diff options
author | Pierre de Buyl <pdebuyl@pdebuyl.be> | 2020-02-06 21:34:56 +0100 |
---|---|---|
committer | Pierre de Buyl <pdebuyl@pdebuyl.be> | 2020-02-06 21:34:56 +0100 |
commit | a2a69d9c7eb55cc364a02021219920c51dd72c80 (patch) | |
tree | b75ecd5727453c635fe6674b5e2674a7ea481adb /doc/source/reference/routines.polynomials.classes.rst | |
parent | 8e3062d1e24019e294fd6501ffdd64da082a8c62 (diff) | |
download | numpy-a2a69d9c7eb55cc364a02021219920c51dd72c80.tar.gz |
update doctests, small bugs and changes of repr
Fix missing np prefix.
Fix missing definitions.
Use print function instead of the statement.
Add seed to make output repeatable.
Diffstat (limited to 'doc/source/reference/routines.polynomials.classes.rst')
-rw-r--r-- | doc/source/reference/routines.polynomials.classes.rst | 56 |
1 files changed, 28 insertions, 28 deletions
diff --git a/doc/source/reference/routines.polynomials.classes.rst b/doc/source/reference/routines.polynomials.classes.rst index da0394305..71e635866 100644 --- a/doc/source/reference/routines.polynomials.classes.rst +++ b/doc/source/reference/routines.polynomials.classes.rst @@ -52,7 +52,7 @@ the conventional Polynomial class because of its familiarity:: >>> from numpy.polynomial import Polynomial as P >>> p = P([1,2,3]) >>> p - Polynomial([ 1., 2., 3.], domain=[-1, 1], window=[-1, 1]) + Polynomial([1., 2., 3.], domain=[-1, 1], window=[-1, 1]) Note that there are three parts to the long version of the printout. The first is the coefficients, the second is the domain, and the third is the @@ -68,8 +68,8 @@ window:: Printing a polynomial yields a shorter form without the domain and window:: - >>> print p - poly([ 1. 2. 3.]) + >>> print(p) + poly([1. 2. 3.]) We will deal with the domain and window when we get to fitting, for the moment we ignore them and run through the basic algebraic and arithmetic operations. @@ -77,19 +77,19 @@ we ignore them and run through the basic algebraic and arithmetic operations. Addition and Subtraction:: >>> p + p - Polynomial([ 2., 4., 6.], domain=[-1, 1], window=[-1, 1]) + Polynomial([2., 4., 6.], domain=[-1., 1.], window=[-1., 1.]) >>> p - p - Polynomial([ 0.], domain=[-1, 1], window=[-1, 1]) + Polynomial([0.], domain=[-1., 1.], window=[-1., 1.]) Multiplication:: >>> p * p - Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1]) + Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.]) Powers:: >>> p**2 - Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1]) + Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.]) Division: @@ -100,20 +100,20 @@ versions the '/' will only work for division by scalars. At some point it will be deprecated:: >>> p // P([-1, 1]) - Polynomial([ 5., 3.], domain=[-1, 1], window=[-1, 1]) + Polynomial([5., 3.], domain=[-1., 1.], window=[-1., 1.]) Remainder:: >>> p % P([-1, 1]) - Polynomial([ 6.], domain=[-1, 1], window=[-1, 1]) + Polynomial([6.], domain=[-1., 1.], window=[-1., 1.]) Divmod:: >>> quo, rem = divmod(p, P([-1, 1])) >>> quo - Polynomial([ 5., 3.], domain=[-1, 1], window=[-1, 1]) + Polynomial([5., 3.], domain=[-1., 1.], window=[-1., 1.]) >>> rem - Polynomial([ 6.], domain=[-1, 1], window=[-1, 1]) + Polynomial([6.], domain=[-1., 1.], window=[-1., 1.]) Evaluation:: @@ -134,7 +134,7 @@ the polynomials are regarded as functions this is composition of functions:: >>> p(p) - Polynomial([ 6., 16., 36., 36., 27.], domain=[-1, 1], window=[-1, 1]) + Polynomial([ 6., 16., 36., 36., 27.], domain=[-1., 1.], window=[-1., 1.]) Roots:: @@ -148,11 +148,11 @@ tuples, lists, arrays, and scalars are automatically cast in the arithmetic operations:: >>> p + [1, 2, 3] - Polynomial([ 2., 4., 6.], domain=[-1, 1], window=[-1, 1]) + Polynomial([2., 4., 6.], domain=[-1., 1.], window=[-1., 1.]) >>> [1, 2, 3] * p - Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1]) + Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.]) >>> p / 2 - Polynomial([ 0.5, 1. , 1.5], domain=[-1, 1], window=[-1, 1]) + Polynomial([0.5, 1. , 1.5], domain=[-1., 1.], window=[-1., 1.]) Polynomials that differ in domain, window, or class can't be mixed in arithmetic:: @@ -180,7 +180,7 @@ conversion of Polynomial classes among themselves is done for type, domain, and window casting:: >>> p(T([0, 1])) - Chebyshev([ 2.5, 2. , 1.5], domain=[-1, 1], window=[-1, 1]) + Chebyshev([2.5, 2. , 1.5], domain=[-1., 1.], window=[-1., 1.]) Which gives the polynomial `p` in Chebyshev form. This works because :math:`T_1(x) = x` and substituting :math:`x` for :math:`x` doesn't change @@ -200,18 +200,18 @@ Polynomial instances can be integrated and differentiated.:: >>> from numpy.polynomial import Polynomial as P >>> p = P([2, 6]) >>> p.integ() - Polynomial([ 0., 2., 3.], domain=[-1, 1], window=[-1, 1]) + Polynomial([0., 2., 3.], domain=[-1., 1.], window=[-1., 1.]) >>> p.integ(2) - Polynomial([ 0., 0., 1., 1.], domain=[-1, 1], window=[-1, 1]) + Polynomial([0., 0., 1., 1.], domain=[-1., 1.], window=[-1., 1.]) The first example integrates `p` once, the second example integrates it twice. By default, the lower bound of the integration and the integration constant are 0, but both can be specified.:: >>> p.integ(lbnd=-1) - Polynomial([-1., 2., 3.], domain=[-1, 1], window=[-1, 1]) + Polynomial([-1., 2., 3.], domain=[-1., 1.], window=[-1., 1.]) >>> p.integ(lbnd=-1, k=1) - Polynomial([ 0., 2., 3.], domain=[-1, 1], window=[-1, 1]) + Polynomial([0., 2., 3.], domain=[-1., 1.], window=[-1., 1.]) In the first case the lower bound of the integration is set to -1 and the integration constant is 0. In the second the constant of integration is set @@ -220,9 +220,9 @@ number of times the polynomial is differentiated:: >>> p = P([1, 2, 3]) >>> p.deriv(1) - Polynomial([ 2., 6.], domain=[-1, 1], window=[-1, 1]) + Polynomial([2., 6.], domain=[-1., 1.], window=[-1., 1.]) >>> p.deriv(2) - Polynomial([ 6.], domain=[-1, 1], window=[-1, 1]) + Polynomial([6.], domain=[-1., 1.], window=[-1., 1.]) Other Polynomial Constructors @@ -238,25 +238,25 @@ are demonstrated below:: >>> from numpy.polynomial import Chebyshev as T >>> p = P.fromroots([1, 2, 3]) >>> p - Polynomial([ -6., 11., -6., 1.], domain=[-1, 1], window=[-1, 1]) + Polynomial([-6., 11., -6., 1.], domain=[-1., 1.], window=[-1., 1.]) >>> p.convert(kind=T) - Chebyshev([ -9. , 11.75, -3. , 0.25], domain=[-1, 1], window=[-1, 1]) + Chebyshev([-9. , 11.75, -3. , 0.25], domain=[-1., 1.], window=[-1., 1.]) The convert method can also convert domain and window:: >>> p.convert(kind=T, domain=[0, 1]) - Chebyshev([-2.4375 , 2.96875, -0.5625 , 0.03125], [ 0., 1.], [-1., 1.]) + Chebyshev([-2.4375 , 2.96875, -0.5625 , 0.03125], domain=[0., 1.], window=[-1., 1.]) >>> p.convert(kind=P, domain=[0, 1]) - Polynomial([-1.875, 2.875, -1.125, 0.125], [ 0., 1.], [-1., 1.]) + Polynomial([-1.875, 2.875, -1.125, 0.125], domain=[0., 1.], window=[-1., 1.]) In numpy versions >= 1.7.0 the `basis` and `cast` class methods are also available. The cast method works like the convert method while the basis method returns the basis polynomial of given degree:: >>> P.basis(3) - Polynomial([ 0., 0., 0., 1.], domain=[-1, 1], window=[-1, 1]) + Polynomial([0., 0., 0., 1.], domain=[-1., 1.], window=[-1., 1.]) >>> T.cast(p) - Chebyshev([ -9. , 11.75, -3. , 0.25], domain=[-1, 1], window=[-1, 1]) + Chebyshev([-9. , 11.75, -3. , 0.25], domain=[-1., 1.], window=[-1., 1.]) Conversions between types can be useful, but it is *not* recommended for routine use. The loss of numerical precision in passing from a |