diff options
author | Eric Wieser <wieser.eric@gmail.com> | 2017-11-13 23:45:45 -0800 |
---|---|---|
committer | Eric Wieser <wieser.eric@gmail.com> | 2017-11-13 23:45:45 -0800 |
commit | ac6b1a902b99e340cf7eeeeb7392c91e38db9dd8 (patch) | |
tree | 589c9f85e52a75a16ed949c14bfa39777e651fc4 /numpy/lib/arraysetops.py | |
parent | bd80585cdae1d43fabb30ae0e184c2e40deb11e6 (diff) | |
download | numpy-ac6b1a902b99e340cf7eeeeb7392c91e38db9dd8.tar.gz |
ENH: don't show boolean dtype, as it is implied
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r-- | numpy/lib/arraysetops.py | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py index ededb9dd0..59b54eb38 100644 --- a/numpy/lib/arraysetops.py +++ b/numpy/lib/arraysetops.py @@ -435,12 +435,12 @@ def in1d(ar1, ar2, assume_unique=False, invert=False): >>> states = [0, 2] >>> mask = np.in1d(test, states) >>> mask - array([ True, False, True, False, True], dtype=bool) + array([ True, False, True, False, True]) >>> test[mask] array([0, 2, 0]) >>> mask = np.in1d(test, states, invert=True) >>> mask - array([False, True, False, True, False], dtype=bool) + array([False, True, False, True, False]) >>> test[mask] array([1, 5]) """ @@ -546,13 +546,13 @@ def isin(element, test_elements, assume_unique=False, invert=False): >>> mask = np.isin(element, test_elements) >>> mask array([[ False, True], - [ True, False]], dtype=bool) + [ True, False]]) >>> element[mask] array([2, 4]) >>> mask = np.isin(element, test_elements, invert=True) >>> mask array([[ True, False], - [ False, True]], dtype=bool) + [ False, True]]) >>> element[mask] array([0, 6]) @@ -562,13 +562,13 @@ def isin(element, test_elements, assume_unique=False, invert=False): >>> test_set = {1, 2, 4, 8} >>> np.isin(element, test_set) array([[ False, False], - [ False, False]], dtype=bool) + [ False, False]]) Casting the set to a list gives the expected result: >>> np.isin(element, list(test_set)) array([[ False, True], - [ True, False]], dtype=bool) + [ True, False]]) """ element = np.asarray(element) return in1d(element, test_elements, assume_unique=assume_unique, |