diff options
author | Raghuveer Devulapalli <raghuveer.devulapalli@intel.com> | 2020-02-11 10:32:08 -0800 |
---|---|---|
committer | Raghuveer Devulapalli <raghuveer.devulapalli@intel.com> | 2020-02-12 20:45:59 -0800 |
commit | 0a5eb43ac221446ebf6261d7da563c49a28a0b6c (patch) | |
tree | a1b1c877d35de9121f01b0ce807e8d464bc8e076 /benchmarks | |
parent | 665da87e956fa6cd0753b026ef4df1b7707baa46 (diff) | |
download | numpy-0a5eb43ac221446ebf6261d7da563c49a28a0b6c.tar.gz |
TEST: Enable accuracy tests for float32 sin/cos/exp/log for AVX platforms
Diffstat (limited to 'benchmarks')
-rw-r--r-- | benchmarks/benchmarks/bench_avx.py | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/benchmarks/benchmarks/bench_avx.py b/benchmarks/benchmarks/bench_avx.py index c166d6b3f..224c12e33 100644 --- a/benchmarks/benchmarks/bench_avx.py +++ b/benchmarks/benchmarks/bench_avx.py @@ -136,7 +136,7 @@ class LogisticRegression(Benchmark): def train(self, max_epoch): for epoch in range(max_epoch): z = np.matmul(self.X_train, self.W) - A = 1/ (1 + np.exp(-z)) #sigmoid(z) + A = 1 / (1 + np.exp(-z)) # sigmoid(z) loss = -np.mean(self.Y_train * np.log(A) + (1-self.Y_train) * np.log(1-A)) dz = A - self.Y_train dw = (1/self.size) * np.matmul(self.X_train.T, dz) @@ -149,9 +149,9 @@ class LogisticRegression(Benchmark): self.X_train = np.float32(np.random.rand(self.size,features)) self.Y_train = np.float32(np.random.choice(2,self.size)) # Initialize weights - self.W = np.float32(np.zeros((features,1))) - self.b = np.float32(np.zeros((1,1))) + self.W = np.zeros((features,1), dtype=np.float32) + self.b = np.zeros((1,1), dtype=np.float32) self.alpha = 0.1 def time_train(self): - self.train(5000) + self.train(1000) |