diff options
author | Stefan van der Walt <stefan@sun.ac.za> | 2007-02-18 21:02:46 +0000 |
---|---|---|
committer | Stefan van der Walt <stefan@sun.ac.za> | 2007-02-18 21:02:46 +0000 |
commit | b860a39925a5e0a49d54fa363ccdf6113dfef12d (patch) | |
tree | b717f4026701aa9dde001aefc44820ffea5f94c4 | |
parent | ff2ceaa981dd5ef632ae965fcbaf81577dc625d1 (diff) | |
download | numpy-b860a39925a5e0a49d54fa363ccdf6113dfef12d.tar.gz |
Fix docstrings for loading with DocFileSuite.
-rw-r--r-- | numpy/core/numerictypes.py | 2 | ||||
-rw-r--r-- | numpy/distutils/ccompiler.py | 6 | ||||
-rw-r--r-- | numpy/lib/function_base.py | 63 | ||||
-rw-r--r-- | numpy/lib/index_tricks.py | 2 | ||||
-rw-r--r-- | numpy/lib/polynomial.py | 15 | ||||
-rw-r--r-- | numpy/lib/shape_base.py | 47 |
6 files changed, 75 insertions, 60 deletions
diff --git a/numpy/core/numerictypes.py b/numpy/core/numerictypes.py index 0836241cd..0ca208390 100644 --- a/numpy/core/numerictypes.py +++ b/numpy/core/numerictypes.py @@ -80,7 +80,7 @@ __all__ = ['sctypeDict', 'sctypeNA', 'typeDict', 'typeNA', 'sctypes', 'ScalarType', 'obj2sctype', 'cast', 'nbytes', 'sctype2char', 'maximum_sctype', 'issctype', 'typecodes'] -from multiarray import typeinfo, ndarray, array, empty, dtype +from numpy.core.multiarray import typeinfo, ndarray, array, empty, dtype import types as _types # we don't export these for import *, but we do want them accessible diff --git a/numpy/distutils/ccompiler.py b/numpy/distutils/ccompiler.py index 3a9ee48dc..e850569f4 100644 --- a/numpy/distutils/ccompiler.py +++ b/numpy/distutils/ccompiler.py @@ -8,9 +8,9 @@ from distutils import ccompiler from distutils.sysconfig import customize_compiler from distutils.version import LooseVersion -import log -from exec_command import exec_command -from misc_util import cyg2win32, is_sequence, mingw32 +from numpy.distutils import log +from numpy.distutils.exec_command import exec_command +from numpy.distutils.misc_util import cyg2win32, is_sequence, mingw32 from distutils.spawn import _nt_quote_args # hack to set compiler optimizing options. Needs to integrated with something. diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 02e7f605e..14f02f797 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -143,6 +143,7 @@ def histogramdd(sample, bins=10, range=None, normed=False): H, edges = histogramdd(x, bins = (5, 6, 7)) See also: histogram + """ try: @@ -263,6 +264,7 @@ def average(a, axis=None, weights=None, returned=False): Raises ZeroDivisionError if appropriate. (The version in MA does not -- it returns masked values). + """ if axis is None: a = array(a).ravel() @@ -376,31 +378,32 @@ def piecewise(x, condlist, funclist, *args, **kw): def select(condlist, choicelist, default=0): """ Return an array composed of different elements of choicelist - depending on the list of conditions. - - condlist is a list of condition arrays containing ones or zeros - - choicelist is a list of choice arrays (of the "same" size as the - arrays in condlist). The result array has the "same" size as the - arrays in choicelist. If condlist is [c0, ..., cN-1] then choicelist - must be of length N. The elements of the choicelist can then be - represented as [v0, ..., vN-1]. The default choice if none of the - conditions are met is given as the default argument. - - The conditions are tested in order and the first one statisfied is - used to select the choice. In other words, the elements of the - output array are found from the following tree (notice the order of - the conditions matters): - - if c0: v0 - elif c1: v1 - elif c2: v2 - ... - elif cN-1: vN-1 - else: default - - Note that one of the condition arrays must be large enough to handle - the largest array in the choice list. + depending on the list of conditions. + + condlist is a list of condition arrays containing ones or zeros + + choicelist is a list of choice arrays (of the "same" size as the + arrays in condlist). The result array has the "same" size as the + arrays in choicelist. If condlist is [c0, ..., cN-1] then choicelist + must be of length N. The elements of the choicelist can then be + represented as [v0, ..., vN-1]. The default choice if none of the + conditions are met is given as the default argument. + + The conditions are tested in order and the first one statisfied is + used to select the choice. In other words, the elements of the + output array are found from the following tree (notice the order of + the conditions matters): + + if c0: v0 + elif c1: v1 + elif c2: v2 + ... + elif cN-1: vN-1 + else: default + + Note that one of the condition arrays must be large enough to handle + the largest array in the choice list. + """ n = len(condlist) n2 = len(choicelist) @@ -452,7 +455,8 @@ def gradient(f, *varargs): Outputs: N arrays of the same shape as f giving the derivative of f with respect - to each dimension. + to each dimension. + """ N = len(f.shape) # number of dimensions n = len(varargs) @@ -542,6 +546,7 @@ bins is monotonically increasing, or bins [i-1] > x >= bins[i] if bins is monotonically decreasing. Beyond the bounds of the bins 0 or len(bins) is returned as appropriate. + """) except RuntimeError: pass @@ -558,6 +563,7 @@ is specified, every occurrence of i at a position p contributes weights[p] instead of 1. See also: histogram, digitize, unique. + """) except RuntimeError: pass @@ -570,6 +576,7 @@ Add a docstring to a built-in obj if possible. If the obj already has a docstring raise a RuntimeError If this routine does not know how to add a docstring to the object raise a TypeError + """) except RuntimeError: pass @@ -612,6 +619,7 @@ def sort_complex(a): the imaginary part if the real part is equal (the default sort order for complex arrays). This function is a wrapper ensuring a complex return type. + """ b = array(a,copy=True) b.sort() @@ -633,6 +641,7 @@ def trim_zeros(filt, trim='fb'): >>> a = array((0, 0, 0, 1, 2, 3, 2, 1, 0)) >>> numpy.trim_zeros(a) array([1, 2, 3, 2, 1]) + """ first = 0 trim = trim.upper() @@ -657,6 +666,7 @@ def unique(x): Example: >>> unique([5,2,4,0,4,4,2,2,1]) array([0,1,2,4,5]) + """ try: tmp = x.flatten() @@ -682,6 +692,7 @@ def place(arr, mask, vals): """Similar to putmask arr[mask] = vals but the 1D array vals has the same number of elements as the non-zero values of mask. Inverse of extract. + """ return _insert(arr, mask, vals) diff --git a/numpy/lib/index_tricks.py b/numpy/lib/index_tricks.py index 8ac065c47..8f8e1b235 100644 --- a/numpy/lib/index_tricks.py +++ b/numpy/lib/index_tricks.py @@ -119,6 +119,7 @@ class nd_grid(object): >>> ogrid = nd_grid(sparse=True) >>> ogrid[0:5,0:5] [array([[0],[1],[2],[3],[4]]), array([[0, 1, 2, 3, 4]])] + """ def __init__(self, sparse=False): self.sparse = sparse @@ -312,6 +313,7 @@ class r_class(concatenator): For example: >>> r_[array([1,2,3]), 0, 0, array([4,5,6])] array([1, 2, 3, 0, 0, 4, 5, 6]) + """ def __init__(self): concatenator.__init__(self, 0) diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py index f8bc1f693..ff429e3f8 100644 --- a/numpy/lib/polynomial.py +++ b/numpy/lib/polynomial.py @@ -50,13 +50,14 @@ def _lstsq(X, y, rcond): def poly(seq_of_zeros): """ Return a sequence representing a polynomial given a sequence of roots. - If the input is a matrix, return the characteristic polynomial. - - Example: - - >>> b = roots([1,3,1,5,6]) - >>> poly(b) - array([1., 3., 1., 5., 6.]) + If the input is a matrix, return the characteristic polynomial. + + Example: + + >>> b = roots([1,3,1,5,6]) + >>> poly(b) + array([1., 3., 1., 5., 6.]) + """ seq_of_zeros = atleast_1d(seq_of_zeros) sh = seq_of_zeros.shape diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py index cb15a2760..1e9b55bb6 100644 --- a/numpy/lib/shape_base.py +++ b/numpy/lib/shape_base.py @@ -274,29 +274,30 @@ def column_stack(tup): def dstack(tup): """ Stack arrays in sequence depth wise (along third dimension) - Description: - Take a sequence of arrays and stack them along the third axis. - All arrays in the sequence must have the same shape along all - but the third axis. This is a simple way to stack 2D arrays - (images) into a single 3D array for processing. - dstack will rebuild arrays divided by dsplit. - Arguments: - tup -- sequence of arrays. All arrays must have the same - shape. - Examples: - >>> import numpy - >>> a = array((1,2,3)) - >>> b = array((2,3,4)) - >>> numpy.dstack((a,b)) - array([ [[1, 2], - [2, 3], - [3, 4]]]) - >>> a = array([[1],[2],[3]]) - >>> b = array([[2],[3],[4]]) - >>> numpy.dstack((a,b)) - array([[ [1, 2]], - [ [2, 3]], - [ [3, 4]]]) + Description: + Take a sequence of arrays and stack them along the third axis. + All arrays in the sequence must have the same shape along all + but the third axis. This is a simple way to stack 2D arrays + (images) into a single 3D array for processing. + dstack will rebuild arrays divided by dsplit. + Arguments: + tup -- sequence of arrays. All arrays must have the same + shape. + Examples: + >>> import numpy + >>> a = array((1,2,3)) + >>> b = array((2,3,4)) + >>> numpy.dstack((a,b)) + array([ [[1, 2], + [2, 3], + [3, 4]]]) + >>> a = array([[1],[2],[3]]) + >>> b = array([[2],[3],[4]]) + >>> numpy.dstack((a,b)) + array([[ [1, 2]], + [ [2, 3]], + [ [3, 4]]]) + """ return _nx.concatenate(map(atleast_3d,tup),2) |