diff options
author | endolith <endolith@gmail.com> | 2014-07-15 19:06:30 -0400 |
---|---|---|
committer | endolith <endolith@gmail.com> | 2014-07-15 19:06:30 -0400 |
commit | 71a9c6c4253b3dea3dbf913b3befb3efae7ab9c4 (patch) | |
tree | 7a6ea636b79dee3ab7e6759aa0335d44c88610ae /doc | |
parent | a0c3c1d76b35a6d4cc9b32b3db53883d1a2c38ff (diff) | |
download | numpy-71a9c6c4253b3dea3dbf913b3befb3efae7ab9c4.tar.gz |
DOC: fix a typo and use TeX for plot labels
Diffstat (limited to 'doc')
-rw-r--r-- | doc/source/reference/routines.polynomials.classes.rst | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/doc/source/reference/routines.polynomials.classes.rst b/doc/source/reference/routines.polynomials.classes.rst index 14729f08b..c40795434 100644 --- a/doc/source/reference/routines.polynomials.classes.rst +++ b/doc/source/reference/routines.polynomials.classes.rst @@ -211,7 +211,7 @@ constant are 0, but both can be specified.:: In the first case the lower bound of the integration is set to -1 and the integration constant is 0. In the second the constant of integration is set to 1 as well. Differentiation is simpler since the only option is the -number times the polynomial is differentiated:: +number of times the polynomial is differentiated:: >>> p = P([1, 2, 3]) >>> p.deriv(1) @@ -270,7 +270,7 @@ polynomials up to degree 5 are plotted below. >>> import matplotlib.pyplot as plt >>> from numpy.polynomial import Chebyshev as T >>> x = np.linspace(-1, 1, 100) - >>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="T_%d"%i) + >>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="$T_%d$"%i) ... >>> plt.legend(loc="upper left") <matplotlib.legend.Legend object at 0x3b3ee10> @@ -284,7 +284,7 @@ The same plots over the range -2 <= `x` <= 2 look very different: >>> import matplotlib.pyplot as plt >>> from numpy.polynomial import Chebyshev as T >>> x = np.linspace(-2, 2, 100) - >>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="T_%d"%i) + >>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="$T_%d$"%i) ... >>> plt.legend(loc="lower right") <matplotlib.legend.Legend object at 0x3b3ee10> |