summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMatti Picus <matti.picus@gmail.com>2019-02-20 08:45:47 +0200
committerGitHub <noreply@github.com>2019-02-20 08:45:47 +0200
commit378cadfaf3e5a8b5d84583e5ee7f2d25bfa97cb4 (patch)
tree3c42c93cd70df62cf4799242c039705eb3dec701
parent95db8c28841a02a4a871c08a6e10115f471c12c5 (diff)
parent2096b6d20d45e990a77ebea6735a41c191f008b0 (diff)
downloadnumpy-378cadfaf3e5a8b5d84583e5ee7f2d25bfa97cb4.tar.gz
Merge pull request #12885 from adamjstewart/docs/np-linalg-docs
DOC: fix math formatting of np.linalg.lstsq docs
-rw-r--r--numpy/linalg/linalg.py20
1 files changed, 10 insertions, 10 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index 189c64a39..304fce69f 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -1010,7 +1010,7 @@ def eigvals(a):
See Also
--------
eig : eigenvalues and right eigenvectors of general arrays
- eigvalsh : eigenvalues of real symmetric or complex Hermitian
+ eigvalsh : eigenvalues of real symmetric or complex Hermitian
(conjugate symmetric) arrays.
eigh : eigenvalues and eigenvectors of real symmetric or complex
Hermitian (conjugate symmetric) arrays.
@@ -1214,7 +1214,7 @@ def eig(a):
--------
eigvals : eigenvalues of a non-symmetric array.
- eigh : eigenvalues and eigenvectors of a real symmetric or complex
+ eigh : eigenvalues and eigenvectors of a real symmetric or complex
Hermitian (conjugate symmetric) array.
eigvalsh : eigenvalues of a real symmetric or complex Hermitian
@@ -2130,16 +2130,16 @@ def _lstsq_dispatcher(a, b, rcond=None):
@array_function_dispatch(_lstsq_dispatcher)
def lstsq(a, b, rcond="warn"):
- """
+ r"""
Return the least-squares solution to a linear matrix equation.
- Solves the equation `a x = b` by computing a vector `x` that
- minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may
- be under-, well-, or over- determined (i.e., the number of
- linearly independent rows of `a` can be less than, equal to, or
- greater than its number of linearly independent columns). If `a`
- is square and of full rank, then `x` (but for round-off error) is
- the "exact" solution of the equation.
+ Solves the equation :math:`a x = b` by computing a vector `x` that
+ minimizes the squared Euclidean 2-norm :math:`\| b - a x \|^2_2`.
+ The equation may be under-, well-, or over-determined (i.e., the
+ number of linearly independent rows of `a` can be less than, equal
+ to, or greater than its number of linearly independent columns).
+ If `a` is square and of full rank, then `x` (but for round-off error)
+ is the "exact" solution of the equation.
Parameters
----------