summaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorRalf Gommers <ralf.gommers@gmail.com>2019-12-03 14:19:36 -0800
committerGitHub <noreply@github.com>2019-12-03 14:19:36 -0800
commitfdd8395f21a252373ff17fd43185c42e040c1b64 (patch)
tree710f8da5f935da8212730c51b84467b442204f87 /doc
parentbe773d49d49f39c4b384792fbd540bc78b53f497 (diff)
parentb2f2700469dbda3c791fb6a3a1dad1f95c4f7a8a (diff)
downloadnumpy-fdd8395f21a252373ff17fd43185c42e040c1b64.tar.gz
Merge pull request #15007 from mattip/random-c-api2
DOC, API: improve the C-API/Cython documentation and interfaces for random
Diffstat (limited to 'doc')
-rw-r--r--doc/source/reference/random/c-api.rst153
-rw-r--r--doc/source/reference/random/extending.rst2
2 files changed, 91 insertions, 64 deletions
diff --git a/doc/source/reference/random/c-api.rst b/doc/source/reference/random/c-api.rst
index 3c901f3b4..2a9de04dc 100644
--- a/doc/source/reference/random/c-api.rst
+++ b/doc/source/reference/random/c-api.rst
@@ -3,32 +3,49 @@ Cython API for random
.. currentmodule:: numpy.random
-Typed versions of many of the `Generator` and `BitGenerator` can be accessed
-directly from Cython: the complete list is given below.
+Typed versions of many of the `Generator` and `BitGenerator` methods can be
+accessed directly from Cython: the complete list is given below.
The ``_bit_generator`` module is usable via::
cimport numpy.random._bit_generator
It provides function pointers for quickly accessing the next bytes in the
-`BitGenerator`::
+`BitGenerator` via a :c:type:`bitgen_t` struct.
- struct bitgen:
- void *state
- uint64_t (*next_uint64)(void *st) nogil
- uint32_t (*next_uint32)(void *st) nogil
- double (*next_double)(void *st) nogil
- uint64_t (*next_raw)(void *st) nogil
+The ``_generator`` module is usable via::
- ctypedef bitgen bitgen_t
+ cimport numpy.random._generator
-See `extending` for examples of using these functions.
+It provides low-level functions for various distributions. All the functions
+require a ``bitgen_t`` BitGenerator structure.
-The ``_generator`` module is usable via::
+C API for random
+---------------------
- cimport numpy.random._generator
+Access to various distributions is available via Cython or C-wrapper libraries
+like CFFI. All the functions accept a :c:type:`bitgen_t` as their first argument.
+
+.. c:type:: bitgen_t
+
+ The :c:type:`bitgen_t` holds the current state of the BitGenerator and
+ pointers to functions that return standard C types while advancing the
+ state.
+
+ .. code-block:: c
+
+ struct bitgen:
+ void *state
+ npy_uint64 (*next_uint64)(void *st) nogil
+ uint32_t (*next_uint32)(void *st) nogil
+ double (*next_double)(void *st) nogil
+ npy_uint64 (*next_raw)(void *st) nogil
+
+ ctypedef bitgen bitgen_t
+
+See :doc:`extending` for examples of using these functions.
-It provides low-level functions for various distributions. All the functions require a ``bitgen_t`` BitGenerator structure. The functions are named with the followig cconventions:
+The functions are named with the following conventions:
- "standard" refers to the reference values for any parameters. For instance
"standard_uniform" means a uniform distribution on the interval ``0.0`` to
@@ -39,37 +56,34 @@ It provides low-level functions for various distributions. All the functions req
- The functions without "standard" in their name require additional parameters
to describe the distributions.
-.. c:function:: double random_standard_uniform(bitgen_t *bitgen_state)
+- ``zig`` in the name are based on a ziggurat lookup algorithm is used instead
+ of calculating the ``log``, which is significantly faster. The non-ziggurat
+ variants are used in corner cases and for legacy compatibility.
-.. c:function:: void random_standard_uniform_fill(bitgen_t* bitgen_state, np.npy_intp cnt, double *out)
-.. c:function:: double random_standard_exponential(bitgen_t *bitgen_state)
+.. c:function:: double random_standard_uniform(bitgen_t *bitgen_state)
-.. c:function:: void random_standard_exponential_fill(bitgen_t *bitgen_state, np.npy_intp cnt, double *out)
+.. c:function:: void random_standard_uniform_fill(bitgen_t* bitgen_state, npy_intp cnt, double *out)
-.. c:function:: double random_standard_exponential_zig(bitgen_t *bitgen_state)
+.. c:function:: double random_standard_exponential(bitgen_t *bitgen_state)
-.. c:function:: void random_standard_exponential_zig_fill(bitgen_t *bitgen_state, np.npy_intp cnt, double *out)
+.. c:function:: void random_standard_exponential_fill(bitgen_t *bitgen_state, npy_intp cnt, double *out)
.. c:function:: double random_standard_normal(bitgen_t* bitgen_state)
-.. c:function:: void random_standard_normal_fill(bitgen_t *bitgen_state, np.npy_intp count, double *out)
+.. c:function:: void random_standard_normal_fill(bitgen_t *bitgen_state, npy_intp count, double *out)
-.. c:function:: void random_standard_normal_fill_f(bitgen_t *bitgen_state, np.npy_intp count, float *out)
+.. c:function:: void random_standard_normal_fill_f(bitgen_t *bitgen_state, npy_intp count, float *out)
.. c:function:: double random_standard_gamma(bitgen_t *bitgen_state, double shape)
.. c:function:: float random_standard_uniform_f(bitgen_t *bitgen_state)
-.. c:function:: void random_standard_uniform_fill_f(bitgen_t* bitgen_state, np.npy_intp cnt, float *out)
+.. c:function:: void random_standard_uniform_fill_f(bitgen_t* bitgen_state, npy_intp cnt, float *out)
.. c:function:: float random_standard_exponential_f(bitgen_t *bitgen_state)
-.. c:function:: float random_standard_exponential_zig_f(bitgen_t *bitgen_state)
-
-.. c:function:: void random_standard_exponential_fill_f(bitgen_t *bitgen_state, np.npy_intp cnt, float *out)
-
-.. c:function:: void random_standard_exponential_zig_fill_f(bitgen_t *bitgen_state, np.npy_intp cnt, float *out)
+.. c:function:: void random_standard_exponential_fill_f(bitgen_t *bitgen_state, npy_intp cnt, float *out)
.. c:function:: float random_standard_normal_f(bitgen_t* bitgen_state)
@@ -84,6 +98,7 @@ It provides low-level functions for various distributions. All the functions req
.. c:function:: double random_exponential(bitgen_t *bitgen_state, double scale)
.. c:function:: double random_uniform(bitgen_t *bitgen_state, double lower, double range)
+
.. c:function:: double random_beta(bitgen_t *bitgen_state, double a, double b)
.. c:function:: double random_chisquare(bitgen_t *bitgen_state, double df)
@@ -110,68 +125,78 @@ It provides low-level functions for various distributions. All the functions req
.. c:function:: double random_standard_t(bitgen_t *bitgen_state, double df)
-.. c:function:: double random_noncentral_chisquare(bitgen_t *bitgen_state, double df,
- double nonc)
-.. c:function:: double random_noncentral_f(bitgen_t *bitgen_state, double dfnum,
- double dfden, double nonc)
+.. c:function:: double random_noncentral_chisquare(bitgen_t *bitgen_state, double df, double nonc)
+.. c:function:: double random_noncentral_f(bitgen_t *bitgen_state, double dfnum, double dfden, double nonc)
.. c:function:: double random_wald(bitgen_t *bitgen_state, double mean, double scale)
.. c:function:: double random_vonmises(bitgen_t *bitgen_state, double mu, double kappa)
-.. c:function:: double random_triangular(bitgen_t *bitgen_state, double left, double mode,
- double right)
+.. c:function:: double random_triangular(bitgen_t *bitgen_state, double left, double mode, double right)
+
+.. c:function:: npy_int64 random_poisson(bitgen_t *bitgen_state, double lam)
+
+.. c:function:: npy_int64 random_negative_binomial(bitgen_t *bitgen_state, double n, double p)
+
+.. c:type:: binomial_t
-.. c:function:: int64_t random_poisson(bitgen_t *bitgen_state, double lam)
+ .. code-block:: c
-.. c:function:: int64_t random_negative_binomial(bitgen_t *bitgen_state, double n, double p)
+ typedef struct s_binomial_t {
+ int has_binomial; /* !=0: following parameters initialized for binomial */
+ double psave;
+ RAND_INT_TYPE nsave;
+ double r;
+ double q;
+ double fm;
+ RAND_INT_TYPE m;
+ double p1;
+ double xm;
+ double xl;
+ double xr;
+ double c;
+ double laml;
+ double lamr;
+ double p2;
+ double p3;
+ double p4;
+ } binomial_t;
+
-.. c:function:: int64_t random_binomial(bitgen_t *bitgen_state, double p, int64_t n, binomial_t *binomial)
+.. c:function:: npy_int64 random_binomial(bitgen_t *bitgen_state, double p, npy_int64 n, binomial_t *binomial)
-.. c:function:: int64_t random_logseries(bitgen_t *bitgen_state, double p)
+.. c:function:: npy_int64 random_logseries(bitgen_t *bitgen_state, double p)
-.. c:function:: int64_t random_geometric_search(bitgen_t *bitgen_state, double p)
+.. c:function:: npy_int64 random_geometric_search(bitgen_t *bitgen_state, double p)
-.. c:function:: int64_t random_geometric_inversion(bitgen_t *bitgen_state, double p)
+.. c:function:: npy_int64 random_geometric_inversion(bitgen_t *bitgen_state, double p)
-.. c:function:: int64_t random_geometric(bitgen_t *bitgen_state, double p)
+.. c:function:: npy_int64 random_geometric(bitgen_t *bitgen_state, double p)
-.. c:function:: int64_t random_zipf(bitgen_t *bitgen_state, double a)
+.. c:function:: npy_int64 random_zipf(bitgen_t *bitgen_state, double a)
-.. c:function:: int64_t random_hypergeometric(bitgen_t *bitgen_state, int64_t good, int64_t bad,
- int64_t sample)
+.. c:function:: npy_int64 random_hypergeometric(bitgen_t *bitgen_state, npy_int64 good, npy_int64 bad, npy_int64 sample)
-.. c:function:: uint64_t random_interval(bitgen_t *bitgen_state, uint64_t max)
+.. c:function:: npy_uint64 random_interval(bitgen_t *bitgen_state, npy_uint64 max)
-.. c:function:: void random_multinomial(bitgen_t *bitgen_state, int64_t n, int64_t *mnix,
- double *pix, np.npy_intp d, binomial_t *binomial)
+.. c:function:: void random_multinomial(bitgen_t *bitgen_state, npy_int64 n, npy_int64 *mnix, double *pix, npy_intp d, binomial_t *binomial)
-.. c:function:: int random_mvhg_count(bitgen_t *bitgen_state,
- int64_t total,
- size_t num_colors, int64_t *colors,
- int64_t nsample,
- size_t num_variates, int64_t *variates)
+.. c:function:: int random_mvhg_count(bitgen_t *bitgen_state, npy_int64 total, size_t num_colors, npy_int64 *colors, npy_int64 nsample, size_t num_variates, npy_int64 *variates)
-.. c:function:: void random_mvhg_marginals(bitgen_t *bitgen_state,
- int64_t total,
- size_t num_colors, int64_t *colors,
- int64_t nsample,
- size_t num_variates, int64_t *variates)
+.. c:function:: void random_mvhg_marginals(bitgen_t *bitgen_state, npy_int64 total, size_t num_colors, npy_int64 *colors, npy_int64 nsample, size_t num_variates, npy_int64 *variates)
Generate a single integer
-.. c:function:: int64_t random_positive_int64(bitgen_t *bitgen_state)
+.. c:function:: npy_int64 random_positive_int64(bitgen_t *bitgen_state)
-.. c:function:: int32_t random_positive_int32(bitgen_t *bitgen_state)
+.. c:function:: npy_int32 random_positive_int32(bitgen_t *bitgen_state)
-.. c:function:: int64_t random_positive_int(bitgen_t *bitgen_state)
+.. c:function:: npy_int64 random_positive_int(bitgen_t *bitgen_state)
-.. c:function:: uint64_t random_uint(bitgen_t *bitgen_state)
+.. c:function:: npy_uint64 random_uint(bitgen_t *bitgen_state)
Generate random uint64 numbers in closed interval [off, off + rng].
-.. c:function:: uint64_t random_bounded_uint64(bitgen_t *bitgen_state,
- uint64_t off, uint64_t rng,
- uint64_t mask, bint use_masked)
+.. c:function:: npy_uint64 random_bounded_uint64(bitgen_t *bitgen_state, npy_uint64 off, npy_uint64 rng, npy_uint64 mask, bint use_masked)
diff --git a/doc/source/reference/random/extending.rst b/doc/source/reference/random/extending.rst
index 3c30e5623..12311379d 100644
--- a/doc/source/reference/random/extending.rst
+++ b/doc/source/reference/random/extending.rst
@@ -1,5 +1,7 @@
.. currentmodule:: numpy.random
+.. _extending:
+
Extending
---------
The BitGenerators have been designed to be extendable using standard tools for