diff options
author | kritisingh1 <kritisingh1.ks@gmail.com> | 2019-07-06 18:08:53 +0530 |
---|---|---|
committer | kritisingh1 <kritisingh1.ks@gmail.com> | 2019-07-06 23:38:00 +0530 |
commit | 02b49b42baadbe70f6c98ad7ec37c02683a1698f (patch) | |
tree | 08b1190acdcb4cbb84157ed53f5cc55266be864d | |
parent | e145a74857a20e278bcb6e53f29080f1e073e4cd (diff) | |
download | numpy-02b49b42baadbe70f6c98ad7ec37c02683a1698f.tar.gz |
Removes duplicated docs for python functions
-rw-r--r-- | doc/source/reference/routines.other.rst | 3 | ||||
-rw-r--r-- | numpy/core/_add_newdocs.py | 240 |
2 files changed, 2 insertions, 241 deletions
diff --git a/doc/source/reference/routines.other.rst b/doc/source/reference/routines.other.rst index 5bd5835f6..28c9a1ad1 100644 --- a/doc/source/reference/routines.other.rst +++ b/doc/source/reference/routines.other.rst @@ -52,4 +52,5 @@ Matlab-like Functions .. autosummary:: :toctree: generated/ - who
\ No newline at end of file + who + disp
\ No newline at end of file diff --git a/numpy/core/_add_newdocs.py b/numpy/core/_add_newdocs.py index 39974bb0b..584250785 100644 --- a/numpy/core/_add_newdocs.py +++ b/numpy/core/_add_newdocs.py @@ -3255,122 +3255,6 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('min', """)) -add_newdoc('numpy.core.multiarray', 'shares_memory', - """ - shares_memory(a, b, max_work=None) - - Determine if two arrays share memory - - Parameters - ---------- - a, b : ndarray - Input arrays - max_work : int, optional - Effort to spend on solving the overlap problem (maximum number - of candidate solutions to consider). The following special - values are recognized: - - max_work=MAY_SHARE_EXACT (default) - The problem is solved exactly. In this case, the function returns - True only if there is an element shared between the arrays. - max_work=MAY_SHARE_BOUNDS - Only the memory bounds of a and b are checked. - - Raises - ------ - numpy.TooHardError - Exceeded max_work. - - Returns - ------- - out : bool - - See Also - -------- - may_share_memory - - Examples - -------- - >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) - False - - """) - - -add_newdoc('numpy.core.multiarray', 'may_share_memory', - """ - may_share_memory(a, b, max_work=None) - - Determine if two arrays might share memory - - A return of True does not necessarily mean that the two arrays - share any element. It just means that they *might*. - - Only the memory bounds of a and b are checked by default. - - Parameters - ---------- - a, b : ndarray - Input arrays - max_work : int, optional - Effort to spend on solving the overlap problem. See - `shares_memory` for details. Default for ``may_share_memory`` - is to do a bounds check. - - Returns - ------- - out : bool - - See Also - -------- - shares_memory - - Examples - -------- - >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) - False - >>> x = np.zeros([3, 4]) - >>> np.may_share_memory(x[:,0], x[:,1]) - True - - """) - - -add_newdoc('numpy.lib.utils', 'byte_bounds', - """ - byte_bounds(a) - - Returns pointers to the end-points of an array in the form of tuple - of two integers. The first integer is the first byte of the array, - the second integer is just past the last byte of the array. - - If `a` is not contiguous it will not use every byte between the - returned integer values. - - Parameters - ---------- - a : ndarray - Input array. It must conform to the Python-side of the array - interface. - - Returns - ------- - (low, high) : tuple of 2 integers - - Examples - -------- - >>> x = np.array([1,2,4]) - >>> np.byte_bounds(x) - (32030368, 32030392) - >>> I = np.eye(2, dtype='f'); I.dtype - dtype('float32') - >>> low, high = np.byte_bounds(I) - >>> high - low == I.size*I.itemsize - True - - """) - - add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder', """ arr.newbyteorder(new_order='S') @@ -4383,53 +4267,6 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('view', [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')]) """)) -add_newdoc('numpy.lib.utils', 'who', - """ - who(verdict=None) - - Print the NumPy arrays in the given dictionary. - - If there is no dictionary passed in or `vardict` is None then returns - NumPy arrays in the globals() dictionary (all NumPy arrays in the - namespace). - - Parameters - ---------- - vardict : dict, optional - A dictionary possibly containing ndarrays. Default is globals(). - - Returns - ------- - out : None - Returns 'None'. - - Notes - ----- - Prints out the name, shape, bytes and type of all of the ndarrays - present in `vardict`. - - Examples - -------- - >>> a = np.arange(10) - >>> b = np.ones(20) - >>> np.who() - Name Shape Bytes Type - =========================================================== - a 10 80 int64 - b 20 160 float64 - Upper bound on total bytes = 240 - - >>> d = {'x': np.arange(2.0), 'y': np.arange(3.0), 'txt': 'Some str', - ... 'idx':5} - >>> np.who(d) - Name Shape Bytes Type - =========================================================== - x 2 16 float64 - y 3 24 float64 - Upper bound on total bytes = 40 - - """) - ############################################################################## # @@ -7080,80 +6917,3 @@ for float_name in ('half', 'single', 'double', 'longdouble'): (-1, 4) """.format(ftype=float_name))) -############################################################################## -# -# Miscellaneous utility routines -# -############################################################################## - -add_newdoc('numpy.lib.utils', 'get_include', - """ - - Parameters - ---------- - None - - Returns - ------- - Directory that contains the NumPy \\*.h header files. - - Extension modules that need to compile against NumPy should use this - function to locate the appropriate include directory. - - """) - -add_newdoc('numpy.lib.utils', 'deprecate', - """ - - deprecate(func, old_name, new_name, message) - - Parameters - ---------- - func : function - The function to be deprecated. - old_name : str, optional - The name of the function to be deprecated. Default is None, in - which case the name of `func` is used. - new_name : str, optional - The new name for the function. Default is None, in which case the - deprecation message is that `old_name` is deprecated. If given, the - deprecation message is that `old_name` is deprecated and `new_name` - should be used instead. - message : str, optional - Additional explanation of the deprecation. Displayed in the - docstring after the warning. - - Returns - ------- - old_func : function - The deprecated function. - - Examples - -------- - Note that ``olduint`` returns a value after printing Deprecation - Warning: - - >>> olduint = np.deprecate(np.uint) - DeprecationWarning: `uint64` is deprecated! # may vary - >>> olduint(6) - 6 - - Notes - ----- - Deprecate may be run as a function or as a decorator - If run as a function, we initialise the decorator class - and execute its __call__ method. - - """) - -add_newdoc('numpy.lib.utils', 'deprecate_with_doc', - """ - - Lambda function which calls the ``_Deprecate`` with a predefined - message. - - Parameters - ---------- - message : str - - """) |