diff options
author | Travis Oliphant <oliphant@enthought.com> | 2007-12-15 18:54:52 +0000 |
---|---|---|
committer | Travis Oliphant <oliphant@enthought.com> | 2007-12-15 18:54:52 +0000 |
commit | e76b5fa6896c09257181675bbf4cf47789d32927 (patch) | |
tree | 7174e22c68fc47df61e745ee18625ee9f4f5b88c /numpy/add_newdocs.py | |
parent | 02ee35a7e1c722a1cdac8f3a60fe9ef7aa079a37 (diff) | |
download | numpy-e76b5fa6896c09257181675bbf4cf47789d32927.tar.gz |
Create a branch for io work in NumPy
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r-- | numpy/add_newdocs.py | 1444 |
1 files changed, 0 insertions, 1444 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py deleted file mode 100644 index ce4b43107..000000000 --- a/numpy/add_newdocs.py +++ /dev/null @@ -1,1444 +0,0 @@ -from lib import add_newdoc - -add_newdoc('numpy.core','dtype', - [('fields', "Fields of the data-type or None if no fields"), - ('names', "Names of fields or None if no fields"), - ('alignment', "Needed alignment for this data-type"), - ('byteorder', - "Little-endian (<), big-endian (>), native (=), or "\ - "not-applicable (|)"), - ('char', "Letter typecode for this data-type"), - ('type', "Type object associated with this data-type"), - ('kind', "Character giving type-family of this data-type"), - ('itemsize', "Size of each item"), - ('hasobject', "Non-zero if Python objects are in "\ - "this data-type"), - ('num', "Internally-used number for builtin base"), - ('newbyteorder', -"""self.newbyteorder(<endian>) -returns a copy of the dtype object with altered byteorders. -If <endian> is not given all byteorders are swapped. -Otherwise endian can be '>', '<', or '=' to force a particular -byteorder. Data-types in all fields are also updated in the -new dtype object. -"""), - ("__reduce__", "self.__reduce__() for pickling"), - ("__setstate__", "self.__setstate__() for pickling"), - ("subdtype", "A tuple of (descr, shape) or None"), - ("descr", "The array_interface data-type descriptor."), - ("str", "The array interface typestring."), - ("name", "The name of the true data-type"), - ("base", "The base data-type or self if no subdtype"), - ("shape", "The shape of the subdtype or (1,)"), - ("isbuiltin", "Is this a built-in data-type?"), - ("isnative", "Is the byte-order of this data-type native?") - ] - ) - -############################################################################### -# -# flatiter -# -# flatiter needs a toplevel description -# -############################################################################### - -# attributes -add_newdoc('numpy.core', 'flatiter', ('base', - """documentation needed - - """)) - - - -add_newdoc('numpy.core', 'flatiter', ('coords', - """An N-d tuple of current coordinates. - - """)) - - - -add_newdoc('numpy.core', 'flatiter', ('index', - """documentation needed - - """)) - - - -# functions -add_newdoc('numpy.core', 'flatiter', ('__array__', - """__array__(type=None) Get array from iterator - - """)) - - -add_newdoc('numpy.core', 'flatiter', ('copy', - """copy() Get a copy of the iterator as a 1-d array - - """)) - - -############################################################################### -# -# broadcast -# -############################################################################### - -# attributes -add_newdoc('numpy.core', 'broadcast', ('index', - """current index in broadcasted result - - """)) - - -add_newdoc('numpy.core', 'broadcast', ('iters', - """tuple of individual iterators - - """)) - - -add_newdoc('numpy.core', 'broadcast', ('nd', - """number of dimensions of broadcasted result - - """)) - - -add_newdoc('numpy.core', 'broadcast', ('numiter', - """number of iterators - - """)) - - -add_newdoc('numpy.core', 'broadcast', ('shape', - """shape of broadcasted result - - """)) - - -add_newdoc('numpy.core', 'broadcast', ('size', - """total size of broadcasted result - - """)) - - -############################################################################### -# -# numpy functions -# -############################################################################### - -add_newdoc('numpy.core.multiarray','array', - """array(object, dtype=None, copy=1,order=None, subok=0,ndmin=0) - - Return an array from object with the specified date-type. - - Inputs: - object - an array, any object exposing the array interface, any - object whose __array__ method returns an array, or any - (nested) sequence. - dtype - The desired data-type for the array. If not given, then - the type will be determined as the minimum type required - to hold the objects in the sequence. This argument can only - be used to 'upcast' the array. For downcasting, use the - .astype(t) method. - copy - If true, then force a copy. Otherwise a copy will only occur - if __array__ returns a copy, obj is a nested sequence, or - a copy is needed to satisfy any of the other requirements - order - Specify the order of the array. If order is 'C', then the - array will be in C-contiguous order (last-index varies the - fastest). If order is 'FORTRAN', then the returned array - will be in Fortran-contiguous order (first-index varies the - fastest). If order is None, then the returned array may - be in either C-, or Fortran-contiguous order or even - discontiguous. - subok - If True, then sub-classes will be passed-through, otherwise - the returned array will be forced to be a base-class array - ndmin - Specifies the minimum number of dimensions that the resulting - array should have. 1's will be pre-pended to the shape as - needed to meet this requirement. - - """) - -add_newdoc('numpy.core.multiarray','empty', - """empty((d1,...,dn),dtype=float,order='C') - - Return a new array of shape (d1,...,dn) and given type with all its - entries uninitialized. This can be faster than zeros. - - """) - - -add_newdoc('numpy.core.multiarray','scalar', - """scalar(dtype,obj) - - Return a new scalar array of the given type initialized with - obj. Mainly for pickle support. The dtype must be a valid data-type - descriptor. If dtype corresponds to an OBJECT descriptor, then obj - can be any object, otherwise obj must be a string. If obj is not given - it will be interpreted as None for object type and zeros for all other - types. - - """) - -add_newdoc('numpy.core.multiarray','zeros', - """zeros((d1,...,dn),dtype=float,order='C') - - Return a new array of shape (d1,...,dn) and type typecode with all - it's entries initialized to zero. - - """) - -add_newdoc('numpy.core.multiarray','set_typeDict', - """set_typeDict(dict) - - Set the internal dictionary that can look up an array type using a - registered code. - - """) - -add_newdoc('numpy.core.multiarray','fromstring', - """fromstring(string, dtype=float, count=-1, sep='') - - Return a new 1d array initialized from the raw binary data in string. - - If count is positive, the new array will have count elements, otherwise its - size is determined by the size of string. If sep is not empty then the - string is interpreted in ASCII mode and converted to the desired number type - using sep as the separator between elements (extra whitespace is ignored). - - """) - -add_newdoc('numpy.core.multiarray','fromiter', - """fromiter(iterable, dtype, count=-1) - - Return a new 1d array initialized from iterable. If count is - nonegative, the new array will have count elements, otherwise it's - size is determined by the generator. - - """) - -add_newdoc('numpy.core.multiarray','fromfile', - """fromfile(file=, dtype=float, count=-1, sep='') -> array. - - Required arguments: - file -- open file object or string containing file name. - - Keyword arguments: - dtype -- type and order of the returned array (default float) - count -- number of items to input (default all) - sep -- separater between items if file is a text file (default "") - - Return an array of the given data type from a text or binary file. The - 'file' argument can be an open file or a string with the name of a file to - read from. If 'count' == -1 the entire file is read, otherwise count is the - number of items of the given type to read in. If 'sep' is "" it means to - read binary data from the file using the specified dtype, otherwise it gives - the separator between elements in a text file. The 'dtype' value is also - used to determine the size and order of the items in binary files. - - - Data written using the tofile() method can be conveniently recovered using - this function. - - WARNING: This function should be used sparingly as the binary files are not - platform independent. In particular, they contain no endianess or datatype - information. Nevertheless it can be useful for reading in simply formatted - or binary data quickly. - - """) - -add_newdoc('numpy.core.multiarray','frombuffer', - """frombuffer(buffer=, dtype=float, count=-1, offset=0) - - Returns a 1-d array of data type dtype from buffer. The buffer - argument must be an object that exposes the buffer interface. If - count is -1 then the entire buffer is used, otherwise, count is the - size of the output. If offset is given then jump that far into the - buffer. If the buffer has data that is out not in machine byte-order, - than use a propert data type descriptor. The data will not be - byteswapped, but the array will manage it in future operations. - - """) - -add_newdoc('numpy.core.multiarray','concatenate', - """concatenate((a1, a2, ...), axis=0) - - Join arrays together. - - The tuple of sequences (a1, a2, ...) are joined along the given axis - (default is the first one) into a single numpy array. - - Example: - - >>> concatenate( ([0,1,2], [5,6,7]) ) - array([0, 1, 2, 5, 6, 7]) - - """) - -add_newdoc('numpy.core.multiarray','inner', - """inner(a,b) - - Returns the dot product of two arrays, which has shape a.shape[:-1] + - b.shape[:-1] with elements computed by the product of the elements - from the last dimensions of a and b. - - """) - -add_newdoc('numpy.core','fastCopyAndTranspose', - """_fastCopyAndTranspose(a)""") - -add_newdoc('numpy.core.multiarray','correlate', - """cross_correlate(a,v, mode=0)""") - -add_newdoc('numpy.core.multiarray','arange', - """arange([start,] stop[, step,], dtype=None) - - For integer arguments, just like range() except it returns an array - whose type can be specified by the keyword argument dtype. If dtype - is not specified, the type of the result is deduced from the type of - the arguments. - - For floating point arguments, the length of the result is ceil((stop - - start)/step). This rule may result in the last element of the result - being greater than stop. - - """) - -add_newdoc('numpy.core.multiarray','_get_ndarray_c_version', - """_get_ndarray_c_version() - - Return the compile time NDARRAY_VERSION number. - - """) - -add_newdoc('numpy.core.multiarray','_reconstruct', - """_reconstruct(subtype, shape, dtype) - - Construct an empty array. Used by Pickles. - - """) - - -add_newdoc('numpy.core.multiarray','set_string_function', - """set_string_function(f, repr=1) - - Set the python function f to be the function used to obtain a pretty - printable string version of an array whenever an array is printed. - f(M) should expect an array argument M, and should return a string - consisting of the desired representation of M for printing. - - """) - -add_newdoc('numpy.core.multiarray','set_numeric_ops', - """set_numeric_ops(op=func, ...) - - Set some or all of the number methods for all array objects. Do not - forget **dict can be used as the argument list. Return the functions - that were replaced, which can be stored and set later. - - """) - -add_newdoc('numpy.core.multiarray','where', - """where(condition, x, y) or where(condition) - - Return elements from `x` or `y`, depending on `condition`. - - *Parameters*: - condition : array of bool - When True, yield x, otherwise yield y. - x,y : 1-dimensional arrays - Values from which to choose. - - *Notes* - This is equivalent to - - [xv if c else yv for (c,xv,yv) in zip(condition,x,y)] - - The result is shaped like `condition` and has elements of `x` - or `y` where `condition` is respectively True or False. - - In the special case, where only `condition` is given, the - tuple condition.nonzero() is returned, instead. - - *Examples* - >>> where([True,False,True],[1,2,3],[4,5,6]) - array([1, 5, 3]) - - """) - - -add_newdoc('numpy.core.multiarray','lexsort', - """lexsort(keys=, axis=-1) -> array of indices. Argsort with list of keys. - - Perform an indirect sort using a list of keys. The first key is sorted, - then the second, and so on through the list of keys. At each step the - previous order is preserved when equal keys are encountered. The result is - a sort on multiple keys. If the keys represented columns of a spreadsheet, - for example, this would sort using multiple columns (the last key being - used for the primary sort order, the second-to-last key for the secondary - sort order, and so on). The keys argument must be a sequence of things - that can be converted to arrays of the same shape. - - *Parameters*: - - keys : (k,N) array or tuple of (N,) sequences - Array containing values that the returned indices should sort. - - axis : integer - Axis to be indirectly sorted. Default is -1 (i.e. last axis). - - *Returns*: - - indices : (N,) integer array - Array of indices that sort the keys along the specified axis. - - *See Also*: - - `argsort` : indirect sort - `sort` : inplace sort - - *Examples* - - >>> a = [1,5,1,4,3,6,7] - >>> b = [9,4,0,4,0,4,3] - >>> ind = lexsort((b,a)) - >>> print ind - [2 0 4 3 1 5 6] - >>> print take(a,ind) - [1 1 3 4 5 6 7] - >>> print take(b,ind) - [0 9 0 4 4 4 3] - - """) - -add_newdoc('numpy.core.multiarray','can_cast', - """can_cast(from=d1, to=d2) - - Returns True if data type d1 can be cast to data type d2 without - losing precision. - - """) - -add_newdoc('numpy.core.multiarray','newbuffer', - """newbuffer(size) - - Return a new uninitialized buffer object of size bytes - - """) - -add_newdoc('numpy.core.multiarray','getbuffer', - """getbuffer(obj [,offset[, size]]) - - Create a buffer object from the given object referencing a slice of - length size starting at offset. Default is the entire buffer. A - read-write buffer is attempted followed by a read-only buffer. - - """) - -############################################################################## -# -# Documentation for ndarray attributes and methods -# -############################################################################## - - -############################################################################## -# -# ndarray object -# -############################################################################## - - -add_newdoc('numpy.core.multiarray', 'ndarray', - """An array object represents a multidimensional, homogeneous array - of fixed-size items. An associated data-type-descriptor object - details the data-type in an array (including byteorder and any - fields). An array can be constructed using the numpy.array - command. Arrays are sequence, mapping and numeric objects. - More information is available in the numpy module and by looking - at the methods and attributes of an array. - - ndarray.__new__(subtype, shape=, dtype=float, buffer=None, - offset=0, strides=None, order=None) - - There are two modes of creating an array using __new__: - 1) If buffer is None, then only shape, dtype, and order - are used - 2) If buffer is an object exporting the buffer interface, then - all keywords are interpreted. - The dtype parameter can be any object that can be interpreted - as a numpy.dtype object. - - No __init__ method is needed because the array is fully - initialized after the __new__ method. - - """) - - -############################################################################## -# -# ndarray attributes -# -############################################################################## - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__', - """Array protocol: Python side.""")) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__', - """None.""")) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__', - """Array priority.""")) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__', - """Array protocol: C-struct side.""")) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_', - """Allow the array to be interpreted as a ctypes object by returning the - data-memory location as an integer - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('base', - """Base object if memory is from some other object. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes', - """A ctypes interface object. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('data', - """Buffer object pointing to the start of the data. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype', - """Data-type for the array. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('imag', - """Imaginary part of the array. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize', - """Length of one element in bytes. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('flags', - """Special object providing array flags. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('flat', - """A 1-d flat iterator. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes', - """Number of bytes in the array. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim', - """Number of array dimensions. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('real', - """Real part of the array. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('shape', - """Tuple of array dimensions. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('size', - """Number of elements in the array. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('strides', - """Tuple of bytes to step in each dimension. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('T', - """Same as self.transpose() except self is returned for self.ndim < 2. - - """)) - - -############################################################################## -# -# ndarray methods -# -############################################################################## - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__', - """ a.__array__(|dtype) -> reference if type unchanged, copy otherwise. - - Returns either a new reference to self if dtype is not given or a new array - of provided data type if dtype is different from the current dtype of the - array. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__', - """a.__array_wrap__(obj) -> Object of same type as a from ndarray obj. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__', - """a.__copy__(|order) -> copy, possibly with different order. - - Return a copy of the array. - - Argument: - order -- Order of returned copy (default 'C') - If order is 'C' (False) then the result is contiguous (default). - If order is 'Fortran' (True) then the result has fortran order. - If order is 'Any' (None) then the result has fortran order - only if m is already in fortran order.; - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__', - """a.__deepcopy__() -> Deep copy of array. - - Used if copy.deepcopy is called on an array. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__', - """a.__reduce__() - - For pickling. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__', - """a.__setstate__(version, shape, typecode, isfortran, rawdata) - - For unpickling. - - Arguments: - version -- optional pickle version. If omitted defaults to 0. - shape -- a tuple giving the shape - typecode -- a typecode - isFortran -- a bool stating if Fortran or no - rawdata -- a binary string with the data (or a list if Object array) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('all', - """ a.all(axis=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('any', - """ a.any(axis=None, out=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax', - """ a.argmax(axis=None, out=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin', - """ a.argmin(axis=None, out=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort', - """a.argsort(axis=-1, kind='quicksort', order=None) -> indices - - Perform an indirect sort along the given axis using the algorithm specified - by the kind keyword. It returns an array of indices of the same shape as - 'a' that index data along the given axis in sorted order. - - :Parameters: - - axis : integer - Axis to be indirectly sorted. None indicates that the flattened - array should be used. Default is -1. - - kind : string - Sorting algorithm to use. Possible values are 'quicksort', - 'mergesort', or 'heapsort'. Default is 'quicksort'. - - order : list type or None - When a is an array with fields defined, this argument specifies - which fields to compare first, second, etc. Not all fields need be - specified. - - :Returns: - - indices : integer array - Array of indices that sort 'a' along the specified axis. - - :SeeAlso: - - - lexsort : indirect stable sort with multiple keys - - sort : inplace sort - - :Notes: - ------ - - The various sorts are characterized by average speed, worst case - performance, need for work space, and whether they are stable. A stable - sort keeps items with the same key in the same relative order. The three - available algorithms have the following properties: - - |------------------------------------------------------| - | kind | speed | worst case | work space | stable| - |------------------------------------------------------| - |'quicksort'| 1 | O(n^2) | 0 | no | - |'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes | - |'heapsort' | 3 | O(n*log(n)) | 0 | no | - |------------------------------------------------------| - - All the sort algorithms make temporary copies of the data when the sort is not - along the last axis. Consequently, sorts along the last axis are faster and use - less space than sorts along other axis. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('astype', - """a.astype(t) -> Copy of array cast to type t. - - Cast array m to type t. t can be either a string representing a typecode, - or a python type object of type int, float, or complex. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap', - """a.byteswap(False) -> View or copy. Swap the bytes in the array. - - Swap the bytes in the array. Return the byteswapped array. If the first - argument is True, byteswap in-place and return a reference to self. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('choose', - """ a.choose(b0, b1, ..., bn, out=None, mode='raise') - - Return an array that merges the b_i arrays together using 'a' as - the index The b_i arrays and 'a' must all be broadcastable to the - same shape. The output at a particular position is the input - array b_i at that position depending on the value of 'a' at that - position. Therefore, 'a' must be an integer array with entries - from 0 to n+1.; - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('clip', - """a.clip(min=, max=, out=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('compress', - """a.compress(condition=, axis=None, out=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('conj', - """a.conj() - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate', - """a.conjugate() - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('copy', - """a.copy(|order) -> copy, possibly with different order. - - Return a copy of the array. - - Argument: - order -- Order of returned copy (default 'C') - If order is 'C' (False) then the result is contiguous (default). - If order is 'Fortran' (True) then the result has fortran order. - If order is 'Any' (None) then the result has fortran order - only if m is already in fortran order.; - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod', - """a.cumprod(axis=None, dtype=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum', - """a.cumsum(axis=None, dtype=None, out=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal', - """a.diagonal(offset=0, axis1=0, axis2=1) -> diagonals - - If a is 2-d, return the diagonal of self with the given offset, i.e., the - collection of elements of the form a[i,i+offset]. If a is n-d with n > 2, - then the axes specified by axis1 and axis2 are used to determine the 2-d - subarray whose diagonal is returned. The shape of the resulting array can - be determined by removing axis1 and axis2 and appending an index to the - right equal to the size of the resulting diagonals. - - :Parameters: - offset : integer - Offset of the diagonal from the main diagonal. Can be both positive - and negative. Defaults to main diagonal. - axis1 : integer - Axis to be used as the first axis of the 2-d subarrays from which - the diagonals should be taken. Defaults to first index. - axis2 : integer - Axis to be used as the second axis of the 2-d subarrays from which - the diagonals should be taken. Defaults to second index. - - :Returns: - array_of_diagonals : same type as original array - If a is 2-d, then a 1-d array containing the diagonal is returned. - If a is n-d, n > 2, then an array of diagonals is returned. - - :SeeAlso: - - diag : matlab workalike for 1-d and 2-d arrays. - - diagflat : creates diagonal arrays - - trace : sum along diagonals - - Examples - -------- - - >>> a = arange(4).reshape(2,2) - >>> a - array([[0, 1], - [2, 3]]) - >>> a.diagonal() - array([0, 3]) - >>> a.diagonal(1) - array([1]) - - >>> a = arange(8).reshape(2,2,2) - >>> a - array([[[0, 1], - [2, 3]], - - [[4, 5], - [6, 7]]]) - >>> a.diagonal(0,-2,-1) - array([[0, 3], - [4, 7]]) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('dump', - """a.dump(file) Dump a pickle of the array to the specified file. - - The array can be read back with pickle.load or numpy.load - - Arguments: - file -- string naming the dump file. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps', - """a.dumps() returns the pickle of the array as a string. - - pickle.loads or numpy.loads will convert the string back to an array. - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('fill', - """a.fill(value) -> None. Fill the array with the scalar value. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten', - """a.flatten([fortran]) return a 1-d array (always copy) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield', - """a.getfield(dtype, offset) -> field of array as given type. - - Returns a field of the given array as a certain type. A field is a view of - the array data with each itemsize determined by the given type and the - offset into the current array. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('item', - """a.item() -> copy of first array item as Python scalar. - - Copy the first element of array to a standard Python scalar and return - it. The array must be of size one. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('max', - """a.max(axis=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('mean', - """a.mean(axis=None, dtype=None, out=None) -> mean - - Returns the average of the array elements. The average is taken over the - flattened array by default, otherwise over the specified axis. - - :Parameters: - - axis : integer - Axis along which the means are computed. The default is - to compute the standard deviation of the flattened array. - - dtype : type - Type to use in computing the means. For arrays of - integer type the default is float32, for arrays of float types it - is the same as the array type. - - out : ndarray - Alternative output array in which to place the result. It must have - the same shape as the expected output but the type will be cast if - necessary. - - :Returns: - - mean : The return type varies, see above. - A new array holding the result is returned unless out is specified, - in which case a reference to out is returned. - - :SeeAlso: - - - var : variance - - std : standard deviation - - Notes - ----- - - The mean is the sum of the elements along the axis divided by the - number of elements. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('min', - """a.min(axis=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder', - """a.newbyteorder(<byteorder>) is equivalent to - a.view(a.dtype.newbytorder(<byteorder>)) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero', - """a.nonzero() returns a tuple of arrays - - Returns a tuple of arrays, one for each dimension of a, - containing the indices of the non-zero elements in that - dimension. The corresponding non-zero values can be obtained - with - a[a.nonzero()]. - - To group the indices by element, rather than dimension, use - transpose(a.nonzero()) - instead. The result of this is always a 2d array, with a row for - each non-zero element.; - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('prod', - """a.prod(axis=None, dtype=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp', - """a.ptp(axis=None) a.max(axis)-a.min(axis) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('put', - """a.put(indices, values, mode) sets a.flat[n] = values[n] for - each n in indices. If values is shorter than indices then it - will repeat. - """)) - - -add_newdoc('numpy.core.multiarray', 'putmask', - """putmask(a, mask, values) sets a.flat[n] = values[n] for each n where - mask.flat[n] is true. If values is not the same size of a and mask then - it will repeat. This gives different behavior than a[mask] = values. - """) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel', - """a.ravel([fortran]) return a 1-d array (copy only if needed) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat', - """a.repeat(repeats=, axis=none) - - copy elements of a, repeats times. the repeats argument must be a sequence - of length a.shape[axis] or a scalar. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape', - """a.reshape(d1, d2, ..., dn, order='c') - - Return a new array from this one. The new array must have the same number - of elements as self. Also always returns a view or raises a ValueError if - that is impossible. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('resize', - """a.resize(new_shape, refcheck=True, order=False) -> None. Change array shape. - - Change size and shape of self inplace. Array must own its own memory and - not be referenced by other arrays. Returns None. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('round', - """a.round(decimals=0, out=None) -> out (a). Rounds to 'decimals' places. - - Keyword arguments: - decimals -- number of decimals to round to (default 0). May be negative. - out -- existing array to use for output (default a). - - Return: - Reference to out, where None specifies the original array a. - - Round to the specified number of decimals. When 'decimals' is negative it - specifies the number of positions to the left of the decimal point. The - real and imaginary parts of complex numbers are rounded separately. Nothing - is done if the array is not of float type and 'decimals' is >= 0. - - The keyword 'out' may be used to specify a different array to hold the - result rather than the default 'a'. If the type of the array specified by - 'out' differs from that of 'a', the result is cast to the new type, - otherwise the original type is kept. Floats round to floats by default. - - Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to - 0.0, etc. Results may also be surprising due to the inexact representation - of decimal fractions in IEEE floating point and the errors introduced in - scaling the numbers when 'decimals' is something other than 0. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted', - """a.searchsorted(v, side='left') -> index array. - - Find the indices into a sorted array such that if the corresponding keys in - v were inserted before the indices the order of a would be preserved. If - side='left', then the first such index is returned. If side='right', then - the last such index is returned. If there is no such index because the key - is out of bounds, then the length of a is returned, i.e., the key would - need to be appended. The returned index array has the same shape as v. - - :Parameters: - - v : array or list type - Array of keys to be searched for in a. - - side : string - Possible values are : 'left', 'right'. Default is 'left'. Return - the first or last index where the key could be inserted. - - :Returns: - - indices : integer array - The returned array has the same shape as v. - - :SeeAlso: - - - sort - - histogram - - :Notes: - ------- - - The array a must be 1-d and is assumed to be sorted in ascending order. - Searchsorted uses binary search to find the required insertion points. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield', - """m.setfield(value, dtype, offset) -> None. - places val into field of the given array defined by the data type and offset. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags', - """a.setflags(write=None, align=None, uic=None) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('sort', - """a.sort(axis=-1, kind='quicksort', order=None) -> None. - - Perform an inplace sort along the given axis using the algorithm specified - by the kind keyword. - - :Parameters: - - axis : integer - Axis to be sorted along. None indicates that the flattened array - should be used. Default is -1. - - kind : string - Sorting algorithm to use. Possible values are 'quicksort', - 'mergesort', or 'heapsort'. Default is 'quicksort'. - - order : list type or None - When a is an array with fields defined, this argument specifies - which fields to compare first, second, etc. Not all fields need be - specified. - - :Returns: - - None - - :SeeAlso: - - - argsort : indirect sort - - lexsort : indirect stable sort on multiple keys - - searchsorted : find keys in sorted array - - :Notes: - ------ - - The various sorts are characterized by average speed, worst case - performance, need for work space, and whether they are stable. A stable - sort keeps items with the same key in the same relative order. The three - available algorithms have the following properties: - - |------------------------------------------------------| - | kind | speed | worst case | work space | stable| - |------------------------------------------------------| - |'quicksort'| 1 | O(n^2) | 0 | no | - |'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes | - |'heapsort' | 3 | O(n*log(n)) | 0 | no | - |------------------------------------------------------| - - All the sort algorithms make temporary copies of the data when the sort is not - along the last axis. Consequently, sorts along the last axis are faster and use - less space than sorts along other axis. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze', - """m.squeeze() eliminate all length-1 dimensions - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('std', - """a.std(axis=None, dtype=None, out=None) -> standard deviation. - - Returns the standard deviation of the array elements, a measure of the - spread of a distribution. The standard deviation is computed for the - flattened array by default, otherwise over the specified axis. - - :Parameters: - - axis : integer - Axis along which the standard deviation is computed. The default is - to compute the standard deviation of the flattened array. - - dtype : type - Type to use in computing the standard deviation. For arrays of - integer type the default is float32, for arrays of float types it - is the same as the array type. - - out : ndarray - Alternative output array in which to place the result. It must have - the same shape as the expected output but the type will be cast if - necessary. - - :Returns: - - standard deviation : The return type varies, see above. - A new array holding the result is returned unless out is specified, - in which case a reference to out is returned. - - :SeeAlso: - - - var : variance - - mean : average - - Notes - ----- - - The standard deviation is the square root of the average of the squared - deviations from the mean, i.e. var = sqrt(mean((x - x.mean())**2)). The - computed standard deviation is biased, i.e., the mean is computed by - dividing by the number of elements, N, rather than by N-1. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('sum', - """a.sum(axis=None, dtype=None) -> Sum of array over given axis. - - Sum the array over the given axis. If the axis is None, sum over - all dimensions of the array. - - The optional dtype argument is the data type for the returned - value and intermediate calculations. The default is to upcast - (promote) smaller integer types to the platform-dependent int. - For example, on 32-bit platforms: - - a.dtype default sum dtype - --------------------------------------------------- - bool, int8, int16, int32 int32 - - Warning: The arithmetic is modular and no error is raised on overflow. - - Examples: - - >>> array([0.5, 1.5]).sum() - 2.0 - >>> array([0.5, 1.5]).sum(dtype=int32) - 1 - >>> array([[0, 1], [0, 5]]).sum(axis=0) - array([0, 6]) - >>> array([[0, 1], [0, 5]]).sum(axis=1) - array([1, 5]) - >>> ones(128, dtype=int8).sum(dtype=int8) # overflow! - -128 - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes', - """a.swapaxes(axis1, axis2) -> new view with axes swapped. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('take', - """a.take(indices, axis=None, out=None, mode='raise') -> new array. - - The new array is formed from the elements of a indexed by indices along the - given axis. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile', - """a.tofile(fid, sep="", format="%s") -> None. Write the data to a file. - - Required arguments: - file -- an open file object or a string containing a filename - - Keyword arguments: - sep -- separator for text output. Write binary if empty (default "") - format -- format string for text file output (default "%s") - - A convenience function for quick storage of array data. Information on - endianess and precision is lost, so this method is not a good choice for - files intended to archive data or transport data between machines with - different endianess. Some of these problems can be overcome by outputting - the data as text files at the expense of speed and file size. - - If 'sep' is empty this method is equivalent to file.write(a.tostring()). If - 'sep' is not empty each data item is converted to the nearest Python type - and formatted using "format"%item. The resulting strings are written to the - file separated by the contents of 'sep'. The data is always written in "C" - (row major) order independent of the order of 'a'. - - The data produced by this method can be recovered by using the function - fromfile(). - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist', - """a.tolist() -> Array as hierarchical list. - - Copy the data portion of the array to a hierarchical python list and return - that list. Data items are converted to the nearest compatible Python type. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring', - """a.tostring(order='C') -> raw copy of array data as a Python string. - - Keyword arguments: - order -- order of the data item in the copy {"C","F","A"} (default "C") - - Construct a Python string containing the raw bytes in the array. The order - of the data in arrays with ndim > 1 is specified by the 'order' keyword and - this keyword overrides the order of the array. The - choices are: - - "C" -- C order (row major) - "Fortran" -- Fortran order (column major) - "Any" -- Current order of array. - None -- Same as "Any" - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('trace', - """a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) - return the sum along the offset diagonal of the array's indicated - axis1 and axis2. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose', - """a.transpose(*axes) - - Returns a view of 'a' with axes transposed. If no axes are given, - or None is passed, switches the order of the axes. For a 2-d - array, this is the usual matrix transpose. If axes are given, - they describe how the axes are permuted. - - Example: - >>> a = array([[1,2],[3,4]]) - >>> a - array([[1, 2], - [3, 4]]) - >>> a.transpose() - array([[1, 3], - [2, 4]]) - >>> a.transpose((1,0)) - array([[1, 3], - [2, 4]]) - >>> a.transpose(1,0) - array([[1, 3], - [2, 4]]) - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('var', - """a.var(axis=None, dtype=None, out=None) -> variance - - Returns the variance of the array elements, a measure of the spread of a - distribution. The variance is computed for the flattened array by default, - otherwise over the specified axis. - - :Parameters: - - axis : integer - Axis along which the variance is computed. The default is to - compute the variance of the flattened array. - - dtype : type - Type to use in computing the variance. For arrays of integer type - the default is float32, for arrays of float types it is the same as - the array type. - - out : ndarray - Alternative output array in which to place the result. It must have - the same shape as the expected output but the type will be cast if - necessary. - - :Returns: - - variance : The return type varies, see above. - A new array holding the result is returned unless out is specified, - in which case a reference to out is returned. - - :SeeAlso: - - - std : standard deviation - - mean: average - - Notes - ----- - - The variance is the average of the squared deviations from the mean, i.e. - var = mean((x - x.mean())**2). The computed variance is biased, i.e., - the mean is computed by dividing by the number of elements, N, rather - than by N-1. - - """)) - - -add_newdoc('numpy.core.multiarray', 'ndarray', ('view', - """a.view(<type>) -> new view of array with same data. - - Type can be either a new sub-type object or a data-descriptor object - - """)) |