summaryrefslogtreecommitdiff
path: root/numpy/doc/constants.py
diff options
context:
space:
mode:
authorPauli Virtanen <pav@iki.fi>2009-10-02 19:31:17 +0000
committerPauli Virtanen <pav@iki.fi>2009-10-02 19:31:17 +0000
commit94b196ffab3e8cb3f308e58b835ca709fc11e8b2 (patch)
tree6cb817e0c3739d0f452d32f36822defe7ae39f49 /numpy/doc/constants.py
parentbede419d707fef62166352a46fa7b6b76e1a13e9 (diff)
downloadnumpy-94b196ffab3e8cb3f308e58b835ca709fc11e8b2.tar.gz
Docstring update: numpy.doc
Diffstat (limited to 'numpy/doc/constants.py')
-rw-r--r--numpy/doc/constants.py166
1 files changed, 49 insertions, 117 deletions
diff --git a/numpy/doc/constants.py b/numpy/doc/constants.py
index 154c74621..7a9105667 100644
--- a/numpy/doc/constants.py
+++ b/numpy/doc/constants.py
@@ -18,19 +18,12 @@ add_newdoc('numpy', 'Inf',
"""
IEEE 754 floating point representation of (positive) infinity.
- Returns
- -------
- y : A floating point representation of positive infinity.
-
- Notes
- -----
- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
- (IEEE 754). This means that Not a Number is not equivalent to infinity.
- Also that positive infinity is not equivalent to negative infinity. But
- infinity is equivalent to positive infinity.
+ Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
+ `inf`. For more details, see `inf`.
- Use numpy.inf because Inf, Infinity, PINF, infty are equivalent
- definitions of numpy.inf.
+ See Also
+ --------
+ inf
""")
@@ -38,19 +31,12 @@ add_newdoc('numpy', 'Infinity',
"""
IEEE 754 floating point representation of (positive) infinity.
- Returns
- -------
- y : A floating point representation of positive infinity.
-
- Notes
- -----
- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
- (IEEE 754). This means that Not a Number is not equivalent to infinity.
- Also that positive infinity is not equivalent to negative infinity. But
- infinity is equivalent to positive infinity.
+ Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
+ `inf`. For more details, see `inf`.
- Use numpy.inf because Inf, Infinity, PINF, infty are equivalent
- definitions of numpy.inf.
+ See Also
+ --------
+ inf
""")
@@ -58,33 +44,12 @@ add_newdoc('numpy', 'NAN',
"""
IEEE 754 floating point representation of Not a Number (NaN).
- Returns
- -------
- y : A floating point representation of Not a Number.
+ `NaN` and `NAN` are equivalent definitions of `nan`. Please use
+ `nan` instead of `NAN`.
See Also
--------
- isnan: Shows which elements are Not a Number.
-
- isfinite: Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)
-
- Notes
- -----
- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
- (IEEE 754). This means that Not a Number is not equivalent to infinity.
-
- NaN and NAN are equivalent definitions of numpy.nan. Please use
- numpy.nan instead of numpy.NAN.
-
-
- Examples
- --------
- >>> np.NAN
- nan
- >>> np.log(-1)
nan
- >>> np.log([-1, 1, 2])
- array([ NaN, 0. , 0.69314718])
""")
@@ -94,7 +59,8 @@ add_newdoc('numpy', 'NINF',
Returns
-------
- y : A floating point representation of negative infinity.
+ y : float
+ A floating point representation of negative infinity.
See Also
--------
@@ -116,7 +82,6 @@ add_newdoc('numpy', 'NINF',
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity.
-
Examples
--------
>>> np.NINF
@@ -132,7 +97,8 @@ add_newdoc('numpy', 'NZERO',
Returns
-------
- y : A floating point representation of negative zero.
+ y : float
+ A floating point representation of negative zero.
See Also
--------
@@ -154,13 +120,13 @@ add_newdoc('numpy', 'NZERO',
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). Negative zero is considered to be a finite number.
-
Examples
--------
>>> np.NZERO
-0.0
>>> np.PZERO
0.0
+
>>> np.isfinite([np.NZERO])
array([ True], dtype=bool)
>>> np.isnan([np.NZERO])
@@ -174,34 +140,12 @@ add_newdoc('numpy', 'NaN',
"""
IEEE 754 floating point representation of Not a Number (NaN).
- Returns
- -------
- y : A floating point representation of Not a Number.
+ `NaN` and `NAN` are equivalent definitions of `nan`. Please use
+ `nan` instead of `NaN`.
See Also
--------
-
- isnan : Shows which elements are Not a Number.
-
- isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)
-
- Notes
- -----
- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
- (IEEE 754). This means that Not a Number is not equivalent to infinity.
-
- NaN and NAN are equivalent definitions of numpy.nan. Please use
- numpy.nan instead of numpy.NaN.
-
-
- Examples
- --------
- >>> np.NaN
- nan
- >>> np.log(-1)
nan
- >>> np.log([-1, 1, 2])
- array([ NaN, 0. , 0.69314718])
""")
@@ -209,19 +153,12 @@ add_newdoc('numpy', 'PINF',
"""
IEEE 754 floating point representation of (positive) infinity.
- Returns
- -------
- y : A floating point representation of positive infinity.
+ Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
+ `inf`. For more details, see `inf`.
- Notes
- -----
- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
- (IEEE 754). This means that Not a Number is not equivalent to infinity.
- Also that positive infinity is not equivalent to negative infinity. But
- infinity is equivalent to positive infinity.
-
- Use numpy.inf because Inf, Infinity, PINF, infty are equivalent
- definitions of numpy.inf.
+ See Also
+ --------
+ inf
""")
@@ -231,7 +168,8 @@ add_newdoc('numpy', 'PZERO',
Returns
-------
- y : A floating point representation of positive zero.
+ y : float
+ A floating point representation of positive zero.
See Also
--------
@@ -251,8 +189,7 @@ add_newdoc('numpy', 'PZERO',
Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
- (IEEE 754).
-
+ (IEEE 754). Positive zero is considered to be a finite number.
Examples
--------
@@ -260,6 +197,7 @@ add_newdoc('numpy', 'PZERO',
0.0
>>> np.NZERO
-0.0
+
>>> np.isfinite([np.PZERO])
array([ True], dtype=bool)
>>> np.isnan([np.PZERO])
@@ -292,7 +230,8 @@ add_newdoc('numpy', 'inf',
Returns
-------
- y : A floating point representation of positive infinity.
+ y : float
+ A floating point representation of positive infinity.
See Also
--------
@@ -314,14 +253,13 @@ add_newdoc('numpy', 'inf',
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity.
- Inf, Infinity, PINF, infty are equivalent definitions of numpy.inf.
-
+ `Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`.
Examples
--------
>>> np.inf
inf
- >>> np.array([1])/0.
+ >>> np.array([1]) / 0.
array([ Inf])
""")
@@ -330,19 +268,12 @@ add_newdoc('numpy', 'infty',
"""
IEEE 754 floating point representation of (positive) infinity.
- Returns
- -------
- y : A floating point representation of positive infinity.
+ Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
+ `inf`. For more details, see `inf`.
- Notes
- -----
- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
- (IEEE 754). This means that Not a Number is not equivalent to infinity.
- Also that positive infinity is not equivalent to negative infinity. But
- infinity is equivalent to positive infinity.
-
- Use numpy.inf because Inf, Infinity, PINF, infty are equivalent
- definitions of numpy.inf.
+ See Also
+ --------
+ inf
""")
@@ -365,8 +296,7 @@ add_newdoc('numpy', 'nan',
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
- NaN and NAN are equivalent definitions of numpy.nan.
-
+ `NaN` and `NAN` are aliases of `nan`.
Examples
--------
@@ -381,6 +311,8 @@ add_newdoc('numpy', 'nan',
add_newdoc('numpy', 'newaxis',
"""
+ A convenient alias for None, useful for indexing arrays.
+
See Also
--------
`numpy.doc.indexing`
@@ -392,36 +324,36 @@ add_newdoc('numpy', 'newaxis',
>>> x = np.arange(3)
>>> x
array([0, 1, 2])
- >>> x[:,newaxis]
+ >>> x[:, newaxis]
array([[0],
[1],
[2]])
- >>> x[:,newaxis,newaxis]
+ >>> x[:, newaxis, newaxis]
array([[[0]],
[[1]],
[[2]]])
- >>> x[:,newaxis] * x
+ >>> x[:, newaxis] * x
array([[0, 0, 0],
[0, 1, 2],
[0, 2, 4]])
- Outer product, same as outer(x,y):
+ Outer product, same as ``outer(x, y)``:
- >>> y = np.arange(3,6)
- >>> x[:,newaxis] * y
+ >>> y = np.arange(3, 6)
+ >>> x[:, newaxis] * y
array([[ 0, 0, 0],
[ 3, 4, 5],
[ 6, 8, 10]])
- x[newaxis,:] is equivalent to x[newaxis] and x[None]:
+ ``x[newaxis, :]`` is equivalent to ``x[newaxis]`` and ``x[None]``:
- >>> x[newaxis,:].shape
+ >>> x[newaxis, :].shape
(1, 3)
>>> x[newaxis].shape
(1, 3)
>>> x[None].shape
(1, 3)
- >>> x[:,newaxis].shape
+ >>> x[:, newaxis].shape
(3, 1)
""")