summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAllan Haldane <ealloc@gmail.com>2019-04-09 17:55:30 -0400
committerGitHub <noreply@github.com>2019-04-09 17:55:30 -0400
commitd6a8cabd725e93a1dcfc03f0b4154dd96fd4ce8f (patch)
tree610caf78f57d255c001d6f0a188c4baa63512ab1
parent29c4b2177865592d0876dffda39436c31c6c7994 (diff)
parent000939ad2d6ec57ca1ab173243ae56350cd3b97f (diff)
downloadnumpy-d6a8cabd725e93a1dcfc03f0b4154dd96fd4ce8f.tar.gz
Merge pull request #13219 from kikocorreoso/nan_to_num-enhancement
ENH: nan_to_num keyword addition (was #9355)
-rw-r--r--doc/release/1.17.0-notes.rst6
-rw-r--r--numpy/lib/tests/test_type_check.py40
-rw-r--r--numpy/lib/type_check.py46
3 files changed, 83 insertions, 9 deletions
diff --git a/doc/release/1.17.0-notes.rst b/doc/release/1.17.0-notes.rst
index 7857400e8..1155449a7 100644
--- a/doc/release/1.17.0-notes.rst
+++ b/doc/release/1.17.0-notes.rst
@@ -197,6 +197,12 @@ The boolean and integer types are incapable of storing ``np.nan`` and ``np.inf``
which allows us to provide specialized ufuncs that are up to 250x faster than the current
approach.
+New keywords added to ``np.nan_to_num``
+---------------------------------------
+``np.nan_to_num`` now accepts keywords ``nan``, ``posinf`` and ``neginf`` allowing the
+user to define the value to replace the ``nan``, positive and negative ``np.inf`` values
+respectively.
+
Changes
=======
diff --git a/numpy/lib/tests/test_type_check.py b/numpy/lib/tests/test_type_check.py
index 2982ca31a..b3f114b92 100644
--- a/numpy/lib/tests/test_type_check.py
+++ b/numpy/lib/tests/test_type_check.py
@@ -360,6 +360,14 @@ class TestNanToNum(object):
assert_(vals[1] == 0)
assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2]))
assert_equal(type(vals), np.ndarray)
+
+ # perform the same tests but with nan, posinf and neginf keywords
+ with np.errstate(divide='ignore', invalid='ignore'):
+ vals = nan_to_num(np.array((-1., 0, 1))/0.,
+ nan=10, posinf=20, neginf=30)
+ assert_equal(vals, [30, 10, 20])
+ assert_all(np.isfinite(vals[[0, 2]]))
+ assert_equal(type(vals), np.ndarray)
# perform the same test but in-place
with np.errstate(divide='ignore', invalid='ignore'):
@@ -371,26 +379,48 @@ class TestNanToNum(object):
assert_(vals[1] == 0)
assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2]))
assert_equal(type(vals), np.ndarray)
+
+ # perform the same test but in-place
+ with np.errstate(divide='ignore', invalid='ignore'):
+ vals = np.array((-1., 0, 1))/0.
+ result = nan_to_num(vals, copy=False, nan=10, posinf=20, neginf=30)
+
+ assert_(result is vals)
+ assert_equal(vals, [30, 10, 20])
+ assert_all(np.isfinite(vals[[0, 2]]))
+ assert_equal(type(vals), np.ndarray)
def test_array(self):
vals = nan_to_num([1])
assert_array_equal(vals, np.array([1], int))
assert_equal(type(vals), np.ndarray)
+ vals = nan_to_num([1], nan=10, posinf=20, neginf=30)
+ assert_array_equal(vals, np.array([1], int))
+ assert_equal(type(vals), np.ndarray)
def test_integer(self):
vals = nan_to_num(1)
assert_all(vals == 1)
assert_equal(type(vals), np.int_)
+ vals = nan_to_num(1, nan=10, posinf=20, neginf=30)
+ assert_all(vals == 1)
+ assert_equal(type(vals), np.int_)
def test_float(self):
vals = nan_to_num(1.0)
assert_all(vals == 1.0)
assert_equal(type(vals), np.float_)
+ vals = nan_to_num(1.1, nan=10, posinf=20, neginf=30)
+ assert_all(vals == 1.1)
+ assert_equal(type(vals), np.float_)
def test_complex_good(self):
vals = nan_to_num(1+1j)
assert_all(vals == 1+1j)
assert_equal(type(vals), np.complex_)
+ vals = nan_to_num(1+1j, nan=10, posinf=20, neginf=30)
+ assert_all(vals == 1+1j)
+ assert_equal(type(vals), np.complex_)
def test_complex_bad(self):
with np.errstate(divide='ignore', invalid='ignore'):
@@ -414,6 +444,16 @@ class TestNanToNum(object):
# !! inf. Comment out for now, and see if it
# !! changes
#assert_all(vals.real < -1e10) and assert_all(np.isfinite(vals))
+
+ def test_do_not_rewrite_previous_keyword(self):
+ # This is done to test that when, for instance, nan=np.inf then these
+ # values are not rewritten by posinf keyword to the posinf value.
+ with np.errstate(divide='ignore', invalid='ignore'):
+ vals = nan_to_num(np.array((-1., 0, 1))/0., nan=np.inf, posinf=999)
+ assert_all(np.isfinite(vals[[0, 2]]))
+ assert_all(vals[0] < -1e10)
+ assert_equal(vals[[1, 2]], [np.inf, 999])
+ assert_equal(type(vals), np.ndarray)
class TestRealIfClose(object):
diff --git a/numpy/lib/type_check.py b/numpy/lib/type_check.py
index f55517732..2b254b6c0 100644
--- a/numpy/lib/type_check.py
+++ b/numpy/lib/type_check.py
@@ -363,18 +363,23 @@ def _getmaxmin(t):
return f.max, f.min
-def _nan_to_num_dispatcher(x, copy=None):
+def _nan_to_num_dispatcher(x, copy=None, nan=None, posinf=None, neginf=None):
return (x,)
@array_function_dispatch(_nan_to_num_dispatcher)
-def nan_to_num(x, copy=True):
+def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None):
"""
- Replace NaN with zero and infinity with large finite numbers.
+ Replace NaN with zero and infinity with large finite numbers (default
+ behaviour) or with the numbers defined by the user using the `nan`,
+ `posinf` and/or `neginf` keywords.
- If `x` is inexact, NaN is replaced by zero, and infinity and -infinity
- replaced by the respectively largest and most negative finite floating
- point values representable by ``x.dtype``.
+ If `x` is inexact, NaN is replaced by zero or by the user defined value in
+ `nan` keyword, infinity is replaced by the largest finite floating point
+ values representable by ``x.dtype`` or by the user defined value in
+ `posinf` keyword and -infinity is replaced by the most negative finite
+ floating point values representable by ``x.dtype`` or by the user defined
+ value in `neginf` keyword.
For complex dtypes, the above is applied to each of the real and
imaginary components of `x` separately.
@@ -390,6 +395,17 @@ def nan_to_num(x, copy=True):
in-place (False). The in-place operation only occurs if
casting to an array does not require a copy.
Default is True.
+ nan : int, float, optional
+ Value to be used to fill NaN values. If no value is passed
+ then NaN values will be replaced with 0.0.
+ posinf : int, float, optional
+ Value to be used to fill positive infinity values. If no value is
+ passed then positive infinity values will be replaced with a very
+ large number.
+ neginf : int, float, optional
+ Value to be used to fill negative infinity values. If no value is
+ passed then negative infinity values will be replaced with a very
+ small (or negative) number.
.. versionadded:: 1.13
@@ -424,6 +440,9 @@ def nan_to_num(x, copy=True):
>>> np.nan_to_num(x)
array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary
-1.28000000e+002, 1.28000000e+002])
+ >>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333)
+ array([ 3.3333333e+07, 3.3333333e+07, -9.9990000e+03,
+ -1.2800000e+02, 1.2800000e+02])
>>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)])
array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary
-1.28000000e+002, 1.28000000e+002])
@@ -431,6 +450,8 @@ def nan_to_num(x, copy=True):
array([ 1.79769313e+308 +0.00000000e+000j, # may vary
0.00000000e+000 +0.00000000e+000j,
0.00000000e+000 +1.79769313e+308j])
+ >>> np.nan_to_num(y, nan=111111, posinf=222222)
+ array([222222.+111111.j, 111111. +0.j, 111111.+222222.j])
"""
x = _nx.array(x, subok=True, copy=copy)
xtype = x.dtype.type
@@ -444,10 +465,17 @@ def nan_to_num(x, copy=True):
dest = (x.real, x.imag) if iscomplex else (x,)
maxf, minf = _getmaxmin(x.real.dtype)
+ if posinf is not None:
+ maxf = posinf
+ if neginf is not None:
+ minf = neginf
for d in dest:
- _nx.copyto(d, 0.0, where=isnan(d))
- _nx.copyto(d, maxf, where=isposinf(d))
- _nx.copyto(d, minf, where=isneginf(d))
+ idx_nan = isnan(d)
+ idx_posinf = isposinf(d)
+ idx_neginf = isneginf(d)
+ _nx.copyto(d, nan, where=idx_nan)
+ _nx.copyto(d, maxf, where=idx_posinf)
+ _nx.copyto(d, minf, where=idx_neginf)
return x[()] if isscalar else x
#-----------------------------------------------------------------------------