summaryrefslogtreecommitdiff
path: root/doc/neps
diff options
context:
space:
mode:
authorStefan van der Walt <stefanv@berkeley.edu>2018-07-25 11:26:12 -0700
committerStefan van der Walt <stefanv@berkeley.edu>2018-07-25 11:26:12 -0700
commit47904579abb339ca380bf36c4cc72ebfbd0d0643 (patch)
tree5567f6e30b2bf178fc4de395e8dbd7648f46dd99 /doc/neps
parent67e7414910c6ea90940f767e037cebe10bb4d86d (diff)
downloadnumpy-47904579abb339ca380bf36c4cc72ebfbd0d0643.tar.gz
Clarify comment on scalar conversion inconsistency.
Diffstat (limited to 'doc/neps')
-rw-r--r--doc/neps/roadmap.rst6
1 files changed, 4 insertions, 2 deletions
diff --git a/doc/neps/roadmap.rst b/doc/neps/roadmap.rst
index c9c1976c9..1cd522463 100644
--- a/doc/neps/roadmap.rst
+++ b/doc/neps/roadmap.rst
@@ -103,8 +103,10 @@ Numpy has both scalars and zero-dimensional arrays.
- The current implementation adds a large maintenance burden -- can we remove
scalars and/or simplify it internally?
-- Zero dimensional arrays get converted into scalars by most NumPy functions.
- Can this be fixed?
+- Zero dimensional arrays get converted into scalars by most NumPy
+ functions (i.e., output of `np.sin(x)` depends on whether `x` is
+ zero-dimensional or not). This inconsistency should be addressed,
+ so that one could, e.g., write sane type annotations.
.. _`NEP 19`: https://www.numpy.org/neps/nep-0019-rng-policy.html
.. _`NEP 22`: http://www.numpy.org/neps/nep-0022-ndarray-duck-typing-overview.html