diff options
author | Pauli Virtanen <pav@iki.fi> | 2009-02-14 22:09:26 +0000 |
---|---|---|
committer | Pauli Virtanen <pav@iki.fi> | 2009-02-14 22:09:26 +0000 |
commit | 9902bd1969a738ddec9e01d019d98142dda59f3f (patch) | |
tree | 7aa8e05daec4391ba5eccc20876cf5391a6ae72a /numpy/add_newdocs.py | |
parent | 33d79edf8e06fd69b26a9331d612caadb7b55672 (diff) | |
download | numpy-9902bd1969a738ddec9e01d019d98142dda59f3f.tar.gz |
More add_newdocs entries, and make add_newdoc capable of adding docs also to normal Python objects.
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r-- | numpy/add_newdocs.py | 883 |
1 files changed, 708 insertions, 175 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py index 4802910af..e283c8a62 100644 --- a/numpy/add_newdocs.py +++ b/numpy/add_newdocs.py @@ -8,140 +8,6 @@ from lib import add_newdoc -add_newdoc('numpy.core', 'dtype', -"""Create a data type. - -A numpy array is homogeneous, and contains elements described by a -dtype. A dtype can be constructed from different combinations of -fundamental numeric types, as illustrated below. - -Examples --------- - -Using array-scalar type: ->>> np.dtype(np.int16) -dtype('int16') - -Record, one field name 'f1', containing int16: ->>> np.dtype([('f1', np.int16)]) -dtype([('f1', '<i2')]) - -Record, one field named 'f1', in itself containing a record with one field: ->>> np.dtype([('f1', [('f1', np.int16)])]) -dtype([('f1', [('f1', '<i2')])]) - -Record, two fields: the first field contains an unsigned int, the -second an int32: ->>> np.dtype([('f1', np.uint), ('f2', np.int32)]) -dtype([('f1', '<u4'), ('f2', '<i4')]) - -Using array-protocol type strings: ->>> np.dtype([('a','f8'),('b','S10')]) -dtype([('a', '<f8'), ('b', '|S10')]) - -Using comma-separated field formats. The shape is (2,3): ->>> np.dtype("i4, (2,3)f8") -dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))]) - -Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void`` -is a flexible type, here of size 10: ->>> np.dtype([('hello',(np.int,3)),('world',np.void,10)]) -dtype([('hello', '<i4', 3), ('world', '|V10')]) - -Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are -the offsets in bytes: ->>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) -dtype(('<i2', [('x', '|i1'), ('y', '|i1')])) - -Using dictionaries. Two fields named 'gender' and 'age': ->>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) -dtype([('gender', '|S1'), ('age', '|u1')]) - -Offsets in bytes, here 0 and 25: ->>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) -dtype([('surname', '|S25'), ('age', '|u1')]) - -""") - -add_newdoc('numpy.core', 'dtype', - """ - dtype(obj, align=False, copy=False) - - Create a data type object. - - A numpy array is homogeneous, and contains elements described by a - dtype object. A dtype object can be constructed from different - combinations of fundamental numeric types. - - Parameters - ---------- - obj - Object to be converted to a data type object. - align : bool, optional - Add padding to the fields to match what a C compiler would output - for a similar C-struct. Can be ``True`` only if `obj` is a dictionary - or a comma-separated string. - copy : bool, optional - Make a new copy of the data-type object. If ``False``, the result - may just be a reference to a built-in data-type object. - - Examples - -------- - Using array-scalar type: - - >>> np.dtype(np.int16) - dtype('int16') - - Record, one field name 'f1', containing int16: - - >>> np.dtype([('f1', np.int16)]) - dtype([('f1', '<i2')]) - - Record, one field named 'f1', in itself containing a record with one field: - - >>> np.dtype([('f1', [('f1', np.int16)])]) - dtype([('f1', [('f1', '<i2')])]) - - Record, two fields: the first field contains an unsigned int, the - second an int32: - - >>> np.dtype([('f1', np.uint), ('f2', np.int32)]) - dtype([('f1', '<u4'), ('f2', '<i4')]) - - Using array-protocol type strings: - - >>> np.dtype([('a','f8'),('b','S10')]) - dtype([('a', '<f8'), ('b', '|S10')]) - - Using comma-separated field formats. The shape is (2,3): - - >>> np.dtype("i4, (2,3)f8") - dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))]) - - Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void`` - is a flexible type, here of size 10: - - >>> np.dtype([('hello',(np.int,3)),('world',np.void,10)]) - dtype([('hello', '<i4', 3), ('world', '|V10')]) - - Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are - the offsets in bytes: - - >>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) - dtype(('<i2', [('x', '|i1'), ('y', '|i1')])) - - Using dictionaries. Two fields named 'gender' and 'age': - - >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) - dtype([('gender', '|S1'), ('age', '|u1')]) - - Offsets in bytes, here 0 and 25: - - >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) - dtype([('surname', '|S25'), ('age', '|u1')]) - - """) - ############################################################################### # # flatiter @@ -150,7 +16,12 @@ add_newdoc('numpy.core', 'dtype', # ############################################################################### -# attributes +add_newdoc('numpy.core', 'flatiter', + """ + """) + +# flatiter attributes + add_newdoc('numpy.core', 'flatiter', ('base', """documentation needed @@ -170,9 +41,8 @@ add_newdoc('numpy.core', 'flatiter', ('index', """)) +# flatiter functions - -# functions add_newdoc('numpy.core', 'flatiter', ('__array__', """__array__(type=None) Get array from iterator @@ -191,37 +61,37 @@ add_newdoc('numpy.core', 'flatiter', ('copy', # ############################################################################### +add_newdoc('numpy.core', 'broadcast', + """ + """) + # attributes + add_newdoc('numpy.core', 'broadcast', ('index', """current index in broadcasted result """)) - add_newdoc('numpy.core', 'broadcast', ('iters', """tuple of individual iterators """)) - add_newdoc('numpy.core', 'broadcast', ('nd', """number of dimensions of broadcasted result """)) - add_newdoc('numpy.core', 'broadcast', ('numiter', """number of iterators """)) - add_newdoc('numpy.core', 'broadcast', ('shape', """shape of broadcasted result """)) - add_newdoc('numpy.core', 'broadcast', ('size', """total size of broadcasted result @@ -2581,6 +2451,25 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('view', """)) + +############################################################################## +# +# umath functions +# +############################################################################## + +add_newdoc('numpy.core.umath', 'frexp', + """ + """) + +add_newdoc('numpy.core.umath', 'frompyfunc', + """ + """) + +add_newdoc('numpy.core.umath', 'ldexp', + """ + """) + add_newdoc('numpy.core.umath','geterrobj', """geterrobj() @@ -2610,6 +2499,64 @@ add_newdoc('numpy.core.umath', 'seterrobj', """) + +############################################################################## +# +# lib._compile_base functions +# +############################################################################## + +add_newdoc('numpy.lib._compile_base', 'digitize', + """ + digitize(x,bins) + + Return the index of the bin to which each value of x belongs. + + Each index i returned is such that bins[i-1] <= x < bins[i] if + bins is monotonically increasing, or bins [i-1] > x >= bins[i] if + bins is monotonically decreasing. + + Beyond the bounds of the bins 0 or len(bins) is returned as appropriate. + """) + +add_newdoc('numpy.lib._compile_base', 'bincount', + """ + bincount(x,weights=None) + + Return the number of occurrences of each value in x. + + x must be a list of non-negative integers. The output, b[i], + represents the number of times that i is found in x. If weights + is specified, every occurrence of i at a position p contributes + weights[p] instead of 1. + + See also: histogram, digitize, unique. + """) + +add_newdoc('numpy.lib._compile_base', 'add_docstring', + """ + docstring(obj, docstring) + + Add a docstring to a built-in obj if possible. + If the obj already has a docstring raise a RuntimeError + If this routine does not know how to add a docstring to the object + raise a TypeError + """) + + +############################################################################## +# +# Documentation for ufunc attributes and methods +# +############################################################################## + + +############################################################################## +# +# ufunc object +# +############################################################################## + add_newdoc('numpy.core', 'ufunc', """ Functions that operate element by element on whole arrays. @@ -2662,6 +2609,12 @@ add_newdoc('numpy.core', 'ufunc', """) +############################################################################## +# +# ufunc methods +# +############################################################################## + add_newdoc('numpy.core', 'ufunc', ('reduce', """ reduce(array, axis=0, dtype=None, out=None) @@ -2842,7 +2795,217 @@ add_newdoc('numpy.core', 'ufunc', ('outer', """)) -add_newdoc('numpy.core', 'dtype', ('newbyteorder', + +############################################################################## +# +# Documentation for dtype attributes and methods +# +############################################################################## + +############################################################################## +# +# dtype object +# +############################################################################## + +add_newdoc('numpy.core.multiarray', 'dtype', + """ + dtype(obj, align=False, copy=False) + + Create a data type object. + + A numpy array is homogeneous, and contains elements described by a + dtype object. A dtype object can be constructed from different + combinations of fundamental numeric types. + + Parameters + ---------- + obj + Object to be converted to a data type object. + align : bool, optional + Add padding to the fields to match what a C compiler would output + for a similar C-struct. Can be ``True`` only if `obj` is a dictionary + or a comma-separated string. + copy : bool, optional + Make a new copy of the data-type object. If ``False``, the result + may just be a reference to a built-in data-type object. + + Examples + -------- + Using array-scalar type: + + >>> np.dtype(np.int16) + dtype('int16') + + Record, one field name 'f1', containing int16: + + >>> np.dtype([('f1', np.int16)]) + dtype([('f1', '<i2')]) + + Record, one field named 'f1', in itself containing a record with one field: + + >>> np.dtype([('f1', [('f1', np.int16)])]) + dtype([('f1', [('f1', '<i2')])]) + + Record, two fields: the first field contains an unsigned int, the + second an int32: + + >>> np.dtype([('f1', np.uint), ('f2', np.int32)]) + dtype([('f1', '<u4'), ('f2', '<i4')]) + + Using array-protocol type strings: + + >>> np.dtype([('a','f8'),('b','S10')]) + dtype([('a', '<f8'), ('b', '|S10')]) + + Using comma-separated field formats. The shape is (2,3): + + >>> np.dtype("i4, (2,3)f8") + dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))]) + + Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void`` + is a flexible type, here of size 10: + + >>> np.dtype([('hello',(np.int,3)),('world',np.void,10)]) + dtype([('hello', '<i4', 3), ('world', '|V10')]) + + Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are + the offsets in bytes: + + >>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) + dtype(('<i2', [('x', '|i1'), ('y', '|i1')])) + + Using dictionaries. Two fields named 'gender' and 'age': + + >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) + dtype([('gender', '|S1'), ('age', '|u1')]) + + Offsets in bytes, here 0 and 25: + + >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) + dtype([('surname', '|S25'), ('age', '|u1')]) + + """) + +############################################################################## +# +# dtype attributes +# +############################################################################## + +add_newdoc('numpy.core.multiarray', 'dtype', ('alignment', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('byteorder', + ''' + dt.byteorder + + String giving byteorder of dtype + + One of: + * '=' - native byteorder + * '<' - little endian + * '>' - big endian + * '|' - endian not relevant + + Examples + -------- + >>> dt = np.dtype('i2') + >>> dt.byteorder + '=' + >>> # endian is not relevant for 8 bit numbers + >>> np.dtype('i1').byteorder + '|' + >>> # or ASCII strings + >>> np.dtype('S2').byteorder + '|' + >>> # Even if specific code is given, and it is native + >>> # '=' is the byteorder + >>> import sys + >>> sys_is_le = sys.byteorder == 'little' + >>> native_code = sys_is_le and '<' or '>' + >>> swapped_code = sys_is_le and '>' or '<' + >>> dt = np.dtype(native_code + 'i2') + >>> dt.byteorder + '=' + >>> # Swapped code shows up as itself + >>> dt = np.dtype(swapped_code + 'i2') + >>> dt.byteorder == swapped_code + True + ''')) + +add_newdoc('numpy.core.multiarray', 'dtype', ('char', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('descr', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('fields', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('flags', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('hasobject', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('isnative', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('itemsize', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('kind', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('name', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('names', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('num', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('shape', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('str', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('subdtype', + """ + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('type', + """ + """)) + +############################################################################## +# +# dtype methods +# +############################################################################## + +add_newdoc('numpy.core.multiarray', 'dtype', ('newbyteorder', ''' newbyteorder(new_order='S') @@ -2901,40 +3064,410 @@ add_newdoc('numpy.core', 'dtype', ('newbyteorder', True ''')) -add_newdoc('numpy.core', 'dtype', ('byteorder', - ''' - dt.byteorder - String giving byteorder of dtype +############################################################################## +# +# nd_grid instances +# +############################################################################## - One of: - * '=' - native byteorder - * '<' - little endian - * '>' - big endian - * '|' - endian not relevant +add_newdoc('numpy.lib.index_tricks', 'mgrid', + """ + Construct a multi-dimensional filled "meshgrid". + + Returns a mesh-grid when indexed. The dimension and number of the + output arrays are equal to the number of indexing dimensions. If + the step length is not a complex number, then the stop is not + inclusive. + + However, if the step length is a **complex number** (e.g. 5j), + then the integer part of its magnitude is interpreted as + specifying the number of points to create between the start and + stop values, where the stop value **is inclusive**. + + See also + -------- + ogrid Examples -------- - >>> dt = np.dtype('i2') - >>> dt.byteorder - '=' - >>> # endian is not relevant for 8 bit numbers - >>> np.dtype('i1').byteorder - '|' - >>> # or ASCII strings - >>> np.dtype('S2').byteorder - '|' - >>> # Even if specific code is given, and it is native - >>> # '=' is the byteorder - >>> import sys - >>> sys_is_le = sys.byteorder == 'little' - >>> native_code = sys_is_le and '<' or '>' - >>> swapped_code = sys_is_le and '>' or '<' - >>> dt = np.dtype(native_code + 'i2') - >>> dt.byteorder - '=' - >>> # Swapped code shows up as itself - >>> dt = np.dtype(swapped_code + 'i2') - >>> dt.byteorder == swapped_code - True - ''')) + >>> np.mgrid[0:5,0:5] + array([[[0, 0, 0, 0, 0], + [1, 1, 1, 1, 1], + [2, 2, 2, 2, 2], + [3, 3, 3, 3, 3], + [4, 4, 4, 4, 4]], + <BLANKLINE> + [[0, 1, 2, 3, 4], + [0, 1, 2, 3, 4], + [0, 1, 2, 3, 4], + [0, 1, 2, 3, 4], + [0, 1, 2, 3, 4]]]) + >>> np.mgrid[-1:1:5j] + array([-1. , -0.5, 0. , 0.5, 1. ]) + """) + +add_newdoc('numpy.lib.index_tricks', 'ogrid', + """ + Construct a multi-dimensional open "meshgrid". + + Returns an 'open' mesh-grid when indexed. The dimension and + number of the output arrays are equal to the number of indexing + dimensions. If the step length is not a complex number, then the + stop is not inclusive. + + The returned mesh-grid is open (or not fleshed out), so that only + one-dimension of each returned argument is greater than 1 + + If the step length is a **complex number** (e.g. 5j), then the + integer part of its magnitude is interpreted as specifying the + number of points to create between the start and stop values, + where the stop value **is inclusive**. + + See also + -------- + mgrid + + Examples + -------- + >>> np.ogrid[0:5,0:5] + [array([[0], + [1], + [2], + [3], + [4]]), array([[0, 1, 2, 3, 4]])] + """) + + +############################################################################## +# +# Documentation for `generic` attributes and methods +# +############################################################################## + +add_newdoc('numpy.core.numerictypes', 'generic', + """ + """) + +# Attributes + +add_newdoc('numpy.core.numerictypes', 'generic', ('T', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('base', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('data', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('dtype', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('flags', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('flat', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('imag', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('itemsize', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('nbytes', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('ndim', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('real', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('shape', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('size', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('strides', + """ + """)) + +# Methods + +add_newdoc('numpy.core.numerictypes', 'generic', ('all', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('any', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('argmax', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('argmin', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('argsort', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('astype', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('byteswap', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('choose', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('clip', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('compress', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('conjugate', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('copy', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('cumprod', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('cumsum', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('diagonal', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('dump', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('dumps', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('fill', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('flatten', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('getfield', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('item', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('itemset', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('max', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('mean', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('min', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('newbyteorder', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('nonzero', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('prod', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('ptp', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('put', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('ravel', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('repeat', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('reshape', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('resize', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('round', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('searchsorted', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('setfield', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('setflags', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('sort', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('squeeze', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('std', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('sum', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('swapaxes', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('take', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('tofile', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('tolist', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('tostring', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('trace', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('transpose', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('var', + """ + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('view', + """ + """)) + + +############################################################################## +# +# Documentation for other scalar classes +# +############################################################################## + +add_newdoc('numpy.core.numerictypes', 'bool_', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'complex64', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'complex128', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'complex256', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'float32', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'float64', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'float96', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'float128', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'int8', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'int16', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'int32', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'int64', + """ + """) + +add_newdoc('numpy.core.numerictypes', 'object_', + """ + """) |