summaryrefslogtreecommitdiff
path: root/doc/source/user
diff options
context:
space:
mode:
authorpierregm <pierregm@localhost>2009-10-22 12:05:34 +0000
committerpierregm <pierregm@localhost>2009-10-22 12:05:34 +0000
commitbb129ca216f3b37b37f9e908ced5943f09994c02 (patch)
treef1bb195d574f80a28bb414557fa8be573d3ca0ea /doc/source/user
parentc660ae4b3f7a4867c3a8081095f62f88b251b751 (diff)
downloadnumpy-bb129ca216f3b37b37f9e908ced5943f09994c02.tar.gz
* Added docs on i/o with focus on genfromtxt
Diffstat (limited to 'doc/source/user')
-rw-r--r--doc/source/user/basic.io.genfromtxt.rst449
-rw-r--r--doc/source/user/basic.io.rst7
-rw-r--r--doc/source/user/basics.rst1
3 files changed, 457 insertions, 0 deletions
diff --git a/doc/source/user/basic.io.genfromtxt.rst b/doc/source/user/basic.io.genfromtxt.rst
new file mode 100644
index 000000000..28130b311
--- /dev/null
+++ b/doc/source/user/basic.io.genfromtxt.rst
@@ -0,0 +1,449 @@
+.. sectionauthor:: Pierre Gerard-Marchant <pierregmcode@gmail.com>
+
+*********************************************
+Importing data with :func:`~numpy.genfromtxt`
+*********************************************
+
+Numpy provides several functions to create arrays from tabular data.
+We focus here on the :func:`~numpy.genfromtxt` function.
+
+In a nutshell, :func:`~numpy.genfromtxt` runs two main loops.
+The first loop converts each line of the file in a sequence of strings.
+The second loop converts each string to the appropriate data type.
+This mechanism is slower than a single loop, but gives more flexibility.
+In particular, :func:`~numpy.genfromtxt` is able to take missing data into account, when other faster and simpler functions like :func:`~numpy.loadtxt` cannot
+
+
+.. note::
+ When giving examples, we will use the following conventions
+
+ >>> import numpy as np
+ >>> from StringIO import StringIO
+
+
+
+Defining the input
+==================
+
+The only mandatory argument of :func:`~numpy.genfromtxt` is the source of the data.
+It can be a string corresponding to the name of a local or remote file, or a file-like object with a :meth:`read` method (such as an actual file or a :class:`StringIO.StringIO` object).
+If the argument is the URL of a remote file, this latter is automatically downloaded in the current directory.
+
+The input file can be a text file or an archive.
+Currently, the function recognizes :class:`gzip` and :class:`bz2` (`bzip2`) archives.
+The type of the archive is determined by examining the extension of the file:
+if the filename ends with ``'.gz'``, a :class:`gzip` archive is expected; if it ends with ``'bz2'``, a :class:`bzip2` archive is assumed.
+
+
+
+Splitting the lines into columns
+================================
+
+The :keyword:`delimiter` argument
+---------------------------------
+
+Once the file is defined and open for reading, :func:`~numpy.genfromtxt` splits each non-empty line into a sequence of strings.
+Empty or commented lines are just skipped.
+The :keyword:`delimiter` keyword is used to define how the splitting should take place.
+
+Quite often, a single character marks the separation between columns.
+For example, comma-separated files (CSV) use a comma (``,``) or a semicolon (``;``) as delimiter.
+
+ >>> data = "1, 2, 3\n4, 5, 6"
+ >>> np.genfromtxt(StringIO(data), delimiter=",")
+ array([[ 1., 2., 3.],
+ [ 4., 5., 6.]])
+
+Another common separator is ``"\t"``, the tabulation character.
+However, we are not limited to a single character, any string will do.
+By default, :func:`~numpy.genfromtxt` assumes ``delimiter=None``, meaning that the line is split along white spaces (including tabs) and that consecutive white spaces are considered as a single white space.
+
+Alternatively, we may be dealing with a fixed-width file, where columns are defined as a given number of characters.
+In that case, we need to set :keyword:`delimiter` to a single integer (if all the columns have the same size) or to a sequence of integers (if columns can have different sizes).
+
+ >>> data = " 1 2 3\n 4 5 67\n890123 4"
+ >>> np.genfromtxt(StringIO(data), delimiter=3)
+ array([[ 1., 2., 3.],
+ [ 4., 5., 67.],
+ [ 890., 123., 4.]])
+ >>> data = "123456789\n 4 7 9\n 4567 9"
+ >>> np.genfromtxt(StringIO(data), delimiter=(4, 3, 2))
+ array([[ 1234., 567., 89.],
+ [ 4., 7., 9.],
+ [ 4., 567., 9.]])
+
+
+The :keyword:`autostrip` argument
+---------------------------------
+
+By default, when a line is decomposed into a series of strings, the individual entries are not stripped of leading nor trailing white spaces.
+This behavior can be overwritten by setting the optional argument :keyword:`autostrip` to a value of ``True``.
+
+ >>> data = "1, abc , 2\n 3, xxx, 4"
+ >>> # Without autostrip
+ >>> np.genfromtxt(StringIO(data), dtype="|S5")
+ array([['1', ' abc ', ' 2'],
+ ['3', ' xxx', ' 4']],
+ dtype='|S5')
+ >>> # With autostrip
+ >>> np.genfromtxt(StringIO(data), dtype="|S5", autostrip=True)
+ array([['1', 'abc', '2'],
+ ['3', 'xxx', '4']],
+ dtype='|S5')
+
+
+The :keyword:`comments` argument
+--------------------------------
+
+The optional argument :keyword:`comments` is used to define a character string that marks the beginning of a comment.
+By default, :func:`~numpy.genfromtxt` assumes ``comments='#'``.
+The comment marker may occur anywhere on the line.
+Any character present after the comment marker(s) is simply ignored.
+
+ >>> data = """#
+ ... # Skip me !
+ ... # Skip me too !
+ ... 1, 2
+ ... 3, 4
+ ... 5, 6 #This is the third line of the data
+ ... 7, 8
+ ... # And here comes the last line
+ ... 9, 0
+ ... """
+ >>> np.genfromtxt(StringIO(data), comments="#", delimiter=",")
+ [[ 1. 2.]
+ [ 3. 4.]
+ [ 5. 6.]
+ [ 7. 8.]
+ [ 9. 0.]]
+
+.. note::
+ There is one notable exception to this behavior: if the optional argument ``names=True``, the first commented line will be examined for names.
+
+
+
+Skipping lines and choosing columns
+===================================
+
+The :keyword:`skip_header` and :keyword:`skip_footer` arguments
+---------------------------------------------------------------
+
+The presence of a header in the file can hinder data processing.
+In that case, we need to use the :keyword:`skip_header` optional argument.
+The values of this argument must be an integer which corresponds to the number of lines to skip at the beginning of the file, before any other action is performed.
+Similarly, we can skip the last ``n`` lines of the file by using the :keyword:`skip_footer` attribute and giving it a value of ``n``.
+
+ >>> data = "\n".join(str(i) for i in range(10))
+ >>> np.genfromtxt(StringIO(data),)
+ array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
+ >>> np.genfromtxt(StringIO(data),
+ ... skip_header=3, skip_footer=5)
+ array([ 3., 4.])
+
+By default, ``skip_header=0`` and ``skip_footer=0``, meaning that no lines are skipped.
+
+
+The :keyword:`usecols` argument
+-------------------------------
+
+In some cases, we are not interested in all the columns of the data but only a few of them.
+We can select which columns to import with the :keyword:`usecols` argument.
+This argument accepts a single integer or a sequence of integers corresponding to the indices of the columns to import.
+Remember that by convention, the first column has an index of 0.
+Negative integers correspond to
+
+For example, if we want to import only the first and the last columns, we can use ``usecols=(0, -1)``:
+ >>> data = "1 2 3\n4 5 6"
+ >>> np.genfromtxt(StringIO(data), usecols=(0, -1))
+ array([[ 1., 3.],
+ [ 4., 6.]])
+
+If the columns have names, we can also select which columns to import by giving their name to the :keyword:`usecols` argument, either as a sequence of strings or a comma-separated string.
+ >>> data = "1 2 3\n4 5 6"
+ >>> np.genfromtxt(StringIO(data),
+ ... names="a, b, c", usecols=("a", "c"))
+ array([(1.0, 3.0), (4.0, 6.0)],
+ dtype=[('a', '<f8'), ('c', '<f8')])
+ >>> np.genfromtxt(StringIO(data),
+ ... names="a, b, c", usecols=("a, c"))
+ array([(1.0, 3.0), (4.0, 6.0)],
+ dtype=[('a', '<f8'), ('c', '<f8')])
+
+
+
+
+Choosing the data type
+======================
+
+The main way to control how the sequences of strings we have read from the file are converted to other types is to set the :keyword:`dtype` argument.
+Acceptable values for this argument are:
+
+* a single type, such as ``dtype=float``.
+ The output will be 2D with the given dtype, unless a name has been associated with each column with the use of the :keyword:`names` argument (see below).
+ Note that ``dtype=float`` is the default for :func:`~numpy.genfromtxt`.
+* a sequence of types, such as ``dtype=(int, float, float)``.
+* a comma-separated string, such as ``dtype="i4,f8,|S3"``.
+* a dictionary with two keys ``'names'`` and ``'formats'``.
+* a sequence of tuples ``(name, type)``, such as ``dtype=[('A', int), ('B', float)]``.
+* an existing :class:`numpy.dtype` object.
+* the special value ``None``.
+ In that case, the type of the columns will be determined from the data itself (see below).
+
+In all the cases but the first one, the output will be a 1D array with a structured dtype.
+This dtype has as many fields as items in the sequence.
+The field names are defined with the :keyword:`names` keyword.
+
+
+When ``dtype=None``, the type of each column is determined iteratively from its data.
+We start by checking whether a string can be converted to a boolean (that is, if the string matches ``true`` or ``false`` in lower cases);
+then whether it can be converted to an integer, then to a float, then to a complex and eventually to a string.
+This behavior may be changed by modifying the default mapper of the :class:`~numpy.lib._iotools.StringConverter` class.
+
+The option ``dtype=None`` is provided for convenience.
+However, it is significantly slower than setting the dtype explicitly.
+
+
+
+Setting the names
+=================
+
+The :keyword:`names` argument
+-----------------------------
+
+A natural approach when dealing with tabular data is to allocate a name to each column.
+A first possibility is to use an explicit structured dtype, as mentioned previously.
+
+ >>> data = StringIO("1 2 3\n 4 5 6")
+ >>> np.genfromtxt(data, dtype=[(_, int) for _ in "abc"])
+ array([(1, 2, 3), (4, 5, 6)],
+ dtype=[('a', '<i8'), ('b', '<i8'), ('c', '<i8')])
+
+Another simpler possibility is to use the :keyword:`names` keyword with a sequence of strings or a comma-separated string.
+ >>> data = StringIO("1 2 3\n 4 5 6")
+ >>> np.genfromtxt(data, names="A, B, C")
+ array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)],
+ dtype=[('A', '<f8'), ('B', '<f8'), ('C', '<f8')])
+
+In the example above, we used the fact that by default, ``dtype=float``.
+By giving a sequence of names, we are forcing the output to a structured dtype.
+
+We may sometimes need to define the column names from the data itself.
+In that case, we must use the :keyword:`names` keyword with a value of ``True``.
+The names will then be read from the first line (after the ``skip_header`` ones), even if the line is commented out.
+
+ >>> data = StringIO("So it goes\n#a b c\n1 2 3\n 4 5 6")
+ >>> np.genfromtxt(data, skip_header=1, names=True)
+ array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)],
+ dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')])
+
+The default value of :keyword:`names` is ``None``.
+If we give any other value to the keyword, the new names will overwrite the field names we may have defined with the dtype.
+
+ >>> data = StringIO("1 2 3\n 4 5 6")
+ >>> ndtype=[('a',int), ('b', float), ('c', int)]
+ >>> names = ["A", "B", "C"]
+ >>> np.genfromtxt(data, names=names, dtype=ndtype)
+ array([(1, 2.0, 3), (4, 5.0, 6)],
+ dtype=[('A', '<i8'), ('B', '<f8'), ('C', '<i8')])
+
+
+The :keyword:`defaultfmt` argument
+----------------------------------
+
+If ``names=None`` but a structured dtype is expected, names are defined with the standard NumPy default of ``"f%i"``, yielding names like ``f0``, ``f1`` and so forth.
+ >>> data = StringIO("1 2 3\n 4 5 6")
+ >>> np.genfromtxt(data, dtype=(int, float, int))
+ array([(1, 2.0, 3), (4, 5.0, 6)],
+ dtype=[('f0', '<i8'), ('f1', '<f8'), ('f2', '<i8')])
+
+In the same way, if we don't give enough names to match the length of the dtype, the missing names will be defined with this default template.
+ >>> data = StringIO("1 2 3\n 4 5 6")
+ >>> np.genfromtxt(data, dtype=(int, float, int), names="a")
+ array([(1, 2.0, 3), (4, 5.0, 6)],
+ dtype=[('a', '<i8'), ('f0', '<f8'), ('f1', '<i8')])
+
+We can overwrite this default with the :keyword:`defaultfmt` argument, that takes any format string:
+ >>> data = StringIO("1 2 3\n 4 5 6")
+ >>> np.genfromtxt(data, dtype=(int, float, int), defaultfmt="var_%02i")
+ array([(1, 2.0, 3), (4, 5.0, 6)],
+ dtype=[('var_00', '<i8'), ('var_01', '<f8'), ('var_02', '<i8')])
+
+.. note::
+ We need to keep in mind that ``defaultfmt`` is used only if some names are expected but not defined.
+
+
+Validating names
+----------------
+
+Numpy arrays with a structured dtype can also be viewed as :class:`~numpy.recarray`, where a field can be accessed as if it were an attribute.
+For that reason, we may need to make sure that the field name doesn't contain any space or invalid character, or that it does not correspond to the name of a standard attribute (like ``size`` or ``shape``), which would confuse the interpreter.
+:func:`~numpy.genfromtxt` accepts three optional arguments that provide a finer control on the names:
+
+ :keyword:`deletechars`
+ Gives a string combining all the characters that must be deleted from the name. By default, invalid characters are ``~!@#$%^&*()-=+~\|]}[{';: /?.>,<``.
+ :keyword:`excludelist`
+ Gives a list of the names to exclude, such as ``return``, ``file``, ``print``...
+ If one of the input name is part of this list, an underscore character (``'_'``) will be appended to it.
+ :keyword:`case_sensitive`
+ Whether the names should be case-sensitive (``case_sensitive=True``),
+ converted to upper case (``case_sensitive=False`` or ``case_sensitive='upper'``) or to lower case (``case_sensitive='lower'``).
+
+
+
+Tweaking the conversion
+=======================
+
+The :keyword:`converters` argument
+----------------------------------
+
+Usually, defining a dtype is sufficient to define how the sequence of strings must be converted.
+However, some additional control may sometimes be required.
+For example, we may want to make sure that a date in a format ``YYYY/MM/DD`` is converted to a :class:`datetime` object, or that a string like ``xx%`` is properly converted to a float between 0 and 1.
+In such cases, we should define conversion functions with the :keyword:`converters` arguments.
+
+The value of this argument is typically a dictionary with column indices or column names as keys and a conversion function as values.
+These conversion functions can either be actual functions or lambda functions. In any case, they should accept only a string as input and output only a single element of the wanted type.
+
+In the following example, the second column is converted from as string representing a percentage to a float between 0 and 1
+ >>> convertfunc = lambda x: float(x.strip("%"))/100.
+ >>> data = "1, 2.3%, 45.\n6, 78.9%, 0"
+ >>> names = ("i", "p", "n")
+ >>> # General case .....
+ >>> np.genfromtxt(StringIO(data), delimiter=",", names=names)
+ array([(1.0, nan, 45.0), (6.0, nan, 0.0)],
+ dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])
+
+We need to keep in mind that by default, ``dtype=float``.
+A float is therefore expected for the second column.
+However, the strings ``' 2.3%'`` and ``' 78.9%'`` cannot be converted to float and we end up having ``np.nan`` instead.
+Let's now use a converter.
+
+ >>> # Converted case ...
+ >>> np.genfromtxt(StringIO(data), delimiter=",", names=names,
+ ... converters={1: convertfunc})
+ array([(1.0, 0.023, 45.0), (6.0, 0.78900000000000003, 0.0)],
+ dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])
+
+The same results can be obtained by using the name of the second column (``"p"``) as key instead of its index (1).
+
+ >>> # Using a name for the converter ...
+ >>> np.genfromtxt(StringIO(data), delimiter=",", names=names,
+ ... converters={"p": convertfunc})
+ array([(1.0, 0.023, 45.0), (6.0, 0.78900000000000003, 0.0)],
+ dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])
+
+
+Converters can also be used to provide a default for missing entries.
+In the following example, the converter ``convert`` transforms a stripped string into the corresponding float or into -999 if the string is empty.
+We need to explicitly strip the string from white spaces as it is not done by default.
+
+ >>> data = "1, , 3\n 4, 5, 6"
+ >>> convert = lambda x: float(x.strip() or -999)
+ >>> np.genfromtxt(StringIO(data), delimiter=",",
+ ... converter={1: convert})
+ array([[ 1., -999., 3.],
+ [ 4., 5., 6.]])
+
+
+
+
+Using missing and filling values
+--------------------------------
+
+Some entries may be missing in the dataset we are trying to import.
+In a previous example, we used a converter to transform an empty string into a float.
+However, user-defined converters may rapidly become cumbersome to manage.
+
+The :func:`~nummpy.genfromtxt` function provides two other complementary mechanisms: the :keyword:`missing_values` argument is used to recognize missing data and a second argument, :keyword:`filling_values`, is used to process these missing data.
+
+:keyword:`missing_values`
+-------------------------
+
+By default, any empty string is marked as missing.
+We can also consider more complex strings, such as ``"N/A"`` or ``"???"`` to represent missing or invalid data.
+The :keyword:`missing_values` argument accepts three kind of values:
+
+ a string or a comma-separated string
+ This string will be used as the marker for missing data for all the columns
+ a sequence of strings
+ In that case, each item is associated to a column, in order.
+ a dictionary
+ Values of the dictionary are strings or sequence of strings.
+ The corresponding keys can be column indices (integers) or column names (strings). In addition, the special key ``None`` can be used to define a default applicable to all columns.
+
+
+:keyword:`filling_values`
+-------------------------
+
+We know how to recognize missing data, but we still need to provide a value for these missing entries.
+By default, this value is determined from the expected dtype according to this table:
+
++---------------+-------------+
++ Expected type + Default +
++---------------+-------------+
++ ``bool`` + ``False``+
++---------------+-------------+
++ ``int`` + ``-1`` +
++---------------+-------------+
++ ``float`` + ``np.nan`` +
++---------------+-------------+
++ ``complex`` +``np.nan+0j``+
++---------------+-------------+
++ ``string`` + ``'???'`` +
++---------------+-------------+
+
+We can get a finer control on the conversion of missing values with the :keyword:`filling_values` optional argument.
+Like :keyword:`missing_values`, this argument accepts different kind of values:
+
+ a single value
+ This will be the default for all columns
+ a sequence of values
+ Each entry will be the default for the corresponding column
+ a dictionary
+ Each key can be a column index or a column name, and the corresponding value should be a single object.
+ We can use the special key ``None`` to define a default for all columns.
+
+In the following example, we suppose that the missing values are flagged with ``"N/A"`` in the first column and by ``"???"`` in the third column.
+We wish to transform these missing values to 0 if they occur in the first and second column, and to -999 if they occur in the last column.
+
+>>> data = "N/A, 2, 3\n4, ,???"
+>>> kwargs = dict(delimiter=",",
+... dtype=int,
+... names="a,b,c",
+... missing_values={0:"N/A", 'b':" ", 2:"???"},
+... filling_values={0:0, 'b':0, 2:-999})
+>>> np.genfromtxt(StringIO.StringIO(data), **kwargs)
+array([(0, 2, 3), (4, 0, -999)],
+ dtype=[('a', '<i8'), ('b', '<i8'), ('c', '<i8')])
+
+
+:keyword:`usemask`
+------------------
+
+We may also want to keep track of the occurrence of missing data by constructing a boolean mask, with ``True`` entries where data was missing and ``False`` otherwise.
+To do that, we just have to set the optional argument :keyword:`usemask` to ``True`` (the default is ``False``).
+The output array will then be a :class:`~numpy.ma.MaskedArray`.
+
+
+
+.. unpack=None, loose=True, invalid_raise=True)
+
+
+Shortcut functions
+==================
+
+In addition to :func:`~numpy.genfromtxt`, the :mod:`numpy.lib.io` module provides several convenience functions derived from :func:`~numpy.genfromtxt`.
+These functions work the same way as the original, but they have different default values.
+
+:func:`~numpy.ndfromtxt`
+ Always set ``usemask=False``.
+ The output is always a standard :class:`numpy.ndarray`.
+:func:`~numpy.mafromtxt`
+ Always set ``usemask=True``.
+ The output is always a :class:`~numpy.ma.MaskedArray`
+:func:`~numpy.recfromtxt`
+ Returns a standard :class:`numpy.recarray` (if ``usemask=False``) or a :class:`~numpy.ma.MaskedRecords` array (if ``usemaske=True``).
+ The default dtype is ``dtype=None``, meaning that the types of each column will be automatically determined.
+:func:`~numpy.recfromcsv`
+ Like :func:`~numpy.recfromtxt`, but with a default ``delimiter=","``.
+
diff --git a/doc/source/user/basic.io.rst b/doc/source/user/basic.io.rst
new file mode 100644
index 000000000..54ef758d5
--- /dev/null
+++ b/doc/source/user/basic.io.rst
@@ -0,0 +1,7 @@
+**************
+I/O with Numpy
+**************
+
+.. toctree::
+
+ basic.io.genfromtxt \ No newline at end of file
diff --git a/doc/source/user/basics.rst b/doc/source/user/basics.rst
index 74c92127b..03f0a1d85 100644
--- a/doc/source/user/basics.rst
+++ b/doc/source/user/basics.rst
@@ -11,6 +11,7 @@ Numpy basics
basics.types
basics.creation
+ basics.io
basics.indexing
basics.broadcasting
basics.byteswapping