diff options
author | Robert Kern <robert.kern@gmail.com> | 2007-01-08 05:19:16 +0000 |
---|---|---|
committer | Robert Kern <robert.kern@gmail.com> | 2007-01-08 05:19:16 +0000 |
commit | 0ab9ae36e8484d06f2a8e70c6fe45004e73408b4 (patch) | |
tree | fa7fb075ee7015848d370f2466f024d616dd70df /numpy/lib/arraysetops.py | |
parent | 0f1df3fcfcdb4527ff2c332ddf7504b6b60e2813 (diff) | |
download | numpy-0ab9ae36e8484d06f2a8e70c6fe45004e73408b4.tar.gz |
* Fix #410 by using the stable mergesort instead of the unstable default sort in setmember1d().
* Add some more information to the function docstrings.
* Reduced the "See also" sections of the docstrings to point to the module instead of the full list of functions (some of which were not entirely relevant).
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r-- | numpy/lib/arraysetops.py | 192 |
1 files changed, 147 insertions, 45 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py index 1673ecf93..ca0269772 100644 --- a/numpy/lib/arraysetops.py +++ b/numpy/lib/arraysetops.py @@ -1,5 +1,5 @@ """ -Set operations for 1D numeric arrays based on sort() function. +Set operations for 1D numeric arrays based on sorting. Contains: ediff1d, @@ -11,16 +11,16 @@ Contains: union1d, setdiff1d -All functions work best with integer numerical arrays on input -(e.g. indices). For floating point arrays, innacurate results may appear due to -usual round-off and floating point comparison issues. +All functions work best with integer numerical arrays on input (e.g. indices). +For floating point arrays, innacurate results may appear due to usual round-off +and floating point comparison issues. Except unique1d, union1d and intersect1d_nu, all functions expect inputs with -unique elements. Speed could be gained in some operations by an implementaion -of sort(), that can provide directly the permutation vectors, avoiding thus -calls to argsort(). +unique elements. Speed could be gained in some operations by an implementaion of +sort(), that can provide directly the permutation vectors, avoiding thus calls +to argsort(). -Run test_unique1d_speed() to compare performance of numpy.unique1d() and +Run _test_unique1d_speed() to compare performance of numpy.unique1d() and numpy.unique() - it should be the same. To do: Optionally return indices analogously to unique1d for all functions. @@ -28,7 +28,7 @@ To do: Optionally return indices analogously to unique1d for all functions. Author: Robert Cimrman created: 01.11.2005 -last revision: 12.10.2006 +last revision: 07.01.2007 """ __all__ = ['ediff1d', 'unique1d', 'intersect1d', 'intersect1d_nu', 'setxor1d', 'setmember1d', 'union1d', 'setdiff1d'] @@ -37,30 +37,60 @@ import time import numpy as nm def ediff1d(ary, to_end = None, to_begin = None): - """Array difference with prefixed and/or appended value. - - See also: unique1d, intersect1d, intersect1d_nu, setxor1d, - setmember1d, union1d, setdiff1d + """The differences between consecutive elements of an array, possibly with + prefixed and/or appended values. + + :Parameters: + - `ary` : array + This array will be flattened before the difference is taken. + - `to_end` : number, optional + If provided, this number will be tacked onto the end of the returned + differences. + - `to_begin` : number, optional + If provided, this number will be taked onto the beginning of the + returned differences. + + :Returns: + - `ed` : array + The differences. Loosely, this will be (ary[1:] - ary[:-1]). """ ary = nm.asarray(ary).flat ed = ary[1:] - ary[:-1] + arrays = [ed] if to_begin is not None: - if to_end is not None: - ed = nm.r_[to_begin, ed, to_end] - else: - ed = nm.insert(ed, 0, to_begin) - elif to_end is not None: - ed = nm.append(ed, to_end) - + arrays.insert(0, to_begin) + if to_end is not None: + arrays.append(to_end) + + if len(arrays) != 1: + # We'll save ourselves a copy of a potentially large array in the common + # case where neither to_begin or to_end was given. + ed = nm.hstack(arrays) + return ed def unique1d(ar1, return_index=False): - """Unique elements of 1D array. When return_index is True, return - also the indices indx such that ar1.flat[indx] is the resulting - array of unique elements. - - See also: ediff1d, intersect1d, intersect1d_nu, setxor1d, - setmember1d, union1d, setdiff1d + """Find the unique elements of 1D array. + + Most of the other array set operations operate on the unique arrays + generated by this function. + + :Parameters: + - `ar1` : array + This array will be flattened if it is not already 1D. + - `return_index` : bool, optional + If True, also return the indices against ar1 that result in the unique + array. + + :Returns: + - `unique` : array + The unique values. + - `unique_indices` : int array, optional + The indices of the unique values. Only provided if return_index is True. + + :See also: + numpy.lib.arraysetops has a number of other functions for performing set + operations on arrays. """ ar = nm.asarray(ar1).flatten() if ar.size == 0: @@ -81,8 +111,20 @@ def unique1d(ar1, return_index=False): def intersect1d( ar1, ar2 ): """Intersection of 1D arrays with unique elements. - See also: ediff1d, unique1d, intersect1d_nu, setxor1d, - setmember1d, union1d, setdiff1d + Use unique1d() to generate arrays with only unique elements to use as inputs + to this function. Alternatively, use intersect1d_nu() which will find the + unique values for you. + + :Parameters: + - `ar1` : array + - `ar2` : array + + :Returns: + - `intersection` : array + + :See also: + numpy.lib.arraysetops has a number of other functions for performing set + operations on arrays. """ aux = nm.concatenate((ar1,ar2)) aux.sort() @@ -91,10 +133,20 @@ def intersect1d( ar1, ar2 ): def intersect1d_nu( ar1, ar2 ): """Intersection of 1D arrays with any elements. - See also: ediff1d, unique1d, intersect1d, setxor1d, - setmember1d, union1d, setdiff1d + The input arrays do not have unique elements like intersect1d() requires. + + :Parameters: + - `ar1` : array + - `ar2` : array + + :Returns: + - `intersection` : array + + :See also: + numpy.lib.arraysetops has a number of other functions for performing set + operations on arrays. """ - # Might be faster then unique1d( intersect1d( ar1, ar2 ) )? + # Might be faster than unique1d( intersect1d( ar1, ar2 ) )? aux = nm.concatenate((unique1d(ar1), unique1d(ar2))) aux.sort() return aux[aux[1:] == aux[:-1]] @@ -102,8 +154,20 @@ def intersect1d_nu( ar1, ar2 ): def setxor1d( ar1, ar2 ): """Set exclusive-or of 1D arrays with unique elements. - See also: ediff1d, unique1d, intersect1d, intersect1d_nu, - setmember1d, union1d, setdiff1d + Use unique1d() to generate arrays with only unique elements to use as inputs + to this function. + + :Parameters: + - `ar1` : array + - `ar2` : array + + :Returns: + - `xor` : array + The values that are only in one, but not both, of the input arrays. + + :See also: + numpy.lib.arraysetops has a number of other functions for performing set + operations on arrays. """ aux = nm.concatenate((ar1, ar2)) if aux.size == 0: @@ -117,16 +181,31 @@ def setxor1d( ar1, ar2 ): return aux[flag2] def setmember1d( ar1, ar2 ): - """Return an array of shape of ar1 containing 1 where the elements of - ar1 are in ar2 and 0 otherwise. + """Return a boolean array of shape of ar1 containing True where the elements + of ar1 are in ar2 and False otherwise. + + Use unique1d() to generate arrays with only unique elements to use as inputs + to this function. + + :Parameters: + - `ar1` : array + - `ar2` : array - See also: ediff1d, unique1d, intersect1d, intersect1d_nu, setxor1d, - union1d, setdiff1d + :Returns: + - `mask` : bool array + The values ar1[mask] are in ar2. + + :See also: + numpy.lib.arraysetops has a number of other functions for performing set + operations on arrays. """ zlike = nm.zeros_like ar = nm.concatenate( (ar1, ar2 ) ) tt = nm.concatenate( (zlike( ar1 ), zlike( ar2 ) + 1) ) - perm = ar.argsort() + # We need this to be a stable sort, so always use 'mergesort' here. The + # values from the first array should always come before the values from the + # second array. + perm = ar.argsort(kind='mergesort') aux = ar[perm] aux2 = tt[perm] # flag = ediff1d( aux, 1 ) == 0 @@ -137,23 +216,46 @@ def setmember1d( ar1, ar2 ): perm[ii+1] = perm[ii] perm[ii] = aux - indx = perm.argsort()[:len( ar1 )] + indx = perm.argsort(kind='mergesort')[:len( ar1 )] return flag[indx] def union1d( ar1, ar2 ): """Union of 1D arrays with unique elements. - See also: ediff1d, unique1d, intersect1d, intersect1d_nu, setxor1d, - setmember1d, setdiff1d + Use unique1d() to generate arrays with only unique elements to use as inputs + to this function. + + :Parameters: + - `ar1` : array + - `ar2` : array + + :Returns: + - `union` : array + + :See also: + numpy.lib.arraysetops has a number of other functions for performing set + operations on arrays. """ return unique1d( nm.concatenate( (ar1, ar2) ) ) def setdiff1d( ar1, ar2 ): """Set difference of 1D arrays with unique elements. - See also: ediff1d, unique1d, intersect1d, intersect1d_nu, setxor1d, - setmember1d, union1d + Use unique1d() to generate arrays with only unique elements to use as inputs + to this function. + + :Parameters: + - `ar1` : array + - `ar2` : array + + :Returns: + - `difference` : array + The values in ar1 that are not in ar2. + + :See also: + numpy.lib.arraysetops has a number of other functions for performing set + operations on arrays. """ aux = setmember1d(ar1,ar2) if aux.size == 0: @@ -161,7 +263,7 @@ def setdiff1d( ar1, ar2 ): else: return nm.asarray(ar1)[aux == 0] -def test_unique1d_speed( plot_results = False ): +def _test_unique1d_speed( plot_results = False ): # exponents = nm.linspace( 2, 7, 9 ) exponents = nm.linspace( 2, 7, 9 ) ratios = [] @@ -222,4 +324,4 @@ def test_unique1d_speed( plot_results = False ): pylab.show() if (__name__ == '__main__'): - test_unique1d_speed( plot_results = True ) + _test_unique1d_speed( plot_results = True ) |