summaryrefslogtreecommitdiff
path: root/benchmarks
diff options
context:
space:
mode:
authorRaghuveer Devulapalli <raghuveer.devulapalli@intel.com>2020-02-11 10:32:08 -0800
committerRaghuveer Devulapalli <raghuveer.devulapalli@intel.com>2020-02-12 20:45:59 -0800
commit0a5eb43ac221446ebf6261d7da563c49a28a0b6c (patch)
treea1b1c877d35de9121f01b0ce807e8d464bc8e076 /benchmarks
parent665da87e956fa6cd0753b026ef4df1b7707baa46 (diff)
downloadnumpy-0a5eb43ac221446ebf6261d7da563c49a28a0b6c.tar.gz
TEST: Enable accuracy tests for float32 sin/cos/exp/log for AVX platforms
Diffstat (limited to 'benchmarks')
-rw-r--r--benchmarks/benchmarks/bench_avx.py8
1 files changed, 4 insertions, 4 deletions
diff --git a/benchmarks/benchmarks/bench_avx.py b/benchmarks/benchmarks/bench_avx.py
index c166d6b3f..224c12e33 100644
--- a/benchmarks/benchmarks/bench_avx.py
+++ b/benchmarks/benchmarks/bench_avx.py
@@ -136,7 +136,7 @@ class LogisticRegression(Benchmark):
def train(self, max_epoch):
for epoch in range(max_epoch):
z = np.matmul(self.X_train, self.W)
- A = 1/ (1 + np.exp(-z)) #sigmoid(z)
+ A = 1 / (1 + np.exp(-z)) # sigmoid(z)
loss = -np.mean(self.Y_train * np.log(A) + (1-self.Y_train) * np.log(1-A))
dz = A - self.Y_train
dw = (1/self.size) * np.matmul(self.X_train.T, dz)
@@ -149,9 +149,9 @@ class LogisticRegression(Benchmark):
self.X_train = np.float32(np.random.rand(self.size,features))
self.Y_train = np.float32(np.random.choice(2,self.size))
# Initialize weights
- self.W = np.float32(np.zeros((features,1)))
- self.b = np.float32(np.zeros((1,1)))
+ self.W = np.zeros((features,1), dtype=np.float32)
+ self.b = np.zeros((1,1), dtype=np.float32)
self.alpha = 0.1
def time_train(self):
- self.train(5000)
+ self.train(1000)