summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
diff options
context:
space:
mode:
authorJulien Phalip <jphalip@gmail.com>2013-02-20 06:44:50 +0000
committerJulien Phalip <jphalip@gmail.com>2013-04-08 22:21:31 -0700
commita3f2e0461eeec2077e7ed1f71bf1e0756e893257 (patch)
tree89c1fb09c34519d907249293f3a7ef8ed587da5e /numpy/lib/arraysetops.py
parentd1b195d943da80cafd42f935fa9ec920eb18c7e5 (diff)
downloadnumpy-a3f2e0461eeec2077e7ed1f71bf1e0756e893257.tar.gz
ENH: add `invert` parameter to numpy.in1d().
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r--numpy/lib/arraysetops.py33
1 files changed, 26 insertions, 7 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index a8b0a95bb..5cd535703 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -281,7 +281,7 @@ def setxor1d(ar1, ar2, assume_unique=False):
flag2 = flag[1:] == flag[:-1]
return aux[flag2]
-def in1d(ar1, ar2, assume_unique=False):
+def in1d(ar1, ar2, assume_unique=False, invert=False):
"""
Test whether each element of a 1-D array is also present in a second array.
@@ -297,6 +297,13 @@ def in1d(ar1, ar2, assume_unique=False):
assume_unique : bool, optional
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
+ invert : bool, optional
+ If True, the values in the returned array are inverted (that is,
+ False where an element of `ar1` is in `ar2` and True otherwise).
+ Default is False. ``np.in1d(a, b, invert=True)`` is equivalent
+ to (but is faster than) ``np.invert(in1d(a, b))``.
+
+ .. versionadded:: 1.8.0
Returns
-------
@@ -325,7 +332,11 @@ def in1d(ar1, ar2, assume_unique=False):
array([ True, False, True, False, True], dtype=bool)
>>> test[mask]
array([0, 2, 0])
-
+ >>> mask = np.in1d(test, states, invert=True)
+ >>> mask
+ array([False, True, False, True, False], dtype=bool)
+ >>> test[mask]
+ array([1, 5])
"""
# Ravel both arrays, behavior for the first array could be different
ar1 = np.asarray(ar1).ravel()
@@ -333,9 +344,14 @@ def in1d(ar1, ar2, assume_unique=False):
# This code is significantly faster when the condition is satisfied.
if len(ar2) < 10 * len(ar1) ** 0.145:
- mask = np.zeros(len(ar1), dtype=np.bool)
- for a in ar2:
- mask |= (ar1 == a)
+ if invert:
+ mask = np.ones(len(ar1), dtype=np.bool)
+ for a in ar2:
+ mask &= (ar1 != a)
+ else:
+ mask = np.zeros(len(ar1), dtype=np.bool)
+ for a in ar2:
+ mask |= (ar1 == a)
return mask
# Otherwise use sorting
@@ -349,8 +365,11 @@ def in1d(ar1, ar2, assume_unique=False):
# the values from the second array.
order = ar.argsort(kind='mergesort')
sar = ar[order]
- equal_adj = (sar[1:] == sar[:-1])
- flag = np.concatenate( (equal_adj, [False] ) )
+ if invert:
+ bool_ar = (sar[1:] != sar[:-1])
+ else:
+ bool_ar = (sar[1:] == sar[:-1])
+ flag = np.concatenate( (bool_ar, [invert]) )
indx = order.argsort(kind='mergesort')[:len( ar1 )]
if assume_unique: