diff options
author | Tyler Reddy <tyler.je.reddy@gmail.com> | 2018-12-04 13:57:32 -0800 |
---|---|---|
committer | Tyler Reddy <tyler.je.reddy@gmail.com> | 2018-12-14 10:14:05 -0800 |
commit | dd8b40291fcf6083cc1126320e027c47fbea7026 (patch) | |
tree | 24a7a9e4b9eaea36aaa1ba65c1fa76f8d1f8efd7 | |
parent | 528b0e157ade5ead2e806257e21f8d9562ba3b9d (diff) | |
download | numpy-dd8b40291fcf6083cc1126320e027c47fbea7026.tar.gz |
MAINT: clean up whitespace issues in mtrand.pyx.
-rw-r--r-- | numpy/random/mtrand/mtrand.pyx | 50 |
1 files changed, 25 insertions, 25 deletions
diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx index c9e0b9e3d..e4a401b24 100644 --- a/numpy/random/mtrand/mtrand.pyx +++ b/numpy/random/mtrand/mtrand.pyx @@ -845,7 +845,7 @@ cdef class RandomState: Examples -------- - >>> np.random.random_sample() + >>> np.random.random_sample() 0.47108547995356098 # random >>> type(np.random.random_sample()) <class 'float'> @@ -854,7 +854,7 @@ cdef class RandomState: Three-by-two array of random numbers from [-5, 0): - >>> 5 * np.random.random_sample((3, 2)) - 5 + >>> 5 * np.random.random_sample((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) @@ -1874,12 +1874,12 @@ cdef class RandomState: the probability density function: >>> import matplotlib.pyplot as plt - >>> import scipy.special as sps + >>> import scipy.special as sps >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \\ ... (sps.gamma(shape) * scale**shape)) - >>> plt.plot(bins, y, linewidth=2, color='r') - >>> plt.show() + >>> plt.plot(bins, y, linewidth=2, color='r') + >>> plt.show() """ cdef ndarray oshape @@ -1964,12 +1964,12 @@ cdef class RandomState: the probability density function: >>> import matplotlib.pyplot as plt - >>> import scipy.special as sps + >>> import scipy.special as sps >>> count, bins, ignored = plt.hist(s, 50, density=True) - >>> y = bins**(shape-1)*(np.exp(-bins/scale) / - ... (sps.gamma(shape)*scale**shape)) - >>> plt.plot(bins, y, linewidth=2, color='r') - >>> plt.show() + >>> y = bins**(shape-1)*(np.exp(-bins/scale) / + ... (sps.gamma(shape)*scale**shape)) + >>> plt.plot(bins, y, linewidth=2, color='r') + >>> plt.show() """ cdef ndarray oshape, oscale @@ -2634,12 +2634,12 @@ cdef class RandomState: the probability density function: >>> import matplotlib.pyplot as plt - >>> from scipy.special import i0 + >>> from scipy.special import i0 >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) - >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) - >>> plt.plot(x, y, linewidth=2, color='r') - >>> plt.show() + >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) + >>> plt.plot(x, y, linewidth=2, color='r') + >>> plt.show() """ cdef ndarray omu, okappa @@ -2955,25 +2955,25 @@ cdef class RandomState: Compare the power function distribution to the inverse of the Pareto. - >>> from scipy import stats + >>> from scipy import stats >>> rvs = np.random.power(5, 1000000) >>> rvsp = np.random.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) - >>> powpdf = stats.powerlaw.pdf(xx,5) + >>> powpdf = stats.powerlaw.pdf(xx,5) >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) - >>> plt.plot(xx,powpdf,'r-') - >>> plt.title('np.random.power(5)') + >>> plt.plot(xx,powpdf,'r-') + >>> plt.title('np.random.power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) - >>> plt.plot(xx,powpdf,'r-') - >>> plt.title('inverse of 1 + np.random.pareto(5)') + >>> plt.plot(xx,powpdf,'r-') + >>> plt.title('inverse of 1 + np.random.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) - >>> plt.plot(xx,powpdf,'r-') + >>> plt.plot(xx,powpdf,'r-') >>> plt.title('inverse of stats.pareto(5)') """ @@ -4069,15 +4069,15 @@ cdef class RandomState: the probability density function: >>> import matplotlib.pyplot as plt - >>> from scipy import special + >>> from scipy import special Truncate s values at 50 so plot is interesting: >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True) >>> x = np.arange(1., 50.) - >>> y = x**(-a) / special.zetac(a) - >>> plt.plot(x, y/max(y), linewidth=2, color='r') - >>> plt.show() + >>> y = x**(-a) / special.zetac(a) + >>> plt.plot(x, y/max(y), linewidth=2, color='r') + >>> plt.show() """ cdef ndarray oa |