summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
diff options
context:
space:
mode:
authorTravis Oliphant <oliphant@enthought.com>2007-12-15 18:54:52 +0000
committerTravis Oliphant <oliphant@enthought.com>2007-12-15 18:54:52 +0000
commite76b5fa6896c09257181675bbf4cf47789d32927 (patch)
tree7174e22c68fc47df61e745ee18625ee9f4f5b88c /numpy/add_newdocs.py
parent02ee35a7e1c722a1cdac8f3a60fe9ef7aa079a37 (diff)
downloadnumpy-e76b5fa6896c09257181675bbf4cf47789d32927.tar.gz
Create a branch for io work in NumPy
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r--numpy/add_newdocs.py1444
1 files changed, 0 insertions, 1444 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
deleted file mode 100644
index ce4b43107..000000000
--- a/numpy/add_newdocs.py
+++ /dev/null
@@ -1,1444 +0,0 @@
-from lib import add_newdoc
-
-add_newdoc('numpy.core','dtype',
- [('fields', "Fields of the data-type or None if no fields"),
- ('names', "Names of fields or None if no fields"),
- ('alignment', "Needed alignment for this data-type"),
- ('byteorder',
- "Little-endian (<), big-endian (>), native (=), or "\
- "not-applicable (|)"),
- ('char', "Letter typecode for this data-type"),
- ('type', "Type object associated with this data-type"),
- ('kind', "Character giving type-family of this data-type"),
- ('itemsize', "Size of each item"),
- ('hasobject', "Non-zero if Python objects are in "\
- "this data-type"),
- ('num', "Internally-used number for builtin base"),
- ('newbyteorder',
-"""self.newbyteorder(<endian>)
-returns a copy of the dtype object with altered byteorders.
-If <endian> is not given all byteorders are swapped.
-Otherwise endian can be '>', '<', or '=' to force a particular
-byteorder. Data-types in all fields are also updated in the
-new dtype object.
-"""),
- ("__reduce__", "self.__reduce__() for pickling"),
- ("__setstate__", "self.__setstate__() for pickling"),
- ("subdtype", "A tuple of (descr, shape) or None"),
- ("descr", "The array_interface data-type descriptor."),
- ("str", "The array interface typestring."),
- ("name", "The name of the true data-type"),
- ("base", "The base data-type or self if no subdtype"),
- ("shape", "The shape of the subdtype or (1,)"),
- ("isbuiltin", "Is this a built-in data-type?"),
- ("isnative", "Is the byte-order of this data-type native?")
- ]
- )
-
-###############################################################################
-#
-# flatiter
-#
-# flatiter needs a toplevel description
-#
-###############################################################################
-
-# attributes
-add_newdoc('numpy.core', 'flatiter', ('base',
- """documentation needed
-
- """))
-
-
-
-add_newdoc('numpy.core', 'flatiter', ('coords',
- """An N-d tuple of current coordinates.
-
- """))
-
-
-
-add_newdoc('numpy.core', 'flatiter', ('index',
- """documentation needed
-
- """))
-
-
-
-# functions
-add_newdoc('numpy.core', 'flatiter', ('__array__',
- """__array__(type=None) Get array from iterator
-
- """))
-
-
-add_newdoc('numpy.core', 'flatiter', ('copy',
- """copy() Get a copy of the iterator as a 1-d array
-
- """))
-
-
-###############################################################################
-#
-# broadcast
-#
-###############################################################################
-
-# attributes
-add_newdoc('numpy.core', 'broadcast', ('index',
- """current index in broadcasted result
-
- """))
-
-
-add_newdoc('numpy.core', 'broadcast', ('iters',
- """tuple of individual iterators
-
- """))
-
-
-add_newdoc('numpy.core', 'broadcast', ('nd',
- """number of dimensions of broadcasted result
-
- """))
-
-
-add_newdoc('numpy.core', 'broadcast', ('numiter',
- """number of iterators
-
- """))
-
-
-add_newdoc('numpy.core', 'broadcast', ('shape',
- """shape of broadcasted result
-
- """))
-
-
-add_newdoc('numpy.core', 'broadcast', ('size',
- """total size of broadcasted result
-
- """))
-
-
-###############################################################################
-#
-# numpy functions
-#
-###############################################################################
-
-add_newdoc('numpy.core.multiarray','array',
- """array(object, dtype=None, copy=1,order=None, subok=0,ndmin=0)
-
- Return an array from object with the specified date-type.
-
- Inputs:
- object - an array, any object exposing the array interface, any
- object whose __array__ method returns an array, or any
- (nested) sequence.
- dtype - The desired data-type for the array. If not given, then
- the type will be determined as the minimum type required
- to hold the objects in the sequence. This argument can only
- be used to 'upcast' the array. For downcasting, use the
- .astype(t) method.
- copy - If true, then force a copy. Otherwise a copy will only occur
- if __array__ returns a copy, obj is a nested sequence, or
- a copy is needed to satisfy any of the other requirements
- order - Specify the order of the array. If order is 'C', then the
- array will be in C-contiguous order (last-index varies the
- fastest). If order is 'FORTRAN', then the returned array
- will be in Fortran-contiguous order (first-index varies the
- fastest). If order is None, then the returned array may
- be in either C-, or Fortran-contiguous order or even
- discontiguous.
- subok - If True, then sub-classes will be passed-through, otherwise
- the returned array will be forced to be a base-class array
- ndmin - Specifies the minimum number of dimensions that the resulting
- array should have. 1's will be pre-pended to the shape as
- needed to meet this requirement.
-
- """)
-
-add_newdoc('numpy.core.multiarray','empty',
- """empty((d1,...,dn),dtype=float,order='C')
-
- Return a new array of shape (d1,...,dn) and given type with all its
- entries uninitialized. This can be faster than zeros.
-
- """)
-
-
-add_newdoc('numpy.core.multiarray','scalar',
- """scalar(dtype,obj)
-
- Return a new scalar array of the given type initialized with
- obj. Mainly for pickle support. The dtype must be a valid data-type
- descriptor. If dtype corresponds to an OBJECT descriptor, then obj
- can be any object, otherwise obj must be a string. If obj is not given
- it will be interpreted as None for object type and zeros for all other
- types.
-
- """)
-
-add_newdoc('numpy.core.multiarray','zeros',
- """zeros((d1,...,dn),dtype=float,order='C')
-
- Return a new array of shape (d1,...,dn) and type typecode with all
- it's entries initialized to zero.
-
- """)
-
-add_newdoc('numpy.core.multiarray','set_typeDict',
- """set_typeDict(dict)
-
- Set the internal dictionary that can look up an array type using a
- registered code.
-
- """)
-
-add_newdoc('numpy.core.multiarray','fromstring',
- """fromstring(string, dtype=float, count=-1, sep='')
-
- Return a new 1d array initialized from the raw binary data in string.
-
- If count is positive, the new array will have count elements, otherwise its
- size is determined by the size of string. If sep is not empty then the
- string is interpreted in ASCII mode and converted to the desired number type
- using sep as the separator between elements (extra whitespace is ignored).
-
- """)
-
-add_newdoc('numpy.core.multiarray','fromiter',
- """fromiter(iterable, dtype, count=-1)
-
- Return a new 1d array initialized from iterable. If count is
- nonegative, the new array will have count elements, otherwise it's
- size is determined by the generator.
-
- """)
-
-add_newdoc('numpy.core.multiarray','fromfile',
- """fromfile(file=, dtype=float, count=-1, sep='') -> array.
-
- Required arguments:
- file -- open file object or string containing file name.
-
- Keyword arguments:
- dtype -- type and order of the returned array (default float)
- count -- number of items to input (default all)
- sep -- separater between items if file is a text file (default "")
-
- Return an array of the given data type from a text or binary file. The
- 'file' argument can be an open file or a string with the name of a file to
- read from. If 'count' == -1 the entire file is read, otherwise count is the
- number of items of the given type to read in. If 'sep' is "" it means to
- read binary data from the file using the specified dtype, otherwise it gives
- the separator between elements in a text file. The 'dtype' value is also
- used to determine the size and order of the items in binary files.
-
-
- Data written using the tofile() method can be conveniently recovered using
- this function.
-
- WARNING: This function should be used sparingly as the binary files are not
- platform independent. In particular, they contain no endianess or datatype
- information. Nevertheless it can be useful for reading in simply formatted
- or binary data quickly.
-
- """)
-
-add_newdoc('numpy.core.multiarray','frombuffer',
- """frombuffer(buffer=, dtype=float, count=-1, offset=0)
-
- Returns a 1-d array of data type dtype from buffer. The buffer
- argument must be an object that exposes the buffer interface. If
- count is -1 then the entire buffer is used, otherwise, count is the
- size of the output. If offset is given then jump that far into the
- buffer. If the buffer has data that is out not in machine byte-order,
- than use a propert data type descriptor. The data will not be
- byteswapped, but the array will manage it in future operations.
-
- """)
-
-add_newdoc('numpy.core.multiarray','concatenate',
- """concatenate((a1, a2, ...), axis=0)
-
- Join arrays together.
-
- The tuple of sequences (a1, a2, ...) are joined along the given axis
- (default is the first one) into a single numpy array.
-
- Example:
-
- >>> concatenate( ([0,1,2], [5,6,7]) )
- array([0, 1, 2, 5, 6, 7])
-
- """)
-
-add_newdoc('numpy.core.multiarray','inner',
- """inner(a,b)
-
- Returns the dot product of two arrays, which has shape a.shape[:-1] +
- b.shape[:-1] with elements computed by the product of the elements
- from the last dimensions of a and b.
-
- """)
-
-add_newdoc('numpy.core','fastCopyAndTranspose',
- """_fastCopyAndTranspose(a)""")
-
-add_newdoc('numpy.core.multiarray','correlate',
- """cross_correlate(a,v, mode=0)""")
-
-add_newdoc('numpy.core.multiarray','arange',
- """arange([start,] stop[, step,], dtype=None)
-
- For integer arguments, just like range() except it returns an array
- whose type can be specified by the keyword argument dtype. If dtype
- is not specified, the type of the result is deduced from the type of
- the arguments.
-
- For floating point arguments, the length of the result is ceil((stop -
- start)/step). This rule may result in the last element of the result
- being greater than stop.
-
- """)
-
-add_newdoc('numpy.core.multiarray','_get_ndarray_c_version',
- """_get_ndarray_c_version()
-
- Return the compile time NDARRAY_VERSION number.
-
- """)
-
-add_newdoc('numpy.core.multiarray','_reconstruct',
- """_reconstruct(subtype, shape, dtype)
-
- Construct an empty array. Used by Pickles.
-
- """)
-
-
-add_newdoc('numpy.core.multiarray','set_string_function',
- """set_string_function(f, repr=1)
-
- Set the python function f to be the function used to obtain a pretty
- printable string version of an array whenever an array is printed.
- f(M) should expect an array argument M, and should return a string
- consisting of the desired representation of M for printing.
-
- """)
-
-add_newdoc('numpy.core.multiarray','set_numeric_ops',
- """set_numeric_ops(op=func, ...)
-
- Set some or all of the number methods for all array objects. Do not
- forget **dict can be used as the argument list. Return the functions
- that were replaced, which can be stored and set later.
-
- """)
-
-add_newdoc('numpy.core.multiarray','where',
- """where(condition, x, y) or where(condition)
-
- Return elements from `x` or `y`, depending on `condition`.
-
- *Parameters*:
- condition : array of bool
- When True, yield x, otherwise yield y.
- x,y : 1-dimensional arrays
- Values from which to choose.
-
- *Notes*
- This is equivalent to
-
- [xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
-
- The result is shaped like `condition` and has elements of `x`
- or `y` where `condition` is respectively True or False.
-
- In the special case, where only `condition` is given, the
- tuple condition.nonzero() is returned, instead.
-
- *Examples*
- >>> where([True,False,True],[1,2,3],[4,5,6])
- array([1, 5, 3])
-
- """)
-
-
-add_newdoc('numpy.core.multiarray','lexsort',
- """lexsort(keys=, axis=-1) -> array of indices. Argsort with list of keys.
-
- Perform an indirect sort using a list of keys. The first key is sorted,
- then the second, and so on through the list of keys. At each step the
- previous order is preserved when equal keys are encountered. The result is
- a sort on multiple keys. If the keys represented columns of a spreadsheet,
- for example, this would sort using multiple columns (the last key being
- used for the primary sort order, the second-to-last key for the secondary
- sort order, and so on). The keys argument must be a sequence of things
- that can be converted to arrays of the same shape.
-
- *Parameters*:
-
- keys : (k,N) array or tuple of (N,) sequences
- Array containing values that the returned indices should sort.
-
- axis : integer
- Axis to be indirectly sorted. Default is -1 (i.e. last axis).
-
- *Returns*:
-
- indices : (N,) integer array
- Array of indices that sort the keys along the specified axis.
-
- *See Also*:
-
- `argsort` : indirect sort
- `sort` : inplace sort
-
- *Examples*
-
- >>> a = [1,5,1,4,3,6,7]
- >>> b = [9,4,0,4,0,4,3]
- >>> ind = lexsort((b,a))
- >>> print ind
- [2 0 4 3 1 5 6]
- >>> print take(a,ind)
- [1 1 3 4 5 6 7]
- >>> print take(b,ind)
- [0 9 0 4 4 4 3]
-
- """)
-
-add_newdoc('numpy.core.multiarray','can_cast',
- """can_cast(from=d1, to=d2)
-
- Returns True if data type d1 can be cast to data type d2 without
- losing precision.
-
- """)
-
-add_newdoc('numpy.core.multiarray','newbuffer',
- """newbuffer(size)
-
- Return a new uninitialized buffer object of size bytes
-
- """)
-
-add_newdoc('numpy.core.multiarray','getbuffer',
- """getbuffer(obj [,offset[, size]])
-
- Create a buffer object from the given object referencing a slice of
- length size starting at offset. Default is the entire buffer. A
- read-write buffer is attempted followed by a read-only buffer.
-
- """)
-
-##############################################################################
-#
-# Documentation for ndarray attributes and methods
-#
-##############################################################################
-
-
-##############################################################################
-#
-# ndarray object
-#
-##############################################################################
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray',
- """An array object represents a multidimensional, homogeneous array
- of fixed-size items. An associated data-type-descriptor object
- details the data-type in an array (including byteorder and any
- fields). An array can be constructed using the numpy.array
- command. Arrays are sequence, mapping and numeric objects.
- More information is available in the numpy module and by looking
- at the methods and attributes of an array.
-
- ndarray.__new__(subtype, shape=, dtype=float, buffer=None,
- offset=0, strides=None, order=None)
-
- There are two modes of creating an array using __new__:
- 1) If buffer is None, then only shape, dtype, and order
- are used
- 2) If buffer is an object exporting the buffer interface, then
- all keywords are interpreted.
- The dtype parameter can be any object that can be interpreted
- as a numpy.dtype object.
-
- No __init__ method is needed because the array is fully
- initialized after the __new__ method.
-
- """)
-
-
-##############################################################################
-#
-# ndarray attributes
-#
-##############################################################################
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
- """Array protocol: Python side."""))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
- """None."""))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
- """Array priority."""))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
- """Array protocol: C-struct side."""))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_',
- """Allow the array to be interpreted as a ctypes object by returning the
- data-memory location as an integer
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
- """Base object if memory is from some other object.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
- """A ctypes interface object.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
- """Buffer object pointing to the start of the data.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
- """Data-type for the array.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
- """Imaginary part of the array.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
- """Length of one element in bytes.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
- """Special object providing array flags.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
- """A 1-d flat iterator.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
- """Number of bytes in the array.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
- """Number of array dimensions.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
- """Real part of the array.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
- """Tuple of array dimensions.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
- """Number of elements in the array.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
- """Tuple of bytes to step in each dimension.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
- """Same as self.transpose() except self is returned for self.ndim < 2.
-
- """))
-
-
-##############################################################################
-#
-# ndarray methods
-#
-##############################################################################
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
- """ a.__array__(|dtype) -> reference if type unchanged, copy otherwise.
-
- Returns either a new reference to self if dtype is not given or a new array
- of provided data type if dtype is different from the current dtype of the
- array.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__',
- """a.__array_wrap__(obj) -> Object of same type as a from ndarray obj.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__',
- """a.__copy__(|order) -> copy, possibly with different order.
-
- Return a copy of the array.
-
- Argument:
- order -- Order of returned copy (default 'C')
- If order is 'C' (False) then the result is contiguous (default).
- If order is 'Fortran' (True) then the result has fortran order.
- If order is 'Any' (None) then the result has fortran order
- only if m is already in fortran order.;
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
- """a.__deepcopy__() -> Deep copy of array.
-
- Used if copy.deepcopy is called on an array.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__',
- """a.__reduce__()
-
- For pickling.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__',
- """a.__setstate__(version, shape, typecode, isfortran, rawdata)
-
- For unpickling.
-
- Arguments:
- version -- optional pickle version. If omitted defaults to 0.
- shape -- a tuple giving the shape
- typecode -- a typecode
- isFortran -- a bool stating if Fortran or no
- rawdata -- a binary string with the data (or a list if Object array)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
- """ a.all(axis=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
- """ a.any(axis=None, out=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
- """ a.argmax(axis=None, out=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
- """ a.argmin(axis=None, out=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
- """a.argsort(axis=-1, kind='quicksort', order=None) -> indices
-
- Perform an indirect sort along the given axis using the algorithm specified
- by the kind keyword. It returns an array of indices of the same shape as
- 'a' that index data along the given axis in sorted order.
-
- :Parameters:
-
- axis : integer
- Axis to be indirectly sorted. None indicates that the flattened
- array should be used. Default is -1.
-
- kind : string
- Sorting algorithm to use. Possible values are 'quicksort',
- 'mergesort', or 'heapsort'. Default is 'quicksort'.
-
- order : list type or None
- When a is an array with fields defined, this argument specifies
- which fields to compare first, second, etc. Not all fields need be
- specified.
-
- :Returns:
-
- indices : integer array
- Array of indices that sort 'a' along the specified axis.
-
- :SeeAlso:
-
- - lexsort : indirect stable sort with multiple keys
- - sort : inplace sort
-
- :Notes:
- ------
-
- The various sorts are characterized by average speed, worst case
- performance, need for work space, and whether they are stable. A stable
- sort keeps items with the same key in the same relative order. The three
- available algorithms have the following properties:
-
- |------------------------------------------------------|
- | kind | speed | worst case | work space | stable|
- |------------------------------------------------------|
- |'quicksort'| 1 | O(n^2) | 0 | no |
- |'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
- |'heapsort' | 3 | O(n*log(n)) | 0 | no |
- |------------------------------------------------------|
-
- All the sort algorithms make temporary copies of the data when the sort is not
- along the last axis. Consequently, sorts along the last axis are faster and use
- less space than sorts along other axis.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
- """a.astype(t) -> Copy of array cast to type t.
-
- Cast array m to type t. t can be either a string representing a typecode,
- or a python type object of type int, float, or complex.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
- """a.byteswap(False) -> View or copy. Swap the bytes in the array.
-
- Swap the bytes in the array. Return the byteswapped array. If the first
- argument is True, byteswap in-place and return a reference to self.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
- """ a.choose(b0, b1, ..., bn, out=None, mode='raise')
-
- Return an array that merges the b_i arrays together using 'a' as
- the index The b_i arrays and 'a' must all be broadcastable to the
- same shape. The output at a particular position is the input
- array b_i at that position depending on the value of 'a' at that
- position. Therefore, 'a' must be an integer array with entries
- from 0 to n+1.;
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
- """a.clip(min=, max=, out=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
- """a.compress(condition=, axis=None, out=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
- """a.conj()
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
- """a.conjugate()
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
- """a.copy(|order) -> copy, possibly with different order.
-
- Return a copy of the array.
-
- Argument:
- order -- Order of returned copy (default 'C')
- If order is 'C' (False) then the result is contiguous (default).
- If order is 'Fortran' (True) then the result has fortran order.
- If order is 'Any' (None) then the result has fortran order
- only if m is already in fortran order.;
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
- """a.cumprod(axis=None, dtype=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
- """a.cumsum(axis=None, dtype=None, out=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
- """a.diagonal(offset=0, axis1=0, axis2=1) -> diagonals
-
- If a is 2-d, return the diagonal of self with the given offset, i.e., the
- collection of elements of the form a[i,i+offset]. If a is n-d with n > 2,
- then the axes specified by axis1 and axis2 are used to determine the 2-d
- subarray whose diagonal is returned. The shape of the resulting array can
- be determined by removing axis1 and axis2 and appending an index to the
- right equal to the size of the resulting diagonals.
-
- :Parameters:
- offset : integer
- Offset of the diagonal from the main diagonal. Can be both positive
- and negative. Defaults to main diagonal.
- axis1 : integer
- Axis to be used as the first axis of the 2-d subarrays from which
- the diagonals should be taken. Defaults to first index.
- axis2 : integer
- Axis to be used as the second axis of the 2-d subarrays from which
- the diagonals should be taken. Defaults to second index.
-
- :Returns:
- array_of_diagonals : same type as original array
- If a is 2-d, then a 1-d array containing the diagonal is returned.
- If a is n-d, n > 2, then an array of diagonals is returned.
-
- :SeeAlso:
- - diag : matlab workalike for 1-d and 2-d arrays.
- - diagflat : creates diagonal arrays
- - trace : sum along diagonals
-
- Examples
- --------
-
- >>> a = arange(4).reshape(2,2)
- >>> a
- array([[0, 1],
- [2, 3]])
- >>> a.diagonal()
- array([0, 3])
- >>> a.diagonal(1)
- array([1])
-
- >>> a = arange(8).reshape(2,2,2)
- >>> a
- array([[[0, 1],
- [2, 3]],
-
- [[4, 5],
- [6, 7]]])
- >>> a.diagonal(0,-2,-1)
- array([[0, 3],
- [4, 7]])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('dump',
- """a.dump(file) Dump a pickle of the array to the specified file.
-
- The array can be read back with pickle.load or numpy.load
-
- Arguments:
- file -- string naming the dump file.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps',
- """a.dumps() returns the pickle of the array as a string.
-
- pickle.loads or numpy.loads will convert the string back to an array.
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
- """a.fill(value) -> None. Fill the array with the scalar value.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
- """a.flatten([fortran]) return a 1-d array (always copy)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
- """a.getfield(dtype, offset) -> field of array as given type.
-
- Returns a field of the given array as a certain type. A field is a view of
- the array data with each itemsize determined by the given type and the
- offset into the current array.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
- """a.item() -> copy of first array item as Python scalar.
-
- Copy the first element of array to a standard Python scalar and return
- it. The array must be of size one.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
- """a.max(axis=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
- """a.mean(axis=None, dtype=None, out=None) -> mean
-
- Returns the average of the array elements. The average is taken over the
- flattened array by default, otherwise over the specified axis.
-
- :Parameters:
-
- axis : integer
- Axis along which the means are computed. The default is
- to compute the standard deviation of the flattened array.
-
- dtype : type
- Type to use in computing the means. For arrays of
- integer type the default is float32, for arrays of float types it
- is the same as the array type.
-
- out : ndarray
- Alternative output array in which to place the result. It must have
- the same shape as the expected output but the type will be cast if
- necessary.
-
- :Returns:
-
- mean : The return type varies, see above.
- A new array holding the result is returned unless out is specified,
- in which case a reference to out is returned.
-
- :SeeAlso:
-
- - var : variance
- - std : standard deviation
-
- Notes
- -----
-
- The mean is the sum of the elements along the axis divided by the
- number of elements.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
- """a.min(axis=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
- """a.newbyteorder(<byteorder>) is equivalent to
- a.view(a.dtype.newbytorder(<byteorder>))
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
- """a.nonzero() returns a tuple of arrays
-
- Returns a tuple of arrays, one for each dimension of a,
- containing the indices of the non-zero elements in that
- dimension. The corresponding non-zero values can be obtained
- with
- a[a.nonzero()].
-
- To group the indices by element, rather than dimension, use
- transpose(a.nonzero())
- instead. The result of this is always a 2d array, with a row for
- each non-zero element.;
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
- """a.prod(axis=None, dtype=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
- """a.ptp(axis=None) a.max(axis)-a.min(axis)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
- """a.put(indices, values, mode) sets a.flat[n] = values[n] for
- each n in indices. If values is shorter than indices then it
- will repeat.
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'putmask',
- """putmask(a, mask, values) sets a.flat[n] = values[n] for each n where
- mask.flat[n] is true. If values is not the same size of a and mask then
- it will repeat. This gives different behavior than a[mask] = values.
- """)
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
- """a.ravel([fortran]) return a 1-d array (copy only if needed)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
- """a.repeat(repeats=, axis=none)
-
- copy elements of a, repeats times. the repeats argument must be a sequence
- of length a.shape[axis] or a scalar.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
- """a.reshape(d1, d2, ..., dn, order='c')
-
- Return a new array from this one. The new array must have the same number
- of elements as self. Also always returns a view or raises a ValueError if
- that is impossible.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
- """a.resize(new_shape, refcheck=True, order=False) -> None. Change array shape.
-
- Change size and shape of self inplace. Array must own its own memory and
- not be referenced by other arrays. Returns None.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
- """a.round(decimals=0, out=None) -> out (a). Rounds to 'decimals' places.
-
- Keyword arguments:
- decimals -- number of decimals to round to (default 0). May be negative.
- out -- existing array to use for output (default a).
-
- Return:
- Reference to out, where None specifies the original array a.
-
- Round to the specified number of decimals. When 'decimals' is negative it
- specifies the number of positions to the left of the decimal point. The
- real and imaginary parts of complex numbers are rounded separately. Nothing
- is done if the array is not of float type and 'decimals' is >= 0.
-
- The keyword 'out' may be used to specify a different array to hold the
- result rather than the default 'a'. If the type of the array specified by
- 'out' differs from that of 'a', the result is cast to the new type,
- otherwise the original type is kept. Floats round to floats by default.
-
- Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to
- 0.0, etc. Results may also be surprising due to the inexact representation
- of decimal fractions in IEEE floating point and the errors introduced in
- scaling the numbers when 'decimals' is something other than 0.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
- """a.searchsorted(v, side='left') -> index array.
-
- Find the indices into a sorted array such that if the corresponding keys in
- v were inserted before the indices the order of a would be preserved. If
- side='left', then the first such index is returned. If side='right', then
- the last such index is returned. If there is no such index because the key
- is out of bounds, then the length of a is returned, i.e., the key would
- need to be appended. The returned index array has the same shape as v.
-
- :Parameters:
-
- v : array or list type
- Array of keys to be searched for in a.
-
- side : string
- Possible values are : 'left', 'right'. Default is 'left'. Return
- the first or last index where the key could be inserted.
-
- :Returns:
-
- indices : integer array
- The returned array has the same shape as v.
-
- :SeeAlso:
-
- - sort
- - histogram
-
- :Notes:
- -------
-
- The array a must be 1-d and is assumed to be sorted in ascending order.
- Searchsorted uses binary search to find the required insertion points.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
- """m.setfield(value, dtype, offset) -> None.
- places val into field of the given array defined by the data type and offset.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
- """a.setflags(write=None, align=None, uic=None)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
- """a.sort(axis=-1, kind='quicksort', order=None) -> None.
-
- Perform an inplace sort along the given axis using the algorithm specified
- by the kind keyword.
-
- :Parameters:
-
- axis : integer
- Axis to be sorted along. None indicates that the flattened array
- should be used. Default is -1.
-
- kind : string
- Sorting algorithm to use. Possible values are 'quicksort',
- 'mergesort', or 'heapsort'. Default is 'quicksort'.
-
- order : list type or None
- When a is an array with fields defined, this argument specifies
- which fields to compare first, second, etc. Not all fields need be
- specified.
-
- :Returns:
-
- None
-
- :SeeAlso:
-
- - argsort : indirect sort
- - lexsort : indirect stable sort on multiple keys
- - searchsorted : find keys in sorted array
-
- :Notes:
- ------
-
- The various sorts are characterized by average speed, worst case
- performance, need for work space, and whether they are stable. A stable
- sort keeps items with the same key in the same relative order. The three
- available algorithms have the following properties:
-
- |------------------------------------------------------|
- | kind | speed | worst case | work space | stable|
- |------------------------------------------------------|
- |'quicksort'| 1 | O(n^2) | 0 | no |
- |'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
- |'heapsort' | 3 | O(n*log(n)) | 0 | no |
- |------------------------------------------------------|
-
- All the sort algorithms make temporary copies of the data when the sort is not
- along the last axis. Consequently, sorts along the last axis are faster and use
- less space than sorts along other axis.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
- """m.squeeze() eliminate all length-1 dimensions
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
- """a.std(axis=None, dtype=None, out=None) -> standard deviation.
-
- Returns the standard deviation of the array elements, a measure of the
- spread of a distribution. The standard deviation is computed for the
- flattened array by default, otherwise over the specified axis.
-
- :Parameters:
-
- axis : integer
- Axis along which the standard deviation is computed. The default is
- to compute the standard deviation of the flattened array.
-
- dtype : type
- Type to use in computing the standard deviation. For arrays of
- integer type the default is float32, for arrays of float types it
- is the same as the array type.
-
- out : ndarray
- Alternative output array in which to place the result. It must have
- the same shape as the expected output but the type will be cast if
- necessary.
-
- :Returns:
-
- standard deviation : The return type varies, see above.
- A new array holding the result is returned unless out is specified,
- in which case a reference to out is returned.
-
- :SeeAlso:
-
- - var : variance
- - mean : average
-
- Notes
- -----
-
- The standard deviation is the square root of the average of the squared
- deviations from the mean, i.e. var = sqrt(mean((x - x.mean())**2)). The
- computed standard deviation is biased, i.e., the mean is computed by
- dividing by the number of elements, N, rather than by N-1.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
- """a.sum(axis=None, dtype=None) -> Sum of array over given axis.
-
- Sum the array over the given axis. If the axis is None, sum over
- all dimensions of the array.
-
- The optional dtype argument is the data type for the returned
- value and intermediate calculations. The default is to upcast
- (promote) smaller integer types to the platform-dependent int.
- For example, on 32-bit platforms:
-
- a.dtype default sum dtype
- ---------------------------------------------------
- bool, int8, int16, int32 int32
-
- Warning: The arithmetic is modular and no error is raised on overflow.
-
- Examples:
-
- >>> array([0.5, 1.5]).sum()
- 2.0
- >>> array([0.5, 1.5]).sum(dtype=int32)
- 1
- >>> array([[0, 1], [0, 5]]).sum(axis=0)
- array([0, 6])
- >>> array([[0, 1], [0, 5]]).sum(axis=1)
- array([1, 5])
- >>> ones(128, dtype=int8).sum(dtype=int8) # overflow!
- -128
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
- """a.swapaxes(axis1, axis2) -> new view with axes swapped.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
- """a.take(indices, axis=None, out=None, mode='raise') -> new array.
-
- The new array is formed from the elements of a indexed by indices along the
- given axis.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile',
- """a.tofile(fid, sep="", format="%s") -> None. Write the data to a file.
-
- Required arguments:
- file -- an open file object or a string containing a filename
-
- Keyword arguments:
- sep -- separator for text output. Write binary if empty (default "")
- format -- format string for text file output (default "%s")
-
- A convenience function for quick storage of array data. Information on
- endianess and precision is lost, so this method is not a good choice for
- files intended to archive data or transport data between machines with
- different endianess. Some of these problems can be overcome by outputting
- the data as text files at the expense of speed and file size.
-
- If 'sep' is empty this method is equivalent to file.write(a.tostring()). If
- 'sep' is not empty each data item is converted to the nearest Python type
- and formatted using "format"%item. The resulting strings are written to the
- file separated by the contents of 'sep'. The data is always written in "C"
- (row major) order independent of the order of 'a'.
-
- The data produced by this method can be recovered by using the function
- fromfile().
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist',
- """a.tolist() -> Array as hierarchical list.
-
- Copy the data portion of the array to a hierarchical python list and return
- that list. Data items are converted to the nearest compatible Python type.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring',
- """a.tostring(order='C') -> raw copy of array data as a Python string.
-
- Keyword arguments:
- order -- order of the data item in the copy {"C","F","A"} (default "C")
-
- Construct a Python string containing the raw bytes in the array. The order
- of the data in arrays with ndim > 1 is specified by the 'order' keyword and
- this keyword overrides the order of the array. The
- choices are:
-
- "C" -- C order (row major)
- "Fortran" -- Fortran order (column major)
- "Any" -- Current order of array.
- None -- Same as "Any"
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
- """a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
- return the sum along the offset diagonal of the array's indicated
- axis1 and axis2.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
- """a.transpose(*axes)
-
- Returns a view of 'a' with axes transposed. If no axes are given,
- or None is passed, switches the order of the axes. For a 2-d
- array, this is the usual matrix transpose. If axes are given,
- they describe how the axes are permuted.
-
- Example:
- >>> a = array([[1,2],[3,4]])
- >>> a
- array([[1, 2],
- [3, 4]])
- >>> a.transpose()
- array([[1, 3],
- [2, 4]])
- >>> a.transpose((1,0))
- array([[1, 3],
- [2, 4]])
- >>> a.transpose(1,0)
- array([[1, 3],
- [2, 4]])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
- """a.var(axis=None, dtype=None, out=None) -> variance
-
- Returns the variance of the array elements, a measure of the spread of a
- distribution. The variance is computed for the flattened array by default,
- otherwise over the specified axis.
-
- :Parameters:
-
- axis : integer
- Axis along which the variance is computed. The default is to
- compute the variance of the flattened array.
-
- dtype : type
- Type to use in computing the variance. For arrays of integer type
- the default is float32, for arrays of float types it is the same as
- the array type.
-
- out : ndarray
- Alternative output array in which to place the result. It must have
- the same shape as the expected output but the type will be cast if
- necessary.
-
- :Returns:
-
- variance : The return type varies, see above.
- A new array holding the result is returned unless out is specified,
- in which case a reference to out is returned.
-
- :SeeAlso:
-
- - std : standard deviation
- - mean: average
-
- Notes
- -----
-
- The variance is the average of the squared deviations from the mean, i.e.
- var = mean((x - x.mean())**2). The computed variance is biased, i.e.,
- the mean is computed by dividing by the number of elements, N, rather
- than by N-1.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
- """a.view(<type>) -> new view of array with same data.
-
- Type can be either a new sub-type object or a data-descriptor object
-
- """))