summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
diff options
context:
space:
mode:
authorSebastian Berg <sebastian@sipsolutions.net>2019-11-25 11:16:28 -0600
committerSebastian Berg <sebastian@sipsolutions.net>2019-11-25 17:48:44 -0600
commita483acce85e6a35a5da0f46aeddd05b33f6d612c (patch)
tree84ac644ec8e3a3767c1712a5290424366b037fc3 /numpy/lib/arraysetops.py
parent9aeb7513019954718a3225fbab24bdbb98ca4fd5 (diff)
downloadnumpy-a483acce85e6a35a5da0f46aeddd05b33f6d612c.tar.gz
BUG: Make ``ediff1d`` kwarg casting consistent
This reverts commit c088383cb290ca064d456e89d79177a0e234cb8d and uses the same kind casting rule for the additional keyword arguments ``to_end`` and ``to_begin``. This results in slightly more leniant behaviour for integers (which can now have overflows that are hidden), but fixes an issue with the handling of NaN. Generally, this behaviour seems more conistent with what NumPy does elsewhere. The Overflow issue exists similar in many other places and should be solved by integer overflow warning machinery while the actual cast takes place. Closes gh-13103
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r--numpy/lib/arraysetops.py26
1 files changed, 13 insertions, 13 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index 2309f7e42..d65316598 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -94,8 +94,7 @@ def ediff1d(ary, to_end=None, to_begin=None):
# force a 1d array
ary = np.asanyarray(ary).ravel()
- # enforce propagation of the dtype of input
- # ary to returned result
+ # enforce that the dtype of `ary` is used for the output
dtype_req = ary.dtype
# fast track default case
@@ -105,22 +104,23 @@ def ediff1d(ary, to_end=None, to_begin=None):
if to_begin is None:
l_begin = 0
else:
- _to_begin = np.asanyarray(to_begin, dtype=dtype_req)
- if not np.all(_to_begin == to_begin):
- raise ValueError("cannot convert 'to_begin' to array with dtype "
- "'%r' as required for input ary" % dtype_req)
- to_begin = _to_begin.ravel()
+ to_begin = np.asanyarray(to_begin)
+ if not np.can_cast(to_begin, dtype_req, casting="same_kind"):
+ raise TypeError("dtype of `to_end` must be compatible "
+ "with input `ary` under the `same_kind` rule.")
+
+ to_begin = to_begin.ravel()
l_begin = len(to_begin)
if to_end is None:
l_end = 0
else:
- _to_end = np.asanyarray(to_end, dtype=dtype_req)
- # check that casting has not overflowed
- if not np.all(_to_end == to_end):
- raise ValueError("cannot convert 'to_end' to array with dtype "
- "'%r' as required for input ary" % dtype_req)
- to_end = _to_end.ravel()
+ to_end = np.asanyarray(to_end)
+ if not np.can_cast(to_end, dtype_req, casting="same_kind"):
+ raise TypeError("dtype of `to_end` must be compatible "
+ "with input `ary` under the `same_kind` rule.")
+
+ to_end = to_end.ravel()
l_end = len(to_end)
# do the calculation in place and copy to_begin and to_end