *k + i__ + i__ * a_dim1;
- a[i__3].r = 1., a[i__3].i = 0.;
- zlarf_(side, &mi, &ni, &a[i__ * a_dim1 + 1], &c__1, &taui, &c__[
- c_offset], ldc, &work[1]);
- i__3 = nq - *k + i__ + i__ * a_dim1;
- a[i__3].r = aii.r, a[i__3].i = aii.i;
-/* L10: */
- }
- return 0;
-
-/* End of ZUNM2L */
-
-} /* zunm2l_ */
-
-/* Subroutine */ int zunm2r_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublecomplex *a, integer *lda, doublecomplex *tau,
- doublecomplex *c__, integer *ldc, doublecomplex *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
- doublecomplex z__1;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, i1, i2, i3, ic, jc, mi, ni, nq;
- static doublecomplex aii;
- static logical left;
- static doublecomplex taui;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), xerbla_(char *, integer *);
- static logical notran;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZUNM2R overwrites the general complex m-by-n matrix C with
-
- Q * C if SIDE = 'L' and TRANS = 'N', or
-
- Q'* C if SIDE = 'L' and TRANS = 'C', or
-
- C * Q if SIDE = 'R' and TRANS = 'N', or
-
- C * Q' if SIDE = 'R' and TRANS = 'C',
-
- where Q is a complex unitary matrix defined as the product of k
- elementary reflectors
-
- Q = H(1) H(2) . . . H(k)
-
- as returned by ZGEQRF. Q is of order m if SIDE = 'L' and of order n
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q' from the Left
- = 'R': apply Q or Q' from the Right
-
- TRANS (input) CHARACTER*1
- = 'N': apply Q (No transpose)
- = 'C': apply Q' (Conjugate transpose)
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) COMPLEX*16 array, dimension (LDA,K)
- The i-th column must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- ZGEQRF in the first k columns of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- If SIDE = 'L', LDA >= max(1,M);
- if SIDE = 'R', LDA >= max(1,N).
-
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZGEQRF.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the m-by-n matrix C.
- On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace) COMPLEX*16 array, dimension
- (N) if SIDE = 'L',
- (M) if SIDE = 'R'
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
-
-/* NQ is the order of Q */
-
- if (left) {
- nq = *m;
- } else {
- nq = *n;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "C"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,nq)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNM2R", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- return 0;
- }
-
- if ((left && ! notran) || (! left && notran)) {
- i1 = 1;
- i2 = *k;
- i3 = 1;
- } else {
- i1 = *k;
- i2 = 1;
- i3 = -1;
- }
-
- if (left) {
- ni = *n;
- jc = 1;
- } else {
- mi = *m;
- ic = 1;
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- if (left) {
-
-/* H(i) or H(i)' is applied to C(i:m,1:n) */
-
- mi = *m - i__ + 1;
- ic = i__;
- } else {
-
-/* H(i) or H(i)' is applied to C(1:m,i:n) */
-
- ni = *n - i__ + 1;
- jc = i__;
- }
-
-/* Apply H(i) or H(i)' */
-
- if (notran) {
- i__3 = i__;
- taui.r = tau[i__3].r, taui.i = tau[i__3].i;
- } else {
- d_cnjg(&z__1, &tau[i__]);
- taui.r = z__1.r, taui.i = z__1.i;
- }
- i__3 = i__ + i__ * a_dim1;
- aii.r = a[i__3].r, aii.i = a[i__3].i;
- i__3 = i__ + i__ * a_dim1;
- a[i__3].r = 1., a[i__3].i = 0.;
- zlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], &c__1, &taui, &c__[ic
- + jc * c_dim1], ldc, &work[1]);
- i__3 = i__ + i__ * a_dim1;
- a[i__3].r = aii.r, a[i__3].i = aii.i;
-/* L10: */
- }
- return 0;
-
-/* End of ZUNM2R */
-
-} /* zunm2r_ */
-
-/* Subroutine */ int zunmbr_(char *vect, char *side, char *trans, integer *m,
- integer *n, integer *k, doublecomplex *a, integer *lda, doublecomplex
- *tau, doublecomplex *c__, integer *ldc, doublecomplex *work, integer *
- lwork, integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2];
- char ch__1[2];
-
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i1, i2, nb, mi, ni, nq, nw;
- static logical left;
- extern logical lsame_(char *, char *);
- static integer iinfo;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static logical notran, applyq;
- static char transt[1];
- static integer lwkopt;
- static logical lquery;
- extern /* Subroutine */ int zunmlq_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmqr_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C
- with
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': Q * C C * Q
- TRANS = 'C': Q**H * C C * Q**H
-
- If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C
- with
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': P * C C * P
- TRANS = 'C': P**H * C C * P**H
-
- Here Q and P**H are the unitary matrices determined by ZGEBRD when
- reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
- and P**H are defined as products of elementary reflectors H(i) and
- G(i) respectively.
-
- Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
- order of the unitary matrix Q or P**H that is applied.
-
- If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
- if nq >= k, Q = H(1) H(2) . . . H(k);
- if nq < k, Q = H(1) H(2) . . . H(nq-1).
-
- If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
- if k < nq, P = G(1) G(2) . . . G(k);
- if k >= nq, P = G(1) G(2) . . . G(nq-1).
-
- Arguments
- =========
-
- VECT (input) CHARACTER*1
- = 'Q': apply Q or Q**H;
- = 'P': apply P or P**H.
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q, Q**H, P or P**H from the Left;
- = 'R': apply Q, Q**H, P or P**H from the Right.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q or P;
- = 'C': Conjugate transpose, apply Q**H or P**H.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- If VECT = 'Q', the number of columns in the original
- matrix reduced by ZGEBRD.
- If VECT = 'P', the number of rows in the original
- matrix reduced by ZGEBRD.
- K >= 0.
-
- A (input) COMPLEX*16 array, dimension
- (LDA,min(nq,K)) if VECT = 'Q'
- (LDA,nq) if VECT = 'P'
- The vectors which define the elementary reflectors H(i) and
- G(i), whose products determine the matrices Q and P, as
- returned by ZGEBRD.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- If VECT = 'Q', LDA >= max(1,nq);
- if VECT = 'P', LDA >= max(1,min(nq,K)).
-
- TAU (input) COMPLEX*16 array, dimension (min(nq,K))
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i) or G(i) which determines Q or P, as returned
- by ZGEBRD in the array argument TAUQ or TAUP.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
- or P*C or P**H*C or C*P or C*P**H.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If SIDE = 'L', LWORK >= max(1,N);
- if SIDE = 'R', LWORK >= max(1,M).
- For optimum performance LWORK >= N*NB if SIDE = 'L', and
- LWORK >= M*NB if SIDE = 'R', where NB is the optimal
- blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- applyq = lsame_(vect, "Q");
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
- lquery = *lwork == -1;
-
-/* NQ is the order of Q or P and NW is the minimum dimension of WORK */
-
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if ((! applyq && ! lsame_(vect, "P"))) {
- *info = -1;
- } else if ((! left && ! lsame_(side, "R"))) {
- *info = -2;
- } else if ((! notran && ! lsame_(trans, "C"))) {
- *info = -3;
- } else if (*m < 0) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*k < 0) {
- *info = -6;
- } else /* if(complicated condition) */ {
-/* Computing MAX */
- i__1 = 1, i__2 = min(nq,*k);
- if ((applyq && *lda < max(1,nq)) || (! applyq && *lda < max(i__1,i__2)
- )) {
- *info = -8;
- } else if (*ldc < max(1,*m)) {
- *info = -11;
- } else if ((*lwork < max(1,nw) && ! lquery)) {
- *info = -13;
- }
- }
-
- if (*info == 0) {
- if (applyq) {
- if (left) {
-/* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *m - 1;
- i__2 = *m - 1;
- nb = ilaenv_(&c__1, "ZUNMQR", ch__1, &i__1, n, &i__2, &c_n1, (
- ftnlen)6, (ftnlen)2);
- } else {
-/* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *n - 1;
- i__2 = *n - 1;
- nb = ilaenv_(&c__1, "ZUNMQR", ch__1, m, &i__1, &i__2, &c_n1, (
- ftnlen)6, (ftnlen)2);
- }
- } else {
- if (left) {
-/* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *m - 1;
- i__2 = *m - 1;
- nb = ilaenv_(&c__1, "ZUNMLQ", ch__1, &i__1, n, &i__2, &c_n1, (
- ftnlen)6, (ftnlen)2);
- } else {
-/* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *n - 1;
- i__2 = *n - 1;
- nb = ilaenv_(&c__1, "ZUNMLQ", ch__1, m, &i__1, &i__2, &c_n1, (
- ftnlen)6, (ftnlen)2);
- }
- }
- lwkopt = max(1,nw) * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNMBR", &i__1);
- return 0;
- } else if (lquery) {
- }
-
-/* Quick return if possible */
-
- work[1].r = 1., work[1].i = 0.;
- if (*m == 0 || *n == 0) {
- return 0;
- }
-
- if (applyq) {
-
-/* Apply Q */
-
- if (nq >= *k) {
-
-/* Q was determined by a call to ZGEBRD with nq >= k */
-
- zunmqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], lwork, &iinfo);
- } else if (nq > 1) {
-
-/* Q was determined by a call to ZGEBRD with nq < k */
-
- if (left) {
- mi = *m - 1;
- ni = *n;
- i1 = 2;
- i2 = 1;
- } else {
- mi = *m;
- ni = *n - 1;
- i1 = 1;
- i2 = 2;
- }
- i__1 = nq - 1;
- zunmqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1]
- , &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
- }
- } else {
-
-/* Apply P */
-
- if (notran) {
- *(unsigned char *)transt = 'C';
- } else {
- *(unsigned char *)transt = 'N';
- }
- if (nq > *k) {
-
-/* P was determined by a call to ZGEBRD with nq > k */
-
- zunmlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], lwork, &iinfo);
- } else if (nq > 1) {
-
-/* P was determined by a call to ZGEBRD with nq <= k */
-
- if (left) {
- mi = *m - 1;
- ni = *n;
- i1 = 2;
- i2 = 1;
- } else {
- mi = *m;
- ni = *n - 1;
- i1 = 1;
- i2 = 2;
- }
- i__1 = nq - 1;
- zunmlq_(side, transt, &mi, &ni, &i__1, &a[((a_dim1) << (1)) + 1],
- lda, &tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1],
- lwork, &iinfo);
- }
- }
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- return 0;
-
-/* End of ZUNMBR */
-
-} /* zunmbr_ */
-
-/* Subroutine */ int zunml2_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublecomplex *a, integer *lda, doublecomplex *tau,
- doublecomplex *c__, integer *ldc, doublecomplex *work, integer *info)
-{
- /* System generated locals */
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
- doublecomplex z__1;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- static integer i__, i1, i2, i3, ic, jc, mi, ni, nq;
- static doublecomplex aii;
- static logical left;
- static doublecomplex taui;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), xerbla_(char *, integer *), zlacgv_(integer *, doublecomplex *, integer *);
- static logical notran;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- ZUNML2 overwrites the general complex m-by-n matrix C with
-
- Q * C if SIDE = 'L' and TRANS = 'N', or
-
- Q'* C if SIDE = 'L' and TRANS = 'C', or
-
- C * Q if SIDE = 'R' and TRANS = 'N', or
-
- C * Q' if SIDE = 'R' and TRANS = 'C',
-
- where Q is a complex unitary matrix defined as the product of k
- elementary reflectors
-
- Q = H(k)' . . . H(2)' H(1)'
-
- as returned by ZGELQF. Q is of order m if SIDE = 'L' and of order n
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q' from the Left
- = 'R': apply Q or Q' from the Right
-
- TRANS (input) CHARACTER*1
- = 'N': apply Q (No transpose)
- = 'C': apply Q' (Conjugate transpose)
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) COMPLEX*16 array, dimension
- (LDA,M) if SIDE = 'L',
- (LDA,N) if SIDE = 'R'
- The i-th row must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- ZGELQF in the first k rows of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,K).
-
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZGELQF.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the m-by-n matrix C.
- On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace) COMPLEX*16 array, dimension
- (N) if SIDE = 'L',
- (M) if SIDE = 'R'
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
-
-/* NQ is the order of Q */
-
- if (left) {
- nq = *m;
- } else {
- nq = *n;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "C"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,*k)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNML2", &i__1);
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- return 0;
- }
-
- if ((left && notran) || (! left && ! notran)) {
- i1 = 1;
- i2 = *k;
- i3 = 1;
- } else {
- i1 = *k;
- i2 = 1;
- i3 = -1;
- }
-
- if (left) {
- ni = *n;
- jc = 1;
- } else {
- mi = *m;
- ic = 1;
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- if (left) {
-
-/* H(i) or H(i)' is applied to C(i:m,1:n) */
-
- mi = *m - i__ + 1;
- ic = i__;
- } else {
-
-/* H(i) or H(i)' is applied to C(1:m,i:n) */
-
- ni = *n - i__ + 1;
- jc = i__;
- }
-
-/* Apply H(i) or H(i)' */
-
- if (notran) {
- d_cnjg(&z__1, &tau[i__]);
- taui.r = z__1.r, taui.i = z__1.i;
- } else {
- i__3 = i__;
- taui.r = tau[i__3].r, taui.i = tau[i__3].i;
- }
- if (i__ < nq) {
- i__3 = nq - i__;
- zlacgv_(&i__3, &a[i__ + (i__ + 1) * a_dim1], lda);
- }
- i__3 = i__ + i__ * a_dim1;
- aii.r = a[i__3].r, aii.i = a[i__3].i;
- i__3 = i__ + i__ * a_dim1;
- a[i__3].r = 1., a[i__3].i = 0.;
- zlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], lda, &taui, &c__[ic +
- jc * c_dim1], ldc, &work[1]);
- i__3 = i__ + i__ * a_dim1;
- a[i__3].r = aii.r, a[i__3].i = aii.i;
- if (i__ < nq) {
- i__3 = nq - i__;
- zlacgv_(&i__3, &a[i__ + (i__ + 1) * a_dim1], lda);
- }
-/* L10: */
- }
- return 0;
-
-/* End of ZUNML2 */
-
-} /* zunml2_ */
-
-/* Subroutine */ int zunmlq_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublecomplex *a, integer *lda, doublecomplex *tau,
- doublecomplex *c__, integer *ldc, doublecomplex *work, integer *lwork,
- integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
- i__5;
- char ch__1[2];
-
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i__;
- static doublecomplex t[4160] /* was [65][64] */;
- static integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
- static logical left;
- extern logical lsame_(char *, char *);
- static integer nbmin, iinfo;
- extern /* Subroutine */ int zunml2_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- static logical notran;
- static integer ldwork;
- extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *);
- static char transt[1];
- static integer lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZUNMLQ overwrites the general complex M-by-N matrix C with
-
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': Q * C C * Q
- TRANS = 'C': Q**H * C C * Q**H
-
- where Q is a complex unitary matrix defined as the product of k
- elementary reflectors
-
- Q = H(k)' . . . H(2)' H(1)'
-
- as returned by ZGELQF. Q is of order M if SIDE = 'L' and of order N
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q**H from the Left;
- = 'R': apply Q or Q**H from the Right.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q;
- = 'C': Conjugate transpose, apply Q**H.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) COMPLEX*16 array, dimension
- (LDA,M) if SIDE = 'L',
- (LDA,N) if SIDE = 'R'
- The i-th row must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- ZGELQF in the first k rows of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,K).
-
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZGELQF.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If SIDE = 'L', LWORK >= max(1,N);
- if SIDE = 'R', LWORK >= max(1,M).
- For optimum performance LWORK >= N*NB if SIDE 'L', and
- LWORK >= M*NB if SIDE = 'R', where NB is the optimal
- blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
- lquery = *lwork == -1;
-
-/* NQ is the order of Q and NW is the minimum dimension of WORK */
-
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "C"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,*k)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- } else if ((*lwork < max(1,nw) && ! lquery)) {
- *info = -12;
- }
-
- if (*info == 0) {
-
-/*
- Determine the block size. NB may be at most NBMAX, where NBMAX
- is used to define the local array T.
-
- Computing MIN
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 64, i__2 = ilaenv_(&c__1, "ZUNMLQ", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nb = min(i__1,i__2);
- lwkopt = max(1,nw) * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNMLQ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- nbmin = 2;
- ldwork = nw;
- if ((nb > 1 && nb < *k)) {
- iws = nw * nb;
- if (*lwork < iws) {
- nb = *lwork / ldwork;
-/*
- Computing MAX
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 2, i__2 = ilaenv_(&c__2, "ZUNMLQ", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nbmin = max(i__1,i__2);
- }
- } else {
- iws = nw;
- }
-
- if (nb < nbmin || nb >= *k) {
-
-/* Use unblocked code */
-
- zunml2_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], &iinfo);
- } else {
-
-/* Use blocked code */
-
- if ((left && notran) || (! left && ! notran)) {
- i1 = 1;
- i2 = *k;
- i3 = nb;
- } else {
- i1 = (*k - 1) / nb * nb + 1;
- i2 = 1;
- i3 = -nb;
- }
-
- if (left) {
- ni = *n;
- jc = 1;
- } else {
- mi = *m;
- ic = 1;
- }
-
- if (notran) {
- *(unsigned char *)transt = 'C';
- } else {
- *(unsigned char *)transt = 'N';
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__4 = nb, i__5 = *k - i__ + 1;
- ib = min(i__4,i__5);
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__4 = nq - i__ + 1;
- zlarft_("Forward", "Rowwise", &i__4, &ib, &a[i__ + i__ * a_dim1],
- lda, &tau[i__], t, &c__65);
- if (left) {
-
-/* H or H' is applied to C(i:m,1:n) */
-
- mi = *m - i__ + 1;
- ic = i__;
- } else {
-
-/* H or H' is applied to C(1:m,i:n) */
-
- ni = *n - i__ + 1;
- jc = i__;
- }
-
-/* Apply H or H' */
-
- zlarfb_(side, transt, "Forward", "Rowwise", &mi, &ni, &ib, &a[i__
- + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc * c_dim1],
- ldc, &work[1], &ldwork);
-/* L10: */
- }
- }
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- return 0;
-
-/* End of ZUNMLQ */
-
-} /* zunmlq_ */
-
-/* Subroutine */ int zunmql_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublecomplex *a, integer *lda, doublecomplex *tau,
- doublecomplex *c__, integer *ldc, doublecomplex *work, integer *lwork,
- integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
- i__5;
- char ch__1[2];
-
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i__;
- static doublecomplex t[4160] /* was [65][64] */;
- static integer i1, i2, i3, ib, nb, mi, ni, nq, nw, iws;
- static logical left;
- extern logical lsame_(char *, char *);
- static integer nbmin, iinfo;
- extern /* Subroutine */ int zunm2l_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- static logical notran;
- static integer ldwork;
- extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *);
- static integer lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZUNMQL overwrites the general complex M-by-N matrix C with
-
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': Q * C C * Q
- TRANS = 'C': Q**H * C C * Q**H
-
- where Q is a complex unitary matrix defined as the product of k
- elementary reflectors
-
- Q = H(k) . . . H(2) H(1)
-
- as returned by ZGEQLF. Q is of order M if SIDE = 'L' and of order N
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q**H from the Left;
- = 'R': apply Q or Q**H from the Right.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q;
- = 'C': Transpose, apply Q**H.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) COMPLEX*16 array, dimension (LDA,K)
- The i-th column must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- ZGEQLF in the last k columns of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- If SIDE = 'L', LDA >= max(1,M);
- if SIDE = 'R', LDA >= max(1,N).
-
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZGEQLF.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If SIDE = 'L', LWORK >= max(1,N);
- if SIDE = 'R', LWORK >= max(1,M).
- For optimum performance LWORK >= N*NB if SIDE = 'L', and
- LWORK >= M*NB if SIDE = 'R', where NB is the optimal
- blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
- lquery = *lwork == -1;
-
-/* NQ is the order of Q and NW is the minimum dimension of WORK */
-
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "C"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,nq)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- } else if ((*lwork < max(1,nw) && ! lquery)) {
- *info = -12;
- }
-
- if (*info == 0) {
-
-/*
- Determine the block size. NB may be at most NBMAX, where NBMAX
- is used to define the local array T.
-
- Computing MIN
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 64, i__2 = ilaenv_(&c__1, "ZUNMQL", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nb = min(i__1,i__2);
- lwkopt = max(1,nw) * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNMQL", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- nbmin = 2;
- ldwork = nw;
- if ((nb > 1 && nb < *k)) {
- iws = nw * nb;
- if (*lwork < iws) {
- nb = *lwork / ldwork;
-/*
- Computing MAX
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 2, i__2 = ilaenv_(&c__2, "ZUNMQL", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nbmin = max(i__1,i__2);
- }
- } else {
- iws = nw;
- }
-
- if (nb < nbmin || nb >= *k) {
-
-/* Use unblocked code */
-
- zunm2l_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], &iinfo);
- } else {
-
-/* Use blocked code */
-
- if ((left && notran) || (! left && ! notran)) {
- i1 = 1;
- i2 = *k;
- i3 = nb;
- } else {
- i1 = (*k - 1) / nb * nb + 1;
- i2 = 1;
- i3 = -nb;
- }
-
- if (left) {
- ni = *n;
- } else {
- mi = *m;
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__4 = nb, i__5 = *k - i__ + 1;
- ib = min(i__4,i__5);
-
-/*
- Form the triangular factor of the block reflector
- H = H(i+ib-1) . . . H(i+1) H(i)
-*/
-
- i__4 = nq - *k + i__ + ib - 1;
- zlarft_("Backward", "Columnwise", &i__4, &ib, &a[i__ * a_dim1 + 1]
- , lda, &tau[i__], t, &c__65);
- if (left) {
-
-/* H or H' is applied to C(1:m-k+i+ib-1,1:n) */
-
- mi = *m - *k + i__ + ib - 1;
- } else {
-
-/* H or H' is applied to C(1:m,1:n-k+i+ib-1) */
-
- ni = *n - *k + i__ + ib - 1;
- }
-
-/* Apply H or H' */
-
- zlarfb_(side, trans, "Backward", "Columnwise", &mi, &ni, &ib, &a[
- i__ * a_dim1 + 1], lda, t, &c__65, &c__[c_offset], ldc, &
- work[1], &ldwork);
-/* L10: */
- }
- }
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- return 0;
-
-/* End of ZUNMQL */
-
-} /* zunmql_ */
-
-/* Subroutine */ int zunmqr_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublecomplex *a, integer *lda, doublecomplex *tau,
- doublecomplex *c__, integer *ldc, doublecomplex *work, integer *lwork,
- integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
- i__5;
- char ch__1[2];
-
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i__;
- static doublecomplex t[4160] /* was [65][64] */;
- static integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
- static logical left;
- extern logical lsame_(char *, char *);
- static integer nbmin, iinfo;
- extern /* Subroutine */ int zunm2r_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- static logical notran;
- static integer ldwork;
- extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *);
- static integer lwkopt;
- static logical lquery;
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZUNMQR overwrites the general complex M-by-N matrix C with
-
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': Q * C C * Q
- TRANS = 'C': Q**H * C C * Q**H
-
- where Q is a complex unitary matrix defined as the product of k
- elementary reflectors
-
- Q = H(1) H(2) . . . H(k)
-
- as returned by ZGEQRF. Q is of order M if SIDE = 'L' and of order N
- if SIDE = 'R'.
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q**H from the Left;
- = 'R': apply Q or Q**H from the Right.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q;
- = 'C': Conjugate transpose, apply Q**H.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines
- the matrix Q.
- If SIDE = 'L', M >= K >= 0;
- if SIDE = 'R', N >= K >= 0.
-
- A (input) COMPLEX*16 array, dimension (LDA,K)
- The i-th column must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- ZGEQRF in the first k columns of its array argument A.
- A is modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- If SIDE = 'L', LDA >= max(1,M);
- if SIDE = 'R', LDA >= max(1,N).
-
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZGEQRF.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If SIDE = 'L', LWORK >= max(1,N);
- if SIDE = 'R', LWORK >= max(1,M).
- For optimum performance LWORK >= N*NB if SIDE = 'L', and
- LWORK >= M*NB if SIDE = 'R', where NB is the optimal
- blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
- lquery = *lwork == -1;
-
-/* NQ is the order of Q and NW is the minimum dimension of WORK */
-
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! notran && ! lsame_(trans, "C"))) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,nq)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- } else if ((*lwork < max(1,nw) && ! lquery)) {
- *info = -12;
- }
-
- if (*info == 0) {
-
-/*
- Determine the block size. NB may be at most NBMAX, where NBMAX
- is used to define the local array T.
-
- Computing MIN
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 64, i__2 = ilaenv_(&c__1, "ZUNMQR", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nb = min(i__1,i__2);
- lwkopt = max(1,nw) * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNMQR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || *k == 0) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- nbmin = 2;
- ldwork = nw;
- if ((nb > 1 && nb < *k)) {
- iws = nw * nb;
- if (*lwork < iws) {
- nb = *lwork / ldwork;
-/*
- Computing MAX
- Writing concatenation
-*/
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 2, i__2 = ilaenv_(&c__2, "ZUNMQR", ch__1, m, n, k, &c_n1, (
- ftnlen)6, (ftnlen)2);
- nbmin = max(i__1,i__2);
- }
- } else {
- iws = nw;
- }
-
- if (nb < nbmin || nb >= *k) {
-
-/* Use unblocked code */
-
- zunm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], &iinfo);
- } else {
-
-/* Use blocked code */
-
- if ((left && ! notran) || (! left && notran)) {
- i1 = 1;
- i2 = *k;
- i3 = nb;
- } else {
- i1 = (*k - 1) / nb * nb + 1;
- i2 = 1;
- i3 = -nb;
- }
-
- if (left) {
- ni = *n;
- jc = 1;
- } else {
- mi = *m;
- ic = 1;
- }
-
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-/* Computing MIN */
- i__4 = nb, i__5 = *k - i__ + 1;
- ib = min(i__4,i__5);
-
-/*
- Form the triangular factor of the block reflector
- H = H(i) H(i+1) . . . H(i+ib-1)
-*/
-
- i__4 = nq - i__ + 1;
- zlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], t, &c__65)
- ;
- if (left) {
-
-/* H or H' is applied to C(i:m,1:n) */
-
- mi = *m - i__ + 1;
- ic = i__;
- } else {
-
-/* H or H' is applied to C(1:m,i:n) */
-
- ni = *n - i__ + 1;
- jc = i__;
- }
-
-/* Apply H or H' */
-
- zlarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &a[
- i__ + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc *
- c_dim1], ldc, &work[1], &ldwork);
-/* L10: */
- }
- }
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- return 0;
-
-/* End of ZUNMQR */
-
-} /* zunmqr_ */
-
-/* Subroutine */ int zunmtr_(char *side, char *uplo, char *trans, integer *m,
- integer *n, doublecomplex *a, integer *lda, doublecomplex *tau,
- doublecomplex *c__, integer *ldc, doublecomplex *work, integer *lwork,
- integer *info)
-{
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2, i__3;
- char ch__1[2];
-
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
-
- /* Local variables */
- static integer i1, i2, nb, mi, ni, nq, nw;
- static logical left;
- extern logical lsame_(char *, char *);
- static integer iinfo;
- static logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- static integer lwkopt;
- static logical lquery;
- extern /* Subroutine */ int zunmql_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmqr_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *, integer *);
-
-
-/*
- -- LAPACK routine (version 3.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- June 30, 1999
-
-
- Purpose
- =======
-
- ZUNMTR overwrites the general complex M-by-N matrix C with
-
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': Q * C C * Q
- TRANS = 'C': Q**H * C C * Q**H
-
- where Q is a complex unitary matrix of order nq, with nq = m if
- SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
- nq-1 elementary reflectors, as returned by ZHETRD:
-
- if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
-
- if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
-
- Arguments
- =========
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q**H from the Left;
- = 'R': apply Q or Q**H from the Right.
-
- UPLO (input) CHARACTER*1
- = 'U': Upper triangle of A contains elementary reflectors
- from ZHETRD;
- = 'L': Lower triangle of A contains elementary reflectors
- from ZHETRD.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q;
- = 'C': Conjugate transpose, apply Q**H.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- A (input) COMPLEX*16 array, dimension
- (LDA,M) if SIDE = 'L'
- (LDA,N) if SIDE = 'R'
- The vectors which define the elementary reflectors, as
- returned by ZHETRD.
-
- LDA (input) INTEGER
- The leading dimension of the array A.
- LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
-
- TAU (input) COMPLEX*16 array, dimension
- (M-1) if SIDE = 'L'
- (N-1) if SIDE = 'R'
- TAU(i) must contain the scalar factor of the elementary
- reflector H(i), as returned by ZHETRD.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the M-by-N matrix C.
- On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK.
- If SIDE = 'L', LWORK >= max(1,N);
- if SIDE = 'R', LWORK >= max(1,M).
- For optimum performance LWORK >= N*NB if SIDE = 'L', and
- LWORK >=M*NB if SIDE = 'R', where NB is the optimal
- blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns
- this value as the first entry of the WORK array, and no error
- message related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- =====================================================================
-
-
- Test the input arguments
-*/
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- upper = lsame_(uplo, "U");
- lquery = *lwork == -1;
-
-/* NQ is the order of Q and NW is the minimum dimension of WORK */
-
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if ((! left && ! lsame_(side, "R"))) {
- *info = -1;
- } else if ((! upper && ! lsame_(uplo, "L"))) {
- *info = -2;
- } else if ((! lsame_(trans, "N") && ! lsame_(trans,
- "C"))) {
- *info = -3;
- } else if (*m < 0) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*lda < max(1,nq)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- } else if ((*lwork < max(1,nw) && ! lquery)) {
- *info = -12;
- }
-
- if (*info == 0) {
- if (upper) {
- if (left) {
-/* Writing concatenation */
- i__1[0] = 1, a__1[0] = side;
- i__1[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- i__2 = *m - 1;
- i__3 = *m - 1;
- nb = ilaenv_(&c__1, "ZUNMQL", ch__1, &i__2, n, &i__3, &c_n1, (
- ftnlen)6, (ftnlen)2);
- } else {
-/* Writing concatenation */
- i__1[0] = 1, a__1[0] = side;
- i__1[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- i__2 = *n - 1;
- i__3 = *n - 1;
- nb = ilaenv_(&c__1, "ZUNMQL", ch__1, m, &i__2, &i__3, &c_n1, (
- ftnlen)6, (ftnlen)2);
- }
- } else {
- if (left) {
-/* Writing concatenation */
- i__1[0] = 1, a__1[0] = side;
- i__1[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- i__2 = *m - 1;
- i__3 = *m - 1;
- nb = ilaenv_(&c__1, "ZUNMQR", ch__1, &i__2, n, &i__3, &c_n1, (
- ftnlen)6, (ftnlen)2);
- } else {
-/* Writing concatenation */
- i__1[0] = 1, a__1[0] = side;
- i__1[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- i__2 = *n - 1;
- i__3 = *n - 1;
- nb = ilaenv_(&c__1, "ZUNMQR", ch__1, m, &i__2, &i__3, &c_n1, (
- ftnlen)6, (ftnlen)2);
- }
- }
- lwkopt = max(1,nw) * nb;
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- }
-
- if (*info != 0) {
- i__2 = -(*info);
- xerbla_("ZUNMTR", &i__2);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
-/* Quick return if possible */
-
- if (*m == 0 || *n == 0 || nq == 1) {
- work[1].r = 1., work[1].i = 0.;
- return 0;
- }
-
- if (left) {
- mi = *m - 1;
- ni = *n;
- } else {
- mi = *m;
- ni = *n - 1;
- }
-
- if (upper) {
-
-/* Q was determined by a call to ZHETRD with UPLO = 'U' */
-
- i__2 = nq - 1;
- zunmql_(side, trans, &mi, &ni, &i__2, &a[((a_dim1) << (1)) + 1], lda,
- &tau[1], &c__[c_offset], ldc, &work[1], lwork, &iinfo);
- } else {
-
-/* Q was determined by a call to ZHETRD with UPLO = 'L' */
-
- if (left) {
- i1 = 2;
- i2 = 1;
- } else {
- i1 = 1;
- i2 = 2;
- }
- i__2 = nq - 1;
- zunmqr_(side, trans, &mi, &ni, &i__2, &a[a_dim1 + 2], lda, &tau[1], &
- c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
- }
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- return 0;
-
-/* End of ZUNMTR */
-
-} /* zunmtr_ */
-