summaryrefslogtreecommitdiff
path: root/numpy/lib/arraypad.py
diff options
context:
space:
mode:
authortim cera <tcera@sjrwmd.com>2012-02-06 12:51:14 -0500
committerCharles Harris <charlesr.harris@gmail.com>2012-04-04 13:29:16 -0600
commit7270d9e6054e105c6c7ace66b443870a9e299b75 (patch)
treec293b21712e466b21e92d8efa1e86de79f52b998 /numpy/lib/arraypad.py
parent313fe46046a7192cbdba2e679a104777301bc7cf (diff)
downloadnumpy-7270d9e6054e105c6c7ace66b443870a9e299b75.tar.gz
ENH: Add module containing functions for padding n-dimensional arrays.
The various padding functions are exposed as options to a public 'pad' function. Example: pad(a, 5, mode='mean') Current modes are 'constant', 'edge', 'linear_ramp', 'maximum', 'mean', 'median', 'minimum', 'reflect', 'symmetric', 'wrap', and <function> This commit includes unit tests and doctests and is based on feature request ticket #655.
Diffstat (limited to 'numpy/lib/arraypad.py')
-rw-r--r--numpy/lib/arraypad.py767
1 files changed, 767 insertions, 0 deletions
diff --git a/numpy/lib/arraypad.py b/numpy/lib/arraypad.py
new file mode 100644
index 000000000..df2034b58
--- /dev/null
+++ b/numpy/lib/arraypad.py
@@ -0,0 +1,767 @@
+"""
+The pad.py module contains a group of functions to pad values onto the edges
+of an n-dimensional array.
+"""
+
+import numpy as np
+
+__all__ = ['pad']
+
+
+################################################################################
+# Private utility functions.
+
+
+def _create_vector(vector, pad_tuple, before_val, after_val):
+ '''
+ Private function which creates the padded vector.
+
+ Parameters
+ ----------
+ vector : ndarray of rank 1, length N + pad_tuple[0] + pad_tuple[1]
+ Input vector including blank padded values. `N` is the lenth of the
+ original vector.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ before_val : scalar or ndarray of rank 1, length pad_tuple[0]
+ This is the value(s) that will pad the beginning of `vector`.
+ after_val : scalar or ndarray of rank 1, length pad_tuple[1]
+ This is the value(s) that will pad the end of the `vector`.
+
+ Returns
+ -------
+ _create_vector : ndarray
+ Vector with before_val and after_val replacing the blank pad values.
+ '''
+ vector[:pad_tuple[0]] = before_val
+ if pad_tuple[1] > 0:
+ vector[-pad_tuple[1]:] = after_val
+ return vector
+
+
+def _normalize_shape(narray, shape):
+ '''
+ Private function which does some checks and normalizes the possibly much
+ simpler representations of 'pad_width', 'stat_length', 'constant_values',
+ 'end_values'.
+
+ Parameters
+ ----------
+ narray : ndarray
+ Input ndarray
+ shape : {sequence, int}, optional
+ The width of padding (pad_width) or the number of elements on the edge
+ of the narray used for statistics (stat_length).
+ ((before_1, after_1), ... (before_N, after_N)) unique number of
+ elements for each axis where `N` is rank of `narray`.
+ ((before, after),) yields same before and after constants for each
+ axis.
+ (constant,) or int is a shortcut for before = after = constant for all
+ axes.
+
+ Returns
+ -------
+ _normalize_shape : tuple of tuples
+ int => ((int, int), (int, int), ...)
+ [[int1, int2], [int3, int4], ...] => ((int1, int2), (int3, int4), ...)
+ ((int1, int2), (int3, int4), ...) => no change
+ [[int1, int2], ] => ((int1, int2), (int1, int2), ...]
+ ((int1, int2), ) => ((int1, int2), (int1, int2), ...)
+ [[int , ), ) => ((int, int), (int, int), ...)
+ ((int , ), ) => ((int, int), (int, int), ...)
+ '''
+ normshp = None
+ shapelen = len(np.shape(narray))
+ if (isinstance(shape, int)):
+ normshp = ((shape, shape), ) * shapelen
+ elif (isinstance(shape, (tuple, list))
+ and isinstance(shape[0], (tuple, list))
+ and len(shape) == shapelen):
+ normshp = shape
+ for i in normshp:
+ if len(i) != 2:
+ raise ValueError("Unable to create correctly shaped tuple from %s"
+ % (normshp,))
+ elif (isinstance(shape, (tuple, list))
+ and isinstance(shape[0], (int, float, long))
+ and len(shape) == 1):
+ normshp = ((shape[0], shape[0]), ) * shapelen
+ elif (isinstance(shape, (tuple, list))
+ and isinstance(shape[0], (int, float, long))
+ and len(shape) == 2):
+ normshp = (shape, ) * shapelen
+ if normshp == None:
+ raise ValueError("Unable to create correctly shaped tuple from %s"
+ % (shape,))
+ return normshp
+
+
+def _validate_lengths(narray, number_elements):
+ '''
+ Private function which does some checks and reformats pad_width and
+ stat_length using _normalize_shape.
+
+ Parameters
+ ----------
+ narray : ndarray
+ Input ndarray
+ number_elements : {sequence, int}, optional
+ The width of padding (pad_width) or the number of elements on the edge
+ of the narray used for statistics (stat_length).
+ ((before_1, after_1), ... (before_N, after_N)) unique number of
+ elements for each axis.
+ ((before, after),) yields same before and after constants for each
+ axis.
+ (constant,) or int is a shortcut for before = after = constant for all
+ axes.
+
+ Returns
+ -------
+ _validate_lengths : tuple of tuples
+ int => ((int, int), (int, int), ...)
+ [[int1, int2], [int3, int4], ...] => ((int1, int2), (int3, int4), ...)
+ ((int1, int2), (int3, int4), ...) => no change
+ [[int1, int2], ] => ((int1, int2), (int1, int2), ...]
+ ((int1, int2), ) => ((int1, int2), (int1, int2), ...)
+ [[int , ), ) => ((int, int), (int, int), ...)
+ ((int , ), ) => ((int, int), (int, int), ...)
+ '''
+ shapelen = len(np.shape(narray))
+ normshp = _normalize_shape(narray, number_elements)
+ for i in normshp:
+ if i[0] < 0 or i[1] < 0:
+ raise ValueError(
+ "Cannot have negative values in %s to represent number of elements."
+ % (number_elements,))
+ return normshp
+
+
+def _create_stat_vectors(vector, pad_tuple, iaxis, kwargs):
+ '''
+ Returns the portion of the vector required for any statistic.
+
+ Parameters
+ ----------
+ vector : ndarray
+ Input vector that already includes empty padded values.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ iaxis : int
+ The axis currently being looped across.
+ kwargs : keyword arguments
+ Keyword arguments. Only 'stat_length' is used. 'stat_length'
+ defaults to the entire vector if not supplied.
+
+ Return
+ ------
+ _create_stat_vectors : ndarray
+ The values from the original vector that will be used to calculate the
+ statistic.
+ '''
+
+ # Can't have 0 represent the end if a slice... a[1:0] doesnt' work
+ pt1 = -pad_tuple[1]
+ if pt1 == 0:
+ pt1 = None
+
+ # Default is the entire vector from the original array.
+ sbvec = vector[pad_tuple[0]:pt1]
+ savec = vector[pad_tuple[0]:pt1]
+
+ if kwargs['stat_length']:
+ stat_length = kwargs['stat_length'][iaxis]
+ sl0 = min(stat_length[0], len(sbvec))
+ sl1 = min(stat_length[1], len(savec))
+ sbvec = np.arange(0)
+ savec = np.arange(0)
+ if pad_tuple[0] > 0:
+ sbvec = vector[pad_tuple[0]:pad_tuple[0] + sl0]
+ if pad_tuple[1] > 0:
+ savec = vector[-pad_tuple[1] - sl1:pt1]
+ return (sbvec, savec)
+
+
+def _maximum(vector, pad_tuple, iaxis, kwargs):
+ '''
+ Private function to calculate the before/after vectors for pad_maximum.
+
+ Parameters
+ ----------
+ vector : ndarray
+ Input vector that already includes empty padded values.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ iaxis : int
+ The axis currently being looped across.
+ kwargs : keyword arguments
+ Keyword arguments. Only 'stat_length' is used. 'stat_length'
+ defaults to the entire vector if not supplied.
+
+ Return
+ ------
+ _maximum : ndarray
+ Padded vector
+ '''
+ sbvec, savec = _create_stat_vectors(vector, pad_tuple, iaxis, kwargs)
+ return _create_vector(vector, pad_tuple, max(sbvec), max(savec))
+
+
+def _minimum(vector, pad_tuple, iaxis, kwargs):
+ '''
+ Private function to calculate the before/after vectors for pad_minimum.
+
+ Parameters
+ ----------
+ vector : ndarray
+ Input vector that already includes empty padded values.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ iaxis : int
+ The axis currently being looped across.
+ kwargs : keyword arguments
+ Keyword arguments. Only 'stat_length' is used. 'stat_length'
+ defaults to the entire vector if not supplied.
+
+ Return
+ ------
+ _minimum : ndarray
+ Padded vector
+ '''
+ sbvec, savec = _create_stat_vectors(vector, pad_tuple, iaxis, kwargs)
+ return _create_vector(vector, pad_tuple, min(sbvec), min(savec))
+
+
+def _median(vector, pad_tuple, iaxis, kwargs):
+ '''
+ Private function to calculate the before/after vectors for pad_median.
+
+ Parameters
+ ----------
+ vector : ndarray
+ Input vector that already includes empty padded values.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ iaxis : int
+ The axis currently being looped across.
+ kwargs : keyword arguments
+ Keyword arguments. Only 'stat_length' is used. 'stat_length'
+ defaults to the entire vector if not supplied.
+
+ Return
+ ------
+ _median : ndarray
+ Padded vector
+ '''
+ sbvec, savec = _create_stat_vectors(vector, pad_tuple, iaxis, kwargs)
+ return _create_vector(vector, pad_tuple, np.median(sbvec),
+ np.median(savec))
+
+
+def _mean(vector, pad_tuple, iaxis, kwargs):
+ '''
+ Private function to calculate the before/after vectors for pad_mean.
+
+ Parameters
+ ----------
+ vector : ndarray
+ Input vector that already includes empty padded values.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ iaxis : int
+ The axis currently being looped across.
+ kwargs : keyword arguments
+ Keyword arguments. Only 'stat_length' is used. 'stat_length'
+ defaults to the entire vector if not supplied.
+
+ Return
+ ------
+ _mean : ndarray
+ Padded vector
+ '''
+ sbvec, savec = _create_stat_vectors(vector, pad_tuple, iaxis, kwargs)
+ return _create_vector(vector, pad_tuple, np.average(sbvec),
+ np.average(savec))
+
+
+def _constant(vector, pad_tuple, iaxis, kwargs):
+ '''
+ Private function to calculate the before/after vectors for pad_constant.
+
+ Parameters
+ ----------
+ vector : ndarray
+ Input vector that already includes empty padded values.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ iaxis : int
+ The axis currently being looped across.
+ kwargs : keyword arguments
+ Keyword arguments. Need 'constant_values' keyword argument.
+
+ Return
+ ------
+ _constant : ndarray
+ Padded vector
+ '''
+ nconstant = kwargs['constant_values'][iaxis]
+ return _create_vector(vector, pad_tuple, nconstant[0], nconstant[1])
+
+
+def _linear_ramp(vector, pad_tuple, iaxis, kwargs):
+ '''
+ Private function to calculate the before/after vectors for pad_linear_ramp.
+
+ Parameters
+ ----------
+ vector : ndarray
+ Input vector that already includes empty padded values.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ iaxis : int
+ The axis currently being looped across. Not used in _linear_ramp.
+ kwargs : keyword arguments
+ Keyword arguments. Not used in _linear_ramp.
+
+ Return
+ ------
+ _linear_ramp : ndarray
+ Padded vector
+ '''
+ end_values = kwargs['end_values'][iaxis]
+ before_delta = ((vector[pad_tuple[0]] - end_values[0])
+ / float(pad_tuple[0]))
+ after_delta = ((vector[-pad_tuple[1] - 1] - end_values[1])
+ / float(pad_tuple[1]))
+
+ before_vector = np.ones((pad_tuple[0], )) * end_values[0]
+ before_vector = before_vector.astype(vector.dtype)
+ for i in range(len(before_vector)):
+ before_vector[i] = before_vector[i] + i * before_delta
+
+ after_vector = np.ones((pad_tuple[1], )) * end_values[1]
+ after_vector = after_vector.astype(vector.dtype)
+ for i in range(len(after_vector)):
+ after_vector[i] = after_vector[i] + i * after_delta
+ after_vector = after_vector[::-1]
+
+ return _create_vector(vector, pad_tuple, before_vector, after_vector)
+
+
+def _reflect(vector, pad_tuple, iaxis, kwargs):
+ '''
+ Private function to calculate the before/after vectors for pad_reflect.
+
+ Parameters
+ ----------
+ vector : ndarray
+ Input vector that already includes empty padded values.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ iaxis : int
+ The axis currently being looped across. Not used in _reflect.
+ kwargs : keyword arguments
+ Keyword arguments. Not used in _reflect.
+
+ Return
+ ------
+ _reflect : ndarray
+ Padded vector
+ '''
+ # Can't have pad_tuple[1] be used in the slice if == to 0.
+ if pad_tuple[1] == 0:
+ after_vector = vector[pad_tuple[0]:None]
+ else:
+ after_vector = vector[pad_tuple[0]:-pad_tuple[1]]
+
+ reverse = after_vector[::-1]
+
+ before_vector = np.resize(
+ np.concatenate(
+ (after_vector[1:-1], reverse)), pad_tuple[0])[::-1]
+ after_vector = np.resize(
+ np.concatenate(
+ (reverse[1:-1], after_vector)), pad_tuple[1])
+
+ if kwargs['reflect_type'] == 'even':
+ pass
+ elif kwargs['reflect_type'] == 'odd':
+ before_vector = 2 * vector[pad_tuple[0]] - before_vector
+ after_vector = 2 * vector[-pad_tuple[-1] - 1] - after_vector
+ else:
+ raise ValueError("The keyword '%s' cannot have the value '%s'."
+ % ('reflect_type', kwargs['reflect_type']))
+ return _create_vector(vector, pad_tuple, before_vector, after_vector)
+
+
+def _symmetric(vector, pad_tuple, iaxis, kwargs):
+ '''
+ Private function to calculate the before/after vectors for pad_symmetric.
+
+ Parameters
+ ----------
+ vector : ndarray
+ Input vector that already includes empty padded values.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ iaxis : int
+ The axis currently being looped across. Not used in _symmetric.
+ kwargs : keyword arguments
+ Keyword arguments. Not used in _symmetric.
+
+ Return
+ ------
+ _symmetric : ndarray
+ Padded vector
+ '''
+ if pad_tuple[1] == 0:
+ after_vector = vector[pad_tuple[0]:None]
+ else:
+ after_vector = vector[pad_tuple[0]:-pad_tuple[1]]
+
+ before_vector = np.resize(
+ np.concatenate(
+ (after_vector, after_vector[::-1])), pad_tuple[0])[::-1]
+ after_vector = np.resize(
+ np.concatenate(
+ (after_vector[::-1], after_vector)), pad_tuple[1])
+
+ if kwargs['reflect_type'] == 'even':
+ pass
+ elif kwargs['reflect_type'] == 'odd':
+ before_vector = 2 * vector[pad_tuple[0]] - before_vector
+ after_vector = 2 * vector[-pad_tuple[1] - 1] - after_vector
+ else:
+ raise ValueError("The keyword '%s' cannot have the value '%s'."
+ % ('reflect_type', kwargs['reflect_type']))
+ return _create_vector(vector, pad_tuple, before_vector, after_vector)
+
+
+def _wrap(vector, pad_tuple, iaxis, kwargs):
+ '''
+ Private function to calculate the before/after vectors for pad_wrap.
+
+ Parameters
+ ----------
+ vector : ndarray
+ Input vector that already includes empty padded values.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ iaxis : int
+ The axis currently being looped across. Not used in _wrap.
+ kwargs : keyword arguments
+ Keyword arguments. Not used in _wrap.
+
+ Return
+ ------
+ _wrap : ndarray
+ Padded vector
+ '''
+ if pad_tuple[1] == 0:
+ after_vector = vector[pad_tuple[0]:None]
+ else:
+ after_vector = vector[pad_tuple[0]:-pad_tuple[1]]
+
+ before_vector = np.resize(after_vector[::-1], pad_tuple[0])[::-1]
+ after_vector = np.resize(after_vector, pad_tuple[1])
+
+ return _create_vector(vector, pad_tuple, before_vector, after_vector)
+
+
+def _edge(vector, pad_tuple, iaxis, kwargs):
+ '''
+ Private function to calculate the before/after vectors for pad_edge.
+
+ Parameters
+ ----------
+ vector : ndarray
+ Input vector that already includes empty padded values.
+ pad_tuple : tuple
+ This tuple represents the (before, after) width of the padding along
+ this particular iaxis.
+ iaxis : int
+ The axis currently being looped across. Not used in _edge.
+ kwargs : keyword arguments
+ Keyword arguments. Not used in _edge.
+
+ Return
+ ------
+ _edge : ndarray
+ Padded vector
+ '''
+ return _create_vector(vector, pad_tuple, vector[pad_tuple[0]],
+ vector[-pad_tuple[1] - 1])
+
+
+################################################################################
+# Public functions
+
+
+def pad(array, pad_width, mode=None, **kwargs):
+ """
+ Pads an array.
+
+ Parameters
+ ----------
+ mode : {'constant', 'edge', 'linear_ramp', 'maximum', 'mean', 'median',
+ 'minimum', 'reflect', 'symmetric', 'wrap', function}
+ One of the following string values or a user supplied function.
+ 'constant' Pads with a constant value.
+ 'edge' Pads with the edge values of array.
+ 'linear_ramp' Pads with the linear ramp between end_value and the
+ array edge value.
+ 'maximum' Pads with the maximum value of all or part of the
+ vector along each axis.
+ 'mean' Pads with the mean value of all or part of the vector
+ along each axis.
+ 'median' Pads with the median value of all or part of the
+ vector along each axis.
+ 'minimum' Pads with the minimum value of all or part of the
+ vector along each axis.
+ 'reflect' Pads with the reflection of the vector mirrored on the
+ first and last values of the vector along each axis.
+ 'symmetric' Pads with the reflection of the vector mirrored along
+ the edge of the array.
+ 'wrap' Pads with the wrap of the vector along the axis. The
+ first values are used to pad the end and the end
+ values are used to pad the beginning.
+ function(vector, iaxis_pad_width, iaxis, **kwargs)
+ if a user supplied function must accept arguments
+ (vector, iaxis_pad_width, iaxis, **kwargs) and return
+ a rank 1 array equal in length to `vector` with padded
+ values replaced.
+ vector
+ a rank 1 array already padded with zeros. Padded
+ values are vector[:pad_tuple[0]] and
+ vector[-pad_tuple[1]:].
+ iaxis_pad_width
+ a 2-tuple of ints, iaxis_pad_width[0] represents the
+ number of values padded at the beginning of `vector`
+ where iaxis_pad_width[1] represents the number of
+ values padded at the end of `vector`.
+ iaxis
+ the axis currently being calculated.
+ kwargs
+ any keyword arguments the function requires.
+ array : array_like of rank N
+ Input array
+ pad_width : {sequence, int}
+ Number of values padded to each edge of each axis.
+ ((before_1, after_1), ... (before_N, after_N)) unique pad widths for
+ each axis.
+ ((before, after),) yields same before and after pad for each axis.
+ (pad,) or int is a shortcut for before = after = pad width for all
+ axes.
+ stat_length : {sequence, int}, optional
+ Used in 'maximum', 'mean', 'median', and 'minimum'.
+ Number of values at edge of each axis used to calculate the statistic
+ value.
+ ((before_1, after_1), ... (before_N, after_N)) unique statistic
+ lengths for each axis.
+ ((before, after),) yields same before and after statistic lengths for
+ each axis.
+ (stat_length,) or int is a shortcut for before = after = statistic
+ length for all axes.
+ Default is ``None``, to use the entire axis.
+ constant_values : {sequence, int}, optional
+ Used in 'constant'.
+ The values to set the padded values for each axis.
+ ((before_1, after_1), ... (before_N, after_N)) unique pad constants
+ for each axis.
+ ((before, after),) yields same before and after constants for each
+ axis.
+ (constant,) or int is a shortcut for before = after = constant for all
+ axes.
+ Default is 0.
+ end_values : {sequence, int}, optional
+ Used in 'linear_ramp'.
+ The values used for the ending value of the linear_ramp and that will
+ form the edge of the padded array.
+ ((before_1, after_1), ... (before_N, after_N)) unique end values
+ for each axis.
+ ((before, after),) yields same before and after end values for each
+ axis.
+ (constant,) or int is a shortcut for before = after = end value for all
+ axes.
+ Default is 0.
+ reflect_type : str {'even', 'odd'}, optional
+ Used in 'reflect', and 'symmetric'.
+ The 'even' style is the default with an unaltered reflection around
+ the edge value. For the 'odd' style, the extented part of the array
+ is created by subtracting the reflected values from two times the edge
+ value.
+
+ Returns
+ -------
+ pad : ndarray
+ Padded array of rank equal to `array` with shape increased according
+ to `pad_width`.
+
+ Notes
+ -----
+ .. versionadded:: 1.7.0
+
+ For `array` with rank greater than 1, some of the padding of later axes is
+ calculated from padding of previous axes. This is easiest to think about
+ with a rank 2 array where the corners of the padded array are calculated
+ by using padded values from the first axis.
+
+ Examples
+ --------
+ >>> a = [1, 2, 3, 4, 5]
+ >>> np.lib.pad(a, (2,3), 'constant', constant_values=(4,6))
+ array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])
+
+ >>> np.lib.pad(a, (2,3), 'edge')
+ array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])
+
+ >>> np.lib.pad(a, (2,3), 'linear_ramp', end_values=(5,-4))
+ array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])
+
+ >>> np.lib.pad(a, (2,), 'maximum')
+ array([5, 5, 1, 2, 3, 4, 5, 5, 5])
+
+ >>> np.lib.pad(a, (2,), 'mean')
+ array([3, 3, 1, 2, 3, 4, 5, 3, 3])
+
+ >>> np.lib.pad(a, (2,), 'median')
+ array([3, 3, 1, 2, 3, 4, 5, 3, 3])
+
+ >>> a = [[1,2], [3,4]]
+ >>> np.lib.pad(a, ((3, 2), (2, 3)), 'minimum')
+ array([[1, 1, 1, 2, 1, 1, 1],
+ [1, 1, 1, 2, 1, 1, 1],
+ [1, 1, 1, 2, 1, 1, 1],
+ [1, 1, 1, 2, 1, 1, 1],
+ [3, 3, 3, 4, 3, 3, 3],
+ [1, 1, 1, 2, 1, 1, 1],
+ [1, 1, 1, 2, 1, 1, 1]])
+
+ >>> a = [1, 2, 3, 4, 5]
+ >>> np.lib.pad(a, (2,3), 'reflect')
+ array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
+
+ >>> np.lib.pad(a, (2,3), 'reflect', reflect_type='odd')
+ array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
+
+ >>> np.lib.pad(a, (2,3), 'symmetric')
+ array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
+
+ >>> np.lib.pad(a, (2,3), 'symmetric', reflect_type='odd')
+ array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
+
+ >>> np.lib.pad(a, (2,3), 'wrap')
+ array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
+
+ >>> def padwithtens(vector, pad_width, iaxis, kwargs):
+ ... vector[:pad_width[0]] = 10
+ ... vector[-pad_width[1]:] = 10
+ ... return vector
+
+ >>> a = np.arange(6)
+ >>> a = a.reshape((2,3))
+
+ >>> np.lib.pad(a, 2, padwithtens)
+ array([[10, 10, 10, 10, 10, 10, 10],
+ [10, 10, 10, 10, 10, 10, 10],
+ [10, 10, 0, 1, 2, 10, 10],
+ [10, 10, 3, 4, 5, 10, 10],
+ [10, 10, 10, 10, 10, 10, 10],
+ [10, 10, 10, 10, 10, 10, 10]])
+ """
+
+
+ narray = np.array(array)
+ pad_width = _validate_lengths(narray, pad_width)
+
+ modefunc = {
+ 'constant': _constant,
+ 'edge': _edge,
+ 'linear_ramp': _linear_ramp,
+ 'maximum': _maximum,
+ 'mean': _mean,
+ 'median': _median,
+ 'minimum': _minimum,
+ 'reflect': _reflect,
+ 'symmetric': _symmetric,
+ 'wrap': _wrap,
+ }
+
+ allowedkwargs = {
+ 'constant': ['constant_values'],
+ 'edge': [],
+ 'linear_ramp': ['end_values'],
+ 'maximum': ['stat_length'],
+ 'mean': ['stat_length'],
+ 'median': ['stat_length'],
+ 'minimum': ['stat_length'],
+ 'reflect': ['reflect_type'],
+ 'symmetric': ['reflect_type'],
+ 'wrap': [],
+ }
+
+ kwdefaults = {
+ 'stat_length': None,
+ 'constant_values': 0,
+ 'end_values': 0,
+ 'reflect_type': 'even',
+ }
+
+ if isinstance(mode, str):
+ function = modefunc[mode]
+
+ # Make sure have allowed kwargs appropriate for mode
+ for key in kwargs:
+ if key not in allowedkwargs[mode]:
+ raise ValueError('%s keyword not in allowed keywords %s' %
+ (key, allowedkwargs[mode]))
+
+ # Set kwarg defaults
+ for kw in allowedkwargs[mode]:
+ kwargs.setdefault(kw, kwdefaults[kw])
+
+ # Need to only normalize particular keywords.
+ for i in kwargs:
+ if i == 'stat_length' and kwargs[i]:
+ kwargs[i] = _validate_lengths(narray, kwargs[i])
+ if i in ['end_values', 'constant_values']:
+ kwargs[i] = _normalize_shape(narray, kwargs[i])
+ elif mode == None:
+ raise ValueError('Keyword "mode" must be a function or one of %s.' %
+ (modefunc.keys(),))
+ else:
+ # User supplied function, I hope
+ function = mode
+
+ # Create a new padded array
+ rank = range(len(narray.shape))
+ total_dim_increase = [np.sum(pad_width[i]) for i in rank]
+ offset_slices = [slice(pad_width[i][0],
+ pad_width[i][0] + narray.shape[i])
+ for i in rank]
+ new_shape = np.array(narray.shape) + total_dim_increase
+ newmat = np.zeros(new_shape).astype(narray.dtype)
+
+ # Insert the original array into the padded array
+ newmat[offset_slices] = narray
+
+ # This is the core of pad ...
+ for iaxis in rank:
+ np.apply_along_axis(function,
+ iaxis,
+ newmat,
+ pad_width[iaxis],
+ iaxis,
+ kwargs)
+ return newmat
+