diff options
author | Sebastian Berg <sebastian@sipsolutions.net> | 2016-01-23 15:58:58 +0100 |
---|---|---|
committer | Sebastian Berg <sebastian@sipsolutions.net> | 2016-09-02 16:39:17 +0200 |
commit | 7884a8c9f5f5c6657413dbeaa59ad969280d38ea (patch) | |
tree | 91b55f723315291bf2605bb42aef809a65ff1d85 /numpy/lib/nanfunctions.py | |
parent | 9164f23c19c049e28d4d4825a53bbb01aedabcfc (diff) | |
download | numpy-7884a8c9f5f5c6657413dbeaa59ad969280d38ea.tar.gz |
ENH: Add stacklevel to all (or almost all) our function calls
Diffstat (limited to 'numpy/lib/nanfunctions.py')
-rw-r--r-- | numpy/lib/nanfunctions.py | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/numpy/lib/nanfunctions.py b/numpy/lib/nanfunctions.py index c2fc92ebf..7f7aea9bc 100644 --- a/numpy/lib/nanfunctions.py +++ b/numpy/lib/nanfunctions.py @@ -236,7 +236,7 @@ def nanmin(a, axis=None, out=None, keepdims=np._NoValue): # Fast, but not safe for subclasses of ndarray res = np.fmin.reduce(a, axis=axis, out=out, **kwargs) if np.isnan(res).any(): - warnings.warn("All-NaN axis encountered", RuntimeWarning) + warnings.warn("All-NaN axis encountered", RuntimeWarning, stacklevel=2) else: # Slow, but safe for subclasses of ndarray a, mask = _replace_nan(a, +np.inf) @@ -248,7 +248,7 @@ def nanmin(a, axis=None, out=None, keepdims=np._NoValue): mask = np.all(mask, axis=axis, **kwargs) if np.any(mask): res = _copyto(res, np.nan, mask) - warnings.warn("All-NaN axis encountered", RuntimeWarning) + warnings.warn("All-NaN axis encountered", RuntimeWarning, stacklevel=2) return res @@ -343,7 +343,7 @@ def nanmax(a, axis=None, out=None, keepdims=np._NoValue): # Fast, but not safe for subclasses of ndarray res = np.fmax.reduce(a, axis=axis, out=out, **kwargs) if np.isnan(res).any(): - warnings.warn("All-NaN slice encountered", RuntimeWarning) + warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=2) else: # Slow, but safe for subclasses of ndarray a, mask = _replace_nan(a, -np.inf) @@ -355,7 +355,7 @@ def nanmax(a, axis=None, out=None, keepdims=np._NoValue): mask = np.all(mask, axis=axis, **kwargs) if np.any(mask): res = _copyto(res, np.nan, mask) - warnings.warn("All-NaN axis encountered", RuntimeWarning) + warnings.warn("All-NaN axis encountered", RuntimeWarning, stacklevel=2) return res @@ -821,7 +821,7 @@ def nanmean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): isbad = (cnt == 0) if isbad.any(): - warnings.warn("Mean of empty slice", RuntimeWarning) + warnings.warn("Mean of empty slice", RuntimeWarning, stacklevel=2) # NaN is the only possible bad value, so no further # action is needed to handle bad results. return avg @@ -835,7 +835,7 @@ def _nanmedian1d(arr1d, overwrite_input=False): c = np.isnan(arr1d) s = np.where(c)[0] if s.size == arr1d.size: - warnings.warn("All-NaN slice encountered", RuntimeWarning) + warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=3) return np.nan elif s.size == 0: return np.median(arr1d, overwrite_input=overwrite_input) @@ -887,7 +887,7 @@ def _nanmedian_small(a, axis=None, out=None, overwrite_input=False): a = np.ma.masked_array(a, np.isnan(a)) m = np.ma.median(a, axis=axis, overwrite_input=overwrite_input) for i in range(np.count_nonzero(m.mask.ravel())): - warnings.warn("All-NaN slice encountered", RuntimeWarning) + warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=3) if out is not None: out[...] = m.filled(np.nan) return out @@ -1161,7 +1161,7 @@ def _nanpercentile1d(arr1d, q, overwrite_input=False, interpolation='linear'): c = np.isnan(arr1d) s = np.where(c)[0] if s.size == arr1d.size: - warnings.warn("All-NaN slice encountered", RuntimeWarning) + warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=3) if q.ndim == 0: return np.nan else: @@ -1317,7 +1317,7 @@ def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue): isbad = (dof <= 0) if np.any(isbad): - warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning) + warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning, stacklevel=2) # NaN, inf, or negative numbers are all possible bad # values, so explicitly replace them with NaN. var = _copyto(var, np.nan, isbad) |