summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
diff options
context:
space:
mode:
authorPauli Virtanen <pav@iki.fi>2009-02-14 22:09:26 +0000
committerPauli Virtanen <pav@iki.fi>2009-02-14 22:09:26 +0000
commit9902bd1969a738ddec9e01d019d98142dda59f3f (patch)
tree7aa8e05daec4391ba5eccc20876cf5391a6ae72a /numpy/add_newdocs.py
parent33d79edf8e06fd69b26a9331d612caadb7b55672 (diff)
downloadnumpy-9902bd1969a738ddec9e01d019d98142dda59f3f.tar.gz
More add_newdocs entries, and make add_newdoc capable of adding docs also to normal Python objects.
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r--numpy/add_newdocs.py883
1 files changed, 708 insertions, 175 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
index 4802910af..e283c8a62 100644
--- a/numpy/add_newdocs.py
+++ b/numpy/add_newdocs.py
@@ -8,140 +8,6 @@
from lib import add_newdoc
-add_newdoc('numpy.core', 'dtype',
-"""Create a data type.
-
-A numpy array is homogeneous, and contains elements described by a
-dtype. A dtype can be constructed from different combinations of
-fundamental numeric types, as illustrated below.
-
-Examples
---------
-
-Using array-scalar type:
->>> np.dtype(np.int16)
-dtype('int16')
-
-Record, one field name 'f1', containing int16:
->>> np.dtype([('f1', np.int16)])
-dtype([('f1', '<i2')])
-
-Record, one field named 'f1', in itself containing a record with one field:
->>> np.dtype([('f1', [('f1', np.int16)])])
-dtype([('f1', [('f1', '<i2')])])
-
-Record, two fields: the first field contains an unsigned int, the
-second an int32:
->>> np.dtype([('f1', np.uint), ('f2', np.int32)])
-dtype([('f1', '<u4'), ('f2', '<i4')])
-
-Using array-protocol type strings:
->>> np.dtype([('a','f8'),('b','S10')])
-dtype([('a', '<f8'), ('b', '|S10')])
-
-Using comma-separated field formats. The shape is (2,3):
->>> np.dtype("i4, (2,3)f8")
-dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
-
-Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void``
-is a flexible type, here of size 10:
->>> np.dtype([('hello',(np.int,3)),('world',np.void,10)])
-dtype([('hello', '<i4', 3), ('world', '|V10')])
-
-Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are
-the offsets in bytes:
->>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
-dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))
-
-Using dictionaries. Two fields named 'gender' and 'age':
->>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
-dtype([('gender', '|S1'), ('age', '|u1')])
-
-Offsets in bytes, here 0 and 25:
->>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
-dtype([('surname', '|S25'), ('age', '|u1')])
-
-""")
-
-add_newdoc('numpy.core', 'dtype',
- """
- dtype(obj, align=False, copy=False)
-
- Create a data type object.
-
- A numpy array is homogeneous, and contains elements described by a
- dtype object. A dtype object can be constructed from different
- combinations of fundamental numeric types.
-
- Parameters
- ----------
- obj
- Object to be converted to a data type object.
- align : bool, optional
- Add padding to the fields to match what a C compiler would output
- for a similar C-struct. Can be ``True`` only if `obj` is a dictionary
- or a comma-separated string.
- copy : bool, optional
- Make a new copy of the data-type object. If ``False``, the result
- may just be a reference to a built-in data-type object.
-
- Examples
- --------
- Using array-scalar type:
-
- >>> np.dtype(np.int16)
- dtype('int16')
-
- Record, one field name 'f1', containing int16:
-
- >>> np.dtype([('f1', np.int16)])
- dtype([('f1', '<i2')])
-
- Record, one field named 'f1', in itself containing a record with one field:
-
- >>> np.dtype([('f1', [('f1', np.int16)])])
- dtype([('f1', [('f1', '<i2')])])
-
- Record, two fields: the first field contains an unsigned int, the
- second an int32:
-
- >>> np.dtype([('f1', np.uint), ('f2', np.int32)])
- dtype([('f1', '<u4'), ('f2', '<i4')])
-
- Using array-protocol type strings:
-
- >>> np.dtype([('a','f8'),('b','S10')])
- dtype([('a', '<f8'), ('b', '|S10')])
-
- Using comma-separated field formats. The shape is (2,3):
-
- >>> np.dtype("i4, (2,3)f8")
- dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
-
- Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void``
- is a flexible type, here of size 10:
-
- >>> np.dtype([('hello',(np.int,3)),('world',np.void,10)])
- dtype([('hello', '<i4', 3), ('world', '|V10')])
-
- Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are
- the offsets in bytes:
-
- >>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
- dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))
-
- Using dictionaries. Two fields named 'gender' and 'age':
-
- >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
- dtype([('gender', '|S1'), ('age', '|u1')])
-
- Offsets in bytes, here 0 and 25:
-
- >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
- dtype([('surname', '|S25'), ('age', '|u1')])
-
- """)
-
###############################################################################
#
# flatiter
@@ -150,7 +16,12 @@ add_newdoc('numpy.core', 'dtype',
#
###############################################################################
-# attributes
+add_newdoc('numpy.core', 'flatiter',
+ """
+ """)
+
+# flatiter attributes
+
add_newdoc('numpy.core', 'flatiter', ('base',
"""documentation needed
@@ -170,9 +41,8 @@ add_newdoc('numpy.core', 'flatiter', ('index',
"""))
+# flatiter functions
-
-# functions
add_newdoc('numpy.core', 'flatiter', ('__array__',
"""__array__(type=None) Get array from iterator
@@ -191,37 +61,37 @@ add_newdoc('numpy.core', 'flatiter', ('copy',
#
###############################################################################
+add_newdoc('numpy.core', 'broadcast',
+ """
+ """)
+
# attributes
+
add_newdoc('numpy.core', 'broadcast', ('index',
"""current index in broadcasted result
"""))
-
add_newdoc('numpy.core', 'broadcast', ('iters',
"""tuple of individual iterators
"""))
-
add_newdoc('numpy.core', 'broadcast', ('nd',
"""number of dimensions of broadcasted result
"""))
-
add_newdoc('numpy.core', 'broadcast', ('numiter',
"""number of iterators
"""))
-
add_newdoc('numpy.core', 'broadcast', ('shape',
"""shape of broadcasted result
"""))
-
add_newdoc('numpy.core', 'broadcast', ('size',
"""total size of broadcasted result
@@ -2581,6 +2451,25 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
"""))
+
+##############################################################################
+#
+# umath functions
+#
+##############################################################################
+
+add_newdoc('numpy.core.umath', 'frexp',
+ """
+ """)
+
+add_newdoc('numpy.core.umath', 'frompyfunc',
+ """
+ """)
+
+add_newdoc('numpy.core.umath', 'ldexp',
+ """
+ """)
+
add_newdoc('numpy.core.umath','geterrobj',
"""geterrobj()
@@ -2610,6 +2499,64 @@ add_newdoc('numpy.core.umath', 'seterrobj',
""")
+
+##############################################################################
+#
+# lib._compile_base functions
+#
+##############################################################################
+
+add_newdoc('numpy.lib._compile_base', 'digitize',
+ """
+ digitize(x,bins)
+
+ Return the index of the bin to which each value of x belongs.
+
+ Each index i returned is such that bins[i-1] <= x < bins[i] if
+ bins is monotonically increasing, or bins [i-1] > x >= bins[i] if
+ bins is monotonically decreasing.
+
+ Beyond the bounds of the bins 0 or len(bins) is returned as appropriate.
+ """)
+
+add_newdoc('numpy.lib._compile_base', 'bincount',
+ """
+ bincount(x,weights=None)
+
+ Return the number of occurrences of each value in x.
+
+ x must be a list of non-negative integers. The output, b[i],
+ represents the number of times that i is found in x. If weights
+ is specified, every occurrence of i at a position p contributes
+ weights[p] instead of 1.
+
+ See also: histogram, digitize, unique.
+ """)
+
+add_newdoc('numpy.lib._compile_base', 'add_docstring',
+ """
+ docstring(obj, docstring)
+
+ Add a docstring to a built-in obj if possible.
+ If the obj already has a docstring raise a RuntimeError
+ If this routine does not know how to add a docstring to the object
+ raise a TypeError
+ """)
+
+
+##############################################################################
+#
+# Documentation for ufunc attributes and methods
+#
+##############################################################################
+
+
+##############################################################################
+#
+# ufunc object
+#
+##############################################################################
+
add_newdoc('numpy.core', 'ufunc',
"""
Functions that operate element by element on whole arrays.
@@ -2662,6 +2609,12 @@ add_newdoc('numpy.core', 'ufunc',
""")
+##############################################################################
+#
+# ufunc methods
+#
+##############################################################################
+
add_newdoc('numpy.core', 'ufunc', ('reduce',
"""
reduce(array, axis=0, dtype=None, out=None)
@@ -2842,7 +2795,217 @@ add_newdoc('numpy.core', 'ufunc', ('outer',
"""))
-add_newdoc('numpy.core', 'dtype', ('newbyteorder',
+
+##############################################################################
+#
+# Documentation for dtype attributes and methods
+#
+##############################################################################
+
+##############################################################################
+#
+# dtype object
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'dtype',
+ """
+ dtype(obj, align=False, copy=False)
+
+ Create a data type object.
+
+ A numpy array is homogeneous, and contains elements described by a
+ dtype object. A dtype object can be constructed from different
+ combinations of fundamental numeric types.
+
+ Parameters
+ ----------
+ obj
+ Object to be converted to a data type object.
+ align : bool, optional
+ Add padding to the fields to match what a C compiler would output
+ for a similar C-struct. Can be ``True`` only if `obj` is a dictionary
+ or a comma-separated string.
+ copy : bool, optional
+ Make a new copy of the data-type object. If ``False``, the result
+ may just be a reference to a built-in data-type object.
+
+ Examples
+ --------
+ Using array-scalar type:
+
+ >>> np.dtype(np.int16)
+ dtype('int16')
+
+ Record, one field name 'f1', containing int16:
+
+ >>> np.dtype([('f1', np.int16)])
+ dtype([('f1', '<i2')])
+
+ Record, one field named 'f1', in itself containing a record with one field:
+
+ >>> np.dtype([('f1', [('f1', np.int16)])])
+ dtype([('f1', [('f1', '<i2')])])
+
+ Record, two fields: the first field contains an unsigned int, the
+ second an int32:
+
+ >>> np.dtype([('f1', np.uint), ('f2', np.int32)])
+ dtype([('f1', '<u4'), ('f2', '<i4')])
+
+ Using array-protocol type strings:
+
+ >>> np.dtype([('a','f8'),('b','S10')])
+ dtype([('a', '<f8'), ('b', '|S10')])
+
+ Using comma-separated field formats. The shape is (2,3):
+
+ >>> np.dtype("i4, (2,3)f8")
+ dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
+
+ Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void``
+ is a flexible type, here of size 10:
+
+ >>> np.dtype([('hello',(np.int,3)),('world',np.void,10)])
+ dtype([('hello', '<i4', 3), ('world', '|V10')])
+
+ Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are
+ the offsets in bytes:
+
+ >>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
+ dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))
+
+ Using dictionaries. Two fields named 'gender' and 'age':
+
+ >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
+ dtype([('gender', '|S1'), ('age', '|u1')])
+
+ Offsets in bytes, here 0 and 25:
+
+ >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
+ dtype([('surname', '|S25'), ('age', '|u1')])
+
+ """)
+
+##############################################################################
+#
+# dtype attributes
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('alignment',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('byteorder',
+ '''
+ dt.byteorder
+
+ String giving byteorder of dtype
+
+ One of:
+ * '=' - native byteorder
+ * '<' - little endian
+ * '>' - big endian
+ * '|' - endian not relevant
+
+ Examples
+ --------
+ >>> dt = np.dtype('i2')
+ >>> dt.byteorder
+ '='
+ >>> # endian is not relevant for 8 bit numbers
+ >>> np.dtype('i1').byteorder
+ '|'
+ >>> # or ASCII strings
+ >>> np.dtype('S2').byteorder
+ '|'
+ >>> # Even if specific code is given, and it is native
+ >>> # '=' is the byteorder
+ >>> import sys
+ >>> sys_is_le = sys.byteorder == 'little'
+ >>> native_code = sys_is_le and '<' or '>'
+ >>> swapped_code = sys_is_le and '>' or '<'
+ >>> dt = np.dtype(native_code + 'i2')
+ >>> dt.byteorder
+ '='
+ >>> # Swapped code shows up as itself
+ >>> dt = np.dtype(swapped_code + 'i2')
+ >>> dt.byteorder == swapped_code
+ True
+ '''))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('char',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('descr',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('fields',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('flags',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('hasobject',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('isnative',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('itemsize',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('kind',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('name',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('names',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('num',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('shape',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('str',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('subdtype',
+ """
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('type',
+ """
+ """))
+
+##############################################################################
+#
+# dtype methods
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('newbyteorder',
'''
newbyteorder(new_order='S')
@@ -2901,40 +3064,410 @@ add_newdoc('numpy.core', 'dtype', ('newbyteorder',
True
'''))
-add_newdoc('numpy.core', 'dtype', ('byteorder',
- '''
- dt.byteorder
- String giving byteorder of dtype
+##############################################################################
+#
+# nd_grid instances
+#
+##############################################################################
- One of:
- * '=' - native byteorder
- * '<' - little endian
- * '>' - big endian
- * '|' - endian not relevant
+add_newdoc('numpy.lib.index_tricks', 'mgrid',
+ """
+ Construct a multi-dimensional filled "meshgrid".
+
+ Returns a mesh-grid when indexed. The dimension and number of the
+ output arrays are equal to the number of indexing dimensions. If
+ the step length is not a complex number, then the stop is not
+ inclusive.
+
+ However, if the step length is a **complex number** (e.g. 5j),
+ then the integer part of its magnitude is interpreted as
+ specifying the number of points to create between the start and
+ stop values, where the stop value **is inclusive**.
+
+ See also
+ --------
+ ogrid
Examples
--------
- >>> dt = np.dtype('i2')
- >>> dt.byteorder
- '='
- >>> # endian is not relevant for 8 bit numbers
- >>> np.dtype('i1').byteorder
- '|'
- >>> # or ASCII strings
- >>> np.dtype('S2').byteorder
- '|'
- >>> # Even if specific code is given, and it is native
- >>> # '=' is the byteorder
- >>> import sys
- >>> sys_is_le = sys.byteorder == 'little'
- >>> native_code = sys_is_le and '<' or '>'
- >>> swapped_code = sys_is_le and '>' or '<'
- >>> dt = np.dtype(native_code + 'i2')
- >>> dt.byteorder
- '='
- >>> # Swapped code shows up as itself
- >>> dt = np.dtype(swapped_code + 'i2')
- >>> dt.byteorder == swapped_code
- True
- '''))
+ >>> np.mgrid[0:5,0:5]
+ array([[[0, 0, 0, 0, 0],
+ [1, 1, 1, 1, 1],
+ [2, 2, 2, 2, 2],
+ [3, 3, 3, 3, 3],
+ [4, 4, 4, 4, 4]],
+ <BLANKLINE>
+ [[0, 1, 2, 3, 4],
+ [0, 1, 2, 3, 4],
+ [0, 1, 2, 3, 4],
+ [0, 1, 2, 3, 4],
+ [0, 1, 2, 3, 4]]])
+ >>> np.mgrid[-1:1:5j]
+ array([-1. , -0.5, 0. , 0.5, 1. ])
+ """)
+
+add_newdoc('numpy.lib.index_tricks', 'ogrid',
+ """
+ Construct a multi-dimensional open "meshgrid".
+
+ Returns an 'open' mesh-grid when indexed. The dimension and
+ number of the output arrays are equal to the number of indexing
+ dimensions. If the step length is not a complex number, then the
+ stop is not inclusive.
+
+ The returned mesh-grid is open (or not fleshed out), so that only
+ one-dimension of each returned argument is greater than 1
+
+ If the step length is a **complex number** (e.g. 5j), then the
+ integer part of its magnitude is interpreted as specifying the
+ number of points to create between the start and stop values,
+ where the stop value **is inclusive**.
+
+ See also
+ --------
+ mgrid
+
+ Examples
+ --------
+ >>> np.ogrid[0:5,0:5]
+ [array([[0],
+ [1],
+ [2],
+ [3],
+ [4]]), array([[0, 1, 2, 3, 4]])]
+ """)
+
+
+##############################################################################
+#
+# Documentation for `generic` attributes and methods
+#
+##############################################################################
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ """
+ """)
+
+# Attributes
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('T',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('base',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('data',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('dtype',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('flags',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('flat',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('imag',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('itemsize',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('nbytes',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('ndim',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('real',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('shape',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('size',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('strides',
+ """
+ """))
+
+# Methods
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('all',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('any',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('argmax',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('argmin',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('argsort',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('astype',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('byteswap',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('choose',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('clip',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('compress',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('conjugate',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('copy',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('cumprod',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('cumsum',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('diagonal',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('dump',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('dumps',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('fill',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('flatten',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('getfield',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('item',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('itemset',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('max',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('mean',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('min',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('newbyteorder',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('nonzero',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('prod',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('ptp',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('put',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('ravel',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('repeat',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('reshape',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('resize',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('round',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('searchsorted',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('setfield',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('setflags',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('sort',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('squeeze',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('std',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('sum',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('swapaxes',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('take',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('tofile',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('tolist',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('tostring',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('trace',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('transpose',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('var',
+ """
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('view',
+ """
+ """))
+
+
+##############################################################################
+#
+# Documentation for other scalar classes
+#
+##############################################################################
+
+add_newdoc('numpy.core.numerictypes', 'bool_',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'complex64',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'complex128',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'complex256',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'float32',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'float64',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'float96',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'float128',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'int8',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'int16',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'int32',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'int64',
+ """
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'object_',
+ """
+ """)