summaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorWarren Weckesser <warren.weckesser@gmail.com>2020-04-26 09:34:04 -0400
committerGitHub <noreply@github.com>2020-04-26 09:34:04 -0400
commita695a9f240922790c8062b3349fe07812eabd251 (patch)
tree75314c997d2166e6fa6ccfc92cb1df5aa45ac42a /doc
parent651bb25d6b409b9031c40cf33f991d24f350edd3 (diff)
parent2817f1aacc6f64de6a2a88aca35141748d306546 (diff)
downloadnumpy-a695a9f240922790c8062b3349fe07812eabd251.tar.gz
Merge pull request #16079 from rossbar/bld/shorten_doc_build
DOC,BLD: Limit timeit iterations in random docs.
Diffstat (limited to 'doc')
-rw-r--r--doc/source/reference/random/new-or-different.rst35
1 files changed, 18 insertions, 17 deletions
diff --git a/doc/source/reference/random/new-or-different.rst b/doc/source/reference/random/new-or-different.rst
index b3bddb443..1d6b09faf 100644
--- a/doc/source/reference/random/new-or-different.rst
+++ b/doc/source/reference/random/new-or-different.rst
@@ -52,36 +52,37 @@ And in more detail:
methods which are 2-10 times faster than NumPy's default implementation in
`~.Generator.standard_normal`, `~.Generator.standard_exponential` or
`~.Generator.standard_gamma`.
-* `~.Generator.integers` is now the canonical way to generate integer
- random numbers from a discrete uniform distribution. The ``rand`` and
- ``randn`` methods are only available through the legacy `~.RandomState`.
- This replaces both ``randint`` and the deprecated ``random_integers``.
-* The Box-Muller method used to produce NumPy's normals is no longer available.
-* All bit generators can produce doubles, uint64s and
- uint32s via CTypes (`~PCG64.ctypes`) and CFFI (`~PCG64.cffi`).
- This allows these bit generators to be used in numba.
-* The bit generators can be used in downstream projects via
- Cython.
-
+
.. ipython:: python
from numpy.random import Generator, PCG64
import numpy.random
rg = Generator(PCG64())
- %timeit rg.standard_normal(100000)
- %timeit numpy.random.standard_normal(100000)
+ %timeit -n 1 rg.standard_normal(100000)
+ %timeit -n 1 numpy.random.standard_normal(100000)
.. ipython:: python
- %timeit rg.standard_exponential(100000)
- %timeit numpy.random.standard_exponential(100000)
+ %timeit -n 1 rg.standard_exponential(100000)
+ %timeit -n 1 numpy.random.standard_exponential(100000)
.. ipython:: python
- %timeit rg.standard_gamma(3.0, 100000)
- %timeit numpy.random.standard_gamma(3.0, 100000)
+ %timeit -n 1 rg.standard_gamma(3.0, 100000)
+ %timeit -n 1 numpy.random.standard_gamma(3.0, 100000)
+
+* `~.Generator.integers` is now the canonical way to generate integer
+ random numbers from a discrete uniform distribution. The ``rand`` and
+ ``randn`` methods are only available through the legacy `~.RandomState`.
+ This replaces both ``randint`` and the deprecated ``random_integers``.
+* The Box-Muller method used to produce NumPy's normals is no longer available.
+* All bit generators can produce doubles, uint64s and
+ uint32s via CTypes (`~PCG64.ctypes`) and CFFI (`~PCG64.cffi`).
+ This allows these bit generators to be used in numba.
+* The bit generators can be used in downstream projects via
+ Cython.
* Optional ``dtype`` argument that accepts ``np.float32`` or ``np.float64``
to produce either single or double prevision uniform random variables for
select distributions