summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMaximilian Trescher <maximilian@trescherpost.de>2015-08-28 11:12:01 +0200
committerMaximilian Trescher <maximilian@trescherpost.de>2015-09-06 14:42:14 +0200
commitbc1990e770966535d188785cafaa3230c0a0377e (patch)
treef3babc746e207ab7f911867dcd2392d8af50306d
parent2b7fff08567fd1e06df66b8ad2b71959dee63070 (diff)
downloadnumpy-bc1990e770966535d188785cafaa3230c0a0377e.tar.gz
ENH: gradient takes axis keyword, added release note comment
-rw-r--r--doc/release/1.11.0-notes.rst4
-rw-r--r--numpy/lib/function_base.py10
2 files changed, 10 insertions, 4 deletions
diff --git a/doc/release/1.11.0-notes.rst b/doc/release/1.11.0-notes.rst
index 3ca77eea5..b9a189d5e 100644
--- a/doc/release/1.11.0-notes.rst
+++ b/doc/release/1.11.0-notes.rst
@@ -36,6 +36,10 @@ has an option to spend more effort to reduce false positives.
Improvements
============
+*np.gradient* now supports an ``axis`` argument
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+The ``axis`` parameter was added to *np.gradient* for consistency.
+It allows to specify over which axes the gradient is calculated.
Changes
=======
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 5bd7cd8b5..007ff42a4 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -1138,10 +1138,12 @@ def gradient(f, *varargs, **kwargs):
The default (axis = None) is to calculate the gradient for all the axes of the input array.
axis may be negative, in which case it counts from the last to the first axis.
+ .. versionadded:: 1.11.0
+
Returns
-------
gradient : list of ndarray
- Each element of `list` has the same shape as `f` giving the derivative
+ Each element of `list` has the same shape as `f` giving the derivative
of `f` with respect to each dimension.
Examples
@@ -1152,10 +1154,10 @@ def gradient(f, *varargs, **kwargs):
>>> np.gradient(x, 2)
array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ])
- For two dimensional arrays, the return will be two arrays ordered by
- axis. In this example the first array stands for the gradient in
+ For two dimensional arrays, the return will be two arrays ordered by
+ axis. In this example the first array stands for the gradient in
rows and the second one in columns direction:
-
+
>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float))
[array([[ 2., 2., -1.],
[ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ],