summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorrgommers <ralf.gommers@googlemail.com>2010-06-02 13:07:10 +0000
committerrgommers <ralf.gommers@googlemail.com>2010-06-02 13:07:10 +0000
commit76e25d22ca216d8f30c74b8df79edd1d8ffdd242 (patch)
tree11e01eaa2f3a0962532d6b7728b7cbedb7fbc9da
parente7c87d78cb3a6a3cb24276a5cf3fdb3f4d0bc43c (diff)
downloadnumpy-76e25d22ca216d8f30c74b8df79edd1d8ffdd242.tar.gz
DOC: merge wiki edits for module core.
-rw-r--r--numpy/core/fromnumeric.py2
-rw-r--r--numpy/core/memmap.py10
-rw-r--r--numpy/core/numeric.py12
-rw-r--r--numpy/core/records.py4
4 files changed, 19 insertions, 9 deletions
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index b255e89af..c142cd1ed 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -2371,7 +2371,7 @@ def std(a, axis=None, dtype=None, out=None, ddof=0):
The standard deviation is the square root of the average of the squared
deviations from the mean, i.e., ``std = sqrt(mean(abs(x - x.mean())**2))``.
- The mean is normally calculated as ``x.sum() / N``, where
+ The average squared deviation is normally calculated as ``x.sum() / N``, where
``N = len(x)``. If, however, `ddof` is specified, the divisor ``N - ddof``
is used instead. In standard statistical practice, ``ddof=1`` provides an
unbiased estimator of the variance of the infinite population. ``ddof=0``
diff --git a/numpy/core/memmap.py b/numpy/core/memmap.py
index 83de1cf0a..71f5de93c 100644
--- a/numpy/core/memmap.py
+++ b/numpy/core/memmap.py
@@ -61,6 +61,16 @@ class memmap(ndarray):
Fortran (column-major). This only has an effect if the shape is
greater than 1-D. The default order is 'C'.
+ Attributes
+ ----------
+ filename : str
+ Path to the mapped file.
+ offset : int
+ Offset position in the file.
+ mode : str
+ File mode.
+
+
Methods
-------
close
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index fba6512b2..eb028874a 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -35,10 +35,10 @@ if sys.version_info[0] < 3:
class ComplexWarning(RuntimeWarning):
"""
- Warning that is raised when casting complex numbers to real.
+ The warning raised when casting a complex dtype to a real dtype.
- Casting a complex number to real discards its imaginary part, and
- this behavior may not be what is intended in all cases.
+ As implemented, casting a complex number to a real discards its imaginary
+ part, but this behavior may not be what the user actually wants.
"""
pass
@@ -743,15 +743,15 @@ def convolve(a,v,mode='full'):
See Also
--------
- scipy.signal.fftconv : Convolve two arrays using the Fast Fourier
- Transform.
+ scipy.signal.fftconvolve : Convolve two arrays using the Fast Fourier
+ Transform.
scipy.linalg.toeplitz : Used to construct the convolution operator.
Notes
-----
The discrete convolution operation is defined as
- .. math:: (f * g)[n] = \\sum_{m = -\\infty}^{\\infty} f[m] f[n - m]
+ .. math:: (f * g)[n] = \\sum_{m = -\\infty}^{\\infty} f[m] g[n - m]
It can be shown that a convolution :math:`x(t) * y(t)` in time/space
is equivalent to the multiplication :math:`X(f) Y(f)` in the Fourier
diff --git a/numpy/core/records.py b/numpy/core/records.py
index 2afb89f81..dc1dfad68 100644
--- a/numpy/core/records.py
+++ b/numpy/core/records.py
@@ -285,7 +285,7 @@ class recarray(ndarray):
"""
Construct an ndarray that allows field access using attributes.
- Arrays may have a data-types containing fields, analagous
+ Arrays may have a data-types containing fields, analogous
to columns in a spread sheet. An example is ``[(x, int), (y, float)]``,
where each entry in the array is a pair of ``(int, float)``. Normally,
these attributes are accessed using dictionary lookups such as ``arr['x']``
@@ -346,7 +346,7 @@ class recarray(ndarray):
Notes
-----
This constructor can be compared to ``empty``: it creates a new record
- array but does not fill it with data. To create a reccord array from data,
+ array but does not fill it with data. To create a record array from data,
use one of the following methods:
1. Create a standard ndarray and convert it to a record array,