summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
diff options
context:
space:
mode:
authorEric Wieser <wieser.eric@gmail.com>2017-11-13 23:45:45 -0800
committerEric Wieser <wieser.eric@gmail.com>2017-11-13 23:45:45 -0800
commitac6b1a902b99e340cf7eeeeb7392c91e38db9dd8 (patch)
tree589c9f85e52a75a16ed949c14bfa39777e651fc4 /numpy/lib/arraysetops.py
parentbd80585cdae1d43fabb30ae0e184c2e40deb11e6 (diff)
downloadnumpy-ac6b1a902b99e340cf7eeeeb7392c91e38db9dd8.tar.gz
ENH: don't show boolean dtype, as it is implied
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r--numpy/lib/arraysetops.py12
1 files changed, 6 insertions, 6 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index ededb9dd0..59b54eb38 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -435,12 +435,12 @@ def in1d(ar1, ar2, assume_unique=False, invert=False):
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
- array([ True, False, True, False, True], dtype=bool)
+ array([ True, False, True, False, True])
>>> test[mask]
array([0, 2, 0])
>>> mask = np.in1d(test, states, invert=True)
>>> mask
- array([False, True, False, True, False], dtype=bool)
+ array([False, True, False, True, False])
>>> test[mask]
array([1, 5])
"""
@@ -546,13 +546,13 @@ def isin(element, test_elements, assume_unique=False, invert=False):
>>> mask = np.isin(element, test_elements)
>>> mask
array([[ False, True],
- [ True, False]], dtype=bool)
+ [ True, False]])
>>> element[mask]
array([2, 4])
>>> mask = np.isin(element, test_elements, invert=True)
>>> mask
array([[ True, False],
- [ False, True]], dtype=bool)
+ [ False, True]])
>>> element[mask]
array([0, 6])
@@ -562,13 +562,13 @@ def isin(element, test_elements, assume_unique=False, invert=False):
>>> test_set = {1, 2, 4, 8}
>>> np.isin(element, test_set)
array([[ False, False],
- [ False, False]], dtype=bool)
+ [ False, False]])
Casting the set to a list gives the expected result:
>>> np.isin(element, list(test_set))
array([[ False, True],
- [ True, False]], dtype=bool)
+ [ True, False]])
"""
element = np.asarray(element)
return in1d(element, test_elements, assume_unique=assume_unique,