summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlan McIntyre <alan.mcintyre@local>2008-07-22 23:02:29 +0000
committerAlan McIntyre <alan.mcintyre@local>2008-07-22 23:02:29 +0000
commit681aa536342db1332a5af9b632495ddc883ecba9 (patch)
tree75fee25252914fcb9a10f465dcd60fc8f2fd33ee
parent6dd88dc3b6c94d54585f639c533c00bf0928e13a (diff)
downloadnumpy-681aa536342db1332a5af9b632495ddc883ecba9.tar.gz
Standardize NumPy import as "import numpy as np".
-rw-r--r--numpy/ma/tests/test_subclassing.py26
-rw-r--r--numpy/testing/tests/test_utils.py38
2 files changed, 32 insertions, 32 deletions
diff --git a/numpy/ma/tests/test_subclassing.py b/numpy/ma/tests/test_subclassing.py
index 4d9842506..eff7b268d 100644
--- a/numpy/ma/tests/test_subclassing.py
+++ b/numpy/ma/tests/test_subclassing.py
@@ -10,25 +10,25 @@ __version__ = '1.0'
__revision__ = "$Revision: 3473 $"
__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
-import numpy as N
+import numpy as np
import numpy.core.numeric as numeric
from numpy.testing import *
from numpy.ma.testutils import *
from numpy.ma.core import *
-class SubArray(N.ndarray):
- """Defines a generic N.ndarray subclass, that stores some metadata
+class SubArray(np.ndarray):
+ """Defines a generic np.ndarray subclass, that stores some metadata
in the dictionary `info`."""
def __new__(cls,arr,info={}):
- x = N.asanyarray(arr).view(cls)
+ x = np.asanyarray(arr).view(cls)
x.info = info
return x
def __array_finalize__(self, obj):
self.info = getattr(obj,'info',{})
return
def __add__(self, other):
- result = N.ndarray.__add__(self, other)
+ result = np.ndarray.__add__(self, other)
result.info.update({'added':result.info.pop('added',0)+1})
return result
@@ -52,13 +52,13 @@ class MSubArray(SubArray,MaskedArray):
msubarray = MSubArray
-class MMatrix(MaskedArray, N.matrix,):
+class MMatrix(MaskedArray, np.matrix,):
def __new__(cls, data, mask=nomask):
- mat = N.matrix(data)
+ mat = np.matrix(data)
_data = MaskedArray.__new__(cls, data=mat, mask=mask)
return _data
def __array_finalize__(self,obj):
- N.matrix.__array_finalize__(self, obj)
+ np.matrix.__array_finalize__(self, obj)
MaskedArray.__array_finalize__(self,obj)
return
def _get_series(self):
@@ -74,7 +74,7 @@ class TestSubclassing(TestCase):
def test_data_subclassing(self):
"Tests whether the subclass is kept."
- x = N.arange(5)
+ x = np.arange(5)
m = [0,0,1,0,0]
xsub = SubArray(x)
xmsub = masked_array(xsub, mask=m)
@@ -84,14 +84,14 @@ class TestSubclassing(TestCase):
def test_maskedarray_subclassing(self):
"Tests subclassing MaskedArray"
- x = N.arange(5)
+ x = np.arange(5)
mx = mmatrix(x,mask=[0,1,0,0,0])
- assert isinstance(mx._data, N.matrix)
+ assert isinstance(mx._data, np.matrix)
"Tests masked_unary_operation"
assert isinstance(add(mx,mx), mmatrix)
assert isinstance(add(mx,x), mmatrix)
assert_equal(add(mx,x), mx+x)
- assert isinstance(add(mx,mx)._data, N.matrix)
+ assert isinstance(add(mx,mx)._data, np.matrix)
assert isinstance(add.outer(mx,mx), mmatrix)
"Tests masked_binary_operation"
assert isinstance(hypot(mx,mx), mmatrix)
@@ -126,7 +126,7 @@ class TestSubclassing(TestCase):
def test_subclasspreservation(self):
"Checks that masked_array(...,subok=True) preserves the class."
- x = N.arange(5)
+ x = np.arange(5)
m = [0,0,1,0,0]
xinfo = [(i,j) for (i,j) in zip(x,m)]
xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
diff --git a/numpy/testing/tests/test_utils.py b/numpy/testing/tests/test_utils.py
index ea8fa044b..2d42e0a9a 100644
--- a/numpy/testing/tests/test_utils.py
+++ b/numpy/testing/tests/test_utils.py
@@ -1,4 +1,4 @@
-import numpy as N
+import numpy as np
from numpy.testing import *
import unittest
@@ -19,29 +19,29 @@ class _GenericTest(object):
def test_array_rank1_eq(self):
"""Test two equal array of rank 1 are found equal."""
- a = N.array([1, 2])
- b = N.array([1, 2])
+ a = np.array([1, 2])
+ b = np.array([1, 2])
self._test_equal(a, b)
def test_array_rank1_noteq(self):
"""Test two different array of rank 1 are found not equal."""
- a = N.array([1, 2])
- b = N.array([2, 2])
+ a = np.array([1, 2])
+ b = np.array([2, 2])
self._test_not_equal(a, b)
def test_array_rank2_eq(self):
"""Test two equal array of rank 2 are found equal."""
- a = N.array([[1, 2], [3, 4]])
- b = N.array([[1, 2], [3, 4]])
+ a = np.array([[1, 2], [3, 4]])
+ b = np.array([[1, 2], [3, 4]])
self._test_equal(a, b)
def test_array_diffshape(self):
"""Test two arrays with different shapes are found not equal."""
- a = N.array([1, 2])
- b = N.array([[1, 2], [1, 2]])
+ a = np.array([1, 2])
+ b = np.array([[1, 2], [1, 2]])
self._test_not_equal(a, b)
@@ -52,7 +52,7 @@ class TestEqual(_GenericTest, unittest.TestCase):
def test_generic_rank1(self):
"""Test rank 1 array for all dtypes."""
def foo(t):
- a = N.empty(2, t)
+ a = np.empty(2, t)
a.fill(1)
b = a.copy()
c = a.copy()
@@ -71,7 +71,7 @@ class TestEqual(_GenericTest, unittest.TestCase):
def test_generic_rank3(self):
"""Test rank 3 array for all dtypes."""
def foo(t):
- a = N.empty((4, 2, 3), t)
+ a = np.empty((4, 2, 3), t)
a.fill(1)
b = a.copy()
c = a.copy()
@@ -89,35 +89,35 @@ class TestEqual(_GenericTest, unittest.TestCase):
def test_nan_array(self):
"""Test arrays with nan values in them."""
- a = N.array([1, 2, N.nan])
- b = N.array([1, 2, N.nan])
+ a = np.array([1, 2, np.nan])
+ b = np.array([1, 2, np.nan])
self._test_equal(a, b)
- c = N.array([1, 2, 3])
+ c = np.array([1, 2, 3])
self._test_not_equal(c, b)
def test_string_arrays(self):
"""Test two arrays with different shapes are found not equal."""
- a = N.array(['floupi', 'floupa'])
- b = N.array(['floupi', 'floupa'])
+ a = np.array(['floupi', 'floupa'])
+ b = np.array(['floupi', 'floupa'])
self._test_equal(a, b)
- c = N.array(['floupipi', 'floupa'])
+ c = np.array(['floupipi', 'floupa'])
self._test_not_equal(c, b)
def test_recarrays(self):
"""Test record arrays."""
- a = N.empty(2, [('floupi', N.float), ('floupa', N.float)])
+ a = np.empty(2, [('floupi', np.float), ('floupa', np.float)])
a['floupi'] = [1, 2]
a['floupa'] = [1, 2]
b = a.copy()
self._test_equal(a, b)
- c = N.empty(2, [('floupipi', N.float), ('floupa', N.float)])
+ c = np.empty(2, [('floupipi', np.float), ('floupa', np.float)])
c['floupipi'] = a['floupi'].copy()
c['floupa'] = a['floupa'].copy()