summaryrefslogtreecommitdiff
path: root/doc/source/reference/routines.polynomials.classes.rst
diff options
context:
space:
mode:
authorPierre de Buyl <pdebuyl@pdebuyl.be>2020-02-06 21:34:56 +0100
committerPierre de Buyl <pdebuyl@pdebuyl.be>2020-02-06 21:34:56 +0100
commita2a69d9c7eb55cc364a02021219920c51dd72c80 (patch)
treeb75ecd5727453c635fe6674b5e2674a7ea481adb /doc/source/reference/routines.polynomials.classes.rst
parent8e3062d1e24019e294fd6501ffdd64da082a8c62 (diff)
downloadnumpy-a2a69d9c7eb55cc364a02021219920c51dd72c80.tar.gz
update doctests, small bugs and changes of repr
Fix missing np prefix. Fix missing definitions. Use print function instead of the statement. Add seed to make output repeatable.
Diffstat (limited to 'doc/source/reference/routines.polynomials.classes.rst')
-rw-r--r--doc/source/reference/routines.polynomials.classes.rst56
1 files changed, 28 insertions, 28 deletions
diff --git a/doc/source/reference/routines.polynomials.classes.rst b/doc/source/reference/routines.polynomials.classes.rst
index da0394305..71e635866 100644
--- a/doc/source/reference/routines.polynomials.classes.rst
+++ b/doc/source/reference/routines.polynomials.classes.rst
@@ -52,7 +52,7 @@ the conventional Polynomial class because of its familiarity::
>>> from numpy.polynomial import Polynomial as P
>>> p = P([1,2,3])
>>> p
- Polynomial([ 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([1., 2., 3.], domain=[-1, 1], window=[-1, 1])
Note that there are three parts to the long version of the printout. The
first is the coefficients, the second is the domain, and the third is the
@@ -68,8 +68,8 @@ window::
Printing a polynomial yields a shorter form without the domain
and window::
- >>> print p
- poly([ 1. 2. 3.])
+ >>> print(p)
+ poly([1. 2. 3.])
We will deal with the domain and window when we get to fitting, for the moment
we ignore them and run through the basic algebraic and arithmetic operations.
@@ -77,19 +77,19 @@ we ignore them and run through the basic algebraic and arithmetic operations.
Addition and Subtraction::
>>> p + p
- Polynomial([ 2., 4., 6.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([2., 4., 6.], domain=[-1., 1.], window=[-1., 1.])
>>> p - p
- Polynomial([ 0.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([0.], domain=[-1., 1.], window=[-1., 1.])
Multiplication::
>>> p * p
- Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.])
Powers::
>>> p**2
- Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.])
Division:
@@ -100,20 +100,20 @@ versions the '/' will only work for division by scalars. At some point it
will be deprecated::
>>> p // P([-1, 1])
- Polynomial([ 5., 3.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([5., 3.], domain=[-1., 1.], window=[-1., 1.])
Remainder::
>>> p % P([-1, 1])
- Polynomial([ 6.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([6.], domain=[-1., 1.], window=[-1., 1.])
Divmod::
>>> quo, rem = divmod(p, P([-1, 1]))
>>> quo
- Polynomial([ 5., 3.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([5., 3.], domain=[-1., 1.], window=[-1., 1.])
>>> rem
- Polynomial([ 6.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([6.], domain=[-1., 1.], window=[-1., 1.])
Evaluation::
@@ -134,7 +134,7 @@ the polynomials are regarded as functions this is composition of
functions::
>>> p(p)
- Polynomial([ 6., 16., 36., 36., 27.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([ 6., 16., 36., 36., 27.], domain=[-1., 1.], window=[-1., 1.])
Roots::
@@ -148,11 +148,11 @@ tuples, lists, arrays, and scalars are automatically cast in the arithmetic
operations::
>>> p + [1, 2, 3]
- Polynomial([ 2., 4., 6.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([2., 4., 6.], domain=[-1., 1.], window=[-1., 1.])
>>> [1, 2, 3] * p
- Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.])
>>> p / 2
- Polynomial([ 0.5, 1. , 1.5], domain=[-1, 1], window=[-1, 1])
+ Polynomial([0.5, 1. , 1.5], domain=[-1., 1.], window=[-1., 1.])
Polynomials that differ in domain, window, or class can't be mixed in
arithmetic::
@@ -180,7 +180,7 @@ conversion of Polynomial classes among themselves is done for type, domain,
and window casting::
>>> p(T([0, 1]))
- Chebyshev([ 2.5, 2. , 1.5], domain=[-1, 1], window=[-1, 1])
+ Chebyshev([2.5, 2. , 1.5], domain=[-1., 1.], window=[-1., 1.])
Which gives the polynomial `p` in Chebyshev form. This works because
:math:`T_1(x) = x` and substituting :math:`x` for :math:`x` doesn't change
@@ -200,18 +200,18 @@ Polynomial instances can be integrated and differentiated.::
>>> from numpy.polynomial import Polynomial as P
>>> p = P([2, 6])
>>> p.integ()
- Polynomial([ 0., 2., 3.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([0., 2., 3.], domain=[-1., 1.], window=[-1., 1.])
>>> p.integ(2)
- Polynomial([ 0., 0., 1., 1.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([0., 0., 1., 1.], domain=[-1., 1.], window=[-1., 1.])
The first example integrates `p` once, the second example integrates it
twice. By default, the lower bound of the integration and the integration
constant are 0, but both can be specified.::
>>> p.integ(lbnd=-1)
- Polynomial([-1., 2., 3.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([-1., 2., 3.], domain=[-1., 1.], window=[-1., 1.])
>>> p.integ(lbnd=-1, k=1)
- Polynomial([ 0., 2., 3.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([0., 2., 3.], domain=[-1., 1.], window=[-1., 1.])
In the first case the lower bound of the integration is set to -1 and the
integration constant is 0. In the second the constant of integration is set
@@ -220,9 +220,9 @@ number of times the polynomial is differentiated::
>>> p = P([1, 2, 3])
>>> p.deriv(1)
- Polynomial([ 2., 6.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([2., 6.], domain=[-1., 1.], window=[-1., 1.])
>>> p.deriv(2)
- Polynomial([ 6.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([6.], domain=[-1., 1.], window=[-1., 1.])
Other Polynomial Constructors
@@ -238,25 +238,25 @@ are demonstrated below::
>>> from numpy.polynomial import Chebyshev as T
>>> p = P.fromroots([1, 2, 3])
>>> p
- Polynomial([ -6., 11., -6., 1.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([-6., 11., -6., 1.], domain=[-1., 1.], window=[-1., 1.])
>>> p.convert(kind=T)
- Chebyshev([ -9. , 11.75, -3. , 0.25], domain=[-1, 1], window=[-1, 1])
+ Chebyshev([-9. , 11.75, -3. , 0.25], domain=[-1., 1.], window=[-1., 1.])
The convert method can also convert domain and window::
>>> p.convert(kind=T, domain=[0, 1])
- Chebyshev([-2.4375 , 2.96875, -0.5625 , 0.03125], [ 0., 1.], [-1., 1.])
+ Chebyshev([-2.4375 , 2.96875, -0.5625 , 0.03125], domain=[0., 1.], window=[-1., 1.])
>>> p.convert(kind=P, domain=[0, 1])
- Polynomial([-1.875, 2.875, -1.125, 0.125], [ 0., 1.], [-1., 1.])
+ Polynomial([-1.875, 2.875, -1.125, 0.125], domain=[0., 1.], window=[-1., 1.])
In numpy versions >= 1.7.0 the `basis` and `cast` class methods are also
available. The cast method works like the convert method while the basis
method returns the basis polynomial of given degree::
>>> P.basis(3)
- Polynomial([ 0., 0., 0., 1.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([0., 0., 0., 1.], domain=[-1., 1.], window=[-1., 1.])
>>> T.cast(p)
- Chebyshev([ -9. , 11.75, -3. , 0.25], domain=[-1, 1], window=[-1, 1])
+ Chebyshev([-9. , 11.75, -3. , 0.25], domain=[-1., 1.], window=[-1., 1.])
Conversions between types can be useful, but it is *not* recommended
for routine use. The loss of numerical precision in passing from a