summaryrefslogtreecommitdiff
path: root/numpy/lib/nanfunctions.py
diff options
context:
space:
mode:
authorSebastian Berg <sebastian@sipsolutions.net>2016-01-23 15:58:58 +0100
committerSebastian Berg <sebastian@sipsolutions.net>2016-09-02 16:39:17 +0200
commit7884a8c9f5f5c6657413dbeaa59ad969280d38ea (patch)
tree91b55f723315291bf2605bb42aef809a65ff1d85 /numpy/lib/nanfunctions.py
parent9164f23c19c049e28d4d4825a53bbb01aedabcfc (diff)
downloadnumpy-7884a8c9f5f5c6657413dbeaa59ad969280d38ea.tar.gz
ENH: Add stacklevel to all (or almost all) our function calls
Diffstat (limited to 'numpy/lib/nanfunctions.py')
-rw-r--r--numpy/lib/nanfunctions.py18
1 files changed, 9 insertions, 9 deletions
diff --git a/numpy/lib/nanfunctions.py b/numpy/lib/nanfunctions.py
index c2fc92ebf..7f7aea9bc 100644
--- a/numpy/lib/nanfunctions.py
+++ b/numpy/lib/nanfunctions.py
@@ -236,7 +236,7 @@ def nanmin(a, axis=None, out=None, keepdims=np._NoValue):
# Fast, but not safe for subclasses of ndarray
res = np.fmin.reduce(a, axis=axis, out=out, **kwargs)
if np.isnan(res).any():
- warnings.warn("All-NaN axis encountered", RuntimeWarning)
+ warnings.warn("All-NaN axis encountered", RuntimeWarning, stacklevel=2)
else:
# Slow, but safe for subclasses of ndarray
a, mask = _replace_nan(a, +np.inf)
@@ -248,7 +248,7 @@ def nanmin(a, axis=None, out=None, keepdims=np._NoValue):
mask = np.all(mask, axis=axis, **kwargs)
if np.any(mask):
res = _copyto(res, np.nan, mask)
- warnings.warn("All-NaN axis encountered", RuntimeWarning)
+ warnings.warn("All-NaN axis encountered", RuntimeWarning, stacklevel=2)
return res
@@ -343,7 +343,7 @@ def nanmax(a, axis=None, out=None, keepdims=np._NoValue):
# Fast, but not safe for subclasses of ndarray
res = np.fmax.reduce(a, axis=axis, out=out, **kwargs)
if np.isnan(res).any():
- warnings.warn("All-NaN slice encountered", RuntimeWarning)
+ warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=2)
else:
# Slow, but safe for subclasses of ndarray
a, mask = _replace_nan(a, -np.inf)
@@ -355,7 +355,7 @@ def nanmax(a, axis=None, out=None, keepdims=np._NoValue):
mask = np.all(mask, axis=axis, **kwargs)
if np.any(mask):
res = _copyto(res, np.nan, mask)
- warnings.warn("All-NaN axis encountered", RuntimeWarning)
+ warnings.warn("All-NaN axis encountered", RuntimeWarning, stacklevel=2)
return res
@@ -821,7 +821,7 @@ def nanmean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue):
isbad = (cnt == 0)
if isbad.any():
- warnings.warn("Mean of empty slice", RuntimeWarning)
+ warnings.warn("Mean of empty slice", RuntimeWarning, stacklevel=2)
# NaN is the only possible bad value, so no further
# action is needed to handle bad results.
return avg
@@ -835,7 +835,7 @@ def _nanmedian1d(arr1d, overwrite_input=False):
c = np.isnan(arr1d)
s = np.where(c)[0]
if s.size == arr1d.size:
- warnings.warn("All-NaN slice encountered", RuntimeWarning)
+ warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=3)
return np.nan
elif s.size == 0:
return np.median(arr1d, overwrite_input=overwrite_input)
@@ -887,7 +887,7 @@ def _nanmedian_small(a, axis=None, out=None, overwrite_input=False):
a = np.ma.masked_array(a, np.isnan(a))
m = np.ma.median(a, axis=axis, overwrite_input=overwrite_input)
for i in range(np.count_nonzero(m.mask.ravel())):
- warnings.warn("All-NaN slice encountered", RuntimeWarning)
+ warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=3)
if out is not None:
out[...] = m.filled(np.nan)
return out
@@ -1161,7 +1161,7 @@ def _nanpercentile1d(arr1d, q, overwrite_input=False, interpolation='linear'):
c = np.isnan(arr1d)
s = np.where(c)[0]
if s.size == arr1d.size:
- warnings.warn("All-NaN slice encountered", RuntimeWarning)
+ warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=3)
if q.ndim == 0:
return np.nan
else:
@@ -1317,7 +1317,7 @@ def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue):
isbad = (dof <= 0)
if np.any(isbad):
- warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning)
+ warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning, stacklevel=2)
# NaN, inf, or negative numbers are all possible bad
# values, so explicitly replace them with NaN.
var = _copyto(var, np.nan, isbad)