summaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorendolith <endolith@gmail.com>2014-07-15 19:06:30 -0400
committerendolith <endolith@gmail.com>2014-07-15 19:06:30 -0400
commit71a9c6c4253b3dea3dbf913b3befb3efae7ab9c4 (patch)
tree7a6ea636b79dee3ab7e6759aa0335d44c88610ae /doc
parenta0c3c1d76b35a6d4cc9b32b3db53883d1a2c38ff (diff)
downloadnumpy-71a9c6c4253b3dea3dbf913b3befb3efae7ab9c4.tar.gz
DOC: fix a typo and use TeX for plot labels
Diffstat (limited to 'doc')
-rw-r--r--doc/source/reference/routines.polynomials.classes.rst6
1 files changed, 3 insertions, 3 deletions
diff --git a/doc/source/reference/routines.polynomials.classes.rst b/doc/source/reference/routines.polynomials.classes.rst
index 14729f08b..c40795434 100644
--- a/doc/source/reference/routines.polynomials.classes.rst
+++ b/doc/source/reference/routines.polynomials.classes.rst
@@ -211,7 +211,7 @@ constant are 0, but both can be specified.::
In the first case the lower bound of the integration is set to -1 and the
integration constant is 0. In the second the constant of integration is set
to 1 as well. Differentiation is simpler since the only option is the
-number times the polynomial is differentiated::
+number of times the polynomial is differentiated::
>>> p = P([1, 2, 3])
>>> p.deriv(1)
@@ -270,7 +270,7 @@ polynomials up to degree 5 are plotted below.
>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> x = np.linspace(-1, 1, 100)
- >>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="T_%d"%i)
+ >>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="$T_%d$"%i)
...
>>> plt.legend(loc="upper left")
<matplotlib.legend.Legend object at 0x3b3ee10>
@@ -284,7 +284,7 @@ The same plots over the range -2 <= `x` <= 2 look very different:
>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> x = np.linspace(-2, 2, 100)
- >>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="T_%d"%i)
+ >>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="$T_%d$"%i)
...
>>> plt.legend(loc="lower right")
<matplotlib.legend.Legend object at 0x3b3ee10>