summaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2019-04-30 17:23:38 -0600
committerGitHub <noreply@github.com>2019-04-30 17:23:38 -0600
commit374c4e031b7dad43513dcc6e7bbeb0cd76ad7cdb (patch)
tree9919488b4c71757dd9494549a9ef38f9ab7ba1bd /doc
parentc51a56c4c78a409a884201004a1e7f605526a3a8 (diff)
parent512c6451fd61c7d1e8053082cd93ecf10417ea22 (diff)
downloadnumpy-374c4e031b7dad43513dcc6e7bbeb0cd76ad7cdb.tar.gz
Merge pull request #13413 from mattip/doc-linalg
DOC: document existence of linalg backends
Diffstat (limited to 'doc')
-rw-r--r--doc/source/reference/routines.linalg.rst13
1 files changed, 13 insertions, 0 deletions
diff --git a/doc/source/reference/routines.linalg.rst b/doc/source/reference/routines.linalg.rst
index c6bffc874..d42e77ad8 100644
--- a/doc/source/reference/routines.linalg.rst
+++ b/doc/source/reference/routines.linalg.rst
@@ -5,6 +5,19 @@
Linear algebra (:mod:`numpy.linalg`)
************************************
+The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient
+low level implementations of standard linear algebra algorithms. Those
+libraries may be provided by NumPy itself using C versions of a subset of their
+reference implementations but, when possible, highly optimized libraries that
+take advantage of specialized processor functionality are preferred. Examples
+of such libraries are OpenBLAS_, MKL (TM), and ATLAS. Because those libraries
+are multithreaded and processor dependent, environmental variables and external
+packages such as threadpoolctl_ may be needed to control the number of threads
+or specify the processor architecture.
+
+.. _OpenBLAS: https://www.openblas.net/
+.. _threadpoolctl: https://github.com/joblib/threadpoolctl
+
.. currentmodule:: numpy
Matrix and vector products