summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
diff options
context:
space:
mode:
authorMilesCranmer <miles.cranmer@gmail.com>2022-06-17 11:59:00 -0400
committerMilesCranmer <miles.cranmer@gmail.com>2022-06-17 12:29:02 -0400
commit8f5764447cdf6f8ab21ba0f863c65a8d7a7728b5 (patch)
tree55a6b897981bbda4571ea579e6942143318a48bb /numpy/lib/arraysetops.py
parent34a3358b86143971dd10a89c03b44eda9916428c (diff)
downloadnumpy-8f5764447cdf6f8ab21ba0f863c65a8d7a7728b5.tar.gz
MAINT: kind now uses "mergesort" instead of "sort"
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r--numpy/lib/arraysetops.py18
1 files changed, 9 insertions, 9 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index e697aa07a..bc25743f7 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -545,12 +545,12 @@ def in1d(ar1, ar2, assume_unique=False, invert=False, kind=None):
False where an element of `ar1` is in `ar2` and True otherwise).
Default is False. ``np.in1d(a, b, invert=True)`` is equivalent
to (but is faster than) ``np.invert(in1d(a, b))``.
- kind : {None, 'sort', 'dictionary'}, optional
+ kind : {None, 'mergesort', 'dictionary'}, optional
The algorithm to use. This will not affect the final result,
but will affect the speed. Default will select automatically
based on memory considerations.
- - If 'sort', will use a mergesort-based approach. This will have
+ - If 'mergesort', will use a mergesort-based approach. This will have
a memory usage of roughly 6 times the sum of the sizes of
`ar1` and `ar2`, not accounting for size of dtypes.
- If 'dictionary', will use a key-dictionary approach similar
@@ -563,7 +563,7 @@ def in1d(ar1, ar2, assume_unique=False, invert=False, kind=None):
- If `None`, will automatically choose 'dictionary' if
the required memory allocation is less than or equal to
6 times the sum of the sizes of `ar1` and `ar2`,
- otherwise will use 'sort'. This is done to not use
+ otherwise will use 'mergesort'. This is done to not use
a large amount of memory by default, even though
'dictionary' may be faster in most cases.
@@ -625,10 +625,10 @@ def in1d(ar1, ar2, assume_unique=False, invert=False, kind=None):
integer_arrays = (np.issubdtype(ar1.dtype, np.integer) and
np.issubdtype(ar2.dtype, np.integer))
- if kind not in {None, 'sort', 'dictionary'}:
+ if kind not in {None, 'mergesort', 'dictionary'}:
raise ValueError(
"Invalid kind: {0}. ".format(kind)
- + "Please use None, 'sort' or 'dictionary'.")
+ + "Please use None, 'mergesort' or 'dictionary'.")
if integer_arrays and kind in {None, 'dictionary'}:
ar2_min = np.min(ar2)
@@ -681,7 +681,7 @@ def in1d(ar1, ar2, assume_unique=False, invert=False, kind=None):
raise ValueError(
"The 'dictionary' method is only "
"supported for boolean or integer arrays. "
- "Please select 'sort' or None for kind."
+ "Please select 'mergesort' or None for kind."
)
@@ -757,12 +757,12 @@ def isin(element, test_elements, assume_unique=False, invert=False,
calculating `element not in test_elements`. Default is False.
``np.isin(a, b, invert=True)`` is equivalent to (but faster
than) ``np.invert(np.isin(a, b))``.
- kind : {None, 'sort', 'dictionary'}, optional
+ kind : {None, 'mergesort', 'dictionary'}, optional
The algorithm to use. This will not affect the final result,
but will affect the speed. Default will select automatically
based on memory considerations.
- - If 'sort', will use a mergesort-based approach. This will have
+ - If 'mergesort', will use a mergesort-based approach. This will have
a memory usage of roughly 6 times the sum of the sizes of
`ar1` and `ar2`, not accounting for size of dtypes.
- If 'dictionary', will use a key-dictionary approach similar
@@ -775,7 +775,7 @@ def isin(element, test_elements, assume_unique=False, invert=False,
- If `None`, will automatically choose 'dictionary' if
the required memory allocation is less than or equal to
6 times the sum of the sizes of `ar1` and `ar2`,
- otherwise will use 'sort'. This is done to not use
+ otherwise will use 'mergesort'. This is done to not use
a large amount of memory by default, even though
'dictionary' may be faster in most cases.