summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2015-03-28 10:37:26 -0600
committerCharles Harris <charlesr.harris@gmail.com>2015-03-28 10:37:26 -0600
commit037dd995b2ec89c68810cef8edb137c3f4c8b403 (patch)
tree566d30cbe643fb27995db3cb303008f9cff0ce53
parente1a96a1bfd931017459909b4ede412e9fb390a14 (diff)
downloadnumpy-037dd995b2ec89c68810cef8edb137c3f4c8b403.tar.gz
DOC: Some cleanups of mtrand.pyx docstrings.
- Spelling fixes - Remove blank lines between references, and - Some style fixes in examples. [skip ci]
-rw-r--r--numpy/random/mtrand/mtrand.pyx22
1 files changed, 8 insertions, 14 deletions
diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx
index 9fcd95d0b..c4927a3f3 100644
--- a/numpy/random/mtrand/mtrand.pyx
+++ b/numpy/random/mtrand/mtrand.pyx
@@ -634,7 +634,7 @@ cdef class RandomState:
----------
seed : int or array_like, optional
Seed for `RandomState`.
- Must be convertable to 32 bit unsigned integers.
+ Must be convertible to 32 bit unsigned integers.
See Also
--------
@@ -1252,8 +1252,8 @@ cdef class RandomState:
olow = <ndarray>PyArray_FROM_OTF(low, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
ohigh = <ndarray>PyArray_FROM_OTF(high, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
temp = np.subtract(ohigh, olow)
- Py_INCREF(temp) # needed to get around Pyrex's automatic reference-counting
- # rules because EnsureArray steals a reference
+ Py_INCREF(temp) # needed to get around Pyrex's automatic reference-counting
+ # rules because EnsureArray steals a reference
odiff = <ndarray>PyArray_EnsureArray(temp)
return cont2_array(self.internal_state, rk_uniform, size, olow, odiff,
self.lock)
@@ -2054,7 +2054,6 @@ cdef class RandomState:
.. [1] Weisstein, Eric W. "Noncentral F-Distribution."
From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/NoncentralF-Distribution.html
-
.. [2] Wikipedia, "Noncentral F distribution",
http://en.wikipedia.org/wiki/Noncentral_F-distribution
@@ -2387,7 +2386,7 @@ cdef class RandomState:
the sample mean (that is the mean calculated from the data) is
a good estimate of the true mean.
- The derivation of the t-distribution was forst published in
+ The derivation of the t-distribution was first published in
1908 by William Gisset while working for the Guinness Brewery
in Dublin. Due to proprietary issues, he had to publish under
a pseudonym, and so he used the name Student.
@@ -2923,14 +2922,11 @@ cdef class RandomState:
.. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, 9th printing," New York: Dover, 1972.
-
.. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
Generalizations, " Birkhauser, 2001.
-
.. [3] Weisstein, Eric W. "Laplace Distribution."
From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/LaplaceDistribution.html
-
.. [4] Wikipedia, "Laplace Distribution",
http://en.wikipedia.org/wiki/Laplace_distribution
@@ -3044,7 +3040,6 @@ cdef class RandomState:
----------
.. [1] Gumbel, E. J., "Statistics of Extremes,"
New York: Columbia University Press, 1958.
-
.. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
Values from Insurance, Finance, Hydrology and Other Fields,"
Basel: Birkhauser Verlag, 2001.
@@ -3253,7 +3248,6 @@ cdef class RandomState:
Distributions across the Sciences: Keys and Clues,"
BioScience, Vol. 51, No. 5, May, 2001.
http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
-
.. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.
@@ -3641,7 +3635,7 @@ cdef class RandomState:
--------
Draw samples from the distribution:
- >>> n, p = 10, .5 # number of trials, probability of each trial
+ >>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
# result of flipping a coin 10 times, tested 1000 times.
@@ -3652,8 +3646,8 @@ cdef class RandomState:
Let's do 20,000 trials of the model, and count the number that
generate zero positive results.
- >>> sum(np.random.binomial(9,0.1,20000)==0)/20000.
- answer = 0.38885, or 38%.
+ >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
+ # answer = 0.38885, or 38%.
"""
cdef ndarray on, op
@@ -3916,7 +3910,7 @@ cdef class RandomState:
References
----------
- .. [1 ]Zipf, G. K., "Selected Studies of the Principle of Relative
+ .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
Frequency in Language," Cambridge, MA: Harvard Univ. Press,
1932.