summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
diff options
context:
space:
mode:
authorzjpoh <poh.zijie@gmail.com>2019-09-26 22:04:11 -0700
committerzjpoh <poh.zijie@gmail.com>2019-09-26 22:04:11 -0700
commit27332a8b2b098a519e8ade0706e1ae4086f15b92 (patch)
tree4d28425c7df1fa9127a8f1cd9a3c04f449fb35e2 /numpy/lib/arraysetops.py
parentf779af07a92cb419b964316960a1b503df9b712d (diff)
parent68bd6e359a6b0863acf39cad637e1444d78eabd0 (diff)
downloadnumpy-27332a8b2b098a519e8ade0706e1ae4086f15b92.tar.gz
Merge branch 'master' into from_string_complex
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r--numpy/lib/arraysetops.py6
1 files changed, 4 insertions, 2 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index b53d8c03f..2309f7e42 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -213,6 +213,7 @@ def unique(ar, return_index=False, return_inverse=False,
-----
When an axis is specified the subarrays indexed by the axis are sorted.
This is done by making the specified axis the first dimension of the array
+ (move the axis to the first dimension to keep the order of the other axes)
and then flattening the subarrays in C order. The flattened subarrays are
then viewed as a structured type with each element given a label, with the
effect that we end up with a 1-D array of structured types that can be
@@ -264,7 +265,7 @@ def unique(ar, return_index=False, return_inverse=False,
# axis was specified and not None
try:
- ar = np.swapaxes(ar, axis, 0)
+ ar = np.moveaxis(ar, axis, 0)
except np.AxisError:
# this removes the "axis1" or "axis2" prefix from the error message
raise np.AxisError(axis, ar.ndim)
@@ -285,7 +286,7 @@ def unique(ar, return_index=False, return_inverse=False,
def reshape_uniq(uniq):
uniq = uniq.view(orig_dtype)
uniq = uniq.reshape(-1, *orig_shape[1:])
- uniq = np.swapaxes(uniq, 0, axis)
+ uniq = np.moveaxis(uniq, 0, axis)
return uniq
output = _unique1d(consolidated, return_index,
@@ -383,6 +384,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
To return the indices of the values common to the input arrays
along with the intersected values:
+
>>> x = np.array([1, 1, 2, 3, 4])
>>> y = np.array([2, 1, 4, 6])
>>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)